mirror of
				https://github.com/mozilla/gecko-dev.git
				synced 2025-11-04 02:09:05 +02:00 
			
		
		
		
	Backed out changeset ffa94e26e8aa (bug 1901193)
Backed out changeset 180b864c937d (bug 1898606)
Backed out changeset ac9c1246fe93 (bug 1896573)
Backed out changeset 2ed1cc5bdd50 (bug 1856630)
		
	
			
		
			
				
	
	
		
			834 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			834 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * jdhuff.c
 | 
						|
 *
 | 
						|
 * This file was part of the Independent JPEG Group's software:
 | 
						|
 * Copyright (C) 1991-1997, Thomas G. Lane.
 | 
						|
 * libjpeg-turbo Modifications:
 | 
						|
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
 | 
						|
 * Copyright (C) 2018, Matthias Räncker.
 | 
						|
 * For conditions of distribution and use, see the accompanying README.ijg
 | 
						|
 * file.
 | 
						|
 *
 | 
						|
 * This file contains Huffman entropy decoding routines.
 | 
						|
 *
 | 
						|
 * Much of the complexity here has to do with supporting input suspension.
 | 
						|
 * If the data source module demands suspension, we want to be able to back
 | 
						|
 * up to the start of the current MCU.  To do this, we copy state variables
 | 
						|
 * into local working storage, and update them back to the permanent
 | 
						|
 * storage only upon successful completion of an MCU.
 | 
						|
 *
 | 
						|
 * NOTE: All referenced figures are from
 | 
						|
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
 | 
						|
 */
 | 
						|
 | 
						|
#define JPEG_INTERNALS
 | 
						|
#include "jinclude.h"
 | 
						|
#include "jpeglib.h"
 | 
						|
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
 | 
						|
#include "jpegcomp.h"
 | 
						|
#include "jstdhuff.c"
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Expanded entropy decoder object for Huffman decoding.
 | 
						|
 *
 | 
						|
 * The savable_state subrecord contains fields that change within an MCU,
 | 
						|
 * but must not be updated permanently until we complete the MCU.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
 | 
						|
} savable_state;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  struct jpeg_entropy_decoder pub; /* public fields */
 | 
						|
 | 
						|
  /* These fields are loaded into local variables at start of each MCU.
 | 
						|
   * In case of suspension, we exit WITHOUT updating them.
 | 
						|
   */
 | 
						|
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
 | 
						|
  savable_state saved;          /* Other state at start of MCU */
 | 
						|
 | 
						|
  /* These fields are NOT loaded into local working state. */
 | 
						|
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
 | 
						|
 | 
						|
  /* Pointers to derived tables (these workspaces have image lifespan) */
 | 
						|
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
 | 
						|
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
 | 
						|
 | 
						|
  /* Precalculated info set up by start_pass for use in decode_mcu: */
 | 
						|
 | 
						|
  /* Pointers to derived tables to be used for each block within an MCU */
 | 
						|
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 | 
						|
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 | 
						|
  /* Whether we care about the DC and AC coefficient values for each block */
 | 
						|
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
 | 
						|
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
 | 
						|
} huff_entropy_decoder;
 | 
						|
 | 
						|
typedef huff_entropy_decoder *huff_entropy_ptr;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize for a Huffman-compressed scan.
 | 
						|
 */
 | 
						|
 | 
						|
METHODDEF(void)
 | 
						|
start_pass_huff_decoder(j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
 | 
						|
  int ci, blkn, dctbl, actbl;
 | 
						|
  d_derived_tbl **pdtbl;
 | 
						|
  jpeg_component_info *compptr;
 | 
						|
 | 
						|
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
 | 
						|
   * This ought to be an error condition, but we make it a warning because
 | 
						|
   * there are some baseline files out there with all zeroes in these bytes.
