mirror of
				https://github.com/mozilla/gecko-dev.git
				synced 2025-11-04 10:18:41 +02:00 
			
		
		
		
	Otherwise it doesn't show what the slice contains, which makes restyle logs a bit useless. Differential Revision: https://phabricator.services.mozilla.com/D210929
		
			
				
	
	
		
			1202 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1202 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
 | 
						|
// file at the top-level directory of this distribution and at
 | 
						|
// http://rust-lang.org/COPYRIGHT.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
 | 
						|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
 | 
						|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
 | 
						|
// option. This file may not be copied, modified, or distributed
 | 
						|
// except according to those terms.
 | 
						|
 | 
						|
//! Fork of Arc for Servo. This has the following advantages over std::sync::Arc:
 | 
						|
//!
 | 
						|
//! * We don't waste storage on the weak reference count.
 | 
						|
//! * We don't do extra RMU operations to handle the possibility of weak references.
 | 
						|
//! * We can experiment with arena allocation (todo).
 | 
						|
//! * We can add methods to support our custom use cases [1].
 | 
						|
//! * We have support for dynamically-sized types (see from_header_and_iter).
 | 
						|
//! * We have support for thin arcs to unsized types (see ThinArc).
 | 
						|
//! * We have support for references to static data, which don't do any
 | 
						|
//!   refcounting.
 | 
						|
//!
 | 
						|
//! [1]: https://bugzilla.mozilla.org/show_bug.cgi?id=1360883
 | 
						|
 | 
						|
// The semantics of `Arc` are already documented in the Rust docs, so we don't
 | 
						|
// duplicate those here.
 | 
						|
#![allow(missing_docs)]
 | 
						|
 | 
						|
#[cfg(feature = "servo")]
 | 
						|
extern crate serde;
 | 
						|
extern crate stable_deref_trait;
 | 
						|
 | 
						|
#[cfg(feature = "servo")]
 | 
						|
use serde::{Deserialize, Serialize};
 | 
						|
use stable_deref_trait::{CloneStableDeref, StableDeref};
 | 
						|
use std::alloc::{self, Layout};
 | 
						|
use std::borrow;
 | 
						|
use std::cmp::Ordering;
 | 
						|
use std::fmt;
 | 
						|
use std::hash::{Hash, Hasher};
 | 
						|
use std::marker::PhantomData;
 | 
						|
use std::mem::{self, align_of, size_of};
 | 
						|
use std::ops::{Deref, DerefMut};
 | 
						|
use std::os::raw::c_void;
 | 
						|
use std::process;
 | 
						|
use std::ptr;
 | 
						|
use std::sync::atomic;
 | 
						|
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release};
 | 
						|
use std::{isize, usize};
 | 
						|
 | 
						|
/// A soft limit on the amount of references that may be made to an `Arc`.
 | 
						|
///
 | 
						|
/// Going above this limit will abort your program (although not
 | 
						|
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
 | 
						|
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
 | 
						|
 | 
						|
/// Special refcount value that means the data is not reference counted,
 | 
						|
/// and that the `Arc` is really acting as a read-only static reference.
 | 
						|
const STATIC_REFCOUNT: usize = usize::MAX;
 | 
						|
 | 
						|
/// An atomically reference counted shared pointer
 | 
						|
///
 | 
						|
/// See the documentation for [`Arc`] in the standard library. Unlike the
 | 
						|
/// standard library `Arc`, this `Arc` does not support weak reference counting.
 | 
						|
///
 | 
						|
/// See the discussion in https://github.com/rust-lang/rust/pull/60594 for the
 | 
						|
/// usage of PhantomData.
 | 
						|
///
 | 
						|
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
 | 
						|
///
 | 
						|
/// cbindgen:derive-eq=false
 | 
						|
/// cbindgen:derive-neq=false
 | 
						|
#[repr(C)]
 | 
						|
pub struct Arc<T: ?Sized> {
 | 
						|
    p: ptr::NonNull<ArcInner<T>>,
 | 
						|
    phantom: PhantomData<T>,
 | 
						|
}
 | 
						|
 | 
						|
/// An `Arc` that is known to be uniquely owned
 | 
						|
///
 | 
						|
/// When `Arc`s are constructed, they are known to be
 | 
						|
/// uniquely owned. In such a case it is safe to mutate
 | 
						|
/// the contents of the `Arc`. Normally, one would just handle
 | 
						|
/// this by mutating the data on the stack before allocating the
 | 
						|
/// `Arc`, however it's possible the data is large or unsized
 | 
						|
/// and you need to heap-allocate it earlier in such a way
 | 
						|
/// that it can be freely converted into a regular `Arc` once you're
 | 
						|
/// done.
 | 
						|
///
 | 
						|
/// `UniqueArc` exists for this purpose, when constructed it performs
 | 
						|
/// the same allocations necessary for an `Arc`, however it allows mutable access.
 | 
						|
/// Once the mutation is finished, you can call `.shareable()` and get a regular `Arc`
 | 
						|
/// out of it.
 | 
						|
///
 | 
						|
/// Ignore the doctest below there's no way to skip building with refcount
 | 
						|
/// logging during doc tests (see rust-lang/rust#45599).
 | 
						|
///
 | 
						|
/// ```rust,ignore
 | 
						|
/// # use servo_arc::UniqueArc;
 | 
						|
/// let data = [1, 2, 3, 4, 5];
 | 
						|
/// let mut x = UniqueArc::new(data);
 | 
						|
/// x[4] = 7; // mutate!
 | 
						|
/// let y = x.shareable(); // y is an Arc<T>
 | 
						|
/// ```
 | 
						|
pub struct UniqueArc<T: ?Sized>(Arc<T>);
 | 
						|
 | 
						|
impl<T> UniqueArc<T> {
 | 
						|
    #[inline]
 | 
						|
    /// Construct a new UniqueArc
 | 
						|
    pub fn new(data: T) -> Self {
 | 
						|
        UniqueArc(Arc::new(data))
 | 
						|
    }
 | 
						|
 | 
						|
    /// Construct an uninitialized arc
 | 
						|
    #[inline]
 | 
						|
    pub fn new_uninit() -> UniqueArc<mem::MaybeUninit<T>> {
 | 
						|
        unsafe {
 | 
						|
            let layout = Layout::new::<ArcInner<mem::MaybeUninit<T>>>();
 | 
						|
            let ptr = alloc::alloc(layout);
 | 
						|
            let mut p = ptr::NonNull::new(ptr)
 | 
						|
                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
 | 
						|
                .cast::<ArcInner<mem::MaybeUninit<T>>>();
 | 
						|
            ptr::write(&mut p.as_mut().count, atomic::AtomicUsize::new(1));
 | 
						|
            #[cfg(feature = "track_alloc_size")]
 | 
						|
            ptr::write(&mut p.as_mut().alloc_size, layout.size());
 | 
						|
 | 
						|
            #[cfg(feature = "gecko_refcount_logging")]
 | 
						|
            {
 | 
						|
                NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
 | 
						|
            }
 | 
						|
 | 
						|
            UniqueArc(Arc {
 | 
						|
                p,
 | 
						|
                phantom: PhantomData,
 | 
						|
            })
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    #[inline]
 | 
						|
    /// Convert to a shareable Arc<T> once we're done mutating it
 | 
						|
    pub fn shareable(self) -> Arc<T> {
 | 
						|
        self.0
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T> UniqueArc<mem::MaybeUninit<T>> {
 | 
						|
    /// Convert to an initialized Arc.
