mirror of
				https://github.com/mozilla/gecko-dev.git
				synced 2025-11-04 02:09:05 +02:00 
			
		
		
		
	Done with: ./mach static-analysis check --checks="-*, readability-redundant-member-init" --fix . https://clang.llvm.org/extra/clang-tidy/checks/readability/redundant-member-init.html Differential Revision: https://phabricator.services.mozilla.com/D190002
		
			
				
	
	
		
			904 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			904 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#include "Blur.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "mozilla/CheckedInt.h"
 | 
						|
#include "NumericTools.h"
 | 
						|
 | 
						|
#include "2D.h"
 | 
						|
#include "DataSurfaceHelpers.h"
 | 
						|
#include "Tools.h"
 | 
						|
 | 
						|
#ifdef USE_NEON
 | 
						|
#  include "mozilla/arm.h"
 | 
						|
#endif
 | 
						|
 | 
						|
namespace mozilla {
 | 
						|
namespace gfx {
 | 
						|
 | 
						|
/**
 | 
						|
 * Helper function to process each row of the box blur.
 | 
						|
 * It takes care of transposing the data on input or output depending
 | 
						|
 * on whether we intend a horizontal or vertical blur, and whether we're
 | 
						|
 * reading from the initial source or writing to the final destination.
 | 
						|
 * It allows starting or ending anywhere within the row to accomodate
 | 
						|
 * a skip rect.
 | 
						|
 */
 | 
						|
template <bool aTransposeInput, bool aTransposeOutput>
 | 
						|
static inline void BoxBlurRow(const uint8_t* aInput, uint8_t* aOutput,
 | 
						|
                              int32_t aLeftLobe, int32_t aRightLobe,
 | 
						|
                              int32_t aWidth, int32_t aStride, int32_t aStart,
 | 
						|
                              int32_t aEnd) {
 | 
						|
  // If the input or output is transposed, then we will move down a row
 | 
						|
  // for each step, instead of moving over a column. Since these values
 | 
						|
  // only depend on a template parameter, they will more easily get
 | 
						|
  // copy-propagated in the non-transposed case, which is why they
 | 
						|
  // are not passed as parameters.
 | 
						|
  const int32_t inputStep = aTransposeInput ? aStride : 1;
 | 
						|
  const int32_t outputStep = aTransposeOutput ? aStride : 1;
 | 
						|
 | 
						|
  // We need to sample aLeftLobe pixels to the left and aRightLobe pixels
 | 
						|
  // to the right of the current position, then average them. So this is
 | 
						|
  // the size of the total width of this filter.
 | 
						|
  const int32_t boxSize = aLeftLobe + aRightLobe + 1;
 | 
						|
 | 
						|
  // Instead of dividing the pixel sum by boxSize to average, we can just
 | 
						|
  // compute a scale that will normalize the result so that it can be quickly
 | 
						|
  // shifted into the desired range.
 | 
						|
  const uint32_t reciprocal = (1 << 24) / boxSize;
 | 
						|
 | 
						|
  // The shift would normally truncate the result, whereas we would rather
 | 
						|
  // prefer to round the result to the closest increment. By adding 0.5 units
 | 
						|
  // to the initial sum, we bias the sum so that it will be rounded by the
 | 
						|
  // truncation instead.
 | 
						|
  uint32_t alphaSum = (boxSize + 1) / 2;
 | 
						|
 | 
						|
  // We process the row with a moving filter, keeping a sum (alphaSum) of
 | 
						|
  // boxSize pixels. As we move over a pixel, we need to add on a pixel
 | 
						|
  // from the right extreme of the window that moved into range, and subtract
 | 
						|
  // off a pixel from the left extreme of window that moved out of range.
 | 
						|
  // But first, we need to initialization alphaSum to the contents of
 | 
						|
  // the window before we can get going. If the window moves out of bounds
 | 
						|
  // of the row, we clamp each sample to be the closest pixel from within
 | 
						|
  // row bounds, so the 0th and aWidth-1th pixel.
 | 
						|
  int32_t initLeft = aStart - aLeftLobe;
 | 
						|
  if (initLeft < 0) {
 | 
						|
    // If the left lobe samples before the row, add in clamped samples.
 | 
						|
    alphaSum += -initLeft * aInput[0];
 | 
						|
    initLeft = 0;
 | 
						|
  }
 | 
						|
  int32_t initRight = aStart + boxSize - aLeftLobe;
 | 
						|
  if (initRight > aWidth) {
 | 
						|
    // If the right lobe samples after the row, add in clamped samples.
 | 
						|
    alphaSum += (initRight - aWidth) * aInput[(aWidth - 1) * inputStep];
 | 
						|
    initRight = aWidth;
 | 
						|
  }
 | 
						|
  // Finally, add in all the valid, non-clamped samples to fill up the
 | 
						|
  // rest of the window.
 | 
						|
  const uint8_t* src = &aInput[initLeft * inputStep];
 | 
						|
  const uint8_t* iterEnd = &aInput[initRight * inputStep];
 | 
						|
 | 
						|
#define INIT_ITER   \
 | 
						|
  alphaSum += *src; \
 | 
						|
  src += inputStep;
 | 
						|
 | 
						|
  // We unroll the per-pixel loop here substantially. The amount of work
 | 
						|
  // done per sample is so small that the cost of a loop condition check
 | 
						|
  // and a branch can substantially add to or even dominate the performance
 | 
						|
  // of the loop.