 | 
						|
   */
 | 
						|
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
 | 
						|
      cinfo->Ah != 0 || cinfo->Al != 0)
 | 
						|
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
 | 
						|
 | 
						|
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | 
						|
    compptr = cinfo->cur_comp_info[ci];
 | 
						|
    dctbl = compptr->dc_tbl_no;
 | 
						|
    actbl = compptr->ac_tbl_no;
 | 
						|
    /* Compute derived values for Huffman tables */
 | 
						|
    /* We may do this more than once for a table, but it's not expensive */
 | 
						|
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
 | 
						|
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
 | 
						|
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
 | 
						|
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
 | 
						|
    /* Initialize DC predictions to 0 */
 | 
						|
    entropy->saved.last_dc_val[ci] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Precalculate decoding info for each block in an MCU of this scan */
 | 
						|
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
						|
    ci = cinfo->MCU_membership[blkn];
 | 
						|
    compptr = cinfo->cur_comp_info[ci];
 | 
						|
    /* Precalculate which table to use for each block */
 | 
						|
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
 | 
						|
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
 | 
						|
    /* Decide whether we really care about the coefficient values */
 | 
						|
    if (compptr->component_needed) {
 | 
						|
      entropy->dc_needed[blkn] = TRUE;
 | 
						|
      /* we don't need the ACs if producing a 1/8th-size image */
 | 
						|
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
 | 
						|
    } else {
 | 
						|
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Initialize bitread state variables */
 | 
						|
  entropy->bitstate.bits_left = 0;
 | 
						|
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
 | 
						|
  entropy->pub.insufficient_data = FALSE;
 | 
						|
 | 
						|
  /* Initialize restart counter */
 | 
						|
  entropy->restarts_to_go = cinfo->restart_interval;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the derived values for a Huffman table.
 | 
						|
 * This routine also performs some validation checks on the table.
 | 
						|
 *
 | 
						|
 * Note this is also used by jdphuff.c.
 | 
						|
 */
 | 
						|
 | 
						|
GLOBAL(void)
 | 
						|
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
 | 
						|
                        d_derived_tbl **pdtbl)
 | 
						|
{
 | 
						|
  JHUFF_TBL *htbl;
 | 
						|
  d_derived_tbl *dtbl;
 | 
						|
  int p, i, l, si, numsymbols;
 | 
						|
  int lookbits, ctr;
 | 
						|
  char huffsize[257];
 | 
						|
  unsigned int huffcode[257];
 | 
						|
  unsigned int code;
 | 
						|
 | 
						|
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
 | 
						|
   * paralleling the order of the symbols themselves in htbl->huffval[].
 | 
						|
   */
 | 
						|
 | 
						|
  /* Find the input Huffman table */
 | 
						|
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 | 
						|
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | 
						|
  htbl =
 | 
						|
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 | 
						|
  if (htbl == NULL)
 | 
						|
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | 
						|
 | 
						|
  /* Allocate a workspace if we haven't already done so. */
 | 
						|
  if (*pdtbl == NULL)
 | 
						|
    *pdtbl = (d_derived_tbl *)
 | 
						|
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                  sizeof(d_derived_tbl));
 | 
						|
  dtbl = *pdtbl;
 | 
						|
  dtbl->pub = htbl;             /* fill in back link */
 | 
						|
 | 
						|
  /* Figure C.1: make table of Huffman code length for each symbol */
 | 
						|
 | 
						|
  p = 0;
 | 
						|
  for (l = 1; l <= 16; l++) {
 | 
						|
    i = (int)htbl->bits[l];
 | 
						|
    if (i < 0 || p + i > 256)   /* protect against table overrun */
 | 
						|
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
						|
    while (i--)
 | 
						|
      huffsize[p++] = (char)l;
 | 
						|
  }
 | 
						|
  huffsize[p] = 0;
 | 
						|
  numsymbols = p;
 | 
						|
 | 
						|
  /* Figure C.2: generate the codes themselves */
 | 
						|
  /* We also validate that the counts represent a legal Huffman code tree. */
 | 
						|
 | 
						|
  code = 0;
 | 
						|
  si = huffsize[0];
 | 
						|
  p = 0;
 | 
						|
  while (huffsize[p]) {
 | 
						|
    while (((int)huffsize[p]) == si) {
 | 
						|
      huffcode[p++] = code;
 | 
						|
      code++;
 | 
						|
    }
 | 
						|
    /* code is now 1 more than the last code used for codelength si; but
 | 
						|
     * it must still fit in si bits, since no code is allowed to be all ones.