 | 
						|
    #[inline]
 | 
						|
    pub unsafe fn assume_init(this: Self) -> UniqueArc<T> {
 | 
						|
        UniqueArc(Arc {
 | 
						|
            p: mem::ManuallyDrop::new(this).0.p.cast(),
 | 
						|
            phantom: PhantomData,
 | 
						|
        })
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T> Deref for UniqueArc<T> {
 | 
						|
    type Target = T;
 | 
						|
    fn deref(&self) -> &T {
 | 
						|
        &*self.0
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T> DerefMut for UniqueArc<T> {
 | 
						|
    fn deref_mut(&mut self) -> &mut T {
 | 
						|
        // We know this to be uniquely owned
 | 
						|
        unsafe { &mut (*self.0.ptr()).data }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
 | 
						|
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
 | 
						|
 | 
						|
/// The object allocated by an Arc<T>
 | 
						|
///
 | 
						|
/// See https://github.com/mozilla/cbindgen/issues/937 for the derive-{eq,neq}=false. But we don't
 | 
						|
/// use those anyways so we can just disable them.
 | 
						|
/// cbindgen:derive-eq=false
 | 
						|
/// cbindgen:derive-neq=false
 | 
						|
#[repr(C)]
 | 
						|
struct ArcInner<T: ?Sized> {
 | 
						|
    count: atomic::AtomicUsize,
 | 
						|
    // NOTE(emilio): This needs to be here so that HeaderSlice<> is deallocated properly if the
 | 
						|
    // allocator relies on getting the right Layout. We don't need to track the right alignment,
 | 
						|
    // since we know that statically.
 | 
						|
    //
 | 
						|
    // This member could be completely avoided once min_specialization feature is stable (by
 | 
						|
    // implementing a trait for HeaderSlice that gives you the right layout). For now, servo-only
 | 
						|
    // since Gecko doesn't need it (its allocator doesn't need the size for the alignments we care
 | 
						|
    // about). See https://github.com/rust-lang/rust/issues/31844.
 | 
						|
    #[cfg(feature = "track_alloc_size")]
 | 
						|
    alloc_size: usize,
 | 
						|
    data: T,
 | 
						|
}
 | 
						|
 | 
						|
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
 | 
						|
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
 | 
						|
 | 
						|
/// Computes the offset of the data field within ArcInner.
 | 
						|
fn data_offset<T>() -> usize {
 | 
						|
    let size = size_of::<ArcInner<()>>();
 | 
						|
    let align = align_of::<T>();
 | 
						|
    // https://github.com/rust-lang/rust/blob/1.36.0/src/libcore/alloc.rs#L187-L207
 | 
						|
    size.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1)
 | 
						|
}
 | 
						|
 | 
						|
impl<T> Arc<T> {
 | 
						|
    /// Construct an `Arc<T>`
 | 
						|
    #[inline]
 | 
						|
    pub fn new(data: T) -> Self {
 | 
						|
        let layout = Layout::new::<ArcInner<T>>();
 | 
						|
        let p = unsafe {
 | 
						|
            let ptr = ptr::NonNull::new(alloc::alloc(layout))
 | 
						|
                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
 | 
						|
                .cast::<ArcInner<T>>();
 | 
						|
            ptr::write(ptr.as_ptr(), ArcInner {
 | 
						|
                count: atomic::AtomicUsize::new(1),
 | 
						|
                #[cfg(feature = "track_alloc_size")]
 | 
						|
                alloc_size: layout.size(),
 | 
						|
                data,
 | 
						|
            });
 | 
						|
            ptr
 | 
						|
        };
 | 
						|
 | 
						|
        #[cfg(feature = "gecko_refcount_logging")]
 | 
						|
        unsafe {
 | 
						|
            // FIXME(emilio): Would be so amazing to have
 | 
						|
            // std::intrinsics::type_name() around, so that we could also report
 | 
						|
            // a real size.
 | 
						|
            NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
 | 
						|
        }
 | 
						|
 | 
						|
        Arc {
 | 
						|
            p,
 | 
						|
            phantom: PhantomData,
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Construct an intentionally-leaked arc.
 | 
						|
    #[inline]
 | 
						|
    pub fn new_leaked(data: T) -> Self {
 | 
						|
        let arc = Self::new(data);
 | 
						|
        arc.mark_as_intentionally_leaked();
 | 
						|
        arc
 | 
						|
    }
 | 
						|
 | 
						|
    /// Convert the Arc<T> to a raw pointer, suitable for use across FFI
 | 
						|
    ///
 | 
						|
    /// Note: This returns a pointer to the data T, which is offset in the allocation.
 | 
						|
    #[inline]
 | 
						|
    pub fn into_raw(this: Self) -> *const T {
 | 
						|
        let ptr = unsafe { &((*this.ptr()).data) as *const _ };
 | 
						|
        mem::forget(this);
 | 
						|
        ptr
 | 
						|
    }
 | 
						|
 | 
						|
    /// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
 | 
						|
    ///
 | 
						|
    /// Note: This raw pointer will be offset in the allocation and must be preceded
 | 
						|
    /// by the atomic count.
 | 
						|
    #[inline]
 | 
						|
    pub unsafe fn from_raw(ptr: *const T) -> Self {
 | 
						|
        // To find the corresponding pointer to the `ArcInner` we need
 | 
						|
        // to subtract the offset of the `data` field from the pointer.
 | 
						|
        let ptr = (ptr as *const u8).sub(data_offset::<T>());
 | 
						|
        Arc {
 | 
						|
            p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>),
 | 
						|
            phantom: PhantomData,
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Like from_raw, but returns an addrefed arc instead.