 | 
						|
  while (src + 16 * inputStep <= iterEnd) {
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
    INIT_ITER;
 | 
						|
  }
 | 
						|
  while (src < iterEnd) {
 | 
						|
    INIT_ITER;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we start moving the window over the row. We will be accessing
 | 
						|
  // pixels form aStart - aLeftLobe up to aEnd + aRightLobe, which may be
 | 
						|
  // out of bounds of the row. To avoid having to check within the inner
 | 
						|
  // loops if we are in bound, we instead compute the points at which
 | 
						|
  // we will move out of bounds of the row on the left side (splitLeft)
 | 
						|
  // and right side (splitRight).
 | 
						|
  int32_t splitLeft = std::min(std::max(aLeftLobe, aStart), aEnd);
 | 
						|
  int32_t splitRight =
 | 
						|
      std::min(std::max(aWidth - (boxSize - aLeftLobe), aStart), aEnd);
 | 
						|
  // If the filter window is actually large than the size of the row,
 | 
						|
  // there will be a middle area of overlap where the leftmost and rightmost
 | 
						|
  // pixel of the filter will both be outside the row. In this case, we need
 | 
						|
  // to invert the splits so that splitLeft <= splitRight.
 | 
						|
  if (boxSize > aWidth) {
 | 
						|
    std::swap(splitLeft, splitRight);
 | 
						|
  }
 | 
						|
 | 
						|
  // Process all pixels up to splitLeft that would sample before the start of
 | 
						|
  // the row. Note that because inputStep and outputStep may not be a const 1
 | 
						|
  // value, it is more performant to increment pointers here for the source and
 | 
						|
  // destination rather than use a loop counter, since doing so would entail an
 | 
						|
  // expensive multiplication that significantly slows down the loop.
 | 
						|
  uint8_t* dst = &aOutput[aStart * outputStep];
 | 
						|
  iterEnd = &aOutput[splitLeft * outputStep];
 | 
						|
  src = &aInput[(aStart + boxSize - aLeftLobe) * inputStep];
 | 
						|
  uint8_t firstVal = aInput[0];
 | 
						|
 | 
						|
#define LEFT_ITER                       \
 | 
						|
  *dst = (alphaSum * reciprocal) >> 24; \
 | 
						|
  alphaSum += *src - firstVal;          \
 | 
						|
  dst += outputStep;                    \
 | 
						|
  src += inputStep;
 | 
						|
 | 
						|
  while (dst + 16 * outputStep <= iterEnd) {
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
    LEFT_ITER;
 | 
						|
  }
 | 
						|
  while (dst < iterEnd) {
 | 
						|
    LEFT_ITER;
 | 
						|
  }
 | 
						|
 | 
						|
  // Process all pixels between splitLeft and splitRight.
 | 
						|
  iterEnd = &aOutput[splitRight * outputStep];
 | 
						|
  if (boxSize <= aWidth) {
 | 
						|
    // The filter window is smaller than the row size, so the leftmost and
 | 
						|
    // rightmost samples are both within row bounds.
 | 
						|
    src = &aInput[(splitLeft - aLeftLobe) * inputStep];
 | 
						|
    int32_t boxStep = boxSize * inputStep;
 | 
						|
 | 
						|
#define CENTER_ITER                     \
 | 
						|
  *dst = (alphaSum * reciprocal) >> 24; \
 | 
						|
  alphaSum += src[boxStep] - *src;      \
 | 
						|
  dst += outputStep;                    \
 | 
						|
  src += inputStep;
 | 
						|
 | 
						|
    while (dst + 16 * outputStep <= iterEnd) {
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
      CENTER_ITER;
 | 
						|
    }
 | 
						|
    while (dst < iterEnd) {
 | 
						|
      CENTER_ITER;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // The filter window is larger than the row size, and we're in the area of
 | 
						|
    // split overlap. So the leftmost and rightmost samples are both out of
 | 
						|
    // bounds and need to be clamped. We can just precompute the difference here
 | 
						|
    // consequently.
 | 
						|
    int32_t firstLastDiff = aInput[(aWidth - 1) * inputStep] - aInput[0];
 | 
						|
    while (dst < iterEnd) {
 | 
						|
      *dst = (alphaSum * reciprocal) >> 24;
 | 
						|
      alphaSum += firstLastDiff;
 | 
						|
      dst += outputStep;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process all remaining pixels after splitRight that would sample after the
 | 
						|
  // row end.
 | 
						|
  iterEnd = &aOutput[aEnd * outputStep];
 | 
						|
  src = &aInput[(splitRight - aLeftLobe) * inputStep];
 | 
						|
  uint8_t lastVal = aInput[(aWidth - 1) * inputStep];
 | 
						|
 | 
						|
#define RIGHT_ITER                      \
 | 
						|
  *dst = (alphaSum * reciprocal) >> 24; \
 | 
						|
  alphaSum += lastVal - *src;           \
 | 
						|
  dst += outputStep;                    \
 | 
						|
  src += inputStep;
 | 
						|
 | 
						|
  while (dst + 16 * outputStep <= iterEnd) {
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
    RIGHT_ITER;
 | 
						|
  }
 | 
						|
  while (dst < iterEnd) {
 | 
						|
    RIGHT_ITER;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Box blur involves looking at one pixel, and setting its value to the average
 | 
						|
 * of its neighbouring pixels. This is meant to provide a 3-pass approximation
 | 
						|
 * of a Gaussian blur.
