mirror of
				https://github.com/mozilla/gecko-dev.git
				synced 2025-11-04 02:09:05 +02:00 
			
		
		
		
	Backed out changeset ffa94e26e8aa (bug 1901193)
Backed out changeset 180b864c937d (bug 1898606)
Backed out changeset ac9c1246fe93 (bug 1896573)
Backed out changeset 2ed1cc5bdd50 (bug 1856630)
		
	
			
		
			
				
	
	
		
			720 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			720 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * jcdctmgr.c
 | 
						|
 *
 | 
						|
 * This file was part of the Independent JPEG Group's software:
 | 
						|
 * Copyright (C) 1994-1996, Thomas G. Lane.
 | 
						|
 * libjpeg-turbo Modifications:
 | 
						|
 * Copyright (C) 1999-2006, MIYASAKA Masaru.
 | 
						|
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
 | 
						|
 * Copyright (C) 2011, 2014-2015, D. R. Commander.
 | 
						|
 * For conditions of distribution and use, see the accompanying README.ijg
 | 
						|
 * file.
 | 
						|
 *
 | 
						|
 * This file contains the forward-DCT management logic.
 | 
						|
 * This code selects a particular DCT implementation to be used,
 | 
						|
 * and it performs related housekeeping chores including coefficient
 | 
						|
 * quantization.
 | 
						|
 */
 | 
						|
 | 
						|
#define JPEG_INTERNALS
 | 
						|
#include "jinclude.h"
 | 
						|
#include "jpeglib.h"
 | 
						|
#include "jdct.h"               /* Private declarations for DCT subsystem */
 | 
						|
#include "jsimddct.h"
 | 
						|
 | 
						|
 | 
						|
/* Private subobject for this module */
 | 
						|
 | 
						|
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
 | 
						|
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
 | 
						|
 | 
						|
typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
 | 
						|
                                     JDIMENSION start_col,
 | 
						|
                                     DCTELEM *workspace);
 | 
						|
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
 | 
						|
                                           JDIMENSION start_col,
 | 
						|
                                           FAST_FLOAT *workspace);
 | 
						|
 | 
						|
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
 | 
						|
                                     DCTELEM *workspace);
 | 
						|
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
 | 
						|
                                           FAST_FLOAT *divisors,
 | 
						|
                                           FAST_FLOAT *workspace);
 | 
						|
 | 
						|
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  struct jpeg_forward_dct pub;  /* public fields */
 | 
						|
 | 
						|
  /* Pointer to the DCT routine actually in use */
 | 
						|
  forward_DCT_method_ptr dct;
 | 
						|
  convsamp_method_ptr convsamp;
 | 
						|
  quantize_method_ptr quantize;
 | 
						|
 | 
						|
  /* The actual post-DCT divisors --- not identical to the quant table
 | 
						|
   * entries, because of scaling (especially for an unnormalized DCT).
 | 
						|
   * Each table is given in normal array order.
 | 
						|
   */
 | 
						|
  DCTELEM *divisors[NUM_QUANT_TBLS];
 | 
						|
 | 
						|
  /* work area for FDCT subroutine */
 | 
						|
  DCTELEM *workspace;
 | 
						|
 | 
						|
#ifdef DCT_FLOAT_SUPPORTED
 | 
						|
  /* Same as above for the floating-point case. */
 | 
						|
  float_DCT_method_ptr float_dct;
 | 
						|
  float_convsamp_method_ptr float_convsamp;
 | 
						|
  float_quantize_method_ptr float_quantize;
 | 
						|
  FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
 | 
						|
  FAST_FLOAT *float_workspace;
 | 
						|
#endif
 | 
						|
} my_fdct_controller;
 | 
						|
 | 
						|
typedef my_fdct_controller *my_fdct_ptr;
 | 
						|
 | 
						|
 | 
						|
#if BITS_IN_JSAMPLE == 8
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the highest bit in an integer through binary search.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(int)
 | 
						|
flss(UINT16 val)
 | 
						|
{
 | 
						|
  int bit;
 | 
						|
 | 
						|
  bit = 16;
 | 
						|
 | 
						|
  if (!val)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (!(val & 0xff00)) {
 | 
						|
    bit -= 8;
 | 
						|
    val <<= 8;
 | 
						|
  }
 | 
						|
  if (!(val & 0xf000)) {
 | 
						|
    bit -= 4;
 | 
						|
    val <<= 4;
 | 
						|
  }
 | 
						|
  if (!(val & 0xc000)) {
 | 
						|
    bit -= 2;
 | 
						|
    val <<= 2;
 | 
						|
  }
 | 
						|
  if (!(val & 0x8000)) {
 | 
						|
    bit -= 1;
 | 
						|
    val <<= 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return bit;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute values to do a division using reciprocal.