 | 
						|
    #[inline]
 | 
						|
    pub unsafe fn from_raw_addrefed(ptr: *const T) -> Self {
 | 
						|
        let arc = Self::from_raw(ptr);
 | 
						|
        mem::forget(arc.clone());
 | 
						|
        arc
 | 
						|
    }
 | 
						|
 | 
						|
    /// Create a new static Arc<T> (one that won't reference count the object)
 | 
						|
    /// and place it in the allocation provided by the specified `alloc`
 | 
						|
    /// function.
 | 
						|
    ///
 | 
						|
    /// `alloc` must return a pointer into a static allocation suitable for
 | 
						|
    /// storing data with the `Layout` passed into it. The pointer returned by
 | 
						|
    /// `alloc` will not be freed.
 | 
						|
    #[inline]
 | 
						|
    pub unsafe fn new_static<F>(alloc: F, data: T) -> Arc<T>
 | 
						|
    where
 | 
						|
        F: FnOnce(Layout) -> *mut u8,
 | 
						|
    {
 | 
						|
        let layout = Layout::new::<ArcInner<T>>();
 | 
						|
        let ptr = alloc(layout) as *mut ArcInner<T>;
 | 
						|
 | 
						|
        let x = ArcInner {
 | 
						|
            count: atomic::AtomicUsize::new(STATIC_REFCOUNT),
 | 
						|
            #[cfg(feature = "track_alloc_size")]
 | 
						|
            alloc_size: layout.size(),
 | 
						|
            data,
 | 
						|
        };
 | 
						|
 | 
						|
        ptr::write(ptr, x);
 | 
						|
 | 
						|
        Arc {
 | 
						|
            p: ptr::NonNull::new_unchecked(ptr),
 | 
						|
            phantom: PhantomData,
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Produce a pointer to the data that can be converted back
 | 
						|
    /// to an Arc. This is basically an `&Arc<T>`, without the extra indirection.
 | 
						|
    /// It has the benefits of an `&T` but also knows about the underlying refcount
 | 
						|
    /// and can be converted into more `Arc<T>`s if necessary.
 | 
						|
    #[inline]
 | 
						|
    pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
 | 
						|
        ArcBorrow(&**self)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
 | 
						|
    /// reporting.
 | 
						|
    ///
 | 
						|
    /// If this is a static reference, this returns null.
 | 
						|
    pub fn heap_ptr(&self) -> *const c_void {
 | 
						|
        if self.inner().count.load(Relaxed) == STATIC_REFCOUNT {
 | 
						|
            ptr::null()
 | 
						|
        } else {
 | 
						|
            self.p.as_ptr() as *const ArcInner<T> as *const c_void
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> Arc<T> {
 | 
						|
    #[inline]
 | 
						|
    fn inner(&self) -> &ArcInner<T> {
 | 
						|
        // This unsafety is ok because while this arc is alive we're guaranteed
 | 
						|
        // that the inner pointer is valid. Furthermore, we know that the
 | 
						|
        // `ArcInner` structure itself is `Sync` because the inner data is
 | 
						|
        // `Sync` as well, so we're ok loaning out an immutable pointer to these
 | 
						|
        // contents.
 | 
						|
        unsafe { &*self.ptr() }
 | 
						|
    }
 | 
						|
 | 
						|
    #[inline(always)]
 | 
						|
    fn record_drop(&self) {
 | 
						|
        #[cfg(feature = "gecko_refcount_logging")]
 | 
						|
        unsafe {
 | 
						|
            NS_LogDtor(self.ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Marks this `Arc` as intentionally leaked for the purposes of refcount
 | 
						|
    /// logging.
 | 
						|
    ///
 | 
						|
    /// It's a logic error to call this more than once, but it's not unsafe, as
 | 
						|
    /// it'd just report negative leaks.
 | 
						|
    #[inline(always)]
 | 
						|
    pub fn mark_as_intentionally_leaked(&self) {
 | 
						|
        self.record_drop();
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-inlined part of `drop`. Just invokes the destructor and calls the
 | 
						|
    // refcount logging machinery if enabled.
 | 
						|
    #[inline(never)]
 | 
						|
    unsafe fn drop_slow(&mut self) {
 | 
						|
        self.record_drop();
 | 
						|
        let inner = self.ptr();
 | 
						|
 | 
						|
        let layout = Layout::for_value(&*inner);
 | 
						|
        #[cfg(feature = "track_alloc_size")]
 | 
						|
        let layout = Layout::from_size_align_unchecked((*inner).alloc_size, layout.align());
 | 
						|
 | 
						|
        std::ptr::drop_in_place(inner);
 | 
						|
        alloc::dealloc(inner as *mut _, layout);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Test pointer equality between the two Arcs, i.e. they must be the _same_
 | 
						|
    /// allocation
 | 
						|
    #[inline]
 | 
						|
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
 | 
						|
        this.ptr() as *const () == other.ptr() as *const ()
 | 
						|
    }
 | 
						|
 | 
						|
    fn ptr(&self) -> *mut ArcInner<T> {
 | 
						|
        self.p.as_ptr()
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns a raw ptr to the underlying allocation.
 | 
						|
    pub fn raw_ptr(&self) -> *const c_void {
 | 
						|
        self.p.as_ptr() as *const _
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(feature = "gecko_refcount_logging")]
 | 
						|
extern "C" {
 | 
						|
    fn NS_LogCtor(
 | 
						|
        aPtr: *mut std::os::raw::c_void,
 | 
						|
        aTypeName: *const std::os::raw::c_char,
 | 
						|
        aSize: u32,
 | 
						|
    );
 | 
						|
    fn NS_LogDtor(
 | 
						|
        aPtr: *mut std::os::raw::c_void,
 | 
						|
        aTypeName: *const std::os::raw::c_char,
 | 
						|
        aSize: u32,
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> Clone for Arc<T> {
 | 
						|
    #[inline]
 | 
						|
    fn clone(&self) -> Self {
 | 
						|
        // NOTE(emilio): If you change anything here, make sure that the
 | 
						|
        // implementation in layout/style/ServoStyleConstsInlines.h matches!
 | 
						|
        //
 | 
						|
        // Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
 | 
						|
        // `count` never changes between STATIC_REFCOUNT and other values.
 | 
						|
        if self.inner().count.load(Relaxed) != STATIC_REFCOUNT {
 | 
						|
            // Using a relaxed ordering is alright here, as knowledge of the
 | 
						|
            // original reference prevents other threads from erroneously deleting
 | 
						|
            // the object.
 | 
						|
            //
 | 
						|
            // As explained in the [Boost documentation][1], Increasing the
 | 
						|
            // reference counter can always be done with memory_order_relaxed: New
 | 
						|
            // references to an object can only be formed from an existing
 | 
						|
            // reference, and passing an existing reference from one thread to
 | 
						|
            // another must already provide any required synchronization.
