mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	UBIFS: add new flash file system
This is a new flash file system. See http://www.linux-mtd.infradead.org/doc/ubifs.html Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com> Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
This commit is contained in:
		
							parent
							
								
									e56a99d5a4
								
							
						
					
					
						commit
						1e51764a3c
					
				
					 32 changed files with 32780 additions and 0 deletions
				
			
		
							
								
								
									
										731
									
								
								fs/ubifs/budget.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										731
									
								
								fs/ubifs/budget.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,731 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Adrian Hunter
 | 
			
		||||
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements the budgeting sub-system which is responsible for UBIFS
 | 
			
		||||
 * space management.
 | 
			
		||||
 *
 | 
			
		||||
 * Factors such as compression, wasted space at the ends of LEBs, space in other
 | 
			
		||||
 * journal heads, the effect of updates on the index, and so on, make it
 | 
			
		||||
 * impossible to accurately predict the amount of space needed. Consequently
 | 
			
		||||
 * approximations are used.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
#include <linux/writeback.h>
 | 
			
		||||
#include <asm/div64.h>
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * When pessimistic budget calculations say that there is no enough space,
 | 
			
		||||
 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
 | 
			
		||||
 * or committing. The below constants define maximum number of times UBIFS
 | 
			
		||||
 * repeats the operations.
 | 
			
		||||
 */
 | 
			
		||||
#define MAX_SHRINK_RETRIES 8
 | 
			
		||||
#define MAX_GC_RETRIES     4
 | 
			
		||||
#define MAX_CMT_RETRIES    2
 | 
			
		||||
#define MAX_NOSPC_RETRIES  1
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * The below constant defines amount of dirty pages which should be written
 | 
			
		||||
 * back at when trying to shrink the liability.
 | 
			
		||||
 */
 | 
			
		||||
#define NR_TO_WRITE 16
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct retries_info - information about re-tries while making free space.
 | 
			
		||||
 * @prev_liability: previous liability
 | 
			
		||||
 * @shrink_cnt: how many times the liability was shrinked
 | 
			
		||||
 * @shrink_retries: count of liability shrink re-tries (increased when
 | 
			
		||||
 *                  liability does not shrink)
 | 
			
		||||
 * @try_gc: GC should be tried first
 | 
			
		||||
 * @gc_retries: how many times GC was run
 | 
			
		||||
 * @cmt_retries: how many times commit has been done
 | 
			
		||||
 * @nospc_retries: how many times GC returned %-ENOSPC
 | 
			
		||||
 *
 | 
			
		||||
 * Since we consider budgeting to be the fast-path, and this structure has to
 | 
			
		||||
 * be allocated on stack and zeroed out, we make it smaller using bit-fields.
 | 
			
		||||
 */
 | 
			
		||||
struct retries_info {
 | 
			
		||||
	long long prev_liability;
 | 
			
		||||
	unsigned int shrink_cnt;
 | 
			
		||||
	unsigned int shrink_retries:5;
 | 
			
		||||
	unsigned int try_gc:1;
 | 
			
		||||
	unsigned int gc_retries:4;
 | 
			
		||||
	unsigned int cmt_retries:3;
 | 
			
		||||
	unsigned int nospc_retries:1;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * shrink_liability - write-back some dirty pages/inodes.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @nr_to_write: how many dirty pages to write-back
 | 
			
		||||
 *
 | 
			
		||||
 * This function shrinks UBIFS liability by means of writing back some amount
 | 
			
		||||
 * of dirty inodes and their pages. Returns the amount of pages which were
 | 
			
		||||
 * written back. The returned value does not include dirty inodes which were
 | 
			
		||||
 * synchronized.
 | 
			
		||||
 *
 | 
			
		||||
 * Note, this function synchronizes even VFS inodes which are locked
 | 
			
		||||
 * (@i_mutex) by the caller of the budgeting function, because write-back does
 | 
			
		||||
 * not touch @i_mutex.
 | 
			
		||||
 */
 | 
			
		||||
static int shrink_liability(struct ubifs_info *c, int nr_to_write)
 | 
			
		||||
{
 | 
			
		||||
	int nr_written;
 | 
			
		||||
	struct writeback_control wbc = {
 | 
			
		||||
		.sync_mode   = WB_SYNC_NONE,
 | 
			
		||||
		.range_end   = LLONG_MAX,
 | 
			
		||||
		.nr_to_write = nr_to_write,
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	generic_sync_sb_inodes(c->vfs_sb, &wbc);
 | 
			
		||||
	nr_written = nr_to_write - wbc.nr_to_write;
 | 
			
		||||
 | 
			
		||||
	if (!nr_written) {
 | 
			
		||||
		/*
 | 
			
		||||
		 * Re-try again but wait on pages/inodes which are being
 | 
			
		||||
		 * written-back concurrently (e.g., by pdflush).
 | 
			
		||||
		 */
 | 
			
		||||
		memset(&wbc, 0, sizeof(struct writeback_control));
 | 
			
		||||
		wbc.sync_mode   = WB_SYNC_ALL;
 | 
			
		||||
		wbc.range_end   = LLONG_MAX;
 | 
			
		||||
		wbc.nr_to_write = nr_to_write;
 | 
			
		||||
		generic_sync_sb_inodes(c->vfs_sb, &wbc);
 | 
			
		||||
		nr_written = nr_to_write - wbc.nr_to_write;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dbg_budg("%d pages were written back", nr_written);
 | 
			
		||||
	return nr_written;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * run_gc - run garbage collector.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function runs garbage collector to make some more free space. Returns
 | 
			
		||||
 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
 | 
			
		||||
 * negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int run_gc(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, lnum;
 | 
			
		||||
 | 
			
		||||
	/* Make some free space by garbage-collecting dirty space */
 | 
			
		||||
	down_read(&c->commit_sem);
 | 
			
		||||
	lnum = ubifs_garbage_collect(c, 1);
 | 
			
		||||
	up_read(&c->commit_sem);
 | 
			
		||||
	if (lnum < 0)
 | 
			
		||||
		return lnum;
 | 
			
		||||
 | 
			
		||||
	/* GC freed one LEB, return it to lprops */
 | 
			
		||||
	dbg_budg("GC freed LEB %d", lnum);
 | 
			
		||||
	err = ubifs_return_leb(c, lnum);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * make_free_space - make more free space on the file-system.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @ri: information about previous invocations of this function
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called when an operation cannot be budgeted because there
 | 
			
		||||
 * is supposedly no free space. But in most cases there is some free space:
 | 
			
		||||
 *   o budgeting is pessimistic, so it always budgets more then it is actually
 | 
			
		||||
 *     needed, so shrinking the liability is one way to make free space - the
 | 
			
		||||
 *     cached data will take less space then it was budgeted for;
 | 
			
		||||
 *   o GC may turn some dark space into free space (budgeting treats dark space
 | 
			
		||||
 *     as not available);
 | 
			
		||||
 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
 | 
			
		||||
 *
 | 
			
		||||
 * So this function tries to do the above. Returns %-EAGAIN if some free space
 | 
			
		||||
 * was presumably made and the caller has to re-try budgeting the operation.
 | 
			
		||||
 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
 | 
			
		||||
 * codes on failures.
 | 
			
		||||
 */
 | 
			
		||||
static int make_free_space(struct ubifs_info *c, struct retries_info *ri)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * If we have some dirty pages and inodes (liability), try to write
 | 
			
		||||
	 * them back unless this was tried too many times without effect
 | 
			
		||||
	 * already.
 | 
			
		||||
	 */
 | 
			
		||||
	if (ri->shrink_retries < MAX_SHRINK_RETRIES && !ri->try_gc) {
 | 
			
		||||
		long long liability;
 | 
			
		||||
 | 
			
		||||
		spin_lock(&c->space_lock);
 | 
			
		||||
		liability = c->budg_idx_growth + c->budg_data_growth +
 | 
			
		||||
			    c->budg_dd_growth;
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
 | 
			
		||||
		if (ri->prev_liability >= liability) {
 | 
			
		||||
			/* Liability does not shrink, next time try GC then */
 | 
			
		||||
			ri->shrink_retries += 1;
 | 
			
		||||
			if (ri->gc_retries < MAX_GC_RETRIES)
 | 
			
		||||
				ri->try_gc = 1;
 | 
			
		||||
			dbg_budg("liability did not shrink: retries %d of %d",
 | 
			
		||||
				 ri->shrink_retries, MAX_SHRINK_RETRIES);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		dbg_budg("force write-back (count %d)", ri->shrink_cnt);
 | 
			
		||||
		shrink_liability(c, NR_TO_WRITE + ri->shrink_cnt);
 | 
			
		||||
 | 
			
		||||
		ri->prev_liability = liability;
 | 
			
		||||
		ri->shrink_cnt += 1;
 | 
			
		||||
		return -EAGAIN;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Try to run garbage collector unless it was already tried too many
 | 
			