 | 
						|
 *
 | 
						|
 * This implementation is based on an algorithm described in
 | 
						|
 *   "How to optimize for the Pentium family of microprocessors"
 | 
						|
 *   (http://www.agner.org/assem/).
 | 
						|
 * More information about the basic algorithm can be found in
 | 
						|
 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
 | 
						|
 *
 | 
						|
 * The basic idea is to replace x/d by x * d^-1. In order to store
 | 
						|
 * d^-1 with enough precision we shift it left a few places. It turns
 | 
						|
 * out that this algoright gives just enough precision, and also fits
 | 
						|
 * into DCTELEM:
 | 
						|
 *
 | 
						|
 *   b = (the number of significant bits in divisor) - 1
 | 
						|
 *   r = (word size) + b
 | 
						|
 *   f = 2^r / divisor
 | 
						|
 *
 | 
						|
 * f will not be an integer for most cases, so we need to compensate
 | 
						|
 * for the rounding error introduced:
 | 
						|
 *
 | 
						|
 *   no fractional part:
 | 
						|
 *
 | 
						|
 *       result = input >> r
 | 
						|
 *
 | 
						|
 *   fractional part of f < 0.5:
 | 
						|
 *
 | 
						|
 *       round f down to nearest integer
 | 
						|
 *       result = ((input + 1) * f) >> r
 | 
						|
 *
 | 
						|
 *   fractional part of f > 0.5:
 | 
						|
 *
 | 
						|
 *       round f up to nearest integer
 | 
						|
 *       result = (input * f) >> r
 | 
						|
 *
 | 
						|
 * This is the original algorithm that gives truncated results. But we
 | 
						|
 * want properly rounded results, so we replace "input" with
 | 
						|
 * "input + divisor/2".
 | 
						|
 *
 | 
						|
 * In order to allow SIMD implementations we also tweak the values to
 | 
						|
 * allow the same calculation to be made at all times:
 | 
						|
 *
 | 
						|
 *   dctbl[0] = f rounded to nearest integer
 | 
						|
 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
 | 
						|
 *   dctbl[2] = 1 << ((word size) * 2 - r)
 | 
						|
 *   dctbl[3] = r - (word size)
 | 
						|
 *
 | 
						|
 * dctbl[2] is for stupid instruction sets where the shift operation
 | 
						|
 * isn't member wise (e.g. MMX).
 | 
						|
 *
 | 
						|
 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
 | 
						|
 * is that most SIMD implementations have a "multiply and store top
 | 
						|
 * half" operation.
 | 
						|
 *
 | 
						|
 * Lastly, we store each of the values in their own table instead
 | 
						|
 * of in a consecutive manner, yet again in order to allow SIMD
 | 
						|
 * routines.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(int)
 | 
						|
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
 | 
						|
{
 | 
						|
  UDCTELEM2 fq, fr;
 | 
						|
  UDCTELEM c;
 | 
						|
  int b, r;
 | 
						|
 | 
						|
  if (divisor == 1) {
 | 
						|
    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
 | 
						|
     * values will cause the C quantization algorithm to act like the
 | 
						|
     * identity function.  Since only the C quantization algorithm is used in
 | 
						|
     * these cases, the scale value is irrelevant.
