mirror of
				https://github.com/mozilla/gecko-dev.git
				synced 2025-11-04 02:09:05 +02:00 
			
		
		
		
	D2D has a more efficient path when asked to stroke circles vs. circular paths. This will let us use that. Differential Revision: https://phabricator.services.mozilla.com/D181545
		
			
				
	
	
		
			399 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			399 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
 | 
						|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
 | 
						|
/* This Source Code Form is subject to the terms of the Mozilla Public
 | 
						|
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 | 
						|
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
 | 
						|
 | 
						|
#ifndef MOZILLA_GFX_PATHHELPERS_H_
 | 
						|
#define MOZILLA_GFX_PATHHELPERS_H_
 | 
						|
 | 
						|
#include "2D.h"
 | 
						|
#include "UserData.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
namespace mozilla {
 | 
						|
namespace gfx {
 | 
						|
 | 
						|
struct PathOp {
 | 
						|
  ~PathOp() = default;
 | 
						|
 | 
						|
  enum OpType {
 | 
						|
    OP_MOVETO = 0,
 | 
						|
    OP_LINETO,
 | 
						|
    OP_BEZIERTO,
 | 
						|
    OP_QUADRATICBEZIERTO,
 | 
						|
    OP_ARC,
 | 
						|
    OP_CLOSE
 | 
						|
  };
 | 
						|
 | 
						|
  OpType mType;
 | 
						|
  Point mP1;
 | 
						|
#if (!defined(__GNUC__) || __GNUC__ >= 7) && defined(__clang__)
 | 
						|
  PathOp() {}
 | 
						|
 | 
						|
  union {
 | 
						|
    struct {
 | 
						|
      Point mP2;
 | 
						|
      Point mP3;
 | 
						|
    };
 | 
						|
    struct {
 | 
						|
      float mRadius;
 | 
						|
      float mStartAngle;
 | 
						|
      float mEndAngle;
 | 
						|
      bool mAntiClockwise;
 | 
						|
    };
 | 
						|
  };
 | 
						|
#else
 | 
						|
  PathOp() = default;
 | 
						|
 | 
						|
  Point mP2;
 | 
						|
  Point mP3;
 | 
						|
  float mRadius;
 | 
						|
  float mStartAngle;
 | 
						|
  float mEndAngle;
 | 
						|
  bool mAntiClockwise;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
const int32_t sPointCount[] = {1, 1, 3, 2, 0, 0};
 | 
						|
 | 
						|
// Kappa constant for 90-degree angle
 | 
						|
const Float kKappaFactor = 0.55191497064665766025f;
 | 
						|
 | 
						|
// Calculate kappa constant for partial curve. The sign of angle in the
 | 
						|
// tangent will actually ensure this is negative for a counter clockwise
 | 
						|
// sweep, so changing signs later isn't needed.
 | 
						|
inline Float ComputeKappaFactor(Float aAngle) {
 | 
						|
  return (4.0f / 3.0f) * tanf(aAngle / 4.0f);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Draws a partial arc <= 90 degrees given exact start and end points.
 | 
						|
 * Assumes that it is continuing from an already specified start point.
 | 
						|
 */
 | 
						|
template <typename T>
 | 
						|
inline void PartialArcToBezier(T* aSink, const Point& aStartOffset,
 | 
						|
                               const Point& aEndOffset,
 | 
						|
                               const Matrix& aTransform,
 | 
						|
                               Float aKappaFactor = kKappaFactor) {
 | 
						|
  Point cp1 =
 | 
						|
      aStartOffset + Point(-aStartOffset.y, aStartOffset.x) * aKappaFactor;
 | 
						|
 | 
						|
  Point cp2 = aEndOffset + Point(aEndOffset.y, -aEndOffset.x) * aKappaFactor;
 | 
						|
 | 
						|
  aSink->BezierTo(aTransform.TransformPoint(cp1),
 | 
						|
                  aTransform.TransformPoint(cp2),
 | 
						|
                  aTransform.TransformPoint(aEndOffset));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Draws an acute arc (<= 90 degrees) given exact start and end points.