 | 
						|
            //
 | 
						|
            // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
 | 
						|
            let old_size = self.inner().count.fetch_add(1, Relaxed);
 | 
						|
 | 
						|
            // However we need to guard against massive refcounts in case someone
 | 
						|
            // is `mem::forget`ing Arcs. If we don't do this the count can overflow
 | 
						|
            // and users will use-after free. We racily saturate to `isize::MAX` on
 | 
						|
            // the assumption that there aren't ~2 billion threads incrementing
 | 
						|
            // the reference count at once. This branch will never be taken in
 | 
						|
            // any realistic program.
 | 
						|
            //
 | 
						|
            // We abort because such a program is incredibly degenerate, and we
 | 
						|
            // don't care to support it.
 | 
						|
            if old_size > MAX_REFCOUNT {
 | 
						|
                process::abort();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        unsafe {
 | 
						|
            Arc {
 | 
						|
                p: ptr::NonNull::new_unchecked(self.ptr()),
 | 
						|
                phantom: PhantomData,
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> Deref for Arc<T> {
 | 
						|
    type Target = T;
 | 
						|
 | 
						|
    #[inline]
 | 
						|
    fn deref(&self) -> &T {
 | 
						|
        &self.inner().data
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: Clone> Arc<T> {
 | 
						|
    /// Makes a mutable reference to the `Arc`, cloning if necessary
 | 
						|
    ///
 | 
						|
    /// This is functionally equivalent to [`Arc::make_mut`][mm] from the standard library.
 | 
						|
    ///
 | 
						|
    /// If this `Arc` is uniquely owned, `make_mut()` will provide a mutable
 | 
						|
    /// reference to the contents. If not, `make_mut()` will create a _new_ `Arc`
 | 
						|
    /// with a copy of the contents, update `this` to point to it, and provide
 | 
						|
    /// a mutable reference to its contents.
 | 
						|
    ///
 | 
						|
    /// This is useful for implementing copy-on-write schemes where you wish to
 | 
						|
    /// avoid copying things if your `Arc` is not shared.
 | 
						|
    ///
 | 
						|
    /// [mm]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html#method.make_mut
 | 
						|
    #[inline]
 | 
						|
    pub fn make_mut(this: &mut Self) -> &mut T {
 | 
						|
        if !this.is_unique() {
 | 
						|
            // Another pointer exists; clone
 | 
						|
            *this = Arc::new((**this).clone());
 | 
						|
        }
 | 
						|
 | 
						|
        unsafe {
 | 
						|
            // This unsafety is ok because we're guaranteed that the pointer
 | 
						|
            // returned is the *only* pointer that will ever be returned to T. Our
 | 
						|
            // reference count is guaranteed to be 1 at this point, and we required
 | 
						|
            // the Arc itself to be `mut`, so we're returning the only possible
 | 
						|
            // reference to the inner data.
 | 
						|
            &mut (*this.ptr()).data
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> Arc<T> {
 | 
						|
    /// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
 | 
						|
    #[inline]
 | 
						|
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
 | 
						|
        if this.is_unique() {
 | 
						|
            unsafe {
 | 
						|
                // See make_mut() for documentation of the threadsafety here.
 | 
						|
                Some(&mut (*this.ptr()).data)
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            None
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Whether or not the `Arc` is a static reference.
 | 
						|
    #[inline]
 | 
						|
    pub fn is_static(&self) -> bool {
 | 
						|
        // Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
 | 
						|
        // `count` never changes between STATIC_REFCOUNT and other values.
 | 
						|
        self.inner().count.load(Relaxed) == STATIC_REFCOUNT
 | 
						|
    }
 | 
						|
 | 
						|
    /// Whether or not the `Arc` is uniquely owned (is the refcount 1?) and not
 | 
						|
    /// a static reference.
 | 
						|
    #[inline]
 | 
						|
    pub fn is_unique(&self) -> bool {
 | 
						|
        // See the extensive discussion in [1] for why this needs to be Acquire.
 | 
						|
        //
 | 
						|
        // [1] https://github.com/servo/servo/issues/21186
 | 
						|
        self.inner().count.load(Acquire) == 1
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> Drop for Arc<T> {
 | 
						|
    #[inline]
 | 
						|
    fn drop(&mut self) {
 | 
						|
        // NOTE(emilio): If you change anything here, make sure that the
 | 
						|
        // implementation in layout/style/ServoStyleConstsInlines.h matches!
 | 
						|
        if self.is_static() {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // Because `fetch_sub` is already atomic, we do not need to synchronize
 | 
						|
        // with other threads unless we are going to delete the object.
 | 
						|
        if self.inner().count.fetch_sub(1, Release) != 1 {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        // FIXME(bholley): Use the updated comment when [2] is merged.
 | 
						|
        //
 | 
						|
        // This load is needed to prevent reordering of use of the data and
 | 
						|
        // deletion of the data.  Because it is marked `Release`, the decreasing
 | 
						|
        // of the reference count synchronizes with this `Acquire` load. This
 | 
						|
        // means that use of the data happens before decreasing the reference
 | 
						|
        // count, which happens before this load, which happens before the
 | 
						|
        // deletion of the data.
 | 
						|
        //
 | 
						|
        // As explained in the [Boost documentation][1],
 | 
						|
        //
 | 
						|
        // > It is important to enforce any possible access to the object in one
 | 
						|
        // > thread (through an existing reference) to *happen before* deleting
 | 
						|
        // > the object in a different thread. This is achieved by a "release"
 | 
						|
        // > operation after dropping a reference (any access to the object
 | 
						|
        // > through this reference must obviously happened before), and an
 | 
						|
        // > "acquire" operation before deleting the object.