 | 
						|
     */
 | 
						|
    dtbl[DCTSIZE2 * 0] = (DCTELEM)1;                        /* reciprocal */
 | 
						|
    dtbl[DCTSIZE2 * 1] = (DCTELEM)0;                        /* correction */
 | 
						|
    dtbl[DCTSIZE2 * 2] = (DCTELEM)1;                        /* scale */
 | 
						|
    dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8);   /* shift */
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  b = flss(divisor) - 1;
 | 
						|
  r  = sizeof(DCTELEM) * 8 + b;
 | 
						|
 | 
						|
  fq = ((UDCTELEM2)1 << r) / divisor;
 | 
						|
  fr = ((UDCTELEM2)1 << r) % divisor;
 | 
						|
 | 
						|
  c = divisor / 2;                      /* for rounding */
 | 
						|
 | 
						|
  if (fr == 0) {                        /* divisor is power of two */
 | 
						|
    /* fq will be one bit too large to fit in DCTELEM, so adjust */
 | 
						|
    fq >>= 1;
 | 
						|
    r--;
 | 
						|
  } else if (fr <= (divisor / 2U)) {    /* fractional part is < 0.5 */
 | 
						|
    c++;
 | 
						|
  } else {                              /* fractional part is > 0.5 */
 | 
						|
    fq++;
 | 
						|
  }
 | 
						|
 | 
						|
  dtbl[DCTSIZE2 * 0] = (DCTELEM)fq;     /* reciprocal */
 | 
						|
  dtbl[DCTSIZE2 * 1] = (DCTELEM)c;      /* correction + roundfactor */
 | 
						|
#ifdef WITH_SIMD
 | 
						|
  dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
 | 
						|
#else
 | 
						|
  dtbl[DCTSIZE2 * 2] = 1;
 | 
						|
#endif
 | 
						|
  dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
 | 
						|
 | 
						|
  if (r <= 16) return 0;
 | 
						|
  else return 1;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize for a processing pass.
 | 
						|
 * Verify that all referenced Q-tables are present, and set up
 | 
						|
 * the divisor table for each one.
 | 
						|
 * In the current implementation, DCT of all components is done during
 | 
						|
 * the first pass, even if only some components will be output in the
 | 
						|
 * first scan.  Hence all components should be examined here.
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
start_pass_fdctmgr(j_compress_ptr cinfo)
 | 
						|
{
 | 
						|
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
 | 
						|
  int ci, qtblno, i;
 | 
						|
  jpeg_component_info *compptr;
 | 
						|
  JQUANT_TBL *qtbl;
 | 
						|
  DCTELEM *dtbl;
 | 
						|
 | 
						|
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
 | 
						|
       ci++, compptr++) {
 | 
						|
    qtblno = compptr->quant_tbl_no;
 | 
						|
    /* Make sure specified quantization table is present */
 | 
						|
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
 | 
						|
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
 | 
						|
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
 | 
						|
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
 | 
						|
    /* Compute divisors for this quant table */
 | 
						|
    /* We may do this more than once for same table, but it's not a big deal */
 | 
						|
    switch (cinfo->dct_method) {
 | 
						|
#ifdef DCT_ISLOW_SUPPORTED
 | 
						|
    case JDCT_ISLOW:
 | 
						|
      /* For LL&M IDCT method, divisors are equal to raw quantization
 | 
						|
       * coefficients multiplied by 8 (to counteract scaling).
 | 
						|
       */
 | 
						|
      if (fdct->divisors[qtblno] == NULL) {
 | 
						|
        fdct->divisors[qtblno] = (DCTELEM *)
 | 
						|
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
 | 
						|
      }
 | 
						|
      dtbl = fdct->divisors[qtblno];
 | 
						|
      for (i = 0; i < DCTSIZE2; i++) {
 | 
						|
#if BITS_IN_JSAMPLE == 8
 | 
						|
        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
 | 
						|
            fdct->quantize == jsimd_quantize)
 | 
						|
          fdct->quantize = quantize;
 | 
						|
#else
 | 
						|
        dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#endif
 | 
						|
#ifdef DCT_IFAST_SUPPORTED
 | 
						|
    case JDCT_IFAST:
 | 
						|
      {
 | 
						|
        /* For AA&N IDCT method, divisors are equal to quantization
 | 
						|
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
 | 
						|
         *   scalefactor[0] = 1
 | 
						|
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
 | 
						|
         * We apply a further scale factor of 8.