 | 
						|
     */
 | 
						|
    if (((JLONG)code) >= (((JLONG)1) << si))
 | 
						|
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
						|
    code <<= 1;
 | 
						|
    si++;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
 | 
						|
 | 
						|
  p = 0;
 | 
						|
  for (l = 1; l <= 16; l++) {
 | 
						|
    if (htbl->bits[l]) {
 | 
						|
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
 | 
						|
       * minus the minimum code of length l
 | 
						|
       */
 | 
						|
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
 | 
						|
      p += htbl->bits[l];
 | 
						|
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
 | 
						|
    } else {
 | 
						|
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
 | 
						|
    }
 | 
						|
  }
 | 
						|
  dtbl->valoffset[17] = 0;
 | 
						|
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
 | 
						|
 | 
						|
  /* Compute lookahead tables to speed up decoding.
 | 
						|
   * First we set all the table entries to 0, indicating "too long";
 | 
						|
   * then we iterate through the Huffman codes that are short enough and
 | 
						|
   * fill in all the entries that correspond to bit sequences starting
 | 
						|
   * with that code.
 | 
						|
   */
 | 
						|
 | 
						|
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
 | 
						|
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
 | 
						|
 | 
						|
  p = 0;
 | 
						|
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
 | 
						|
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
 | 
						|
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
 | 
						|
      /* Generate left-justified code followed by all possible bit sequences */
 | 
						|
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
 | 
						|
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
 | 
						|
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
 | 
						|
        lookbits++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Validate symbols as being reasonable.
 | 
						|
   * For AC tables, we make no check, but accept all byte values 0..255.
 | 
						|
   * For DC tables, we require the symbols to be in range 0..15.
 | 
						|
   * (Tighter bounds could be applied depending on the data depth and mode,
 | 
						|
   * but this is sufficient to ensure safe decoding.)
 | 
						|
   */
 | 
						|
  if (isDC) {
 | 
						|
    for (i = 0; i < numsymbols; i++) {
 | 
						|
      int sym = htbl->huffval[i];
 | 
						|
      if (sym < 0 || sym > 15)
 | 
						|
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Out-of-line code for bit fetching (shared with jdphuff.c).
 | 
						|
 * See jdhuff.h for info about usage.
 | 
						|
 * Note: current values of get_buffer and bits_left are passed as parameters,
 | 
						|
 * but are returned in the corresponding fields of the state struct.
 | 
						|
 *
 | 
						|
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
 | 
						|
 * of get_buffer to be used.  (On machines with wider words, an even larger
 | 
						|
 * buffer could be used.)  However, on some machines 32-bit shifts are
 | 
						|
 * quite slow and take time proportional to the number of places shifted.