		||||
	 * times.
 | 
			
		||||
	 */
 | 
			
		||||
	if (ri->gc_retries < MAX_GC_RETRIES) {
 | 
			
		||||
		ri->gc_retries += 1;
 | 
			
		||||
		dbg_budg("run GC, retries %d of %d",
 | 
			
		||||
			 ri->gc_retries, MAX_GC_RETRIES);
 | 
			
		||||
 | 
			
		||||
		ri->try_gc = 0;
 | 
			
		||||
		err = run_gc(c);
 | 
			
		||||
		if (!err)
 | 
			
		||||
			return -EAGAIN;
 | 
			
		||||
 | 
			
		||||
		if (err == -EAGAIN) {
 | 
			
		||||
			dbg_budg("GC asked to commit");
 | 
			
		||||
			err = ubifs_run_commit(c);
 | 
			
		||||
			if (err)
 | 
			
		||||
				return err;
 | 
			
		||||
			return -EAGAIN;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (err != -ENOSPC)
 | 
			
		||||
			return err;
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * GC could not make any progress. If this is the first time,
 | 
			
		||||
		 * then it makes sense to try to commit, because it might make
 | 
			
		||||
		 * some dirty space.
 | 
			
		||||
		 */
 | 
			
		||||
		dbg_budg("GC returned -ENOSPC, retries %d",
 | 
			
		||||
			 ri->nospc_retries);
 | 
			
		||||
		if (ri->nospc_retries >= MAX_NOSPC_RETRIES)
 | 
			
		||||
			return err;
 | 
			
		||||
		ri->nospc_retries += 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Neither GC nor write-back helped, try to commit */
 | 
			
		||||
	if (ri->cmt_retries < MAX_CMT_RETRIES) {
 | 
			
		||||
		ri->cmt_retries += 1;
 | 
			
		||||
		dbg_budg("run commit, retries %d of %d",
 | 
			
		||||
			 ri->cmt_retries, MAX_CMT_RETRIES);
 | 
			
		||||
		err = ubifs_run_commit(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
		return -EAGAIN;
 | 
			
		||||
	}
 | 
			
		||||
	return -ENOSPC;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_calc_min_idx_lebs - calculate amount of eraseblocks for the index.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function calculates and returns the number of eraseblocks which should
 | 
			
		||||
 * be kept for index usage.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int ret;
 | 
			
		||||
	uint64_t idx_size;
 | 
			
		||||
 | 
			
		||||
	idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx;
 | 
			
		||||
 | 
			
		||||
	/* And make sure we have twice the index size of space reserved */
 | 
			
		||||
	idx_size <<= 1;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
 | 
			
		||||
	 * pair, nor similarly the two variables for the new index size, so we
 | 
			
		||||
	 * have to do this costly 64-bit division on fast-path.
 | 
			
		||||
	 */
 | 
			
		||||
	if (do_div(idx_size, c->leb_size - c->max_idx_node_sz))
 | 
			
		||||
		ret = idx_size + 1;
 | 
			
		||||
	else
 | 
			
		||||
		ret = idx_size;
 | 
			
		||||
	/*
 | 
			
		||||
	 * The index head is not available for the in-the-gaps method, so add an
 | 
			
		||||
	 * extra LEB to compensate.
 | 
			
		||||
	 */
 | 
			
		||||
	ret += 1;
 | 
			
		||||
	/*
 | 
			
		||||
	 * At present the index needs at least 2 LEBs: one for the index head
 | 
			
		||||
	 * and one for in-the-gaps method (which currently does not cater for
 | 
			
		||||
	 * the index head and so excludes it from consideration).
 | 
			
		||||
	 */
 | 
			
		||||
	if (ret < 2)
 | 
			
		||||
		ret = 2;
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_calc_available - calculate available FS space.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @min_idx_lebs: minimum number of LEBs reserved for the index
 | 
			
		||||
 *
 | 
			
		||||
 * This function calculates and returns amount of FS space available for use.
 | 
			
		||||
 */
 | 
			
		||||
long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
 | 
			
		||||
{
 | 
			
		||||
	int subtract_lebs;
 | 
			
		||||
	long long available;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Force the amount available to the total size reported if the used
 | 
			
		||||
	 * space is zero.
 | 
			
		||||
	 */
 | 
			
		||||
	if (c->lst.total_used <= UBIFS_INO_NODE_SZ &&
 | 
			
		||||
	    c->budg_data_growth + c->budg_dd_growth == 0) {
 | 
			
		||||
		/* Do the same calculation as for c->block_cnt */
 | 
			
		||||
		available = c->main_lebs - 2;
 | 
			
		||||
		available *= c->leb_size - c->dark_wm;
 | 
			
		||||
		return available;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	available = c->main_bytes - c->lst.total_used;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Now 'available' contains theoretically available flash space
 | 
			
		||||
	 * assuming there is no index, so we have to subtract the space which
 | 
			
		||||
	 * is reserved for the index.
 | 
			
		||||
	 */
 | 
			
		||||
	subtract_lebs = min_idx_lebs;
 | 
			
		||||
 | 
			
		||||
	/* Take into account that GC reserves one LEB for its own needs */
 | 
			
		||||
	subtract_lebs += 1;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The GC journal head LEB is not really accessible. And since
 | 
			
		||||
	 * different write types go to different heads, we may count only on
 | 
			
		||||
	 * one head's space.
 | 
			
		||||
	 */
 | 
			
		||||
	subtract_lebs += c->jhead_cnt - 1;
 | 
			
		||||
 | 
			
		||||
	/* We also reserve one LEB for deletions, which bypass budgeting */
 | 
			
		||||
	subtract_lebs += 1;
 | 
			
		||||
 | 
			
		||||
	available -= (long long)subtract_lebs * c->leb_size;
 | 
			
		||||
 | 
			
		||||
	/* Subtract the dead space which is not available for use */
 | 
			
		||||
	available -= c->lst.total_dead;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Subtract dark space, which might or might not be usable - it depends
 | 
			
		||||
	 * on the data which we have on the media and which will be written. If
 | 
			
		||||
	 * this is a lot of uncompressed or not-compressible data, the dark
 | 
			
		||||
	 * space cannot be used.
 | 
			
		||||
	 */
 | 
			
		||||
	available -= c->lst.total_dark;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * However, there is more dark space. The index may be bigger than
 | 
			
		||||
	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
 | 
			
		||||
	 * their dark space is not included in total_dark, so it is subtracted
 | 
			
		||||
	 * here.
 | 
			
		||||
	 */
 | 
			
		||||
	if (c->lst.idx_lebs > min_idx_lebs) {
 | 
			
		||||
		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
 | 
			
		||||
		available -= subtract_lebs * c->dark_wm;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* The calculations are rough and may end up with a negative number */
 | 
			
		||||
	return available > 0 ? available : 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * can_use_rp - check whether the user is allowed to use reserved pool.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS has so-called "reserved pool" which is flash space reserved
 | 
			
		||||
 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
 | 
			
		||||
 * This function checks whether current user is allowed to use reserved pool.
 | 
			
		||||
 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
 | 
			
		||||
 */
 | 
			
		||||
static int can_use_rp(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	if (current->fsuid == c->rp_uid || capable(CAP_SYS_RESOURCE) ||
 | 
			
		||||
	    (c->rp_gid != 0 && in_group_p(c->rp_gid)))
 | 
			
		||||
		return 1;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * do_budget_space - reserve flash space for index and data growth.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function makes sure UBIFS has enough free eraseblocks for index growth
 | 
			
		||||
 * and data.
 | 
			
		||||
 *
 | 
			
		||||
 * When budgeting index space, UBIFS reserves twice as more LEBs as the index
 | 
			
		||||
 * would take if it was consolidated and written to the flash. This guarantees
 | 
			
		||||
 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
 | 
			
		||||
 * be able to commit dirty index. So this function basically adds amount of
 | 
			
		||||
 * budgeted index space to the size of the current index, multiplies this by 2,
 | 
			
		||||
 * and makes sure this does not exceed the amount of free eraseblocks.
 | 
			
		||||
 *
 | 
			
		||||
 * Notes about @c->min_idx_lebs and @c->lst.idx_lebs variables:
 | 
			
		||||
 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
 | 
			
		||||
 *    be large, because UBIFS does not do any index consolidation as long as
 | 
			
		||||
 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
 | 
			
		||||
 *    will contain a lot of dirt.
 | 
			
		||||
 * o @c->min_idx_lebs is the the index presumably takes. IOW, the index may be
 | 
			
		||||
 *   consolidated to take up to @c->min_idx_lebs LEBs.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns zero in case of success, and %-ENOSPC in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
static int do_budget_space(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	long long outstanding, available;
 | 
			
		||||
	int lebs, rsvd_idx_lebs, min_idx_lebs;
 | 
			
		||||
 | 
			
		||||
	/* First budget index space */
 | 
			
		||||
	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 | 
			
		||||
 | 
			
		||||
	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
 | 
			
		||||
	if (min_idx_lebs > c->lst.idx_lebs)
 | 
			
		||||
		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
 | 
			
		||||
	else
 | 
			
		||||
		rsvd_idx_lebs = 0;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The number of LEBs that are available to be used by the index is:
 | 
			