 | 
						|
 * @param aTranspose Whether to transpose the buffer when reading and writing
 | 
						|
 *                   to it.
 | 
						|
 * @param aData The buffer to be blurred.
 | 
						|
 * @param aLobes The number of pixels to blend on the left and right for each of
 | 
						|
 *               3 passes.
 | 
						|
 * @param aWidth The number of columns in the buffers.
 | 
						|
 * @param aRows The number of rows in the buffers.
 | 
						|
 * @param aStride The stride of the buffer.
 | 
						|
 */
 | 
						|
template <bool aTranspose>
 | 
						|
static void BoxBlur(uint8_t* aData, const int32_t aLobes[3][2], int32_t aWidth,
 | 
						|
                    int32_t aRows, int32_t aStride, IntRect aSkipRect) {
 | 
						|
  if (aTranspose) {
 | 
						|
    std::swap(aWidth, aRows);
 | 
						|
    aSkipRect.Swap();
 | 
						|
  }
 | 
						|
 | 
						|
  MOZ_ASSERT(aWidth > 0);
 | 
						|
 | 
						|
  // All three passes of the box blur that approximate the Gaussian are done
 | 
						|
  // on each row in turn, so we only need two temporary row buffers to process
 | 
						|
  // each row, instead of a full-sized buffer. Data moves from the source to the
 | 
						|
  // first temporary, from the first temporary to the second, then from the
 | 
						|
  // second back to the destination. This way is more cache-friendly than
 | 
						|
  // processing whe whole buffer in each pass and thus yields a nice speedup.
 | 
						|
  uint8_t* tmpRow = new (std::nothrow) uint8_t[2 * aWidth];
 | 
						|
  if (!tmpRow) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  uint8_t* tmpRow2 = tmpRow + aWidth;
 | 
						|
 | 
						|
  const int32_t stride = aTranspose ? 1 : aStride;
 | 
						|
  bool skipRectCoversWholeRow =
 | 
						|
      0 >= aSkipRect.X() && aWidth <= aSkipRect.XMost();
 | 
						|
 | 
						|
  for (int32_t y = 0; y < aRows; y++) {
 | 
						|
    // Check whether the skip rect intersects this row. If the skip
 | 
						|
    // rect covers the whole surface in this row, we can avoid
 | 
						|
    // this row entirely (and any others along the skip rect).
 | 
						|
    bool inSkipRectY = aSkipRect.ContainsY(y);
 | 
						|
    if (inSkipRectY && skipRectCoversWholeRow) {
 | 
						|
      aData += stride * (aSkipRect.YMost() - y);
 | 
						|
      y = aSkipRect.YMost() - 1;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Read in data from the source transposed if necessary.
 | 
						|
    BoxBlurRow<aTranspose, false>(aData, tmpRow, aLobes[0][0], aLobes[0][1],
 | 
						|
                                  aWidth, aStride, 0, aWidth);
 | 
						|
 | 
						|
    // For the middle pass, the data is already pre-transposed and does not need
 | 
						|
    // to be post-transposed yet.
 | 
						|
    BoxBlurRow<false, false>(tmpRow, tmpRow2, aLobes[1][0], aLobes[1][1],
 | 
						|
                             aWidth, aStride, 0, aWidth);
 | 
						|
 | 
						|
    // Write back data to the destination transposed if necessary too.
 | 
						|
    // Make sure not to overwrite the skip rect by only outputting to the
 | 
						|
    // destination before and after the skip rect, if requested.
 | 
						|
    int32_t skipStart =
 | 
						|
        inSkipRectY ? std::min(std::max(aSkipRect.X(), 0), aWidth) : aWidth;
 | 
						|
    int32_t skipEnd = std::max(skipStart, aSkipRect.XMost());
 | 
						|
    if (skipStart > 0) {
 | 
						|
      BoxBlurRow<false, aTranspose>(tmpRow2, aData, aLobes[2][0], aLobes[2][1],
 | 
						|
                                    aWidth, aStride, 0, skipStart);
 | 
						|
    }
 | 
						|
    if (skipEnd < aWidth) {
 | 
						|
      BoxBlurRow<false, aTranspose>(tmpRow2, aData, aLobes[2][0], aLobes[2][1],
 | 
						|
                                    aWidth, aStride, skipEnd, aWidth);
 | 
						|
    }
 | 
						|
 | 
						|
    aData += stride;
 | 
						|
  }
 | 
						|
 | 
						|
  delete[] tmpRow;
 | 
						|
}
 | 
						|
 | 
						|
static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2]) {
 | 
						|
  int32_t major, minor, final;
 | 
						|
 | 
						|
  /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
 | 
						|
   * some notes about approximating the Gaussian blur with box-blurs.
 | 
						|
   * The comments below are in the terminology of that page.