 | 
						|
 * (This is true with most PC compilers, for instance.)  In this case it may
 | 
						|
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
 | 
						|
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef SLOW_SHIFT_32
 | 
						|
#define MIN_GET_BITS  15        /* minimum allowable value */
 | 
						|
#else
 | 
						|
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
GLOBAL(boolean)
 | 
						|
jpeg_fill_bit_buffer(bitread_working_state *state,
 | 
						|
                     register bit_buf_type get_buffer, register int bits_left,
 | 
						|
                     int nbits)
 | 
						|
/* Load up the bit buffer to a depth of at least nbits */
 | 
						|
{
 | 
						|
  /* Copy heavily used state fields into locals (hopefully registers) */
 | 
						|
  register const JOCTET *next_input_byte = state->next_input_byte;
 | 
						|
  register size_t bytes_in_buffer = state->bytes_in_buffer;
 | 
						|
  j_decompress_ptr cinfo = state->cinfo;
 | 
						|
 | 
						|
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
 | 
						|
  /* (It is assumed that no request will be for more than that many bits.) */
 | 
						|
  /* We fail to do so only if we hit a marker or are forced to suspend. */
 | 
						|
 | 
						|
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
 | 
						|
    while (bits_left < MIN_GET_BITS) {
 | 
						|
      register int c;
 | 
						|
 | 
						|
      /* Attempt to read a byte */
 | 
						|
      if (bytes_in_buffer == 0) {
 | 
						|
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
 | 
						|
          return FALSE;
 | 
						|
        next_input_byte = cinfo->src->next_input_byte;
 | 
						|
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
 | 
						|
      }
 | 
						|
      bytes_in_buffer--;
 | 
						|
      c = *next_input_byte++;
 | 
						|
 | 
						|
      /* If it's 0xFF, check and discard stuffed zero byte */
 | 
						|
      if (c == 0xFF) {
 | 
						|
        /* Loop here to discard any padding FF's on terminating marker,
 | 
						|
         * so that we can save a valid unread_marker value.  NOTE: we will
 | 
						|
         * accept multiple FF's followed by a 0 as meaning a single FF data
 | 
						|
         * byte.  This data pattern is not valid according to the standard.
 | 
						|
         */
 | 
						|
        do {
 | 
						|
          if (bytes_in_buffer == 0) {
 | 
						|
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
 | 
						|
              return FALSE;
 | 
						|
            next_input_byte = cinfo->src->next_input_byte;
 | 
						|
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
 | 
						|
          }
 | 
						|
          bytes_in_buffer--;
 | 
						|
          c = *next_input_byte++;
 | 
						|
        } while (c == 0xFF);
 | 
						|
 | 
						|
        if (c == 0) {
 | 
						|
          /* Found FF/00, which represents an FF data byte */
 | 
						|
          c = 0xFF;
 | 
						|
        } else {
 | 
						|
          /* Oops, it's actually a marker indicating end of compressed data.
 | 
						|
           * Save the marker code for later use.
 | 
						|
           * Fine point: it might appear that we should save the marker into
 | 
						|
           * bitread working state, not straight into permanent state.  But
 | 
						|
           * once we have hit a marker, we cannot need to suspend within the
 | 
						|
           * current MCU, because we will read no more bytes from the data
 | 
						|
           * source.  So it is OK to update permanent state right away.
 | 
						|
           */
 | 
						|
          cinfo->unread_marker = c;
 | 
						|
          /* See if we need to insert some fake zero bits. */
 | 
						|
          goto no_more_bytes;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* OK, load c into get_buffer */
 | 
						|
      get_buffer = (get_buffer << 8) | c;
 | 
						|
      bits_left += 8;
 | 
						|
    } /* end while */
 | 
						|
  } else {
 | 
						|
no_more_bytes:
 | 
						|
    /* We get here if we've read the marker that terminates the compressed
 | 
						|
     * data segment.  There should be enough bits in the buffer register
 | 
						|
     * to satisfy the request; if so, no problem.
 | 
						|
     */
 | 
						|
    if (nbits > bits_left) {
 | 
						|
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
 | 
						|
       * the data stream, so that we can produce some kind of image.
 | 
						|
       * We use a nonvolatile flag to ensure that only one warning message
 | 
						|
       * appears per data segment.