		||||
	 *
 | 
			
		||||
	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
 | 
			
		||||
	 *    @c->lst.taken_empty_lebs
 | 
			
		||||
	 *
 | 
			
		||||
	 * @empty_lebs are available because they are empty. @freeable_cnt are
 | 
			
		||||
	 * available because they contain only free and dirty space and the
 | 
			
		||||
	 * index allocation always occurs after wbufs are synch'ed.
 | 
			
		||||
	 * @idx_gc_cnt are available because they are index LEBs that have been
 | 
			
		||||
	 * garbage collected (including trivial GC) and are awaiting the commit
 | 
			
		||||
	 * before they can be unmapped - note that the in-the-gaps method will
 | 
			
		||||
	 * grab these if it needs them. @taken_empty_lebs are empty_lebs that
 | 
			
		||||
	 * have already been allocated for some purpose (also includes those
 | 
			
		||||
	 * LEBs on the @idx_gc list).
 | 
			
		||||
	 *
 | 
			
		||||
	 * Note, @taken_empty_lebs may temporarily be higher by one because of
 | 
			
		||||
	 * the way we serialize LEB allocations and budgeting. See a comment in
 | 
			
		||||
	 * 'ubifs_find_free_space()'.
 | 
			
		||||
	 */
 | 
			
		||||
	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 | 
			
		||||
	       c->lst.taken_empty_lebs;
 | 
			
		||||
	if (unlikely(rsvd_idx_lebs > lebs)) {
 | 
			
		||||
		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
 | 
			
		||||
			 "rsvd_idx_lebs %d", min_idx_lebs, c->min_idx_lebs,
 | 
			
		||||
			 rsvd_idx_lebs);
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	available = ubifs_calc_available(c, min_idx_lebs);
 | 
			
		||||
	outstanding = c->budg_data_growth + c->budg_dd_growth;
 | 
			
		||||
 | 
			
		||||
	if (unlikely(available < outstanding)) {
 | 
			
		||||
		dbg_budg("out of data space: available %lld, outstanding %lld",
 | 
			
		||||
			 available, outstanding);
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (available - outstanding <= c->rp_size && !can_use_rp(c))
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
 | 
			
		||||
	c->min_idx_lebs = min_idx_lebs;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * calc_idx_growth - calculate approximate index growth from budgeting request.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @req: budgeting request
 | 
			
		||||
 *
 | 
			
		||||
 * For now we assume each new node adds one znode. But this is rather poor
 | 
			
		||||
 * approximation, though.
 | 
			
		||||
 */
 | 
			
		||||
static int calc_idx_growth(const struct ubifs_info *c,
 | 
			
		||||
			   const struct ubifs_budget_req *req)
 | 
			
		||||
{
 | 
			
		||||
	int znodes;
 | 
			
		||||
 | 
			
		||||
	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
 | 
			
		||||
		 req->new_dent;
 | 
			
		||||
	return znodes * c->max_idx_node_sz;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * calc_data_growth - calculate approximate amount of new data from budgeting
 | 
			
		||||
 * request.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @req: budgeting request
 | 
			
		||||
 */
 | 
			
		||||
static int calc_data_growth(const struct ubifs_info *c,
 | 
			
		||||
			    const struct ubifs_budget_req *req)
 | 
			
		||||
{
 | 
			
		||||
	int data_growth;
 | 
			
		||||
 | 
			
		||||
	data_growth = req->new_ino  ? c->inode_budget : 0;
 | 
			
		||||
	if (req->new_page)
 | 
			
		||||
		data_growth += c->page_budget;
 | 
			
		||||
	if (req->new_dent)
 | 
			
		||||
		data_growth += c->dent_budget;
 | 
			
		||||
	data_growth += req->new_ino_d;
 | 
			
		||||
	return data_growth;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * calc_dd_growth - calculate approximate amount of data which makes other data
 | 
			
		||||
 * dirty from budgeting request.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @req: budgeting request
 | 
			
		||||
 */
 | 
			
		||||
static int calc_dd_growth(const struct ubifs_info *c,
 | 
			
		||||
			  const struct ubifs_budget_req *req)
 | 
			
		||||
{
 | 
			
		||||
	int dd_growth;
 | 
			
		||||
 | 
			
		||||
	dd_growth = req->dirtied_page ? c->page_budget : 0;
 | 
			
		||||
 | 
			
		||||
	if (req->dirtied_ino)
 | 
			
		||||
		dd_growth += c->inode_budget << (req->dirtied_ino - 1);
 | 
			
		||||
	if (req->mod_dent)
 | 
			
		||||
		dd_growth += c->dent_budget;
 | 
			
		||||
	dd_growth += req->dirtied_ino_d;
 | 
			
		||||
	return dd_growth;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_budget_space - ensure there is enough space to complete an operation.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @req: budget request
 | 
			
		||||
 *
 | 
			
		||||
 * This function allocates budget for an operation. It uses pessimistic
 | 
			
		||||
 * approximation of how much flash space the operation needs. The goal of this
 | 
			
		||||
 * function is to make sure UBIFS always has flash space to flush all dirty
 | 
			
		||||
 * pages, dirty inodes, and dirty znodes (liability). This function may force
 | 
			
		||||
 * commit, garbage-collection or write-back. Returns zero in case of success,
 | 
			
		||||
 * %-ENOSPC if there is no free space and other negative error codes in case of
 | 
			
		||||
 * failures.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
 | 
			
		||||
{
 | 
			
		||||
	int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
 | 
			
		||||
	int err, idx_growth, data_growth, dd_growth;
 | 
			
		||||
	struct retries_info ri;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(req->dirtied_ino <= 4);
 | 
			
		||||
	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 | 
			
		||||
 | 
			
		||||
	data_growth = calc_data_growth(c, req);
 | 
			
		||||
	dd_growth = calc_dd_growth(c, req);
 | 
			
		||||
	if (!data_growth && !dd_growth)
 | 
			
		||||
		return 0;
 | 
			
		||||
	idx_growth = calc_idx_growth(c, req);
 | 
			
		||||
	memset(&ri, 0, sizeof(struct retries_info));
 | 
			
		||||
 | 
			
		||||
again:
 | 
			
		||||
	spin_lock(&c->space_lock);
 | 
			
		||||
	ubifs_assert(c->budg_idx_growth >= 0);
 | 
			
		||||
	ubifs_assert(c->budg_data_growth >= 0);
 | 
			
		||||
	ubifs_assert(c->budg_dd_growth >= 0);
 | 
			
		||||
 | 
			
		||||
	if (unlikely(c->nospace) && (c->nospace_rp || !can_use_rp(c))) {
 | 
			
		||||
		dbg_budg("no space");
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	c->budg_idx_growth += idx_growth;
 | 
			
		||||
	c->budg_data_growth += data_growth;
 | 
			
		||||
	c->budg_dd_growth += dd_growth;
 | 
			
		||||
 | 
			
		||||
	err = do_budget_space(c);
 | 
			
		||||
	if (likely(!err)) {
 | 
			
		||||
		req->idx_growth = idx_growth;
 | 
			
		||||
		req->data_growth = data_growth;
 | 
			
		||||
		req->dd_growth = dd_growth;
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
		return 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Restore the old values */
 | 
			
		||||
	c->budg_idx_growth -= idx_growth;
 | 
			
		||||
	c->budg_data_growth -= data_growth;
 | 
			
		||||
	c->budg_dd_growth -= dd_growth;
 | 
			
		||||
	spin_unlock(&c->space_lock);
 | 
			
		||||
 | 
			
		||||
	if (req->fast) {
 | 
			
		||||
		dbg_budg("no space for fast budgeting");
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = make_free_space(c, &ri);
 | 
			
		||||
	if (err == -EAGAIN) {
 | 
			
		||||
		dbg_budg("try again");
 | 
			
		||||
		cond_resched();
 | 
			
		||||
		goto again;
 | 
			
		||||
	} else if (err == -ENOSPC) {
 | 
			
		||||
		dbg_budg("FS is full, -ENOSPC");
 | 
			
		||||
		c->nospace = 1;
 | 
			
		||||
		if (can_use_rp(c) || c->rp_size == 0)
 | 
			
		||||
			c->nospace_rp = 1;
 | 
			
		||||
		smp_wmb();
 | 
			
		||||
	} else
 | 
			
		||||
		ubifs_err("cannot budget space, error %d", err);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_release_budget - release budgeted free space.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @req: budget request
 | 
			
		||||
 *
 | 
			
		||||
 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
 | 
			
		||||
 * since the index changes (which were budgeted for in @req->idx_growth) will
 | 
			
		||||
 * only be written to the media on commit, this function moves the index budget
 | 
			
		||||
 * from @c->budg_idx_growth to @c->budg_uncommitted_idx. The latter will be
 | 
			
		||||
 * zeroed by the commit operation.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
 | 
			