 | 
						|
   */
 | 
						|
  int32_t z = aRadius / 3;
 | 
						|
  switch (aRadius % 3) {
 | 
						|
    case 0:
 | 
						|
      // aRadius = z*3; choose d = 2*z + 1
 | 
						|
      major = minor = final = z;
 | 
						|
      break;
 | 
						|
    case 1:
 | 
						|
      // aRadius = z*3 + 1
 | 
						|
      // This is a tricky case since there is no value of d which will
 | 
						|
      // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
 | 
						|
      // for some integer k, then the radius will be 3*k. If d is even,
 | 
						|
      // i.e. d=2*k, then the radius will be 3*k - 1.
 | 
						|
      // So we have to choose values that don't match the standard
 | 
						|
      // algorithm.
 | 
						|
      major = z + 1;
 | 
						|
      minor = final = z;
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      // aRadius = z*3 + 2; choose d = 2*z + 2
 | 
						|
      major = final = z + 1;
 | 
						|
      minor = z;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      // Mathematical impossibility!
 | 
						|
      MOZ_ASSERT(false);
 | 
						|
      major = minor = final = 0;
 | 
						|
  }
 | 
						|
  MOZ_ASSERT(major + minor + final == aRadius);
 | 
						|
 | 
						|
  aLobes[0][0] = major;
 | 
						|
  aLobes[0][1] = minor;
 | 
						|
  aLobes[1][0] = minor;
 | 
						|
  aLobes[1][1] = major;
 | 
						|
  aLobes[2][0] = final;
 | 
						|
  aLobes[2][1] = final;
 | 
						|
}
 | 
						|
 | 
						|
static void SpreadHorizontal(uint8_t* aInput, uint8_t* aOutput, int32_t aRadius,
 | 
						|
                             int32_t aWidth, int32_t aRows, int32_t aStride,
 | 
						|
                             const IntRect& aSkipRect) {
 | 
						|
  if (aRadius == 0) {
 | 
						|
    memcpy(aOutput, aInput, aStride * aRows);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool skipRectCoversWholeRow =
 | 
						|
      0 >= aSkipRect.X() && aWidth <= aSkipRect.XMost();
 | 
						|
  for (int32_t y = 0; y < aRows; y++) {
 | 
						|
    // Check whether the skip rect intersects this row. If the skip
 | 
						|
    // rect covers the whole surface in this row, we can avoid
 | 
						|
    // this row entirely (and any others along the skip rect).
 | 
						|
    bool inSkipRectY = aSkipRect.ContainsY(y);
 | 
						|
    if (inSkipRectY && skipRectCoversWholeRow) {
 | 
						|
      y = aSkipRect.YMost() - 1;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int32_t x = 0; x < aWidth; x++) {
 | 
						|
      // Check whether we are within the skip rect. If so, go
 | 
						|
      // to the next point outside the skip rect.
 | 
						|
      if (inSkipRectY && aSkipRect.ContainsX(x)) {
 | 
						|
        x = aSkipRect.XMost();
 | 
						|
        if (x >= aWidth) break;
 | 
						|
      }
 | 
						|
 | 
						|
      int32_t sMin = std::max(x - aRadius, 0);
 | 
						|
      int32_t sMax = std::min(x + aRadius, aWidth - 1);
 | 
						|
      int32_t v = 0;
 | 
						|
      for (int32_t s = sMin; s <= sMax; ++s) {
 | 
						|
        v = std::max<int32_t>(v, aInput[aStride * y + s]);
 | 
						|
      }
 | 
						|
      aOutput[aStride * y + x] = v;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void SpreadVertical(uint8_t* aInput, uint8_t* aOutput, int32_t aRadius,
 | 
						|
                           int32_t aWidth, int32_t aRows, int32_t aStride,
 | 
						|
                           const IntRect& aSkipRect) {
 | 
						|
  if (aRadius == 0) {
 | 
						|
    memcpy(aOutput, aInput, aStride * aRows);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool skipRectCoversWholeColumn =
 | 
						|
      0 >= aSkipRect.Y() && aRows <= aSkipRect.YMost();
 | 
						|
  for (int32_t x = 0; x < aWidth; x++) {
 | 
						|
    bool inSkipRectX = aSkipRect.ContainsX(x);
 | 
						|
    if (inSkipRectX && skipRectCoversWholeColumn) {
 | 
						|
      x = aSkipRect.XMost() - 1;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int32_t y = 0; y < aRows; y++) {
 | 
						|
      // Check whether we are within the skip rect. If so, go
 | 
						|
      // to the next point outside the skip rect.