 | 
						|
 * Specialized version avoiding kappa calculation.
 | 
						|
 */
 | 
						|
template <typename T>
 | 
						|
inline void AcuteArcToBezier(T* aSink, const Point& aOrigin,
 | 
						|
                             const Size& aRadius, const Point& aStartPoint,
 | 
						|
                             const Point& aEndPoint,
 | 
						|
                             Float aKappaFactor = kKappaFactor) {
 | 
						|
  aSink->LineTo(aStartPoint);
 | 
						|
  if (!aRadius.IsEmpty()) {
 | 
						|
    Float kappaX = aKappaFactor * aRadius.width / aRadius.height;
 | 
						|
    Float kappaY = aKappaFactor * aRadius.height / aRadius.width;
 | 
						|
    Point startOffset = aStartPoint - aOrigin;
 | 
						|
    Point endOffset = aEndPoint - aOrigin;
 | 
						|
    aSink->BezierTo(
 | 
						|
        aStartPoint + Point(-startOffset.y * kappaX, startOffset.x * kappaY),
 | 
						|
        aEndPoint + Point(endOffset.y * kappaX, -endOffset.x * kappaY),
 | 
						|
        aEndPoint);
 | 
						|
  } else if (aEndPoint != aStartPoint) {
 | 
						|
    aSink->LineTo(aEndPoint);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Draws an acute arc (<= 90 degrees) given exact start and end points.
 | 
						|
 */
 | 
						|
template <typename T>
 | 
						|
inline void AcuteArcToBezier(T* aSink, const Point& aOrigin,
 | 
						|
                             const Size& aRadius, const Point& aStartPoint,
 | 
						|
                             const Point& aEndPoint, Float aStartAngle,
 | 
						|
                             Float aEndAngle) {
 | 
						|
  AcuteArcToBezier(aSink, aOrigin, aRadius, aStartPoint, aEndPoint,
 | 
						|
                   ComputeKappaFactor(aEndAngle - aStartAngle));
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void ArcToBezier(T* aSink, const Point& aOrigin, const Size& aRadius,
 | 
						|
                 float aStartAngle, float aEndAngle, bool aAntiClockwise,
 | 
						|
                 float aRotation = 0.0f, const Matrix& aTransform = Matrix()) {
 | 
						|
  Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;
 | 
						|
 | 
						|
  // Calculate the total arc we're going to sweep.
 | 
						|
  Float arcSweepLeft = (aEndAngle - aStartAngle) * sweepDirection;
 | 
						|
 | 
						|
  // Clockwise we always sweep from the smaller to the larger angle, ccw
 | 
						|
  // it's vice versa.
 | 
						|
  if (arcSweepLeft < 0) {
 | 
						|
    // Rerverse sweep is modulo'd into range rather than clamped.
 | 
						|
    arcSweepLeft = Float(2.0f * M_PI) + fmodf(arcSweepLeft, Float(2.0f * M_PI));
 | 
						|
    // Recalculate the start angle to land closer to end angle.
 | 
						|
    aStartAngle = aEndAngle - arcSweepLeft * sweepDirection;
 | 
						|
  } else if (arcSweepLeft > Float(2.0f * M_PI)) {
 | 
						|
    // Sweeping more than 2 * pi is a full circle.