		||||
{
 | 
			
		||||
	ubifs_assert(req->dirtied_ino <= 4);
 | 
			
		||||
	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 | 
			
		||||
	if (!req->recalculate) {
 | 
			
		||||
		ubifs_assert(req->idx_growth >= 0);
 | 
			
		||||
		ubifs_assert(req->data_growth >= 0);
 | 
			
		||||
		ubifs_assert(req->dd_growth >= 0);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (req->recalculate) {
 | 
			
		||||
		req->data_growth = calc_data_growth(c, req);
 | 
			
		||||
		req->dd_growth = calc_dd_growth(c, req);
 | 
			
		||||
		req->idx_growth = calc_idx_growth(c, req);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (!req->data_growth && !req->dd_growth)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	c->nospace = c->nospace_rp = 0;
 | 
			
		||||
	smp_wmb();
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->space_lock);
 | 
			
		||||
	c->budg_idx_growth -= req->idx_growth;
 | 
			
		||||
	c->budg_uncommitted_idx += req->idx_growth;
 | 
			
		||||
	c->budg_data_growth -= req->data_growth;
 | 
			
		||||
	c->budg_dd_growth -= req->dd_growth;
 | 
			
		||||
	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(c->budg_idx_growth >= 0);
 | 
			
		||||
	ubifs_assert(c->budg_data_growth >= 0);
 | 
			
		||||
	ubifs_assert(c->min_idx_lebs < c->main_lebs);
 | 
			
		||||
	spin_unlock(&c->space_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_convert_page_budget - convert budget of a new page.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function converts budget which was allocated for a new page of data to
 | 
			
		||||
 * the budget of changing an existing page of data. The latter is smaller then
 | 
			
		||||
 * the former, so this function only does simple re-calculation and does not
 | 
			
		||||
 * involve any write-back.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_convert_page_budget(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	spin_lock(&c->space_lock);
 | 
			
		||||
	/* Release the index growth reservation */
 | 
			
		||||
	c->budg_idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 | 
			
		||||
	/* Release the data growth reservation */
 | 
			
		||||
	c->budg_data_growth -= c->page_budget;
 | 
			
		||||
	/* Increase the dirty data growth reservation instead */
 | 
			
		||||
	c->budg_dd_growth += c->page_budget;
 | 
			
		||||
	/* And re-calculate the indexing space reservation */
 | 
			
		||||
	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 | 
			
		||||
	spin_unlock(&c->space_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_release_dirty_inode_budget - release dirty inode budget.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @ui: UBIFS inode to release the budget for
 | 
			
		||||
 *
 | 
			
		||||
 * This function releases budget corresponding to a dirty inode. It is usually
 | 
			
		||||
 * called when after the inode has been written to the media and marked as
 | 
			
		||||
 * clean.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
 | 
			
		||||
				      struct ubifs_inode *ui)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_budget_req req = {.dd_growth = c->inode_budget,
 | 
			
		||||
				       .dirtied_ino_d = ui->data_len};
 | 
			
		||||
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_budg_get_free_space - return amount of free space.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns amount of free space on the file-system.
 | 
			
		||||
 */
 | 
			
		||||
long long ubifs_budg_get_free_space(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int min_idx_lebs, rsvd_idx_lebs;
 | 
			
		||||
	long long available, outstanding, free;
 | 
			
		||||
 | 
			
		||||
	/* Do exactly the same calculations as in 'do_budget_space()' */
 | 
			
		||||
	spin_lock(&c->space_lock);
 | 
			
		||||
	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 | 
			
		||||
 | 
			
		||||
	if (min_idx_lebs > c->lst.idx_lebs)
 | 
			
		||||
		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
 | 
			
		||||
	else
 | 
			
		||||
		rsvd_idx_lebs = 0;
 | 
			
		||||
 | 
			
		||||
	if (rsvd_idx_lebs > c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt
 | 
			
		||||
				- c->lst.taken_empty_lebs) {
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
		return 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	available = ubifs_calc_available(c, min_idx_lebs);
 | 
			
		||||
	outstanding = c->budg_data_growth + c->budg_dd_growth;
 | 
			
		||||
	c->min_idx_lebs = min_idx_lebs;
 | 
			
		||||
	spin_unlock(&c->space_lock);
 | 
			
		||||
 | 
			
		||||
	if (available > outstanding)
 | 
			
		||||
		free = ubifs_reported_space(c, available - outstanding);
 | 
			
		||||
	else
 | 
			
		||||
		free = 0;
 | 
			
		||||
	return free;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										677
									
								
								fs/ubifs/commit.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										677
									
								
								fs/ubifs/commit.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,677 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Adrian Hunter
 | 
			
		||||
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements functions that manage the running of the commit process.
 | 
			
		||||
 * Each affected module has its own functions to accomplish their part in the
 | 
			
		||||
 * commit and those functions are called here.
 | 
			
		||||
 *
 | 
			
		||||
 * The commit is the process whereby all updates to the index and LEB properties
 | 
			
		||||
 * are written out together and the journal becomes empty. This keeps the
 | 
			
		||||
 * file system consistent - at all times the state can be recreated by reading
 | 
			
		||||
 * the index and LEB properties and then replaying the journal.
 | 
			
		||||
 *
 | 
			
		||||
 * The commit is split into two parts named "commit start" and "commit end".
 | 
			
		||||
 * During commit start, the commit process has exclusive access to the journal
 | 
			
		||||
 * by holding the commit semaphore down for writing. As few I/O operations as
 | 
			
		||||
 * possible are performed during commit start, instead the nodes that are to be
 | 
			
		||||
 * written are merely identified. During commit end, the commit semaphore is no
 | 
			
		||||
 * longer held and the journal is again in operation, allowing users to continue
 | 
			
		||||
 * to use the file system while the bulk of the commit I/O is performed. The
 | 
			
		||||
 * purpose of this two-step approach is to prevent the commit from causing any
 | 
			
		||||
 * latency blips. Note that in any case, the commit does not prevent lookups
 | 
			
		||||
 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
 | 
			
		||||
 * cache.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <linux/freezer.h>
 | 
			
		||||
#include <linux/kthread.h>
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * do_commit - commit the journal.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function implements UBIFS commit. It has to be called with commit lock
 | 
			
		||||
 * locked. Returns zero in case of success and a negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
static int do_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, new_ltail_lnum, old_ltail_lnum, i;
 | 
			
		||||
	struct ubifs_zbranch zroot;
 | 
			
		||||
	struct ubifs_lp_stats lst;
 | 
			
		||||
 | 
			
		||||
	dbg_cmt("start");
 | 
			
		||||
	if (c->ro_media) {
 | 
			
		||||
		err = -EROFS;
 | 
			
		||||
		goto out_up;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Sync all write buffers (necessary for recovery) */
 | 
			
		||||
	for (i = 0; i < c->jhead_cnt; i++) {
 | 
			
		||||
		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out_up;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = ubifs_gc_start_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_up;
 | 
			
		||||
	err = dbg_check_lprops(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_up;
 | 
			
		||||
	err = ubifs_log_start_commit(c, &new_ltail_lnum);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_up;
 | 
			
		||||
	err = ubifs_tnc_start_commit(c, &zroot);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_up;
 | 
			
		||||
	err = ubifs_lpt_start_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_up;
 | 
			
		||||
	err = ubifs_orphan_start_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_up;
 | 
			
		||||
 | 
			
		||||
	ubifs_get_lp_stats(c, &lst);
 | 
			
		||||
 | 
			
		||||
	up_write(&c->commit_sem);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_tnc_end_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
	err = ubifs_lpt_end_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
	err = ubifs_orphan_end_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
	old_ltail_lnum = c->ltail_lnum;
 | 
			
		||||
	err = ubifs_log_end_commit(c, new_ltail_lnum);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
	err = dbg_check_old_index(c, &zroot);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&c->mst_mutex);
 | 
			
		||||
	c->mst_node->cmt_no      = cpu_to_le64(++c->cmt_no);
 | 
			
		||||
	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
 | 
			
		||||
	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
 | 
			
		||||
	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
 | 
			
		||||
	c->mst_node->root_len    = cpu_to_le32(zroot.len);
 | 
			
		||||
	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
 | 
			
		||||
	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
 | 
			
		||||
	c->mst_node->index_size  = cpu_to_le64(c->old_idx_sz);
 | 
			
		||||
	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
 | 
			
		||||
	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
 | 
			
		||||
	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
 | 
			
		||||
	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
 | 
			
		||||
	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
 | 
			
		||||
	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
 | 
			
		||||
	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
 | 
			
		||||
	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
 | 
			
		||||
	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
 | 
			
		||||
	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
 | 
			
		||||
	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
 | 
			
		||||
	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
 | 
			
		||||
	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
 | 
			
		||||
	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
 | 
			
		||||
	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
 | 
			
		||||
	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
 | 
			
		||||
	if (c->no_orphs)
 | 
			
		||||
		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
 | 
			
		||||
	else
 | 
			
		||||
		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
 | 
			
		||||
	err = ubifs_write_master(c);
 | 
			
		||||
	mutex_unlock(&c->mst_mutex);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	err = ubifs_log_post_commit(c, old_ltail_lnum);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
	err = ubifs_gc_end_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
	err = ubifs_lpt_post_commit(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	c->cmt_state = COMMIT_RESTING;
 | 
			