 | 
						|
        //
 | 
						|
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
 | 
						|
        // [2]: https://github.com/rust-lang/rust/pull/41714
 | 
						|
        self.inner().count.load(Acquire);
 | 
						|
 | 
						|
        unsafe {
 | 
						|
            self.drop_slow();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
 | 
						|
    fn eq(&self, other: &Arc<T>) -> bool {
 | 
						|
        Self::ptr_eq(self, other) || *(*self) == *(*other)
 | 
						|
    }
 | 
						|
 | 
						|
    fn ne(&self, other: &Arc<T>) -> bool {
 | 
						|
        !Self::ptr_eq(self, other) && *(*self) != *(*other)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
 | 
						|
    fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
 | 
						|
        (**self).partial_cmp(&**other)
 | 
						|
    }
 | 
						|
 | 
						|
    fn lt(&self, other: &Arc<T>) -> bool {
 | 
						|
        *(*self) < *(*other)
 | 
						|
    }
 | 
						|
 | 
						|
    fn le(&self, other: &Arc<T>) -> bool {
 | 
						|
        *(*self) <= *(*other)
 | 
						|
    }
 | 
						|
 | 
						|
    fn gt(&self, other: &Arc<T>) -> bool {
 | 
						|
        *(*self) > *(*other)
 | 
						|
    }
 | 
						|
 | 
						|
    fn ge(&self, other: &Arc<T>) -> bool {
 | 
						|
        *(*self) >= *(*other)
 | 
						|
    }
 | 
						|
}
 | 
						|
impl<T: ?Sized + Ord> Ord for Arc<T> {
 | 
						|
    fn cmp(&self, other: &Arc<T>) -> Ordering {
 | 
						|
        (**self).cmp(&**other)
 | 
						|
    }
 | 
						|
}
 | 
						|
impl<T: ?Sized + Eq> Eq for Arc<T> {}
 | 
						|
 | 
						|
impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
 | 
						|
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | 
						|
        fmt::Display::fmt(&**self, f)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
 | 
						|
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | 
						|
        fmt::Debug::fmt(&**self, f)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> fmt::Pointer for Arc<T> {
 | 
						|
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | 
						|
        fmt::Pointer::fmt(&self.ptr(), f)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: Default> Default for Arc<T> {
 | 
						|
    fn default() -> Arc<T> {
 | 
						|
        Arc::new(Default::default())
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized + Hash> Hash for Arc<T> {
 | 
						|
    fn hash<H: Hasher>(&self, state: &mut H) {
 | 
						|
        (**self).hash(state)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T> From<T> for Arc<T> {
 | 
						|
    #[inline]
 | 
						|
    fn from(t: T) -> Self {
 | 
						|
        Arc::new(t)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
 | 
						|
    #[inline]
 | 
						|
    fn borrow(&self) -> &T {
 | 
						|
        &**self
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: ?Sized> AsRef<T> for Arc<T> {
 | 
						|
    #[inline]
 | 
						|
    fn as_ref(&self) -> &T {
 | 
						|
        &**self
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
 | 
						|
unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}
 | 
						|
 | 
						|
#[cfg(feature = "servo")]
 | 
						|
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T> {
 | 
						|
    fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
 | 
						|
    where
 | 
						|
        D: ::serde::de::Deserializer<'de>,
 | 
						|
    {
 | 
						|
        T::deserialize(deserializer).map(Arc::new)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(feature = "servo")]
 | 
						|
impl<T: Serialize> Serialize for Arc<T> {
 | 
						|
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 | 
						|
    where
 | 
						|
        S: ::serde::ser::Serializer,
 | 
						|
    {
 | 
						|
        (**self).serialize(serializer)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// Structure to allow Arc-managing some fixed-sized data and a variably-sized
 | 
						|
/// slice in a single allocation.
 | 
						|
///
 | 
						|
/// cbindgen:derive-eq=false
 | 
						|
/// cbindgen:derive-neq=false
 | 
						|
#[derive(Eq)]
 | 
						|
#[repr(C)]
 | 
						|
pub struct HeaderSlice<H, T> {
 | 
						|
    /// The fixed-sized data.
 | 
						|
    pub header: H,
 | 
						|
 | 
						|
    /// The length of the slice at our end.
 | 
						|
    len: usize,
 | 
						|
 | 
						|
    /// The dynamically-sized data.
 | 
						|
    data: [T; 0],
 | 
						|
}
 | 
						|
 | 
						|
impl<H: PartialEq, T: PartialEq> PartialEq for HeaderSlice<H, T> {
 | 
						|
    fn eq(&self, other: &Self) -> bool {
 | 
						|
        self.header == other.header && self.slice() == other.slice()
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<H, T> Drop for HeaderSlice<H, T> {
 | 
						|
    fn drop(&mut self) {
 | 
						|
        unsafe {
 | 
						|
            let mut ptr = self.data_mut();
 | 
						|
            for _ in 0..self.len {
 | 
						|
                std::ptr::drop_in_place(ptr);
 | 
						|
                ptr = ptr.offset(1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<H: fmt::Debug, T: fmt::Debug> fmt::Debug for HeaderSlice<H, T> {
 | 
						|
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | 
						|
        f.debug_struct("HeaderSlice")
 | 
						|
            .field("header", &self.header)
 | 
						|
            .field("slice", &self.slice())
 | 
						|
            .finish()
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<H, T> HeaderSlice<H, T> {
 | 
						|
    /// Returns the dynamically sized slice in this HeaderSlice.
 | 
						|
    #[inline(always)]
 | 
						|
    pub fn slice(&self) -> &[T] {
 | 
						|
        unsafe { std::slice::from_raw_parts(self.data(), self.len) }
 | 
						|
    }
 | 
						|
 | 
						|
    #[inline(always)]
 | 
						|
    fn data(&self) -> *const T {
 | 
						|
        std::ptr::addr_of!(self.data) as *const _
 | 
						|
    }
 | 
						|
 | 
						|
    #[inline(always)]
 | 
						|
    fn data_mut(&mut self) -> *mut T {
 | 
						|
        std::ptr::addr_of_mut!(self.data) as *mut _
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns the dynamically sized slice in this HeaderSlice.
 | 
						|
    #[inline(always)]
 | 
						|
    pub fn slice_mut(&mut self) -> &mut [T] {
 | 
						|
        unsafe { std::slice::from_raw_parts_mut(self.data_mut(), self.len) }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns the len of the slice.
 | 
						|
    #[inline(always)]
 | 
						|
    pub fn len(&self) -> usize {
 | 
						|
        self.len
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<H, T> Arc<HeaderSlice<H, T>> {
 | 
						|
    /// Creates an Arc for a HeaderSlice using the given header struct and
 | 
						|
    /// iterator to generate the slice.
 | 
						|
    ///
 | 
						|
    /// `is_static` indicates whether to create a static Arc.
 | 
						|
    ///
 | 
						|
    /// `alloc` is used to get a pointer to the memory into which the
 | 
						|
    /// dynamically sized ArcInner<HeaderSlice<H, T>> value will be
 | 
						|
    /// written.  If `is_static` is true, then `alloc` must return a
 | 
						|
    /// pointer into some static memory allocation.  If it is false,
 | 
						|
    /// then `alloc` must return an allocation that can be dellocated
 | 
						|
    /// by calling Box::from_raw::<ArcInner<HeaderSlice<H, T>>> on it.