 | 
						|
    arcSweepLeft = Float(2.0f * M_PI);
 | 
						|
  }
 | 
						|
 | 
						|
  Float currentStartAngle = aStartAngle;
 | 
						|
  Point currentStartOffset(cosf(aStartAngle), sinf(aStartAngle));
 | 
						|
  Matrix transform = Matrix::Scaling(aRadius.width, aRadius.height);
 | 
						|
  if (aRotation != 0.0f) {
 | 
						|
    transform *= Matrix::Rotation(aRotation);
 | 
						|
  }
 | 
						|
  transform.PostTranslate(aOrigin);
 | 
						|
  transform *= aTransform;
 | 
						|
  aSink->LineTo(transform.TransformPoint(currentStartOffset));
 | 
						|
 | 
						|
  while (arcSweepLeft > 0) {
 | 
						|
    Float currentEndAngle =
 | 
						|
        currentStartAngle +
 | 
						|
        std::min(arcSweepLeft, Float(M_PI / 2.0f)) * sweepDirection;
 | 
						|
    Point currentEndOffset(cosf(currentEndAngle), sinf(currentEndAngle));
 | 
						|
 | 
						|
    PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform,
 | 
						|
                       ComputeKappaFactor(currentEndAngle - currentStartAngle));
 | 
						|
 | 
						|
    // We guarantee here the current point is the start point of the next
 | 
						|
    // curve segment.
 | 
						|
    arcSweepLeft -= Float(M_PI / 2.0f);
 | 
						|
    currentStartAngle = currentEndAngle;
 | 
						|
    currentStartOffset = currentEndOffset;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* This is basically the ArcToBezier with the parameters for drawing a circle
 | 
						|
 * inlined which vastly simplifies it and avoids a bunch of transcedental
 | 
						|
 * function calls which should make it faster. */
 | 
						|
template <typename T>
 | 
						|
void EllipseToBezier(T* aSink, const Point& aOrigin, const Size& aRadius) {
 | 
						|
  Matrix transform(aRadius.width, 0, 0, aRadius.height, aOrigin.x, aOrigin.y);
 | 
						|
  Point currentStartOffset(1, 0);
 | 
						|
 | 
						|
  aSink->LineTo(transform.TransformPoint(currentStartOffset));
 | 
						|
 | 
						|
  for (int i = 0; i < 4; i++) {
 | 
						|
    // cos(x+pi/2) == -sin(x)
 | 
						|
    // sin(x+pi/2) == cos(x)
 | 
						|
    Point currentEndOffset(-currentStartOffset.y, currentStartOffset.x);
 | 
						|
 | 
						|
    PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform);
 | 
						|
 | 
						|
    // We guarantee here the current point is the start point of the next
 | 
						|
    // curve segment.
 | 
						|
    currentStartOffset = currentEndOffset;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Appends a path represending a rectangle to the path being built by
 | 
						|
 * aPathBuilder.
 | 
						|
 *
 | 
						|
 * aRect           The rectangle to append.
 | 
						|
 * aDrawClockwise  If set to true, the path will start at the left of the top
 | 
						|
 *                 left edge and draw clockwise. If set to false the path will
 | 
						|
 *                 start at the right of the top left edge and draw counter-
 | 
						|
 *                 clockwise.
 | 
						|
 */
 | 
						|
GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
 | 
						|
                                bool aDrawClockwise = true);
 | 
						|
 | 
						|
inline already_AddRefed<Path> MakePathForRect(const DrawTarget& aDrawTarget,
 | 
						|
                                              const Rect& aRect,
 | 
						|
                                              bool aDrawClockwise = true) {
 | 
						|
  RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | 
						|
  AppendRectToPath(builder, aRect, aDrawClockwise);
 | 
						|
  return builder->Finish();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Appends a path represending a rounded rectangle to the path being built by
 | 
						|
 * aPathBuilder.
 | 
						|
 *
 | 
						|
 * aRect           The rectangle to append.
 | 
						|
 * aCornerRadii    Contains the radii of the top-left, top-right, bottom-right
 | 
						|
 *                 and bottom-left corners, in that order.
 | 
						|
 * aDrawClockwise  If set to true, the path will start at the left of the top
 | 
						|
 *                 left edge and draw clockwise. If set to false the path will
 | 
						|
 *                 start at the right of the top left edge and draw counter-
 | 
						|
 *                 clockwise.