		||||
	wake_up(&c->cmt_wq);
 | 
			
		||||
	dbg_cmt("commit end");
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_up:
 | 
			
		||||
	up_write(&c->commit_sem);
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_err("commit failed, error %d", err);
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	c->cmt_state = COMMIT_BROKEN;
 | 
			
		||||
	wake_up(&c->cmt_wq);
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
	ubifs_ro_mode(c, err);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * run_bg_commit - run background commit if it is needed.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function runs background commit if it is needed. Returns zero in case
 | 
			
		||||
 * of success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int run_bg_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	/*
 | 
			
		||||
	 * Run background commit only if background commit was requested or if
 | 
			
		||||
	 * commit is required.
 | 
			
		||||
	 */
 | 
			
		||||
	if (c->cmt_state != COMMIT_BACKGROUND &&
 | 
			
		||||
	    c->cmt_state != COMMIT_REQUIRED)
 | 
			
		||||
		goto out;
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
 | 
			
		||||
	down_write(&c->commit_sem);
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	if (c->cmt_state == COMMIT_REQUIRED)
 | 
			
		||||
		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | 
			
		||||
	else if (c->cmt_state == COMMIT_BACKGROUND)
 | 
			
		||||
		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
 | 
			
		||||
	else
 | 
			
		||||
		goto out_cmt_unlock;
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
 | 
			
		||||
	return do_commit(c);
 | 
			
		||||
 | 
			
		||||
out_cmt_unlock:
 | 
			
		||||
	up_write(&c->commit_sem);
 | 
			
		||||
out:
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_bg_thread - UBIFS background thread function.
 | 
			
		||||
 * @info: points to the file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function implements various file-system background activities:
 | 
			
		||||
 * o when a write-buffer timer expires it synchronizes the appropriate
 | 
			
		||||
 *   write-buffer;
 | 
			
		||||
 * o when the journal is about to be full, it starts in-advance commit.
 | 
			
		||||
 *
 | 
			
		||||
 * Note, other stuff like background garbage collection may be added here in
 | 
			
		||||
 * future.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_bg_thread(void *info)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct ubifs_info *c = info;
 | 
			
		||||
 | 
			
		||||
	ubifs_msg("background thread \"%s\" started, PID %d",
 | 
			
		||||
		  c->bgt_name, current->pid);
 | 
			
		||||
	set_freezable();
 | 
			
		||||
 | 
			
		||||
	while (1) {
 | 
			
		||||
		if (kthread_should_stop())
 | 
			
		||||
			break;
 | 
			
		||||
 | 
			
		||||
		if (try_to_freeze())
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		set_current_state(TASK_INTERRUPTIBLE);
 | 
			
		||||
		/* Check if there is something to do */
 | 
			
		||||
		if (!c->need_bgt) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * Nothing prevents us from going sleep now and
 | 
			
		||||
			 * be never woken up and block the task which
 | 
			
		||||
			 * could wait in 'kthread_stop()' forever.
 | 
			
		||||
			 */
 | 
			
		||||
			if (kthread_should_stop())
 | 
			
		||||
				break;
 | 
			
		||||
			schedule();
 | 
			
		||||
			continue;
 | 
			
		||||
		} else
 | 
			
		||||
			__set_current_state(TASK_RUNNING);
 | 
			
		||||
 | 
			
		||||
		c->need_bgt = 0;
 | 
			
		||||
		err = ubifs_bg_wbufs_sync(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			ubifs_ro_mode(c, err);
 | 
			
		||||
 | 
			
		||||
		run_bg_commit(c);
 | 
			
		||||
		cond_resched();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dbg_msg("background thread \"%s\" stops", c->bgt_name);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_commit_required - set commit state to "required".
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called if a commit is required but cannot be done from the
 | 
			
		||||
 * calling function, so it is just flagged instead.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_commit_required(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	switch (c->cmt_state) {
 | 
			
		||||
	case COMMIT_RESTING:
 | 
			
		||||
	case COMMIT_BACKGROUND:
 | 
			
		||||
		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
 | 
			
		||||
			dbg_cstate(COMMIT_REQUIRED));
 | 
			
		||||
		c->cmt_state = COMMIT_REQUIRED;
 | 
			
		||||
		break;
 | 
			
		||||
	case COMMIT_RUNNING_BACKGROUND:
 | 
			
		||||
		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
 | 
			
		||||
			dbg_cstate(COMMIT_RUNNING_REQUIRED));
 | 
			
		||||
		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | 
			
		||||
		break;
 | 
			
		||||
	case COMMIT_REQUIRED:
 | 
			
		||||
	case COMMIT_RUNNING_REQUIRED:
 | 
			
		||||
	case COMMIT_BROKEN:
 | 
			
		||||
		break;
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_request_bg_commit - notify the background thread to do a commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called if the journal is full enough to make a commit
 | 
			
		||||
 * worthwhile, so background thread is kicked to start it.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_request_bg_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	if (c->cmt_state == COMMIT_RESTING) {
 | 
			
		||||
		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
 | 
			
		||||
			dbg_cstate(COMMIT_BACKGROUND));
 | 
			
		||||
		c->cmt_state = COMMIT_BACKGROUND;
 | 
			
		||||
		spin_unlock(&c->cs_lock);
 | 
			
		||||
		ubifs_wake_up_bgt(c);
 | 
			
		||||
	} else
 | 
			
		||||
		spin_unlock(&c->cs_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * wait_for_commit - wait for commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function sleeps until the commit operation is no longer running.
 | 
			
		||||
 */
 | 
			
		||||
static int wait_for_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	dbg_cmt("pid %d goes sleep", current->pid);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The following sleeps if the condition is false, and will be woken
 | 
			
		||||
	 * when the commit ends. It is possible, although very unlikely, that we
 | 
			
		||||
	 * will wake up and see the subsequent commit running, rather than the
 | 
			
		||||
	 * one we were waiting for, and go back to sleep.  However, we will be
 | 
			
		||||
	 * woken again, so there is no danger of sleeping forever.
 | 
			
		||||
	 */
 | 
			
		||||
	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
 | 
			
		||||
			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
 | 
			
		||||
	dbg_cmt("commit finished, pid %d woke up", current->pid);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_run_commit - run or wait for commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function runs commit and returns zero in case of success and a negative
 | 
			
		||||
 * error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_run_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err = 0;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	if (c->cmt_state == COMMIT_BROKEN) {
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
 | 
			
		||||
		/*
 | 
			
		||||
		 * We set the commit state to 'running required' to indicate
 | 
			
		||||
		 * that we want it to complete as quickly as possible.
 | 
			
		||||
		 */
 | 
			
		||||
		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | 
			
		||||
 | 
			
		||||
	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
 | 
			
		||||
		spin_unlock(&c->cs_lock);
 | 
			
		||||
		return wait_for_commit(c);
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
 | 
			
		||||
	/* Ok, the commit is indeed needed */
 | 
			
		||||
 | 
			
		||||
	down_write(&c->commit_sem);
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	/*
 | 
			
		||||
	 * Since we unlocked 'c->cs_lock', the state may have changed, so
 | 
			
		||||
	 * re-check it.
 | 
			
		||||
	 */
 | 
			
		||||
	if (c->cmt_state == COMMIT_BROKEN) {
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
		goto out_cmt_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
 | 
			
		||||
		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | 
			
		||||
 | 
			
		||||
	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
 | 
			
		||||
		up_write(&c->commit_sem);
 | 
			
		||||
		spin_unlock(&c->cs_lock);
 | 
			
		||||
		return wait_for_commit(c);
 | 
			
		||||
	}
 | 
			
		||||
	c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
 | 
			
		||||
	err = do_commit(c);
 | 
			
		||||
	return err;
 | 
			
		||||
 | 
			
		||||
out_cmt_unlock:
 | 
			
		||||
	up_write(&c->commit_sem);
 | 
			
		||||
out:
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called by garbage collection to determine if commit should
 | 
			
		||||
 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
 | 
			
		||||
 * is full enough to start commit, this function returns true. It is not
 | 
			
		||||
 * absolutely necessary to commit yet, but it feels like this should be better
 | 
			
		||||
 * then to keep doing GC. This function returns %1 if GC has to initiate commit
 | 
			
		||||
 * and %0 if not.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_gc_should_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int ret = 0;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->cs_lock);
 | 
			
		||||
	if (c->cmt_state == COMMIT_BACKGROUND) {
 | 
			
		||||
		dbg_cmt("commit required now");
 | 
			
		||||
		c->cmt_state = COMMIT_REQUIRED;
 | 
			
		||||
	} else
 | 
			
		||||
		dbg_cmt("commit not requested");
 | 
			
		||||
	if (c->cmt_state == COMMIT_REQUIRED)
 | 
			
		||||
		ret = 1;
 | 
			
		||||
	spin_unlock(&c->cs_lock);
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct idx_node - hold index nodes during index tree traversal.
 | 
			