 | 
						|
       */
 | 
						|
      if (!cinfo->entropy->insufficient_data) {
 | 
						|
        WARNMS(cinfo, JWRN_HIT_MARKER);
 | 
						|
        cinfo->entropy->insufficient_data = TRUE;
 | 
						|
      }
 | 
						|
      /* Fill the buffer with zero bits */
 | 
						|
      get_buffer <<= MIN_GET_BITS - bits_left;
 | 
						|
      bits_left = MIN_GET_BITS;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Unload the local registers */
 | 
						|
  state->next_input_byte = next_input_byte;
 | 
						|
  state->bytes_in_buffer = bytes_in_buffer;
 | 
						|
  state->get_buffer = get_buffer;
 | 
						|
  state->bits_left = bits_left;
 | 
						|
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Macro version of the above, which performs much better but does not
 | 
						|
   handle markers.  We have to hand off any blocks with markers to the
 | 
						|
   slower routines. */
 | 
						|
 | 
						|
#define GET_BYTE { \
 | 
						|
  register int c0, c1; \
 | 
						|
  c0 = *buffer++; \
 | 
						|
  c1 = *buffer; \
 | 
						|
  /* Pre-execute most common case */ \
 | 
						|
  get_buffer = (get_buffer << 8) | c0; \
 | 
						|
  bits_left += 8; \
 | 
						|
  if (c0 == 0xFF) { \
 | 
						|
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
 | 
						|
    buffer++; \
 | 
						|
    if (c1 != 0) { \
 | 
						|
      /* Oops, it's actually a marker indicating end of compressed data. */ \
 | 
						|
      cinfo->unread_marker = c1; \
 | 
						|
      /* Back out pre-execution and fill the buffer with zero bits */ \
 | 
						|
      buffer -= 2; \
 | 
						|
      get_buffer &= ~0xFF; \
 | 
						|
    } \
 | 
						|
  } \
 | 
						|
}
 | 
						|
 | 
						|
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
 | 
						|
 | 
						|
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
 | 
						|
#define FILL_BIT_BUFFER_FAST \
 | 
						|
  if (bits_left <= 16) { \
 | 
						|
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
 | 
						|
  }
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
 | 
						|
#define FILL_BIT_BUFFER_FAST \
 | 
						|
  if (bits_left <= 16) { \
 | 
						|
    GET_BYTE GET_BYTE \
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Out-of-line code for Huffman code decoding.
 | 
						|
 * See jdhuff.h for info about usage.
 | 
						|
 */
 | 
						|
 | 
						|
GLOBAL(int)
 | 
						|
jpeg_huff_decode(bitread_working_state *state,
 | 
						|
                 register bit_buf_type get_buffer, register int bits_left,
 | 
						|
                 d_derived_tbl *htbl, int min_bits)
 | 
						|
{
 | 
						|
  register int l = min_bits;
 | 
						|
  register JLONG code;
 | 
						|
 | 
						|
  /* HUFF_DECODE has determined that the code is at least min_bits */
 | 
						|
  /* bits long, so fetch that many bits in one swoop. */
 | 
						|
 | 
						|
  CHECK_BIT_BUFFER(*state, l, return -1);
 | 
						|
  code = GET_BITS(l);
 | 
						|
 | 
						|
  /* Collect the rest of the Huffman code one bit at a time. */
 | 
						|
  /* This is per Figure F.16. */
 | 
						|
 | 
						|
  while (code > htbl->maxcode[l]) {
 | 
						|
    code <<= 1;
 | 
						|
    CHECK_BIT_BUFFER(*state, 1, return -1);
 | 
						|
    code |= GET_BITS(1);
 | 
						|
    l++;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Unload the local registers */
 | 
						|
  state->get_buffer = get_buffer;
 | 
						|
  state->bits_left = bits_left;
 | 
						|
 | 
						|
  /* With garbage input we may reach the sentinel value l = 17. */
 | 
						|
 | 
						|
  if (l > 16) {
 | 
						|
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
 | 
						|
    return 0;                   /* fake a zero as the safest result */
 | 
						|
  }
 | 
						|
 | 
						|
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Figure F.12: extend sign bit.
 | 
						|
 * On some machines, a shift and add will be faster than a table lookup.
 | 
						|
 */
 | 
						|
 | 
						|
#define AVOID_TABLES
 | 
						|
#ifdef AVOID_TABLES
 | 
						|
 | 
						|
#define NEG_1  ((unsigned int)-1)
 | 
						|
#define HUFF_EXTEND(x, s) \
 | 
						|
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#define HUFF_EXTEND(x, s) \
 | 
						|
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
 | 
						|
 | 
						|
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
 | 
						|
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
 | 
						|
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
 | 
						|
};
 | 
						|
 | 
						|
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
 | 
						|
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
 | 
						|
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
 | 
						|
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
 | 
						|
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
 | 
						|
};
 | 
						|
 | 
						|
#endif /* AVOID_TABLES */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Check for a restart marker & resynchronize decoder.