 | 
						|
         */
 | 
						|
#define CONST_BITS  14
 | 
						|
        static const INT16 aanscales[DCTSIZE2] = {
 | 
						|
          /* precomputed values scaled up by 14 bits */
 | 
						|
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
 | 
						|
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
 | 
						|
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
 | 
						|
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
 | 
						|
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
 | 
						|
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
 | 
						|
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
 | 
						|
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
 | 
						|
        };
 | 
						|
        SHIFT_TEMPS
 | 
						|
 | 
						|
        if (fdct->divisors[qtblno] == NULL) {
 | 
						|
          fdct->divisors[qtblno] = (DCTELEM *)
 | 
						|
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
 | 
						|
        }
 | 
						|
        dtbl = fdct->divisors[qtblno];
 | 
						|
        for (i = 0; i < DCTSIZE2; i++) {
 | 
						|
#if BITS_IN_JSAMPLE == 8
 | 
						|
          if (!compute_reciprocal(
 | 
						|
                DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
 | 
						|
                                      (JLONG)aanscales[i]),
 | 
						|
                        CONST_BITS - 3), &dtbl[i]) &&
 | 
						|
              fdct->quantize == jsimd_quantize)
 | 
						|
            fdct->quantize = quantize;
 | 
						|
#else
 | 
						|
          dtbl[i] = (DCTELEM)
 | 
						|
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
 | 
						|
                                  (JLONG)aanscales[i]),
 | 
						|
                    CONST_BITS - 3);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#endif
 | 
						|
#ifdef DCT_FLOAT_SUPPORTED
 | 
						|
    case JDCT_FLOAT:
 | 
						|
      {
 | 
						|
        /* For float AA&N IDCT method, divisors are equal to quantization
 | 
						|
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
 | 
						|
         *   scalefactor[0] = 1
 | 
						|
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
 | 
						|
         * We apply a further scale factor of 8.
 | 
						|
         * What's actually stored is 1/divisor so that the inner loop can
 | 
						|
         * use a multiplication rather than a division.
 | 
						|
         */
 | 
						|
        FAST_FLOAT *fdtbl;
 | 
						|
        int row, col;
 | 
						|
        static const double aanscalefactor[DCTSIZE] = {
 | 
						|
          1.0, 1.387039845, 1.306562965, 1.175875602,
 | 
						|
          1.0, 0.785694958, 0.541196100, 0.275899379
 | 
						|
        };
 | 
						|
 | 
						|
        if (fdct->float_divisors[qtblno] == NULL) {
 | 
						|
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
 | 
						|
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
 | 
						|
        }
 | 
						|
        fdtbl = fdct->float_divisors[qtblno];
 | 
						|
        i = 0;
 | 
						|
        for (row = 0; row < DCTSIZE; row++) {
 | 
						|
          for (col = 0; col < DCTSIZE; col++) {
 | 
						|
            fdtbl[i] = (FAST_FLOAT)
 | 
						|
              (1.0 / (((double)qtbl->quantval[i] *
 | 
						|
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
 | 
						|
            i++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
#endif
 | 
						|
    default:
 | 
						|
      ERREXIT(cinfo, JERR_NOT_COMPILED);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Load data into workspace, applying unsigned->signed conversion.
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
 | 
						|
{
 | 
						|
  register DCTELEM *workspaceptr;
 | 
						|
  register JSAMPROW elemptr;
 | 
						|
  register int elemr;
 | 
						|
 | 
						|
  workspaceptr = workspace;
 | 
						|
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
 | 
						|
    elemptr = sample_data[elemr] + start_col;
 | 
						|
 | 
						|
#if DCTSIZE == 8                /* unroll the inner loop */
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
#else
 | 
						|
    {
 | 
						|
      register int elemc;
 | 
						|
      for (elemc = DCTSIZE; elemc > 0; elemc--)
 | 
						|
        *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Quantize/descale the coefficients, and store into coef_blocks[].