 | 
						|
      if (inSkipRectX && aSkipRect.ContainsY(y)) {
 | 
						|
        y = aSkipRect.YMost();
 | 
						|
        if (y >= aRows) break;
 | 
						|
      }
 | 
						|
 | 
						|
      int32_t sMin = std::max(y - aRadius, 0);
 | 
						|
      int32_t sMax = std::min(y + aRadius, aRows - 1);
 | 
						|
      int32_t v = 0;
 | 
						|
      for (int32_t s = sMin; s <= sMax; ++s) {
 | 
						|
        v = std::max<int32_t>(v, aInput[aStride * s + x]);
 | 
						|
      }
 | 
						|
      aOutput[aStride * y + x] = v;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CheckedInt<int32_t> AlphaBoxBlur::RoundUpToMultipleOf4(int32_t aVal) {
 | 
						|
  CheckedInt<int32_t> val(aVal);
 | 
						|
 | 
						|
  val += 3;
 | 
						|
  val /= 4;
 | 
						|
  val *= 4;
 | 
						|
 | 
						|
  return val;
 | 
						|
}
 | 
						|
 | 
						|
AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, const IntSize& aSpreadRadius,
 | 
						|
                           const IntSize& aBlurRadius, const Rect* aDirtyRect,
 | 
						|
                           const Rect* aSkipRect)
 | 
						|
    : mStride(0), mSurfaceAllocationSize(0) {
 | 
						|
  Init(aRect, aSpreadRadius, aBlurRadius, aDirtyRect, aSkipRect);
 | 
						|
}
 | 
						|
 | 
						|
AlphaBoxBlur::AlphaBoxBlur()
 | 
						|
    : mStride(0), mSurfaceAllocationSize(0), mHasDirtyRect(false) {}
 | 
						|
 | 
						|
void AlphaBoxBlur::Init(const Rect& aRect, const IntSize& aSpreadRadius,
 | 
						|
                        const IntSize& aBlurRadius, const Rect* aDirtyRect,
 | 
						|
                        const Rect* aSkipRect) {
 | 
						|
  mSpreadRadius = aSpreadRadius;
 | 
						|
  mBlurRadius = aBlurRadius;
 | 
						|
 | 
						|
  Rect rect(aRect);
 | 
						|
  rect.Inflate(Size(aBlurRadius + aSpreadRadius));
 | 
						|
  rect.RoundOut();
 | 
						|
 | 
						|
  if (aDirtyRect) {
 | 
						|
    // If we get passed a dirty rect from layout, we can minimize the
 | 
						|
    // shadow size and make painting faster.
 | 
						|
    mHasDirtyRect = true;
 | 
						|
    mDirtyRect = *aDirtyRect;
 | 
						|
    Rect requiredBlurArea = mDirtyRect.Intersect(rect);
 | 
						|
    requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
 | 
						|
    rect = requiredBlurArea.Intersect(rect);
 | 
						|
  } else {
 | 
						|
    mHasDirtyRect = false;
 | 
						|
  }
 | 
						|
 | 
						|
  mRect = TruncatedToInt(rect);
 | 
						|
  if (mRect.IsEmpty()) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (aSkipRect) {
 | 
						|
    // If we get passed a skip rect, we can lower the amount of
 | 
						|
    // blurring/spreading we need to do. We convert it to IntRect to avoid
 | 
						|
    // expensive int<->float conversions if we were to use Rect instead.
 | 
						|
    Rect skipRect = *aSkipRect;
 | 
						|
    skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
 | 
						|
    mSkipRect = RoundedIn(skipRect);
 | 
						|
    mSkipRect = mSkipRect.Intersect(mRect);
 | 
						|
    if (mSkipRect.IsEqualInterior(mRect)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    mSkipRect -= mRect.TopLeft();
 | 
						|
    // Ensure the skip rect is 4-pixel-aligned in the x axis, so that all our
 | 
						|
    // accesses later are aligned as well, see bug 1622113.
 | 
						|
    mSkipRect.SetLeftEdge(RoundUpToMultiple(mSkipRect.X(), 4));
 | 
						|
    mSkipRect.SetRightEdge(RoundDownToMultiple(mSkipRect.XMost(), 4));
 | 
						|
    if (mSkipRect.IsEmpty()) {
 | 
						|
      mSkipRect = IntRect();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    mSkipRect = IntRect();
 | 
						|
  }
 | 
						|
 | 
						|
  CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.Width());
 | 
						|
  if (stride.isValid()) {
 | 
						|
    mStride = stride.value();
 | 
						|
 | 
						|
    // We need to leave room for an additional 3 bytes for a potential overrun
 | 
						|
    // in our blurring code.
 | 
						|
    size_t size = BufferSizeFromStrideAndHeight(mStride, mRect.Height(), 3);
 | 
						|
    if (size != 0) {
 | 
						|
      mSurfaceAllocationSize = size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, int32_t aStride, float aSigmaX,
 | 
						|
                           float aSigmaY)
 | 
						|
    : mRect(TruncatedToInt(aRect)),
 | 
						|
 | 
						|
      mBlurRadius(CalculateBlurRadius(Point(aSigmaX, aSigmaY))),
 | 
						|
      mStride(aStride),
 | 
						|
      mSurfaceAllocationSize(0),
 | 
						|
      mHasDirtyRect(false) {
 | 
						|
  IntRect intRect;
 | 
						|
  if (aRect.ToIntRect(&intRect)) {
 | 
						|
    size_t minDataSize =
 | 
						|
        BufferSizeFromStrideAndHeight(intRect.Width(), intRect.Height());
 | 
						|
    if (minDataSize != 0) {
 | 
						|
      mSurfaceAllocationSize = minDataSize;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
AlphaBoxBlur::~AlphaBoxBlur() = default;
 | 
						|
 | 
						|
IntSize AlphaBoxBlur::GetSize() const {
 | 
						|
  IntSize size(mRect.Width(), mRect.Height());
 | 
						|
  return size;
 | 
						|
}
 | 
						|
 | 
						|
int32_t AlphaBoxBlur::GetStride() const { return mStride; }
 | 
						|
 | 
						|
IntRect AlphaBoxBlur::GetRect() const { return mRect; }
 | 
						|
 | 
						|
Rect* AlphaBoxBlur::GetDirtyRect() {
 | 
						|
  if (mHasDirtyRect) {
 | 
						|
    return &mDirtyRect;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
size_t AlphaBoxBlur::GetSurfaceAllocationSize() const {
 | 
						|
  return mSurfaceAllocationSize;
 | 
						|
}
 | 
						|
 | 
						|
void AlphaBoxBlur::Blur(uint8_t* aData) const {
 | 
						|
  if (!aData) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // no need to do all this if not blurring or spreading
 | 
						|
  if (mBlurRadius != IntSize(0, 0) || mSpreadRadius != IntSize(0, 0)) {
 | 
						|
    int32_t stride = GetStride();
 | 
						|
 | 
						|
    IntSize size = GetSize();
 | 
						|
 | 
						|
    if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
 | 
						|
      // No need to use CheckedInt here - we have validated it in the
 | 
						|
      // constructor.