 | 
						|
    #[inline]
 | 
						|
    pub fn from_header_and_iter_alloc<F, I>(
 | 
						|
        alloc: F,
 | 
						|
        header: H,
 | 
						|
        mut items: I,
 | 
						|
        num_items: usize,
 | 
						|
        is_static: bool,
 | 
						|
    ) -> Self
 | 
						|
    where
 | 
						|
        F: FnOnce(Layout) -> *mut u8,
 | 
						|
        I: Iterator<Item = T>,
 | 
						|
    {
 | 
						|
        assert_ne!(size_of::<T>(), 0, "Need to think about ZST");
 | 
						|
 | 
						|
        let layout = Layout::new::<ArcInner<HeaderSlice<H, T>>>();
 | 
						|
        debug_assert!(layout.align() >= align_of::<T>());
 | 
						|
        debug_assert!(layout.align() >= align_of::<usize>());
 | 
						|
        let array_layout = Layout::array::<T>(num_items).expect("Overflow");
 | 
						|
        let (layout, _offset) = layout.extend(array_layout).expect("Overflow");
 | 
						|
        let p = unsafe {
 | 
						|
            // Allocate the buffer.
 | 
						|
            let buffer = alloc(layout);
 | 
						|
            let mut p = ptr::NonNull::new(buffer)
 | 
						|
                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
 | 
						|
                .cast::<ArcInner<HeaderSlice<H, T>>>();
 | 
						|
 | 
						|
            // Write the data.
 | 
						|
            //
 | 
						|
            // Note that any panics here (i.e. from the iterator) are safe, since
 | 
						|
            // we'll just leak the uninitialized memory.
 | 
						|
            let count = if is_static {
 | 
						|
                atomic::AtomicUsize::new(STATIC_REFCOUNT)
 | 
						|
            } else {
 | 
						|
                atomic::AtomicUsize::new(1)
 | 
						|
            };
 | 
						|
            ptr::write(&mut p.as_mut().count, count);
 | 
						|
            #[cfg(feature = "track_alloc_size")]
 | 
						|
            ptr::write(&mut p.as_mut().alloc_size, layout.size());
 | 
						|
            ptr::write(&mut p.as_mut().data.header, header);
 | 
						|
            ptr::write(&mut p.as_mut().data.len, num_items);
 | 
						|
            if num_items != 0 {
 | 
						|
                let mut current = std::ptr::addr_of_mut!(p.as_mut().data.data) as *mut T;
 | 
						|
                for _ in 0..num_items {
 | 
						|
                    ptr::write(
 | 
						|
                        current,
 | 
						|
                        items
 | 
						|
                            .next()
 | 
						|
                            .expect("ExactSizeIterator over-reported length"),
 | 
						|
                    );
 | 
						|
                    current = current.offset(1);
 | 
						|
                }
 | 
						|
                // We should have consumed the buffer exactly, maybe accounting
 | 
						|
                // for some padding from the alignment.
 | 
						|
                debug_assert!(
 | 
						|
                    (buffer.add(layout.size()) as usize - current as *mut u8 as usize) < layout.align()
 | 
						|
                );
 | 
						|
            }
 | 
						|
            assert!(
 | 
						|
                items.next().is_none(),
 | 
						|
                "ExactSizeIterator under-reported length"
 | 
						|
            );
 | 
						|
            p
 | 
						|
        };
 | 
						|
        #[cfg(feature = "gecko_refcount_logging")]
 | 
						|
        unsafe {
 | 
						|
            if !is_static {
 | 
						|
                // FIXME(emilio): Would be so amazing to have
 | 
						|
                // std::intrinsics::type_name() around.
 | 
						|
                NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Return the fat Arc.
 | 
						|
        assert_eq!(
 | 
						|
            size_of::<Self>(),
 | 
						|
            size_of::<usize>(),
 | 
						|
            "The Arc should be thin"
 | 
						|
        );
 | 
						|
 | 
						|
        Arc {
 | 
						|
            p,
 | 
						|
            phantom: PhantomData,
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Creates an Arc for a HeaderSlice using the given header struct and iterator to generate the
 | 
						|
    /// slice. Panics if num_items doesn't match the number of items.
 | 
						|
    #[inline]
 | 
						|
    pub fn from_header_and_iter_with_size<I>(header: H, items: I, num_items: usize) -> Self
 | 
						|
    where
 | 
						|
        I: Iterator<Item = T>,
 | 
						|
    {
 | 
						|
        Arc::from_header_and_iter_alloc(
 | 
						|
            |layout| unsafe { alloc::alloc(layout) },
 | 
						|
            header,
 | 
						|
            items,
 | 
						|
            num_items,
 | 
						|
            /* is_static = */ false,
 | 
						|
        )
 | 
						|
    }
 | 
						|
 | 
						|
    /// Creates an Arc for a HeaderSlice using the given header struct and
 | 
						|
    /// iterator to generate the slice. The resulting Arc will be fat.
 | 
						|
    #[inline]
 | 
						|
    pub fn from_header_and_iter<I>(header: H, items: I) -> Self
 | 
						|
    where
 | 
						|
        I: Iterator<Item = T> + ExactSizeIterator,
 | 
						|
    {
 | 
						|
        let len = items.len();
 | 
						|
        Self::from_header_and_iter_with_size(header, items, len)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// This is functionally equivalent to Arc<(H, [T])>
 | 
						|
///
 | 
						|
/// When you create an `Arc` containing a dynamically sized type like a slice, the `Arc` is
 | 
						|
/// represented on the stack as a "fat pointer", where the length of the slice is stored alongside
 | 
						|
/// the `Arc`'s pointer. In some situations you may wish to have a thin pointer instead, perhaps
 | 
						|
/// for FFI compatibility or space efficiency. `ThinArc` solves this by storing the length in the
 | 
						|
/// allocation itself, via `HeaderSlice`.
 | 
						|
pub type ThinArc<H, T> = Arc<HeaderSlice<H, T>>;
 | 
						|
 | 
						|
/// See `ArcUnion`. This is a version that works for `ThinArc`s.
 | 
						|
pub type ThinArcUnion<H1, T1, H2, T2> = ArcUnion<HeaderSlice<H1, T1>, HeaderSlice<H2, T2>>;
 | 
						|
 | 
						|
impl<H, T> UniqueArc<HeaderSlice<H, T>> {
 | 
						|
    #[inline]
 | 
						|
    pub fn from_header_and_iter<I>(header: H, items: I) -> Self
 | 
						|
    where
 | 
						|
        I: Iterator<Item = T> + ExactSizeIterator,
 | 
						|
    {
 | 
						|
        Self(Arc::from_header_and_iter(header, items))
 | 
						|
    }
 | 
						|
 | 
						|
    #[inline]
 | 
						|
    pub fn from_header_and_iter_with_size<I>(header: H, items: I, num_items: usize) -> Self
 | 
						|
    where
 | 
						|
        I: Iterator<Item = T>,
 | 
						|
    {
 | 
						|
        Self(Arc::from_header_and_iter_with_size(
 | 
						|
            header, items, num_items,
 | 
						|
        ))
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns a mutable reference to the header.
