mirror of
				https://github.com/mozilla/gecko-dev.git
				synced 2025-11-04 10:18:41 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			290 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#include "PathHelpers.h"
 | 
						|
 | 
						|
namespace mozilla {
 | 
						|
namespace gfx {
 | 
						|
 | 
						|
UserDataKey sDisablePixelSnapping;
 | 
						|
 | 
						|
void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
 | 
						|
                      bool aDrawClockwise) {
 | 
						|
  if (aDrawClockwise) {
 | 
						|
    aPathBuilder->MoveTo(aRect.TopLeft());
 | 
						|
    aPathBuilder->LineTo(aRect.TopRight());
 | 
						|
    aPathBuilder->LineTo(aRect.BottomRight());
 | 
						|
    aPathBuilder->LineTo(aRect.BottomLeft());
 | 
						|
  } else {
 | 
						|
    aPathBuilder->MoveTo(aRect.TopRight());
 | 
						|
    aPathBuilder->LineTo(aRect.TopLeft());
 | 
						|
    aPathBuilder->LineTo(aRect.BottomLeft());
 | 
						|
    aPathBuilder->LineTo(aRect.BottomRight());
 | 
						|
  }
 | 
						|
  aPathBuilder->Close();
 | 
						|
}
 | 
						|
 | 
						|
void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
 | 
						|
                             const RectCornerRadii& aRadii, bool aDrawClockwise,
 | 
						|
                             const Maybe<Matrix>& aTransform) {
 | 
						|
  // For CW drawing, this looks like:
 | 
						|
  //
 | 
						|
  //  ...******0**      1    C
 | 
						|
  //              ****
 | 
						|
  //                  ***    2
 | 
						|
  //                     **
 | 
						|
  //                       *
 | 
						|
  //                        *
 | 
						|
  //                         3
 | 
						|
  //                         *
 | 
						|
  //                         *
 | 
						|
  //
 | 
						|
  // Where 0, 1, 2, 3 are the control points of the Bezier curve for
 | 
						|
  // the corner, and C is the actual corner point.
 | 
						|
  //
 | 
						|
  // At the start of the loop, the current point is assumed to be
 | 
						|
  // the point adjacent to the top left corner on the top
 | 
						|
  // horizontal.  Note that corner indices start at the top left and
 | 
						|
  // continue clockwise, whereas in our loop i = 0 refers to the top
 | 
						|
  // right corner.
 | 
						|
  //
 | 
						|
  // When going CCW, the control points are swapped, and the first
 | 
						|
  // corner that's drawn is the top left (along with the top segment).
 | 
						|
  //
 | 
						|
  // There is considerable latitude in how one chooses the four
 | 
						|
  // control points for a Bezier curve approximation to an ellipse.
 | 
						|
  // For the overall path to be continuous and show no corner at the
 | 
						|
  // endpoints of the arc, points 0 and 3 must be at the ends of the
 | 
						|
  // straight segments of the rectangle; points 0, 1, and C must be
 | 
						|
  // collinear; and points 3, 2, and C must also be collinear.  This
 | 
						|
  // leaves only two free parameters: the ratio of the line segments
 | 
						|
  // 01 and 0C, and the ratio of the line segments 32 and 3C.  See
 | 
						|
  // the following papers for extensive discussion of how to choose
 | 
						|
  // these ratios:
 | 
						|
  //
 | 
						|
  //   Dokken, Tor, et al. "Good approximation of circles by
 | 
						|
  //      curvature-continuous Bezier curves."  Computer-Aided
 | 
						|
  //      Geometric Design 7(1990) 33--41.
 | 
						|
  //   Goldapp, Michael. "Approximation of circular arcs by cubic
 | 
						|
  //      polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
 | 
						|
  //   Maisonobe, Luc. "Drawing an elliptical arc using polylines,
 | 
						|
  //      quadratic, or cubic Bezier curves."
 | 
						|
  //      http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
 | 
						|
  //
 | 
						|
  // We follow the approach in section 2 of Goldapp (least-error,
 | 
						|
  // Hermite-type approximation) and make both ratios equal to
 | 
						|
  //
 | 
						|
  //          2   2 + n - sqrt(2n + 28)
 | 
						|
  //  alpha = - * ---------------------
 | 
						|
  //          3           n - 4
 | 
						|
  //
 | 
						|
  // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
 | 
						|
  //
 | 
						|
  // This is the result of Goldapp's equation (10b) when the angle
 | 
						|
  // swept out by the arc is pi/2, and the parameter "a-bar" is the
 | 
						|
  // expression given immediately below equation (21).
 | 
						|
  //
 | 
						|
  // Using this value, the maximum radial error for a circle, as a
 | 
						|
  // fraction of the radius, is on the order of 0.2 x 10^-3.