 | 
						|
      size_t szB = stride * size.height;
 | 
						|
      uint8_t* tmpData = new (std::nothrow) uint8_t[szB];
 | 
						|
 | 
						|
      if (!tmpData) {
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      memset(tmpData, 0, szB);
 | 
						|
 | 
						|
      SpreadHorizontal(aData, tmpData, mSpreadRadius.width, size.width,
 | 
						|
                       size.height, stride, mSkipRect);
 | 
						|
      SpreadVertical(tmpData, aData, mSpreadRadius.height, size.width,
 | 
						|
                     size.height, stride, mSkipRect);
 | 
						|
 | 
						|
      delete[] tmpData;
 | 
						|
    }
 | 
						|
 | 
						|
    int32_t horizontalLobes[3][2];
 | 
						|
    ComputeLobes(mBlurRadius.width, horizontalLobes);
 | 
						|
    int32_t verticalLobes[3][2];
 | 
						|
    ComputeLobes(mBlurRadius.height, verticalLobes);
 | 
						|
 | 
						|
    // We want to allow for some extra space on the left for alignment reasons.
 | 
						|
    int32_t maxLeftLobe =
 | 
						|
        RoundUpToMultipleOf4(horizontalLobes[0][0] + 1).value();
 | 
						|
 | 
						|
    IntSize integralImageSize(
 | 
						|
        size.width + maxLeftLobe + horizontalLobes[1][1],
 | 
						|
        size.height + verticalLobes[0][0] + verticalLobes[1][1] + 1);
 | 
						|
 | 
						|
    if ((integralImageSize.width * integralImageSize.height) > (1 << 24)) {
 | 
						|
      // Fallback to old blurring code when the surface is so large it may
 | 
						|
      // overflow our integral image!
 | 
						|
      if (mBlurRadius.width > 0) {
 | 
						|
        BoxBlur<false>(aData, horizontalLobes, size.width, size.height, stride,
 | 
						|
                       mSkipRect);
 | 
						|
      }
 | 
						|
      if (mBlurRadius.height > 0) {
 | 
						|
        BoxBlur<true>(aData, verticalLobes, size.width, size.height, stride,
 | 
						|
                      mSkipRect);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      size_t integralImageStride =
 | 
						|
          GetAlignedStride<16>(integralImageSize.width, 4);
 | 
						|
      if (integralImageStride == 0) {
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // We need to leave room for an additional 12 bytes for a maximum overrun
 | 
						|
      // of 3 pixels in the blurring code.
 | 
						|
      size_t bufLen = BufferSizeFromStrideAndHeight(
 | 
						|
          integralImageStride, integralImageSize.height, 12);
 | 
						|
      if (bufLen == 0) {
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // bufLen is a byte count, but here we want a multiple of 32-bit ints, so
 | 
						|
      // we divide by 4.