 | 
						|
    pub fn header_mut(&mut self) -> &mut H {
 | 
						|
        // We know this to be uniquely owned
 | 
						|
        unsafe { &mut (*self.0.ptr()).data.header }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns a mutable reference to the slice.
 | 
						|
    pub fn data_mut(&mut self) -> &mut [T] {
 | 
						|
        // We know this to be uniquely owned
 | 
						|
        unsafe { (*self.0.ptr()).data.slice_mut() }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// A "borrowed `Arc`". This is a pointer to
 | 
						|
/// a T that is known to have been allocated within an
 | 
						|
/// `Arc`.
 | 
						|
///
 | 
						|
/// This is equivalent in guarantees to `&Arc<T>`, however it is
 | 
						|
/// a bit more flexible. To obtain an `&Arc<T>` you must have
 | 
						|
/// an `Arc<T>` instance somewhere pinned down until we're done with it.
 | 
						|
/// It's also a direct pointer to `T`, so using this involves less pointer-chasing
 | 
						|
///
 | 
						|
/// However, C++ code may hand us refcounted things as pointers to T directly,
 | 
						|
/// so we have to conjure up a temporary `Arc` on the stack each time.
 | 
						|
///
 | 
						|
/// `ArcBorrow` lets us deal with borrows of known-refcounted objects
 | 
						|
/// without needing to worry about where the `Arc<T>` is.
 | 
						|
#[derive(Debug, Eq, PartialEq)]
 | 
						|
pub struct ArcBorrow<'a, T: 'a>(&'a T);
 | 
						|
 | 
						|
impl<'a, T> Copy for ArcBorrow<'a, T> {}
 | 
						|
impl<'a, T> Clone for ArcBorrow<'a, T> {
 | 
						|
    #[inline]
 | 
						|
    fn clone(&self) -> Self {
 | 
						|
        *self
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<'a, T> ArcBorrow<'a, T> {
 | 
						|
    /// Clone this as an `Arc<T>`. This bumps the refcount.
 | 
						|
    #[inline]
 | 
						|
    pub fn clone_arc(&self) -> Arc<T> {
 | 
						|
        let arc = unsafe { Arc::from_raw(self.0) };
 | 
						|
        // addref it!
 | 
						|
        mem::forget(arc.clone());
 | 
						|
        arc
 | 
						|
    }
 | 
						|
 | 
						|
    /// For constructing from a reference known to be Arc-backed,
 | 
						|
    /// e.g. if we obtain such a reference over FFI
 | 
						|
    #[inline]
 | 
						|
    pub unsafe fn from_ref(r: &'a T) -> Self {
 | 
						|
        ArcBorrow(r)
 | 
						|
    }
 | 
						|
 | 
						|
    /// Compare two `ArcBorrow`s via pointer equality. Will only return
 | 
						|
    /// true if they come from the same allocation
 | 
						|
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
 | 
						|
        this.0 as *const T == other.0 as *const T
 | 
						|
    }
 | 
						|
 | 
						|
    /// Temporarily converts |self| into a bonafide Arc and exposes it to the
 | 
						|
    /// provided callback. The refcount is not modified.
 | 
						|
    #[inline]
 | 
						|
    pub fn with_arc<F, U>(&self, f: F) -> U
 | 
						|
    where
 | 
						|
        F: FnOnce(&Arc<T>) -> U,
 | 
						|
        T: 'static,
 | 
						|
    {
 | 
						|
        // Synthesize transient Arc, which never touches the refcount.
 | 
						|
        let transient = unsafe { mem::ManuallyDrop::new(Arc::from_raw(self.0)) };
 | 
						|
 | 
						|
        // Expose the transient Arc to the callback, which may clone it if it wants.
 | 
						|
        let result = f(&transient);
 | 
						|
 | 
						|
        // Forward the result.
 | 
						|
        result
 | 
						|
    }
 | 
						|
 | 
						|
    /// Similar to deref, but uses the lifetime |a| rather than the lifetime of
 | 
						|
    /// self, which is incompatible with the signature of the Deref trait.
 | 
						|
    #[inline]
 | 
						|
    pub fn get(&self) -> &'a T {
 | 
						|
        self.0
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<'a, T> Deref for ArcBorrow<'a, T> {
 | 
						|
    type Target = T;
 | 
						|
 | 
						|
    #[inline]
 | 
						|
    fn deref(&self) -> &T {
 | 
						|
        self.0
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// A tagged union that can represent `Arc<A>` or `Arc<B>` while only consuming a
 | 
						|
/// single word. The type is also `NonNull`, and thus can be stored in an Option
 | 
						|
/// without increasing size.
 | 
						|
///
 | 
						|
/// This is functionally equivalent to
 | 
						|
/// `enum ArcUnion<A, B> { First(Arc<A>), Second(Arc<B>)` but only takes up
 | 
						|
/// up a single word of stack space.
 | 
						|
///
 | 
						|
/// This could probably be extended to support four types if necessary.
 | 
						|
pub struct ArcUnion<A, B> {
 | 
						|
    p: ptr::NonNull<()>,
 | 
						|
    phantom_a: PhantomData<A>,
 | 
						|
    phantom_b: PhantomData<B>,
 | 
						|
}
 | 
						|
 | 
						|
unsafe impl<A: Sync + Send, B: Send + Sync> Send for ArcUnion<A, B> {}
 | 
						|
unsafe impl<A: Sync + Send, B: Send + Sync> Sync for ArcUnion<A, B> {}
 | 
						|
 | 
						|
impl<A: PartialEq, B: PartialEq> PartialEq for ArcUnion<A, B> {
 | 
						|
    fn eq(&self, other: &Self) -> bool {
 | 
						|
        use crate::ArcUnionBorrow::*;
 | 
						|
        match (self.borrow(), other.borrow()) {
 | 
						|
            (First(x), First(y)) => x == y,
 | 
						|
            (Second(x), Second(y)) => x == y,
 | 
						|
            (_, _) => false,
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<A: Eq, B: Eq> Eq for ArcUnion<A, B> {}
 | 
						|
 | 
						|
/// This represents a borrow of an `ArcUnion`.
 | 
						|
#[derive(Debug)]
 | 
						|
pub enum ArcUnionBorrow<'a, A: 'a, B: 'a> {
 | 
						|
    First(ArcBorrow<'a, A>),
 | 
						|
    Second(ArcBorrow<'a, B>),
 | 
						|
}
 | 
						|
 | 
						|
impl<A, B> ArcUnion<A, B> {
 | 
						|
    unsafe fn new(ptr: *mut ()) -> Self {
 | 
						|
        ArcUnion {
 | 
						|
            p: ptr::NonNull::new_unchecked(ptr),
 | 
						|
            phantom_a: PhantomData,
 | 
						|
            phantom_b: PhantomData,
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if the two values are pointer-equal.