		||||
 * @list: list
 | 
			
		||||
 * @iip: index in parent (slot number of this indexing node in the parent
 | 
			
		||||
 *       indexing node)
 | 
			
		||||
 * @upper_key: all keys in this indexing node have to be less or equivalent to
 | 
			
		||||
 *             this key
 | 
			
		||||
 * @idx: index node (8-byte aligned because all node structures must be 8-byte
 | 
			
		||||
 *       aligned)
 | 
			
		||||
 */
 | 
			
		||||
struct idx_node {
 | 
			
		||||
	struct list_head list;
 | 
			
		||||
	int iip;
 | 
			
		||||
	union ubifs_key upper_key;
 | 
			
		||||
	struct ubifs_idx_node idx __attribute__((aligned(8)));
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * dbg_old_index_check_init - get information for the next old index check.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @zroot: root of the index
 | 
			
		||||
 *
 | 
			
		||||
 * This function records information about the index that will be needed for the
 | 
			
		||||
 * next old index check i.e. 'dbg_check_old_index()'.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_idx_node *idx;
 | 
			
		||||
	int lnum, offs, len, err = 0;
 | 
			
		||||
 | 
			
		||||
	c->old_zroot = *zroot;
 | 
			
		||||
 | 
			
		||||
	lnum = c->old_zroot.lnum;
 | 
			
		||||
	offs = c->old_zroot.offs;
 | 
			
		||||
	len = c->old_zroot.len;
 | 
			
		||||
 | 
			
		||||
	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
 | 
			
		||||
	if (!idx)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	c->old_zroot_level = le16_to_cpu(idx->level);
 | 
			
		||||
	c->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
 | 
			
		||||
out:
 | 
			
		||||
	kfree(idx);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * dbg_check_old_index - check the old copy of the index.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @zroot: root of the new index
 | 
			
		||||
 *
 | 
			
		||||
 * In order to be able to recover from an unclean unmount, a complete copy of
 | 
			
		||||
 * the index must exist on flash. This is the "old" index. The commit process
 | 
			
		||||
 * must write the "new" index to flash without overwriting or destroying any
 | 
			
		||||
 * part of the old index. This function is run at commit end in order to check
 | 
			
		||||
 * that the old index does indeed exist completely intact.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 | 
			
		||||
{
 | 
			
		||||
	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
 | 
			
		||||
	int first = 1, iip;
 | 
			
		||||
	union ubifs_key lower_key, upper_key, l_key, u_key;
 | 
			
		||||
	unsigned long long uninitialized_var(last_sqnum);
 | 
			
		||||
	struct ubifs_idx_node *idx;
 | 
			
		||||
	struct list_head list;
 | 
			
		||||
	struct idx_node *i;
 | 
			
		||||
	size_t sz;
 | 
			
		||||
 | 
			
		||||
	if (!(ubifs_chk_flags & UBIFS_CHK_OLD_IDX))
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	INIT_LIST_HEAD(&list);
 | 
			
		||||
 | 
			
		||||
	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
 | 
			
		||||
	     UBIFS_IDX_NODE_SZ;
 | 
			
		||||
 | 
			
		||||
	/* Start at the old zroot */
 | 
			
		||||
	lnum = c->old_zroot.lnum;
 | 
			
		||||
	offs = c->old_zroot.offs;
 | 
			
		||||
	len = c->old_zroot.len;
 | 
			
		||||
	iip = 0;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Traverse the index tree preorder depth-first i.e. do a node and then
 | 
			
		||||
	 * its subtrees from left to right.
 | 
			
		||||
	 */
 | 
			
		||||
	while (1) {
 | 
			
		||||
		struct ubifs_branch *br;
 | 
			
		||||
 | 
			
		||||
		/* Get the next index node */
 | 
			
		||||
		i = kmalloc(sz, GFP_NOFS);
 | 
			
		||||
		if (!i) {
 | 
			
		||||
			err = -ENOMEM;
 | 
			
		||||
			goto out_free;
 | 
			
		||||
		}
 | 
			
		||||
		i->iip = iip;
 | 
			
		||||
		/* Keep the index nodes on our path in a linked list */
 | 
			
		||||
		list_add_tail(&i->list, &list);
 | 
			
		||||
		/* Read the index node */
 | 
			
		||||
		idx = &i->idx;
 | 
			
		||||
		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out_free;
 | 
			
		||||
		/* Validate index node */
 | 
			
		||||
		child_cnt = le16_to_cpu(idx->child_cnt);
 | 
			
		||||
		if (child_cnt < 1 || child_cnt > c->fanout) {
 | 
			
		||||
			err = 1;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
		if (first) {
 | 
			
		||||
			first = 0;
 | 
			
		||||
			/* Check root level and sqnum */
 | 
			
		||||
			if (le16_to_cpu(idx->level) != c->old_zroot_level) {
 | 
			
		||||
				err = 2;
 | 
			
		||||
				goto out_dump;
 | 
			
		||||
			}
 | 
			
		||||
			if (le64_to_cpu(idx->ch.sqnum) != c->old_zroot_sqnum) {
 | 
			
		||||
				err = 3;
 | 
			
		||||
				goto out_dump;
 | 
			
		||||
			}
 | 
			
		||||
			/* Set last values as though root had a parent */
 | 
			
		||||
			last_level = le16_to_cpu(idx->level) + 1;
 | 
			
		||||
			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
 | 
			
		||||
			key_read(c, ubifs_idx_key(c, idx), &lower_key);
 | 
			
		||||
			highest_ino_key(c, &upper_key, INUM_WATERMARK);
 | 
			
		||||
		}
 | 
			
		||||
		key_copy(c, &upper_key, &i->upper_key);
 | 
			
		||||
		if (le16_to_cpu(idx->level) != last_level - 1) {
 | 
			
		||||
			err = 3;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
		/*
 | 
			
		||||
		 * The index is always written bottom up hence a child's sqnum
 | 
			
		||||
		 * is always less than the parents.
 | 
			
		||||
		 */
 | 
			
		||||
		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
 | 
			
		||||
			err = 4;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
		/* Check key range */
 | 
			
		||||
		key_read(c, ubifs_idx_key(c, idx), &l_key);
 | 
			
		||||
		br = ubifs_idx_branch(c, idx, child_cnt - 1);
 | 
			
		||||
		key_read(c, &br->key, &u_key);
 | 
			
		||||
		if (keys_cmp(c, &lower_key, &l_key) > 0) {
 | 
			
		||||
			err = 5;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
		if (keys_cmp(c, &upper_key, &u_key) < 0) {
 | 
			
		||||
			err = 6;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
		if (keys_cmp(c, &upper_key, &u_key) == 0)
 | 
			
		||||
			if (!is_hash_key(c, &u_key)) {
 | 
			
		||||
				err = 7;
 | 
			
		||||
				goto out_dump;
 | 
			
		||||
			}
 | 
			
		||||
		/* Go to next index node */
 | 
			
		||||
		if (le16_to_cpu(idx->level) == 0) {
 | 
			
		||||
			/* At the bottom, so go up until can go right */
 | 
			
		||||
			while (1) {
 | 
			
		||||
				/* Drop the bottom of the list */
 | 
			
		||||
				list_del(&i->list);
 | 
			
		||||
				kfree(i);
 | 
			
		||||
				/* No more list means we are done */
 | 
			
		||||
				if (list_empty(&list))
 | 
			
		||||
					goto out;
 | 
			
		||||
				/* Look at the new bottom */
 | 
			
		||||
				i = list_entry(list.prev, struct idx_node,
 | 
			
		||||
					       list);
 | 
			
		||||
				idx = &i->idx;
 | 
			
		||||
				/* Can we go right */
 | 
			
		||||
				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
 | 
			
		||||
					iip = iip + 1;
 | 
			
		||||
					break;
 | 
			
		||||
				} else
 | 
			
		||||
					/* Nope, so go up again */
 | 
			
		||||
					iip = i->iip;
 | 
			
		||||
			}
 | 
			
		||||
		} else
 | 
			
		||||
			/* Go down left */
 | 
			
		||||
			iip = 0;
 | 
			
		||||
		/*
 | 
			
		||||
		 * We have the parent in 'idx' and now we set up for reading the
 | 
			
		||||
		 * child pointed to by slot 'iip'.
 | 
			
		||||
		 */
 | 
			
		||||
		last_level = le16_to_cpu(idx->level);
 | 
			
		||||
		last_sqnum = le64_to_cpu(idx->ch.sqnum);
 | 
			
		||||
		br = ubifs_idx_branch(c, idx, iip);
 | 
			
		||||
		lnum = le32_to_cpu(br->lnum);
 | 
			
		||||
		offs = le32_to_cpu(br->offs);
 | 
			
		||||
		len = le32_to_cpu(br->len);
 | 
			
		||||
		key_read(c, &br->key, &lower_key);
 | 
			
		||||
		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
 | 
			
		||||
			br = ubifs_idx_branch(c, idx, iip + 1);
 | 
			
		||||
			key_read(c, &br->key, &upper_key);
 | 
			
		||||
		} else
 | 
			
		||||
			key_copy(c, &i->upper_key, &upper_key);
 | 
			
		||||
	}
 | 
			
		||||
out:
 | 
			
		||||
	err = dbg_old_index_check_init(c, zroot);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_free;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_dump:
 | 
			
		||||
	dbg_err("dumping index node (iip=%d)", i->iip);
 | 
			
		||||
	dbg_dump_node(c, idx);
 | 
			
		||||
	list_del(&i->list);
 | 
			
		||||
	kfree(i);
 | 
			
		||||
	if (!list_empty(&list)) {
 | 
			
		||||
		i = list_entry(list.prev, struct idx_node, list);
 | 
			
		||||
		dbg_err("dumping parent index node");
 | 
			
		||||
		dbg_dump_node(c, &i->idx);
 | 
			
		||||
	}
 | 
			
		||||
out_free:
 | 
			
		||||
	while (!list_empty(&list)) {
 | 
			
		||||
		i = list_entry(list.next, struct idx_node, list);
 | 
			
		||||
		list_del(&i->list);
 | 
			
		||||
		kfree(i);
 | 
			
		||||
	}
 | 
			
		||||
	ubifs_err("failed, error %d", err);
 | 
			
		||||
	if (err > 0)
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif /* CONFIG_UBIFS_FS_DEBUG */
 | 
			
		||||
							
								
								