 | 
						|
      AlignedArray<uint32_t> integralImage((bufLen / 4) +
 | 
						|
                                           ((bufLen % 4) ? 1 : 0));
 | 
						|
 | 
						|
      if (!integralImage) {
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
#ifdef USE_SSE2
 | 
						|
      if (Factory::HasSSE2()) {
 | 
						|
        BoxBlur_SSE2(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | 
						|
                     verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | 
						|
                     integralImageStride);
 | 
						|
        BoxBlur_SSE2(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | 
						|
                     verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | 
						|
                     integralImageStride);
 | 
						|
        BoxBlur_SSE2(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | 
						|
                     verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | 
						|
                     integralImageStride);
 | 
						|
      } else
 | 
						|
#endif
 | 
						|
#ifdef USE_NEON
 | 
						|
          if (mozilla::supports_neon()) {
 | 
						|
        BoxBlur_NEON(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | 
						|
                     verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | 
						|
                     integralImageStride);
 | 
						|
        BoxBlur_NEON(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | 
						|
                     verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | 
						|
                     integralImageStride);
 | 
						|
        BoxBlur_NEON(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | 
						|
                     verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | 
						|
                     integralImageStride);
 | 
						|
      } else
 | 
						|
#endif
 | 
						|
      {
 | 
						|
#ifdef _MIPS_ARCH_LOONGSON3A
 | 
						|
        BoxBlur_LS3(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | 
						|
                    verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | 
						|
                    integralImageStride);
 | 
						|
        BoxBlur_LS3(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | 
						|
                    verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | 
						|
                    integralImageStride);
 | 
						|
        BoxBlur_LS3(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | 
						|
                    verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | 
						|
                    integralImageStride);
 | 
						|
#else
 | 
						|
        BoxBlur_C(aData, horizontalLobes[0][0], horizontalLobes[0][1],
 | 
						|
                  verticalLobes[0][0], verticalLobes[0][1], integralImage,
 | 
						|
                  integralImageStride);
 | 
						|
        BoxBlur_C(aData, horizontalLobes[1][0], horizontalLobes[1][1],
 | 
						|
                  verticalLobes[1][0], verticalLobes[1][1], integralImage,
 | 
						|
                  integralImageStride);
 | 
						|
        BoxBlur_C(aData, horizontalLobes[2][0], horizontalLobes[2][1],
 | 
						|
                  verticalLobes[2][0], verticalLobes[2][1], integralImage,
 | 
						|
                  integralImageStride);
 | 
						|
#endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MOZ_ALWAYS_INLINE void GenerateIntegralRow(uint32_t* aDest,
 | 
						|
                                           const uint8_t* aSource,
 | 
						|
                                           uint32_t* aPreviousRow,
 | 
						|
                                           const uint32_t& aSourceWidth,
 | 
						|
                                           const uint32_t& aLeftInflation,
 | 
						|
                                           const uint32_t& aRightInflation) {
 | 
						|
  uint32_t currentRowSum = 0;
 | 
						|
  uint32_t pixel = aSource[0];
 | 
						|
  for (uint32_t x = 0; x < aLeftInflation; x++) {
 | 
						|
    currentRowSum += pixel;
 | 
						|
    *aDest++ = currentRowSum + *aPreviousRow++;
 | 
						|
  }
 | 
						|
  for (uint32_t x = aLeftInflation; x < (aSourceWidth + aLeftInflation);
 | 
						|
       x += 4) {
 | 
						|
    uint32_t alphaValues = *(uint32_t*)(aSource + (x - aLeftInflation));
 | 
						|
#if defined WORDS_BIGENDIAN || defined IS_BIG_ENDIAN || defined __BIG_ENDIAN__
 | 
						|
    currentRowSum += (alphaValues >> 24) & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
    currentRowSum += (alphaValues >> 16) & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
    currentRowSum += (alphaValues >> 8) & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
    currentRowSum += alphaValues & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
#else
 | 
						|
    currentRowSum += alphaValues & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
    alphaValues >>= 8;
 | 
						|
    currentRowSum += alphaValues & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
    alphaValues >>= 8;
 | 
						|
    currentRowSum += alphaValues & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
    alphaValues >>= 8;
 | 
						|
    currentRowSum += alphaValues & 0xff;
 | 
						|
    *aDest++ = *aPreviousRow++ + currentRowSum;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  pixel = aSource[aSourceWidth - 1];
 | 
						|
  for (uint32_t x = (aSourceWidth + aLeftInflation);
 | 
						|
       x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
 | 
						|
    currentRowSum += pixel;
 | 
						|
    *aDest++ = currentRowSum + *aPreviousRow++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MOZ_ALWAYS_INLINE void GenerateIntegralImage_C(
 | 
						|
    int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation,
 | 
						|
    int32_t aBottomInflation, uint32_t* aIntegralImage,
 | 
						|
    size_t aIntegralImageStride, uint8_t* aSource, int32_t aSourceStride,
 | 
						|
    const IntSize& aSize) {
 | 
						|
  uint32_t stride32bit = aIntegralImageStride / 4;
 | 
						|
 | 
						|
  IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
 | 
						|
                            aSize.height + aTopInflation + aBottomInflation);
 | 
						|
 | 
						|
  memset(aIntegralImage, 0, aIntegralImageStride);
 | 
						|
 | 
						|
  GenerateIntegralRow(aIntegralImage, aSource, aIntegralImage, aSize.width,
 | 
						|
                      aLeftInflation, aRightInflation);
 | 
						|
  for (int y = 1; y < aTopInflation + 1; y++) {
 | 
						|
    GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource,
 | 
						|
                        aIntegralImage + (y - 1) * stride32bit, aSize.width,
 | 
						|
                        aLeftInflation, aRightInflation);
 | 
						|
  }
 | 
						|
 | 
						|
  for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
 | 
						|
    GenerateIntegralRow(aIntegralImage + (y * stride32bit),
 | 
						|
                        aSource + aSourceStride * (y - aTopInflation),
 | 
						|
                        aIntegralImage + (y - 1) * stride32bit, aSize.width,
 | 
						|
                        aLeftInflation, aRightInflation);
 | 
						|
  }
 | 
						|
 | 
						|
  if (aBottomInflation) {
 | 
						|
    for (int y = (aSize.height + aTopInflation); y < integralImageSize.height;
 | 
						|
         y++) {
 | 
						|
      GenerateIntegralRow(aIntegralImage + (y * stride32bit),
 | 
						|
                          aSource + ((aSize.height - 1) * aSourceStride),
 | 
						|
                          aIntegralImage + (y - 1) * stride32bit, aSize.width,
 | 
						|
                          aLeftInflation, aRightInflation);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Attempt to do an in-place box blur using an integral image.