 | 
						|
  // Neither Dokken nor Goldapp discusses error for a general
 | 
						|
  // ellipse; Maisonobe does, but his choice of control points
 | 
						|
  // follows different constraints, and Goldapp's expression for
 | 
						|
  // 'alpha' gives much smaller radial error, even for very flat
 | 
						|
  // ellipses, than Maisonobe's equivalent.
 | 
						|
  //
 | 
						|
  // For the various corners and for each axis, the sign of this
 | 
						|
  // constant changes, or it might be 0 -- it's multiplied by the
 | 
						|
  // appropriate multiplier from the list before using.
 | 
						|
 | 
						|
  const Float alpha = Float(0.55191497064665766025);
 | 
						|
 | 
						|
  typedef struct {
 | 
						|
    Float a, b;
 | 
						|
  } twoFloats;
 | 
						|
 | 
						|
  twoFloats cwCornerMults[4] = {{-1, 0},  // cc == clockwise
 | 
						|
                                {0, -1},
 | 
						|
                                {+1, 0},
 | 
						|
                                {0, +1}};
 | 
						|
  twoFloats ccwCornerMults[4] = {{+1, 0},  // ccw == counter-clockwise
 | 
						|
                                 {0, -1},
 | 
						|
                                 {-1, 0},
 | 
						|
                                 {0, +1}};
 | 
						|
 | 
						|
  twoFloats* cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
 | 
						|
 | 
						|
  Point cornerCoords[] = {aRect.TopLeft(), aRect.TopRight(),
 | 
						|
                          aRect.BottomRight(), aRect.BottomLeft()};
 | 
						|
 | 
						|
  Point pc, p0, p1, p2, p3;
 | 
						|
 | 
						|
  if (aDrawClockwise) {
 | 
						|
    Point pt(aRect.X() + aRadii[eCornerTopLeft].width, aRect.Y());
 | 
						|
    if (aTransform) {
 | 
						|
      pt = aTransform->TransformPoint(pt);
 | 
						|
    }
 | 
						|
    aPathBuilder->MoveTo(pt);
 | 
						|
  } else {
 | 
						|
    Point pt(aRect.X() + aRect.Width() - aRadii[eCornerTopRight].width,
 | 
						|
             aRect.Y());
 | 
						|
    if (aTransform) {
 | 
						|
      pt = aTransform->TransformPoint(pt);
 | 
						|
    }
 | 
						|
    aPathBuilder->MoveTo(pt);
 | 
						|
  }
 | 
						|
 | 
						|
  for (int i = 0; i < 4; ++i) {
 | 
						|
    // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
 | 
						|
    int c = aDrawClockwise ? ((i + 1) % 4) : ((4 - i) % 4);
 | 
						|
 | 
						|
    // i+2 and i+3 respectively.  These are used to index into the corner
 | 
						|
    // multiplier table, and were deduced by calculating out the long form
 | 
						|
    // of each corner and finding a pattern in the signs and values.
 | 
						|
    int i2 = (i + 2) % 4;
 | 
						|
    int i3 = (i + 3) % 4;
 | 
						|
 | 
						|
    pc = cornerCoords[c];
 | 
						|
 | 
						|
    if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) {
 | 
						|
      p0.x = pc.x + cornerMults[i].a * aRadii[c].width;
 | 
						|
      p0.y = pc.y + cornerMults[i].b * aRadii[c].height;
 | 
						|
 | 
						|
      p3.x = pc.x + cornerMults[i3].a * aRadii[c].width;
 | 
						|
      p3.y = pc.y + cornerMults[i3].b * aRadii[c].height;
 | 
						|
 | 
						|
      p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width;
 | 
						|
      p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height;
 | 
						|
 | 
						|
      p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width;
 | 
						|
      p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height;
 | 
						|
 | 
						|
      if (aTransform.isNothing()) {
 | 
						|
        aPathBuilder->LineTo(p0);
 | 
						|
        aPathBuilder->BezierTo(p1, p2, p3);
 | 
						|
      } else {
 | 
						|
        const Matrix& transform = *aTransform;
 | 
						|
        aPathBuilder->LineTo(transform.TransformPoint(p0));
 | 
						|
        aPathBuilder->BezierTo(transform.TransformPoint(p1),
 | 
						|
                               transform.TransformPoint(p2),
 | 
						|
                               transform.TransformPoint(p3));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (aTransform.isNothing()) {
 | 
						|
        aPathBuilder->LineTo(pc);
 | 
						|
      } else {
 | 
						|
        aPathBuilder->LineTo(aTransform->TransformPoint(pc));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  aPathBuilder->Close();
 | 
						|
}
 | 
						|
 | 
						|
void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter,
 | 
						|