 | 
						|
 * Returns FALSE if must suspend.
 | 
						|
 */
 | 
						|
 | 
						|
LOCAL(boolean)
 | 
						|
process_restart(j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
 | 
						|
  int ci;
 | 
						|
 | 
						|
  /* Throw away any unused bits remaining in bit buffer; */
 | 
						|
  /* include any full bytes in next_marker's count of discarded bytes */
 | 
						|
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
 | 
						|
  entropy->bitstate.bits_left = 0;
 | 
						|
 | 
						|
  /* Advance past the RSTn marker */
 | 
						|
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
 | 
						|
    return FALSE;
 | 
						|
 | 
						|
  /* Re-initialize DC predictions to 0 */
 | 
						|
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 | 
						|
    entropy->saved.last_dc_val[ci] = 0;
 | 
						|
 | 
						|
  /* Reset restart counter */
 | 
						|
  entropy->restarts_to_go = cinfo->restart_interval;
 | 
						|
 | 
						|
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
 | 
						|
   * against a marker.  In that case we will end up treating the next data
 | 
						|
   * segment as empty, and we can avoid producing bogus output pixels by
 | 
						|
   * leaving the flag set.
 | 
						|
   */
 | 
						|
  if (cinfo->unread_marker == 0)
 | 
						|
    entropy->pub.insufficient_data = FALSE;
 | 
						|
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if defined(__has_feature)
 | 
						|
#if __has_feature(undefined_behavior_sanitizer)
 | 
						|
__attribute__((no_sanitize("signed-integer-overflow"),
 | 
						|
               no_sanitize("unsigned-integer-overflow")))
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
LOCAL(boolean)
 | 
						|
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
						|
{
 | 
						|
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
 | 
						|
  BITREAD_STATE_VARS;
 | 
						|
  int blkn;
 | 
						|
  savable_state state;
 | 
						|
  /* Outer loop handles each block in the MCU */
 | 
						|
 | 
						|
  /* Load up working state */
 | 
						|
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
 | 
						|
  state = entropy->saved;
 | 
						|
 | 
						|
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
						|
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
 | 
						|
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
 | 
						|
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
 | 
						|
    register int s, k, r;
 | 
						|
 | 
						|
    /* Decode a single block's worth of coefficients */
 | 
						|
 | 
						|
    /* Section F.2.2.1: decode the DC coefficient difference */
 | 
						|
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
 | 
						|
    if (s) {
 | 
						|
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
 | 
						|
      r = GET_BITS(s);
 | 
						|
      s = HUFF_EXTEND(r, s);
 | 
						|
    }
 | 
						|
 | 
						|
    if (entropy->dc_needed[blkn]) {
 | 
						|
      /* Convert DC difference to actual value, update last_dc_val */
 | 
						|
      int ci = cinfo->MCU_membership[blkn];
 | 
						|
      /* Certain malformed JPEG images produce repeated DC coefficient
 | 
						|
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
 | 
						|
       * grow until it overflows or underflows a 32-bit signed integer.  This
 | 
						|
       * behavior is, to the best of our understanding, innocuous, and it is
 | 
						|
       * unclear how to work around it without potentially affecting
 | 
						|
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
 | 
						|
       * overflow errors for this function and decode_mcu_fast().
 | 
						|
       */
 | 
						|
      s += state.last_dc_val[ci];
 | 
						|
      state.last_dc_val[ci] = s;
 | 
						|
      if (block) {
 | 
						|
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
 | 
						|
        (*block)[0] = (JCOEF)s;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (entropy->ac_needed[blkn] && block) {
 | 
						|
 | 
						|
      /* Section F.2.2.2: decode the AC coefficients */
 | 
						|
      /* Since zeroes are skipped, output area must be cleared beforehand */
 | 
						|
      for (k = 1; k < DCTSIZE2; k++) {
 | 
						|
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
 | 
						|
 | 
						|
        r = s >> 4;
 | 
						|
        s &= 15;
 | 
						|
 | 
						|
        if (s) {
 | 
						|
          k += r;
 | 
						|
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
 | 
						|
          r = GET_BITS(s);
 | 
						|
          s = HUFF_EXTEND(r, s);
 | 
						|
          /* Output coefficient in natural (dezigzagged) order.