									
										253
									
								
								fs/ubifs/compress.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										253
									
								
								fs/ubifs/compress.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,253 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 * Copyright (C) 2006, 2007 University of Szeged, Hungary
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Adrian Hunter
 | 
			
		||||
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Zoltan Sogor
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file provides a single place to access to compression and
 | 
			
		||||
 * decompression.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <linux/crypto.h>
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/* Fake description object for the "none" compressor */
 | 
			
		||||
static struct ubifs_compressor none_compr = {
 | 
			
		||||
	.compr_type = UBIFS_COMPR_NONE,
 | 
			
		||||
	.name = "no compression",
 | 
			
		||||
	.capi_name = "",
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_LZO
 | 
			
		||||
static DEFINE_MUTEX(lzo_mutex);
 | 
			
		||||
 | 
			
		||||
static struct ubifs_compressor lzo_compr = {
 | 
			
		||||
	.compr_type = UBIFS_COMPR_LZO,
 | 
			
		||||
	.comp_mutex = &lzo_mutex,
 | 
			
		||||
	.name = "LZO",
 | 
			
		||||
	.capi_name = "lzo",
 | 
			
		||||
};
 | 
			
		||||
#else
 | 
			
		||||
static struct ubifs_compressor lzo_compr = {
 | 
			
		||||
	.compr_type = UBIFS_COMPR_LZO,
 | 
			
		||||
	.name = "LZO",
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_ZLIB
 | 
			
		||||
static DEFINE_MUTEX(deflate_mutex);
 | 
			
		||||
static DEFINE_MUTEX(inflate_mutex);
 | 
			
		||||
 | 
			
		||||
static struct ubifs_compressor zlib_compr = {
 | 
			
		||||
	.compr_type = UBIFS_COMPR_ZLIB,
 | 
			
		||||
	.comp_mutex = &deflate_mutex,
 | 
			
		||||
	.decomp_mutex = &inflate_mutex,
 | 
			
		||||
	.name = "zlib",
 | 
			
		||||
	.capi_name = "deflate",
 | 
			
		||||
};
 | 
			
		||||
#else
 | 
			
		||||
static struct ubifs_compressor zlib_compr = {
 | 
			
		||||
	.compr_type = UBIFS_COMPR_ZLIB,
 | 
			
		||||
	.name = "zlib",
 | 
			
		||||
};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* All UBIFS compressors */
 | 
			
		||||
struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_compress - compress data.
 | 
			
		||||
 * @in_buf: data to compress
 | 
			
		||||
 * @in_len: length of the data to compress
 | 
			
		||||
 * @out_buf: output buffer where compressed data should be stored
 | 
			
		||||
 * @out_len: output buffer length is returned here
 | 
			
		||||
 * @compr_type: type of compression to use on enter, actually used compression
 | 
			
		||||
 *              type on exit
 | 
			
		||||
 *
 | 
			
		||||
 * This function compresses input buffer @in_buf of length @in_len and stores
 | 
			
		||||
 * the result in the output buffer @out_buf and the resulting length in
 | 
			
		||||
 * @out_len. If the input buffer does not compress, it is just copied to the
 | 
			
		||||
 * @out_buf. The same happens if @compr_type is %UBIFS_COMPR_NONE or if
 | 
			
		||||
 * compression error occurred.
 | 
			
		||||
 *
 | 
			
		||||
 * Note, if the input buffer was not compressed, it is copied to the output
 | 
			
		||||
 * buffer and %UBIFS_COMPR_NONE is returned in @compr_type.
 | 
			
		||||
 *
 | 
			
		||||
 * This functions returns %0 on success or a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_compress(const void *in_buf, int in_len, void *out_buf, int *out_len,
 | 
			
		||||
		    int *compr_type)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct ubifs_compressor *compr = ubifs_compressors[*compr_type];
 | 
			
		||||
 | 
			
		||||
	if (*compr_type == UBIFS_COMPR_NONE)
 | 
			
		||||
		goto no_compr;
 | 
			
		||||
 | 
			
		||||
	/* If the input data is small, do not even try to compress it */
 | 
			
		||||
	if (in_len < UBIFS_MIN_COMPR_LEN)
 | 
			
		||||
		goto no_compr;
 | 
			
		||||
 | 
			
		||||
	if (compr->comp_mutex)
 | 
			
		||||
		mutex_lock(compr->comp_mutex);
 | 
			
		||||
	err = crypto_comp_compress(compr->cc, in_buf, in_len, out_buf,
 | 
			
		||||
				   out_len);
 | 
			
		||||
	if (compr->comp_mutex)
 | 
			
		||||
		mutex_unlock(compr->comp_mutex);
 | 
			
		||||
	if (unlikely(err)) {
 | 
			
		||||
		ubifs_warn("cannot compress %d bytes, compressor %s, "
 | 
			
		||||
			   "error %d, leave data uncompressed",
 | 
			
		||||
			   in_len, compr->name, err);
 | 
			
		||||
		 goto no_compr;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Presently, we just require that compression results in less data,
 | 
			
		||||
	 * rather than any defined minimum compression ratio or amount.
 | 
			
		||||
	 */
 | 
			
		||||
	if (ALIGN(*out_len, 8) >= ALIGN(in_len, 8))
 | 
			
		||||
		goto no_compr;
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
 | 
			
		||||
no_compr:
 | 
			
		||||
	memcpy(out_buf, in_buf, in_len);
 | 
			
		||||
	*out_len = in_len;
 | 
			
		||||
	*compr_type = UBIFS_COMPR_NONE;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_decompress - decompress data.
 | 
			
		||||
 * @in_buf: data to decompress
 | 
			
		||||
 * @in_len: length of the data to decompress
 | 
			
		||||
 * @out_buf: output buffer where decompressed data should
 | 
			
		||||
 * @out_len: output length is returned here
 | 
			
		||||
 * @compr_type: type of compression
 | 
			
		||||
 *
 | 
			
		||||
 * This function decompresses data from buffer @in_buf into buffer @out_buf.
 | 
			
		||||
 * The length of the uncompressed data is returned in @out_len. This functions
 | 
			
		||||
 * returns %0 on success or a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_decompress(const void *in_buf, int in_len, void *out_buf,
 | 
			
		||||
		     int *out_len, int compr_type)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct ubifs_compressor *compr;
 | 
			
		||||
 | 
			
		||||
	if (unlikely(compr_type < 0 || compr_type >= UBIFS_COMPR_TYPES_CNT)) {
 | 
			
		||||
		ubifs_err("invalid compression type %d", compr_type);
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	compr = ubifs_compressors[compr_type];
 | 
			
		||||
 | 
			
		||||
	if (unlikely(!compr->capi_name)) {
 | 
			
		||||
		ubifs_err("%s compression is not compiled in", compr->name);
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (compr_type == UBIFS_COMPR_NONE) {
 | 
			
		||||
		memcpy(out_buf, in_buf, in_len);
 | 
			
		||||
		*out_len = in_len;
 | 
			
		||||
		return 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (compr->decomp_mutex)
 | 
			
		||||
		mutex_lock(compr->decomp_mutex);
 | 
			
		||||
	err = crypto_comp_decompress(compr->cc, in_buf, in_len, out_buf,
 | 
			
		||||
				     out_len);
 | 
			
		||||
	if (compr->decomp_mutex)
 | 
			
		||||
		mutex_unlock(compr->decomp_mutex);
 | 
			
		||||
	if (err)
 | 
			
		||||
		ubifs_err("cannot decompress %d bytes, compressor %s, "
 | 
			
		||||
			  "error %d", in_len, compr->name, err);
 | 
			
		||||
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * compr_init - initialize a compressor.
 | 
			
		||||
 * @compr: compressor description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function initializes the requested compressor and returns zero in case
 | 
			