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  DCTELEM temp;
 | 
						|
  JCOEFPTR output_ptr = coef_block;
 | 
						|
 | 
						|
#if BITS_IN_JSAMPLE == 8
 | 
						|
 | 
						|
  UDCTELEM recip, corr;
 | 
						|
  int shift;
 | 
						|
  UDCTELEM2 product;
 | 
						|
 | 
						|
  for (i = 0; i < DCTSIZE2; i++) {
 | 
						|
    temp = workspace[i];
 | 
						|
    recip = divisors[i + DCTSIZE2 * 0];
 | 
						|
    corr =  divisors[i + DCTSIZE2 * 1];
 | 
						|
    shift = divisors[i + DCTSIZE2 * 3];
 | 
						|
 | 
						|
    if (temp < 0) {
 | 
						|
      temp = -temp;
 | 
						|
      product = (UDCTELEM2)(temp + corr) * recip;
 | 
						|
      product >>= shift + sizeof(DCTELEM) * 8;
 | 
						|
      temp = (DCTELEM)product;
 | 
						|
      temp = -temp;
 | 
						|
    } else {
 | 
						|
      product = (UDCTELEM2)(temp + corr) * recip;
 | 
						|
      product >>= shift + sizeof(DCTELEM) * 8;
 | 
						|
      temp = (DCTELEM)product;
 | 
						|
    }
 | 
						|
    output_ptr[i] = (JCOEF)temp;
 | 
						|
  }
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
  register DCTELEM qval;
 | 
						|
 | 
						|
  for (i = 0; i < DCTSIZE2; i++) {
 | 
						|
    qval = divisors[i];
 | 
						|
    temp = workspace[i];
 | 
						|
    /* Divide the coefficient value by qval, ensuring proper rounding.
 | 
						|
     * Since C does not specify the direction of rounding for negative
 | 
						|
     * quotients, we have to force the dividend positive for portability.
 | 
						|
     *
 | 
						|
     * In most files, at least half of the output values will be zero
 | 
						|
     * (at default quantization settings, more like three-quarters...)
 | 
						|
     * so we should ensure that this case is fast.  On many machines,
 | 
						|
     * a comparison is enough cheaper than a divide to make a special test
 | 
						|
     * a win.  Since both inputs will be nonnegative, we need only test
 | 
						|
     * for a < b to discover whether a/b is 0.
 | 
						|
     * If your machine's division is fast enough, define FAST_DIVIDE.
 | 
						|
     */
 | 
						|
#ifdef FAST_DIVIDE
 | 
						|
#define DIVIDE_BY(a, b)  a /= b
 | 
						|
#else
 | 
						|
#define DIVIDE_BY(a, b)  if (a >= b) a /= b;  else a = 0
 | 
						|
#endif
 | 
						|
    if (temp < 0) {
 | 
						|
      temp = -temp;
 | 
						|
      temp += qval >> 1;        /* for rounding */
 | 
						|
      DIVIDE_BY(temp, qval);
 | 
						|
      temp = -temp;
 | 
						|
    } else {
 | 
						|
      temp += qval >> 1;        /* for rounding */
 | 
						|
      DIVIDE_BY(temp, qval);
 | 
						|
    }
 | 
						|
    output_ptr[i] = (JCOEF)temp;
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform forward DCT on one or more blocks of a component.
 | 
						|
 *
 | 
						|
 * The input samples are taken from the sample_data[] array starting at
 | 
						|
 * position start_row/start_col, and moving to the right for any additional
 | 
						|
 * blocks. The quantized coefficients are returned in coef_blocks[].