 | 
						|
           * Note: the extra entries in jpeg_natural_order[] will save us
 | 
						|
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
 | 
						|
           */
 | 
						|
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
 | 
						|
        } else {
 | 
						|
          if (r != 15)
 | 
						|
            break;
 | 
						|
          k += 15;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
      /* Section F.2.2.2: decode the AC coefficients */
 | 
						|
      /* In this path we just discard the values */
 | 
						|
      for (k = 1; k < DCTSIZE2; k++) {
 | 
						|
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
 | 
						|
 | 
						|
        r = s >> 4;
 | 
						|
        s &= 15;
 | 
						|
 | 
						|
        if (s) {
 | 
						|
          k += r;
 | 
						|
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
 | 
						|
          DROP_BITS(s);
 | 
						|
        } else {
 | 
						|
          if (r != 15)
 | 
						|
            break;
 | 
						|
          k += 15;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Completed MCU, so update state */
 | 
						|
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
 | 
						|
  entropy->saved = state;
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if defined(__has_feature)
 | 
						|
#if __has_feature(undefined_behavior_sanitizer)
 | 
						|
__attribute__((no_sanitize("signed-integer-overflow"),
 | 
						|
               no_sanitize("unsigned-integer-overflow")))
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
LOCAL(boolean)
 | 
						|
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
						|
{
 | 
						|
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
 | 
						|
  BITREAD_STATE_VARS;
 | 
						|
  JOCTET *buffer;
 | 
						|
  int blkn;
 | 
						|
  savable_state state;
 | 
						|
  /* Outer loop handles each block in the MCU */
 | 
						|
 | 
						|
  /* Load up working state */
 | 
						|
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
 | 
						|
  buffer = (JOCTET *)br_state.next_input_byte;
 | 
						|
  state = entropy->saved;
 | 
						|
 | 
						|
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
						|
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
 | 
						|
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
 | 
						|
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
 | 
						|
    register int s, k, r, l;
 | 
						|
 | 
						|
    HUFF_DECODE_FAST(s, l, dctbl);
 | 
						|
    if (s) {
 | 
						|
      FILL_BIT_BUFFER_FAST
 | 
						|
      r = GET_BITS(s);
 | 
						|
      s = HUFF_EXTEND(r, s);
 | 
						|
    }
 | 
						|
 | 
						|
    if (entropy->dc_needed[blkn]) {
 | 
						|
      int ci = cinfo->MCU_membership[blkn];
 | 
						|
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
 | 
						|
       * a UBSan integer overflow error in this line of code.
 | 
						|
       */
 | 
						|
      s += state.last_dc_val[ci];
 | 
						|
      state.last_dc_val[ci] = s;
 | 
						|
      if (block)
 | 
						|
        (*block)[0] = (JCOEF)s;
 | 
						|
    }
 | 
						|
 | 
						|
    if (entropy->ac_needed[blkn] && block) {
 | 
						|
 | 
						|
      for (k = 1; k < DCTSIZE2; k++) {
 | 
						|
        HUFF_DECODE_FAST(s, l, actbl);
 | 
						|
        r = s >> 4;
 | 
						|
        s &= 15;
 | 
						|
 | 
						|
        if (s) {
 | 
						|
          k += r;
 | 
						|
          FILL_BIT_BUFFER_FAST
 | 
						|
          r = GET_BITS(s);
 | 
						|
          s = HUFF_EXTEND(r, s);
 | 
						|
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
 | 
						|
        } else {
 | 
						|
          if (r != 15) break;
 | 
						|
          k += 15;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
      for (k = 1; k < DCTSIZE2; k++) {
 | 
						|
        HUFF_DECODE_FAST(s, l, actbl);
 | 
						|
        r = s >> 4;
 | 
						|
        s &= 15;
 | 
						|
 | 
						|
        if (s) {
 | 
						|
          k += r;
 | 
						|
          FILL_BIT_BUFFER_FAST
 | 
						|
          DROP_BITS(s);
 | 
						|
        } else {
 | 
						|
          if (r != 15) break;
 | 
						|
          k += 15;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (cinfo->unread_marker != 0) {
 | 
						|
    cinfo->unread_marker = 0;
 | 
						|
    return FALSE;
 | 
						|
  }
 | 
						|
 | 
						|
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
 | 
						|
  br_state.next_input_byte = buffer;
 | 
						|
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
 | 
						|
  entropy->saved = state;
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
 | 
						|
 * The coefficients are reordered from zigzag order into natural array order,
 | 
						|
 * but are not dequantized.