 | 
						|
 */
 | 
						|
void AlphaBoxBlur::BoxBlur_C(uint8_t* aData, int32_t aLeftLobe,
 | 
						|
                             int32_t aRightLobe, int32_t aTopLobe,
 | 
						|
                             int32_t aBottomLobe, uint32_t* aIntegralImage,
 | 
						|
                             size_t aIntegralImageStride) const {
 | 
						|
  IntSize size = GetSize();
 | 
						|
 | 
						|
  MOZ_ASSERT(size.width > 0);
 | 
						|
 | 
						|
  // Our 'left' or 'top' lobe will include the current pixel. i.e. when
 | 
						|
  // looking at an integral image the value of a pixel at 'x,y' is calculated
 | 
						|
  // using the value of the integral image values above/below that.
 | 
						|
  aLeftLobe++;
 | 
						|
  aTopLobe++;
 | 
						|
  int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);
 | 
						|
 | 
						|
  MOZ_ASSERT(boxSize > 0);
 | 
						|
 | 
						|
  if (boxSize == 1) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  int32_t stride32bit = aIntegralImageStride / 4;
 | 
						|
 | 
						|
  int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();
 | 
						|
 | 
						|
  GenerateIntegralImage_C(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
 | 
						|
                          aIntegralImage, aIntegralImageStride, aData, mStride,
 | 
						|
                          size);
 | 
						|
 | 
						|
  uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
 | 
						|
 | 
						|
  uint32_t* innerIntegral =
 | 
						|
      aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
 | 
						|
 | 
						|
  // Storing these locally makes this about 30% faster! Presumably the compiler
 | 
						|
  // can't be sure we're not altering the member variables in this loop.
 | 
						|
  IntRect skipRect = mSkipRect;
 | 
						|
  uint8_t* data = aData;
 | 
						|
  int32_t stride = mStride;
 | 
						|
  for (int32_t y = 0; y < size.height; y++) {
 | 
						|
    // Not using ContainsY(y) because we do not skip y == skipRect.Y()
 | 
						|
    // although that may not be done on purpose
 | 
						|
    bool inSkipRectY = y > skipRect.Y() && y < skipRect.YMost();
 | 
						|
 | 
						|
    uint32_t* topLeftBase =
 | 
						|
        innerIntegral + ((y - aTopLobe) * stride32bit - aLeftLobe);
 | 
						|
    uint32_t* topRightBase =
 | 
						|
        innerIntegral + ((y - aTopLobe) * stride32bit + aRightLobe);
 | 
						|
    uint32_t* bottomRightBase =
 | 
						|
        innerIntegral + ((y + aBottomLobe) * stride32bit + aRightLobe);
 | 
						|
    uint32_t* bottomLeftBase =
 | 
						|
        innerIntegral + ((y + aBottomLobe) * stride32bit - aLeftLobe);
 | 
						|
 | 
						|
    for (int32_t x = 0; x < size.width; x++) {
 | 
						|
      // Not using ContainsX(x) because we do not skip x == skipRect.X()
 | 
						|
      // although that may not be done on purpose
 | 
						|
      if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
 | 
						|
        x = skipRect.XMost() - 1;
 | 
						|
        // Trigger early jump on coming loop iterations, this will be reset
 | 
						|
        // next line anyway.
 | 
						|
        inSkipRectY = false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      int32_t topLeft = topLeftBase[x];
 | 
						|
      int32_t topRight = topRightBase[x];
 | 
						|
      int32_t bottomRight = bottomRightBase[x];
 | 
						|
      int32_t bottomLeft = bottomLeftBase[x];
 | 
						|
 | 
						|
      uint32_t value = bottomRight - topRight - bottomLeft;
 | 
						|
      value += topLeft;
 | 
						|
 | 
						|
      data[stride * y + x] =
 | 
						|
          (uint64_t(reciprocal) * value + (uint64_t(1) << 31)) >> 32;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Compute the box blur size (which we're calling the blur radius) from
 | 
						|
 * the standard deviation.
 | 
						|
 *
 | 
						|
 * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
 | 
						|
 * approximating a Gaussian using box blurs.  This yields quite a good
 | 
						|
 * approximation for a Gaussian.  Then we multiply this by 1.5 since our
 | 
						|
 * code wants the radius of the entire triple-box-blur kernel instead of
 | 
						|
 * the diameter of an individual box blur.  For more details, see:
 | 
						|
 *   http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
 | 
						|
 *   https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
 | 
						|
 */
 | 
						|
static const Float GAUSSIAN_SCALE_FACTOR =
 | 
						|
    Float((3 * sqrt(2 * M_PI) / 4) * 1.5);
 | 
						|
 | 
						|
IntSize AlphaBoxBlur::CalculateBlurRadius(const Point& aStd) {
 | 
						|
  IntSize size(
 | 
						|
      static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5f)),
 | 
						|
      static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5f)));
 | 
						|
 | 
						|
  return size;
 | 
						|
}
 | 
						|
 | 
						|
Float AlphaBoxBlur::CalculateBlurSigma(int32_t aBlurRadius) {
 | 
						|
  return aBlurRadius / GAUSSIAN_SCALE_FACTOR;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace gfx
 | 
						|
}  // namespace mozilla
 |