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
 | 
						|
            JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
 | 
						|
            JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
 | 
						|
/* This version is used for integer DCT implementations. */
 | 
						|
{
 | 
						|
  /* This routine is heavily used, so it's worth coding it tightly. */
 | 
						|
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
 | 
						|
  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
 | 
						|
  DCTELEM *workspace;
 | 
						|
  JDIMENSION bi;
 | 
						|
 | 
						|
  /* Make sure the compiler doesn't look up these every pass */
 | 
						|
  forward_DCT_method_ptr do_dct = fdct->dct;
 | 
						|
  convsamp_method_ptr do_convsamp = fdct->convsamp;
 | 
						|
  quantize_method_ptr do_quantize = fdct->quantize;
 | 
						|
  workspace = fdct->workspace;
 | 
						|
 | 
						|
  sample_data += start_row;     /* fold in the vertical offset once */
 | 
						|
 | 
						|
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
 | 
						|
    /* Load data into workspace, applying unsigned->signed conversion */
 | 
						|
    (*do_convsamp) (sample_data, start_col, workspace);
 | 
						|
 | 
						|
    /* Perform the DCT */
 | 
						|
    (*do_dct) (workspace);
 | 
						|
 | 
						|
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
 | 
						|
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef DCT_FLOAT_SUPPORTED
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col,
 | 
						|
               FAST_FLOAT *workspace)
 | 
						|
{
 | 
						|
  register FAST_FLOAT *workspaceptr;
 | 
						|
  register JSAMPROW elemptr;
 | 
						|
  register int elemr;
 | 
						|
 | 
						|
  workspaceptr = workspace;
 | 
						|
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
 | 
						|
    elemptr = sample_data[elemr] + start_col;
 | 
						|
#if DCTSIZE == 8                /* unroll the inner loop */
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
#else
 | 
						|
    {
 | 
						|
      register int elemc;
 | 
						|
      for (elemc = DCTSIZE; elemc > 0; elemc--)
 | 
						|
        *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
 | 
						|
               FAST_FLOAT *workspace)
 | 
						|
{
 | 
						|
  register FAST_FLOAT temp;
 | 
						|
  register int i;
 | 
						|
  register JCOEFPTR output_ptr = coef_block;
 | 
						|
 | 
						|
  for (i = 0; i < DCTSIZE2; i++) {
 | 
						|
    /* Apply the quantization and scaling factor */
 | 
						|
    temp = workspace[i] * divisors[i];
 | 
						|
 | 
						|
    /* Round to nearest integer.
 | 
						|
     * Since C does not specify the direction of rounding for negative
 | 
						|
     * quotients, we have to force the dividend positive for portability.
 | 
						|
     * The maximum coefficient size is +-16K (for 12-bit data), so this
 | 
						|
     * code should work for either 16-bit or 32-bit ints.
 | 
						|
     */
 | 
						|
    output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
 | 
						|
                  JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
 | 
						|
                  JDIMENSION start_row, JDIMENSION start_col,
 | 
						|
                  JDIMENSION num_blocks)
 | 
						|
/* This version is used for floating-point DCT implementations. */
 | 
						|
{
 | 
						|
  /* This routine is heavily used, so it's worth coding it tightly. */
 | 
						|
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
 | 
						|
  FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
 | 
						|
  FAST_FLOAT *workspace;
 | 
						|
  JDIMENSION bi;
 | 
						|
 | 
						|
 | 
						|
  /* Make sure the compiler doesn't look up these every pass */
 | 
						|
  float_DCT_method_ptr do_dct = fdct->float_dct;
 | 
						|
  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
 | 
						|
  float_quantize_method_ptr do_quantize = fdct->float_quantize;
 | 
						|
  workspace = fdct->float_workspace;
 | 
						|
 | 
						|
  sample_data += start_row;     /* fold in the vertical offset once */
 | 
						|
 | 
						|
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
 | 
						|
    /* Load data into workspace, applying unsigned->signed conversion */
 | 
						|
    (*do_convsamp) (sample_data, start_col, workspace);
 | 
						|
 | 
						|
    /* Perform the DCT */
 | 
						|
    (*do_dct) (workspace);
 | 
						|
 | 
						|
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
 | 
						|
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#endif /* DCT_FLOAT_SUPPORTED */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize FDCT manager.