 | 
						|
    #[inline]
 | 
						|
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
 | 
						|
        this.p == other.p
 | 
						|
    }
 | 
						|
 | 
						|
    #[inline]
 | 
						|
    pub fn ptr(&self) -> ptr::NonNull<()> {
 | 
						|
        self.p
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns an enum representing a borrow of either A or B.
 | 
						|
    #[inline]
 | 
						|
    pub fn borrow(&self) -> ArcUnionBorrow<A, B> {
 | 
						|
        if self.is_first() {
 | 
						|
            let ptr = self.p.as_ptr() as *const ArcInner<A>;
 | 
						|
            let borrow = unsafe { ArcBorrow::from_ref(&(*ptr).data) };
 | 
						|
            ArcUnionBorrow::First(borrow)
 | 
						|
        } else {
 | 
						|
            let ptr = ((self.p.as_ptr() as usize) & !0x1) as *const ArcInner<B>;
 | 
						|
            let borrow = unsafe { ArcBorrow::from_ref(&(*ptr).data) };
 | 
						|
            ArcUnionBorrow::Second(borrow)
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Creates an `ArcUnion` from an instance of the first type.
 | 
						|
    pub fn from_first(other: Arc<A>) -> Self {
 | 
						|
        let union = unsafe { Self::new(other.ptr() as *mut _) };
 | 
						|
        mem::forget(other);
 | 
						|
        union
 | 
						|
    }
 | 
						|
 | 
						|
    /// Creates an `ArcUnion` from an instance of the second type.
 | 
						|
    pub fn from_second(other: Arc<B>) -> Self {
 | 
						|
        let union = unsafe { Self::new(((other.ptr() as usize) | 0x1) as *mut _) };
 | 
						|
        mem::forget(other);
 | 
						|
        union
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if this `ArcUnion` contains the first type.
 | 
						|
    pub fn is_first(&self) -> bool {
 | 
						|
        self.p.as_ptr() as usize & 0x1 == 0
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if this `ArcUnion` contains the second type.
 | 
						|
    pub fn is_second(&self) -> bool {
 | 
						|
        !self.is_first()
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns a borrow of the first type if applicable, otherwise `None`.
 | 
						|
    pub fn as_first(&self) -> Option<ArcBorrow<A>> {
 | 
						|
        match self.borrow() {
 | 
						|
            ArcUnionBorrow::First(x) => Some(x),
 | 
						|
            ArcUnionBorrow::Second(_) => None,
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns a borrow of the second type if applicable, otherwise None.
 | 
						|
    pub fn as_second(&self) -> Option<ArcBorrow<B>> {
 | 
						|
        match self.borrow() {
 | 
						|
            ArcUnionBorrow::First(_) => None,
 | 
						|
            ArcUnionBorrow::Second(x) => Some(x),
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<A, B> Clone for ArcUnion<A, B> {
 | 
						|
    fn clone(&self) -> Self {
 | 
						|
        match self.borrow() {
 | 
						|
            ArcUnionBorrow::First(x) => ArcUnion::from_first(x.clone_arc()),
 | 
						|
            ArcUnionBorrow::Second(x) => ArcUnion::from_second(x.clone_arc()),
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<A, B> Drop for ArcUnion<A, B> {
 | 
						|
    fn drop(&mut self) {
 | 
						|
        match self.borrow() {
 | 
						|
            ArcUnionBorrow::First(x) => unsafe {
 | 
						|
                let _ = Arc::from_raw(&*x);
 | 
						|
            },
 | 
						|
            ArcUnionBorrow::Second(x) => unsafe {
 | 
						|
                let _ = Arc::from_raw(&*x);
 | 
						|
            },
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<A: fmt::Debug, B: fmt::Debug> fmt::Debug for ArcUnion<A, B> {
 | 
						|
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | 
						|
        fmt::Debug::fmt(&self.borrow(), f)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[cfg(test)]
 | 
						|
mod tests {
 | 
						|
    use super::{Arc, ThinArc};
 | 
						|
    use std::clone::Clone;
 | 
						|
    use std::ops::Drop;
 | 
						|
    use std::sync::atomic;
 | 
						|
    use std::sync::atomic::Ordering::{Acquire, SeqCst};
 | 
						|
 | 
						|
    #[derive(PartialEq)]
 | 
						|
    struct Canary(*mut atomic::AtomicUsize);
 | 
						|
 | 
						|
    impl Drop for Canary {
 | 
						|
        fn drop(&mut self) {
 | 
						|
            unsafe {
 | 
						|
                (*self.0).fetch_add(1, SeqCst);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    #[test]
 | 
						|
    fn empty_thin() {
 | 
						|
        let x = Arc::from_header_and_iter(100u32, std::iter::empty::<i32>());
 | 
						|
        assert_eq!(x.header, 100);
 | 
						|
        assert!(x.slice().is_empty());
 | 
						|
    }
 | 
						|
 | 
						|
    #[test]
 | 
						|
    fn thin_assert_padding() {
 | 
						|
        #[derive(Clone, Default)]
 | 
						|
        #[repr(C)]
 | 
						|
        struct Padded {
 | 
						|
            i: u16,
 | 
						|
        }
 | 
						|
 | 
						|
        // The header will have more alignment than `Padded`
 | 
						|
        let items = vec![Padded { i: 0xdead }, Padded { i: 0xbeef }];
 | 
						|
        let a = ThinArc::from_header_and_iter(0i32, items.into_iter());
 | 
						|
        assert_eq!(a.len(), 2);
 | 
						|
        assert_eq!(a.slice()[0].i, 0xdead);
 | 
						|
        assert_eq!(a.slice()[1].i, 0xbeef);
 | 
						|
    }
 | 
						|
 | 
						|
    #[test]
 | 
						|
    fn slices_and_thin() {
 | 
						|
        let mut canary = atomic::AtomicUsize::new(0);
 | 
						|
        let c = Canary(&mut canary as *mut atomic::AtomicUsize);
 | 
						|
        let v = vec![5, 6];
 | 
						|
        {
 | 
						|
            let x = Arc::from_header_and_iter(c, v.into_iter());
 | 
						|
            let _ = x.clone();
 | 
						|
            let _ = x == x;
 | 
						|
        }
 | 
						|
        assert_eq!(canary.load(Acquire), 1);
 | 
						|
    }
 | 
						|
}
 |