 | 
						|
 */
 | 
						|
GFX2D_API void AppendRoundedRectToPath(
 | 
						|
    PathBuilder* aPathBuilder, const Rect& aRect, const RectCornerRadii& aRadii,
 | 
						|
    bool aDrawClockwise = true, const Maybe<Matrix>& aTransform = Nothing());
 | 
						|
 | 
						|
inline already_AddRefed<Path> MakePathForRoundedRect(
 | 
						|
    const DrawTarget& aDrawTarget, const Rect& aRect,
 | 
						|
    const RectCornerRadii& aRadii, bool aDrawClockwise = true) {
 | 
						|
  RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | 
						|
  AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise);
 | 
						|
  return builder->Finish();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Appends a path represending an ellipse to the path being built by
 | 
						|
 * aPathBuilder.
 | 
						|
 *
 | 
						|
 * The ellipse extends aDimensions.width / 2.0 in the horizontal direction
 | 
						|
 * from aCenter, and aDimensions.height / 2.0 in the vertical direction.
 | 
						|
 */
 | 
						|
GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
 | 
						|
                                   const Point& aCenter,
 | 
						|
                                   const Size& aDimensions);
 | 
						|
 | 
						|
inline already_AddRefed<Path> MakePathForEllipse(const DrawTarget& aDrawTarget,
 | 
						|
                                                 const Point& aCenter,
 | 
						|
                                                 const Size& aDimensions) {
 | 
						|
  RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | 
						|
  AppendEllipseToPath(builder, aCenter, aDimensions);
 | 
						|
  return builder->Finish();
 | 
						|
}
 | 
						|
 | 
						|
inline already_AddRefed<Path> MakePathForCircle(const DrawTarget& aDrawTarget,
 | 
						|
                                                const Point& aCenter,
 | 
						|
                                                float aRadius) {
 | 
						|
  RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
 | 
						|
  builder->Arc(aCenter, aRadius, 0.0f, Float(2.0 * M_PI));
 | 
						|
  builder->Close();
 | 
						|
  return builder->Finish();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * If aDrawTarget's transform only contains a translation, and if this line is
 | 
						|
 * a horizontal or vertical line, this function will snap the line's vertices
 | 
						|
 * to align with the device pixel grid so that stroking the line with a one
 | 
						|
 * pixel wide stroke will result in a crisp line that is not antialiased over
 | 
						|
 * two pixels across its width.
 | 
						|
 *
 | 
						|
 * @return Returns true if this function snaps aRect's vertices, else returns
 | 
						|
 *   false.
 | 
						|
 */
 | 
						|
GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
 | 
						|
                                                 const DrawTarget& aDrawTarget,
 | 
						|
                                                 Float aLineWidth);
 | 
						|
 | 
						|
/**
 | 
						|
 * This function paints each edge of aRect separately, snapping the edges using
 | 
						|
 * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths
 | 
						|
 * helps ensure not only that the stroke spans a single row of device pixels if
 | 
						|
 * possible, but also that the ends of stroke dashes start and end on device
 | 
						|
 * pixels too.
 | 
						|
 */
 | 
						|
GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect,
 | 
						|
                                        DrawTarget& aDrawTarget,
 | 
						|
                                        const ColorPattern& aColor,
 | 
						|
                                        const StrokeOptions& aStrokeOptions);
 | 
						|
 | 
						|
/**
 | 
						|
 * Return the margin, in device space, by which a stroke can extend beyond the
 | 
						|
 * rendered shape.
 | 
						|
 * @param  aStrokeOptions The stroke options that the stroke is drawn with.
 | 
						|
 * @param  aTransform     The user space to device space transform.
 | 
						|
 * @return                The stroke margin.
 | 
						|
 */
 | 
						|
GFX2D_API Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
 | 
						|
                                  const Matrix& aTransform);
 | 
						|
 | 
						|
extern UserDataKey sDisablePixelSnapping;
 | 
						|
 | 
						|
/**
 | 
						|
 * If aDrawTarget's transform only contains a translation or, if
 | 
						|
 * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this
 | 
						|
 * function will convert aRect to device space and snap it to device pixels.
 | 
						|
 * This function returns true if aRect is modified, otherwise it returns false.