 | 
						|
 */
 | 
						|
 | 
						|
GLOBAL(void)
 | 
						|
jinit_forward_dct(j_compress_ptr cinfo)
 | 
						|
{
 | 
						|
  my_fdct_ptr fdct;
 | 
						|
  int i;
 | 
						|
 | 
						|
  fdct = (my_fdct_ptr)
 | 
						|
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                sizeof(my_fdct_controller));
 | 
						|
  cinfo->fdct = (struct jpeg_forward_dct *)fdct;
 | 
						|
  fdct->pub.start_pass = start_pass_fdctmgr;
 | 
						|
 | 
						|
  /* First determine the DCT... */
 | 
						|
  switch (cinfo->dct_method) {
 | 
						|
#ifdef DCT_ISLOW_SUPPORTED
 | 
						|
  case JDCT_ISLOW:
 | 
						|
    fdct->pub.forward_DCT = forward_DCT;
 | 
						|
    if (jsimd_can_fdct_islow())
 | 
						|
      fdct->dct = jsimd_fdct_islow;
 | 
						|
    else
 | 
						|
      fdct->dct = jpeg_fdct_islow;
 | 
						|
    break;
 | 
						|
#endif
 | 
						|
#ifdef DCT_IFAST_SUPPORTED
 | 
						|
  case JDCT_IFAST:
 | 
						|
    fdct->pub.forward_DCT = forward_DCT;
 | 
						|
    if (jsimd_can_fdct_ifast())
 | 
						|
      fdct->dct = jsimd_fdct_ifast;
 | 
						|
    else
 | 
						|
      fdct->dct = jpeg_fdct_ifast;
 | 
						|
    break;
 | 
						|
#endif
 | 
						|
#ifdef DCT_FLOAT_SUPPORTED
 | 
						|
  case JDCT_FLOAT:
 | 
						|
    fdct->pub.forward_DCT = forward_DCT_float;
 | 
						|
    if (jsimd_can_fdct_float())
 | 
						|
      fdct->float_dct = jsimd_fdct_float;
 | 
						|
    else
 | 
						|
      fdct->float_dct = jpeg_fdct_float;
 | 
						|
    break;
 | 
						|
#endif
 | 
						|
  default:
 | 
						|
    ERREXIT(cinfo, JERR_NOT_COMPILED);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  /* ...then the supporting stages. */
 | 
						|
  switch (cinfo->dct_method) {
 | 
						|
#ifdef DCT_ISLOW_SUPPORTED
 | 
						|
  case JDCT_ISLOW:
 | 
						|
#endif
 | 
						|
#ifdef DCT_IFAST_SUPPORTED
 | 
						|
  case JDCT_IFAST:
 | 
						|
#endif
 | 
						|
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
 | 
						|
    if (jsimd_can_convsamp())
 | 
						|
      fdct->convsamp = jsimd_convsamp;
 | 
						|
    else
 | 
						|
      fdct->convsamp = convsamp;
 | 
						|
    if (jsimd_can_quantize())
 | 
						|
      fdct->quantize = jsimd_quantize;
 | 
						|
    else
 | 
						|
      fdct->quantize = quantize;
 | 
						|
    break;
 | 
						|
#endif
 | 
						|
#ifdef DCT_FLOAT_SUPPORTED
 | 
						|
  case JDCT_FLOAT:
 | 
						|
    if (jsimd_can_convsamp_float())
 | 
						|
      fdct->float_convsamp = jsimd_convsamp_float;
 | 
						|
    else
 | 
						|
      fdct->float_convsamp = convsamp_float;
 | 
						|
    if (jsimd_can_quantize_float())
 | 
						|
      fdct->float_quantize = jsimd_quantize_float;
 | 
						|
    else
 | 
						|
      fdct->float_quantize = quantize_float;
 | 
						|
    break;
 | 
						|
#endif
 | 
						|
  default:
 | 
						|
    ERREXIT(cinfo, JERR_NOT_COMPILED);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Allocate workspace memory */
 | 
						|
#ifdef DCT_FLOAT_SUPPORTED
 | 
						|
  if (cinfo->dct_method == JDCT_FLOAT)
 | 
						|
    fdct->float_workspace = (FAST_FLOAT *)
 | 
						|
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
 | 
						|
  else
 | 
						|
#endif
 | 
						|
    fdct->workspace = (DCTELEM *)
 | 
						|
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                  sizeof(DCTELEM) * DCTSIZE2);
 | 
						|
 | 
						|
  /* Mark divisor tables unallocated */
 | 
						|
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
 | 
						|
    fdct->divisors[i] = NULL;
 | 
						|
#ifdef DCT_FLOAT_SUPPORTED
 | 
						|
    fdct->float_divisors[i] = NULL;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 |