 | 
						|
 *
 | 
						|
 * The i'th block of the MCU is stored into the block pointed to by
 | 
						|
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
 | 
						|
 * (Wholesale zeroing is usually a little faster than retail...)
 | 
						|
 *
 | 
						|
 * Returns FALSE if data source requested suspension.  In that case no
 | 
						|
 * changes have been made to permanent state.  (Exception: some output
 | 
						|
 * coefficients may already have been assigned.  This is harmless for
 | 
						|
 * this module, since we'll just re-assign them on the next call.)
 | 
						|
 */
 | 
						|
 | 
						|
#define BUFSIZE  (DCTSIZE2 * 8)
 | 
						|
 | 
						|
METHODDEF(boolean)
 | 
						|
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
						|
{
 | 
						|
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
 | 
						|
  int usefast = 1;
 | 
						|
 | 
						|
  /* Process restart marker if needed; may have to suspend */
 | 
						|
  if (cinfo->restart_interval) {
 | 
						|
    if (entropy->restarts_to_go == 0)
 | 
						|
      if (!process_restart(cinfo))
 | 
						|
        return FALSE;
 | 
						|
    usefast = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
 | 
						|
      cinfo->unread_marker != 0)
 | 
						|
    usefast = 0;
 | 
						|
 | 
						|
  /* If we've run out of data, just leave the MCU set to zeroes.
 | 
						|
   * This way, we return uniform gray for the remainder of the segment.
 | 
						|
   */
 | 
						|
  if (!entropy->pub.insufficient_data) {
 | 
						|
 | 
						|
    if (usefast) {
 | 
						|
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
 | 
						|
    } else {
 | 
						|
use_slow:
 | 
						|
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
 | 
						|
    }
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  /* Account for restart interval (no-op if not using restarts) */
 | 
						|
  if (cinfo->restart_interval)
 | 
						|
    entropy->restarts_to_go--;
 | 
						|
 | 
						|
  return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Module initialization routine for Huffman entropy decoding.
 | 
						|
 */
 | 
						|
 | 
						|
GLOBAL(void)
 | 
						|
jinit_huff_decoder(j_decompress_ptr cinfo)
 | 
						|
{
 | 
						|
  huff_entropy_ptr entropy;
 | 
						|
  int i;
 | 
						|
 | 
						|
  /* Motion JPEG frames typically do not include the Huffman tables if they
 | 
						|
     are the default tables.  Thus, if the tables are not set by the time
 | 
						|
     the Huffman decoder is initialized (usually within the body of
 | 
						|
     jpeg_start_decompress()), we set them to default values. */
 | 
						|
  std_huff_tables((j_common_ptr)cinfo);
 | 
						|
 | 
						|
  entropy = (huff_entropy_ptr)
 | 
						|
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
 | 
						|
                                sizeof(huff_entropy_decoder));
 | 
						|
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
 | 
						|
  entropy->pub.start_pass = start_pass_huff_decoder;
 | 
						|
  entropy->pub.decode_mcu = decode_mcu;
 | 
						|
 | 
						|
  /* Mark tables unallocated */
 | 
						|
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
 | 
						|
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
 | 
						|
  }
 | 
						|
}
 |