 | 
						|
 *
 | 
						|
 * Note that the snapping is such that filling the rect using a DrawTarget
 | 
						|
 * which has the identity matrix as its transform will result in crisp edges.
 | 
						|
 * (That is, aRect will have integer values, aligning its edges between pixel
 | 
						|
 * boundaries.)  If on the other hand you stroking the rect with an odd valued
 | 
						|
 * stroke width then the edges of the stroke will be antialiased (assuming an
 | 
						|
 * AntialiasMode that does antialiasing).
 | 
						|
 *
 | 
						|
 * Empty snaps are those which result in a rectangle of 0 area.  If they are
 | 
						|
 * disallowed, an axis is left unsnapped if the rounding process results in a
 | 
						|
 * length of 0.
 | 
						|
 */
 | 
						|
inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget,
 | 
						|
                                     bool aAllowScaleOr90DegreeRotate = false,
 | 
						|
                                     bool aAllowEmptySnaps = true) {
 | 
						|
  if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Matrix mat = aDrawTarget.GetTransform();
 | 
						|
 | 
						|
  const Float epsilon = 0.0000001f;
 | 
						|
#define WITHIN_E(a, b) (fabs((a) - (b)) < epsilon)
 | 
						|
  if (!aAllowScaleOr90DegreeRotate &&
 | 
						|
      (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) ||
 | 
						|
       !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) {
 | 
						|
    // We have non-translation, but only translation is allowed.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
#undef WITHIN_E
 | 
						|
 | 
						|
  Point p1 = mat.TransformPoint(aRect.TopLeft());
 | 
						|
  Point p2 = mat.TransformPoint(aRect.TopRight());
 | 
						|
  Point p3 = mat.TransformPoint(aRect.BottomRight());
 | 
						|
 | 
						|
  // Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
 | 
						|
  // two opposite corners define the entire rectangle. So check if
 | 
						|
  // the axis-aligned rectangle with opposite corners p1 and p3
 | 
						|
  // define an axis-aligned rectangle whose other corners are p2 and p4.
 | 
						|
  // We actually only need to check one of p2 and p4, since an affine
 | 
						|
  // transform maps parallelograms to parallelograms.
 | 
						|
  if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
 | 
						|
    Point p1r = p1;
 | 
						|
    Point p3r = p3;
 | 
						|
    p1r.Round();
 | 
						|
    p3r.Round();
 | 
						|
    if (aAllowEmptySnaps || p1r.x != p3r.x) {
 | 
						|
      p1.x = p1r.x;
 | 
						|
      p3.x = p3r.x;
 | 
						|
    }
 | 
						|
    if (aAllowEmptySnaps || p1r.y != p3r.y) {
 | 
						|
      p1.y = p1r.y;
 | 
						|
      p3.y = p3r.y;
 | 
						|
    }
 | 
						|
 | 
						|
    aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
 | 
						|
    aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
 | 
						|
                      std::max(p1.y, p3.y) - aRect.Y()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * This function has the same behavior as UserToDevicePixelSnapped except that
 | 
						|
 * aRect is not transformed to device space.
 | 
						|
 */
 | 
						|
inline bool MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget,
 | 
						|
                                    bool aAllowScaleOr90DegreeRotate = false,
 | 
						|
                                    bool aAllowEmptySnaps = true) {
 | 
						|
  if (UserToDevicePixelSnapped(aRect, aDrawTarget, aAllowScaleOr90DegreeRotate,
 | 
						|
                               aAllowEmptySnaps)) {
 | 
						|
    // Since UserToDevicePixelSnapped returned true we know there is no
 | 
						|
    // rotation/skew in 'mat', so we can just use TransformBounds() here.
 | 
						|
    Matrix mat = aDrawTarget.GetTransform();
 | 
						|
    mat.Invert();
 | 
						|
    aRect = mat.TransformBounds(aRect);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace gfx
 | 
						|
}  // namespace mozilla
 | 
						|
 | 
						|
#endif /* MOZILLA_GFX_PATHHELPERS_H_ */
 |