                         const Size& aDimensions) {
 | 
						|
  Size halfDim = aDimensions / 2.f;
 | 
						|
  Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
 | 
						|
  RectCornerRadii radii(halfDim.width, halfDim.height);
 | 
						|
 | 
						|
  AppendRoundedRectToPath(aPathBuilder, rect, radii);
 | 
						|
}
 | 
						|
 | 
						|
bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
 | 
						|
                                       const DrawTarget& aDrawTarget,
 | 
						|
                                       Float aLineWidth) {
 | 
						|
  Matrix mat = aDrawTarget.GetTransform();
 | 
						|
  if (mat.HasNonTranslation()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (aP1.x != aP2.x && aP1.y != aP2.y) {
 | 
						|
    return false;  // not a horizontal or vertical line
 | 
						|
  }
 | 
						|
  Point p1 = aP1 + mat.GetTranslation();  // into device space
 | 
						|
  Point p2 = aP2 + mat.GetTranslation();
 | 
						|
  p1.Round();
 | 
						|
  p2.Round();
 | 
						|
  p1 -= mat.GetTranslation();  // back into user space
 | 
						|
  p2 -= mat.GetTranslation();
 | 
						|
 | 
						|
  aP1 = p1;
 | 
						|
  aP2 = p2;
 | 
						|
 | 
						|
  bool lineWidthIsOdd = (int(aLineWidth) % 2) == 1;
 | 
						|
  if (lineWidthIsOdd) {
 | 
						|
    if (aP1.x == aP2.x) {
 | 
						|
      // snap vertical line, adding 0.5 to align it to be mid-pixel:
 | 
						|
      aP1 += Point(0.5, 0);
 | 
						|
      aP2 += Point(0.5, 0);
 | 
						|
    } else {
 | 
						|
      // snap horizontal line, adding 0.5 to align it to be mid-pixel:
 | 
						|
      aP1 += Point(0, 0.5);
 | 
						|
      aP2 += Point(0, 0.5);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
 | 
						|
                              const ColorPattern& aColor,
 | 
						|
                              const StrokeOptions& aStrokeOptions) {
 | 
						|
  if (aRect.IsEmpty()) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Point p1 = aRect.TopLeft();
 | 
						|
  Point p2 = aRect.BottomLeft();
 | 
						|
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | 
						|
                                    aStrokeOptions.mLineWidth);
 | 
						|
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | 
						|
 | 
						|
  p1 = aRect.BottomLeft();
 | 
						|
  p2 = aRect.BottomRight();
 | 
						|
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | 
						|
                                    aStrokeOptions.mLineWidth);
 | 
						|
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | 
						|
 | 
						|
  p1 = aRect.TopLeft();
 | 
						|
  p2 = aRect.TopRight();
 | 
						|
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | 
						|
                                    aStrokeOptions.mLineWidth);
 | 
						|
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | 
						|
 | 
						|
  p1 = aRect.TopRight();
 | 
						|
  p2 = aRect.BottomRight();
 | 
						|
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
 | 
						|
                                    aStrokeOptions.mLineWidth);
 | 
						|
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
 | 
						|
}
 | 
						|
 | 
						|
// The logic for this comes from _cairo_stroke_style_max_distance_from_path
 | 
						|
Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
 | 
						|
                        const Matrix& aTransform) {
 | 
						|
  double styleExpansionFactor = 0.5f;
 | 
						|
 | 
						|
  if (aStrokeOptions.mLineCap == CapStyle::SQUARE) {
 | 
						|
    styleExpansionFactor = M_SQRT1_2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (aStrokeOptions.mLineJoin == JoinStyle::MITER &&
 | 
						|
      styleExpansionFactor < M_SQRT2 * aStrokeOptions.mMiterLimit) {
 | 
						|
    styleExpansionFactor = M_SQRT2 * aStrokeOptions.mMiterLimit;
 | 
						|
  }
 | 
						|
 | 
						|
  styleExpansionFactor *= aStrokeOptions.mLineWidth;
 | 
						|
 | 
						|
  double dx = styleExpansionFactor * hypot(aTransform._11, aTransform._21);
 | 
						|
  double dy = styleExpansionFactor * hypot(aTransform._22, aTransform._12);
 | 
						|
 | 
						|
  // Even if the stroke only partially covers a pixel, it must still render to
 | 
						|
  // full pixels. Round up to compensate for this.
 | 
						|
  dx = ceil(dx);
 | 
						|
  dy = ceil(dy);
 | 
						|
 | 
						|
  return Margin(dy, dx, dy, dx);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace gfx
 | 
						|
}  // namespace mozilla
 |