		||||
 * of success or a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int __init compr_init(struct ubifs_compressor *compr)
 | 
			
		||||
{
 | 
			
		||||
	if (compr->capi_name) {
 | 
			
		||||
		compr->cc = crypto_alloc_comp(compr->capi_name, 0, 0);
 | 
			
		||||
		if (IS_ERR(compr->cc)) {
 | 
			
		||||
			ubifs_err("cannot initialize compressor %s, error %ld",
 | 
			
		||||
				  compr->name, PTR_ERR(compr->cc));
 | 
			
		||||
			return PTR_ERR(compr->cc);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ubifs_compressors[compr->compr_type] = compr;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * compr_exit - de-initialize a compressor.
 | 
			
		||||
 * @compr: compressor description object
 | 
			
		||||
 */
 | 
			
		||||
static void compr_exit(struct ubifs_compressor *compr)
 | 
			
		||||
{
 | 
			
		||||
	if (compr->capi_name)
 | 
			
		||||
		crypto_free_comp(compr->cc);
 | 
			
		||||
	return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_compressors_init - initialize UBIFS compressors.
 | 
			
		||||
 *
 | 
			
		||||
 * This function initializes the compressor which were compiled in. Returns
 | 
			
		||||
 * zero in case of success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int __init ubifs_compressors_init(void)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	err = compr_init(&lzo_compr);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	err = compr_init(&zlib_compr);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_lzo;
 | 
			
		||||
 | 
			
		||||
	ubifs_compressors[UBIFS_COMPR_NONE] = &none_compr;
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_lzo:
 | 
			
		||||
	compr_exit(&lzo_compr);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_compressors_exit - de-initialize UBIFS compressors.
 | 
			
		||||
 */
 | 
			
		||||
void __exit ubifs_compressors_exit(void)
 | 
			
		||||
{
 | 
			
		||||
	compr_exit(&lzo_compr);
 | 
			
		||||
	compr_exit(&zlib_compr);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										2289
									
								
								fs/ubifs/debug.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2289
									
								
								fs/ubifs/debug.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										403
									
								
								fs/ubifs/debug.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										403
									
								
								fs/ubifs/debug.h
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,403 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef __UBIFS_DEBUG_H__
 | 
			
		||||
#define __UBIFS_DEBUG_H__
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
			
		||||
 | 
			
		||||
#define UBIFS_DBG(op) op
 | 
			
		||||
 | 
			
		||||
#define ubifs_assert(expr)  do {                                               \
 | 
			
		||||
	if (unlikely(!(expr))) {                                               \
 | 
			
		||||
		printk(KERN_CRIT "UBIFS assert failed in %s at %u (pid %d)\n", \
 | 
			
		||||
		       __func__, __LINE__, current->pid);                      \
 | 
			
		||||
		dbg_dump_stack();                                              \
 | 
			
		||||
	}                                                                      \
 | 
			
		||||
} while (0)
 | 
			
		||||
 | 
			
		||||
#define ubifs_assert_cmt_locked(c) do {                                        \
 | 
			
		||||
	if (unlikely(down_write_trylock(&(c)->commit_sem))) {                  \
 | 
			
		||||
		up_write(&(c)->commit_sem);                                    \
 | 
			
		||||
		printk(KERN_CRIT "commit lock is not locked!\n");              \
 | 
			
		||||
		ubifs_assert(0);                                               \
 | 
			
		||||
	}                                                                      \
 | 
			
		||||
} while (0)
 | 
			
		||||
 | 
			
		||||
#define dbg_dump_stack() do {                                                  \
 | 
			
		||||
	if (!dbg_failure_mode)                                                 \
 | 
			
		||||
		dump_stack();                                                  \
 | 
			
		||||
} while (0)
 | 
			
		||||
 | 
			
		||||
/* Generic debugging messages */
 | 
			
		||||
#define dbg_msg(fmt, ...) do {                                                 \
 | 
			
		||||
	spin_lock(&dbg_lock);                                                  \
 | 
			
		||||
	printk(KERN_DEBUG "UBIFS DBG (pid %d): %s: " fmt "\n", current->pid,   \
 | 
			
		||||
	       __func__, ##__VA_ARGS__);                                       \
 | 
			
		||||
	spin_unlock(&dbg_lock);                                                \
 | 
			
		||||
} while (0)
 | 
			
		||||
 | 
			
		||||
#define dbg_do_msg(typ, fmt, ...) do {                                         \
 | 
			
		||||
	if (ubifs_msg_flags & typ)                                             \
 | 
			
		||||
		dbg_msg(fmt, ##__VA_ARGS__);                                   \
 | 
			
		||||
} while (0)
 | 
			
		||||
 | 
			
		||||
#define dbg_err(fmt, ...) do {                                                 \
 | 
			
		||||
	spin_lock(&dbg_lock);                                                  \
 | 
			
		||||
	ubifs_err(fmt, ##__VA_ARGS__);                                         \
 | 
			
		||||
	spin_unlock(&dbg_lock);                                                \
 | 
			
		||||
} while (0)
 | 
			
		||||
 | 
			
		||||
const char *dbg_key_str0(const struct ubifs_info *c,
 | 
			
		||||
			 const union ubifs_key *key);
 | 
			
		||||
const char *dbg_key_str1(const struct ubifs_info *c,
 | 
			
		||||
			 const union ubifs_key *key);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * DBGKEY macros require dbg_lock to be held, which it is in the dbg message
 | 
			
		||||
 * macros.
 | 
			
		||||
 */
 | 
			
		||||
#define DBGKEY(key) dbg_key_str0(c, (key))
 | 
			
		||||
#define DBGKEY1(key) dbg_key_str1(c, (key))
 | 
			
		||||
 | 
			
		||||
/* General messages */
 | 
			
		||||
#define dbg_gen(fmt, ...)        dbg_do_msg(UBIFS_MSG_GEN, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional journal messages */
 | 
			
		||||
#define dbg_jnl(fmt, ...)        dbg_do_msg(UBIFS_MSG_JNL, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional TNC messages */
 | 
			
		||||
#define dbg_tnc(fmt, ...)        dbg_do_msg(UBIFS_MSG_TNC, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional lprops messages */
 | 
			
		||||
#define dbg_lp(fmt, ...)         dbg_do_msg(UBIFS_MSG_LP, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional LEB find messages */
 | 
			
		||||
#define dbg_find(fmt, ...)       dbg_do_msg(UBIFS_MSG_FIND, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional mount messages */
 | 
			
		||||
#define dbg_mnt(fmt, ...)        dbg_do_msg(UBIFS_MSG_MNT, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional I/O messages */
 | 
			
		||||
#define dbg_io(fmt, ...)         dbg_do_msg(UBIFS_MSG_IO, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional commit messages */
 | 
			
		||||
#define dbg_cmt(fmt, ...)        dbg_do_msg(UBIFS_MSG_CMT, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional budgeting messages */
 | 
			
		||||
#define dbg_budg(fmt, ...)       dbg_do_msg(UBIFS_MSG_BUDG, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional log messages */
 | 
			
		||||
#define dbg_log(fmt, ...)        dbg_do_msg(UBIFS_MSG_LOG, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional gc messages */
 | 
			
		||||
#define dbg_gc(fmt, ...)         dbg_do_msg(UBIFS_MSG_GC, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional scan messages */
 | 
			
		||||
#define dbg_scan(fmt, ...)       dbg_do_msg(UBIFS_MSG_SCAN, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/* Additional recovery messages */
 | 
			
		||||
#define dbg_rcvry(fmt, ...)      dbg_do_msg(UBIFS_MSG_RCVRY, fmt, ##__VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Debugging message type flags (must match msg_type_names in debug.c).
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_MSG_GEN: general messages
 | 
			
		||||
 * UBIFS_MSG_JNL: journal messages
 | 
			
		||||
 * UBIFS_MSG_MNT: mount messages
 | 
			
		||||
 * UBIFS_MSG_CMT: commit messages
 | 
			
		||||
 * UBIFS_MSG_FIND: LEB find messages
 | 
			
		||||
 * UBIFS_MSG_BUDG: budgeting messages
 | 
			
		||||
 * UBIFS_MSG_GC: garbage collection messages
 | 
			
		||||
 * UBIFS_MSG_TNC: TNC messages
 | 
			
		||||
 * UBIFS_MSG_LP: lprops messages
 | 
			
		||||
 * UBIFS_MSG_IO: I/O messages
 | 
			
		||||
 * UBIFS_MSG_LOG: log messages
 | 
			
		||||
 * UBIFS_MSG_SCAN: scan messages
 | 
			
		||||
 * UBIFS_MSG_RCVRY: recovery messages
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_MSG_GEN   = 0x1,
 | 
			
		||||
	UBIFS_MSG_JNL   = 0x2,
 | 
			
		||||
	UBIFS_MSG_MNT   = 0x4,
 | 
			
		||||
	UBIFS_MSG_CMT   = 0x8,
 | 
			
		||||
	UBIFS_MSG_FIND  = 0x10,
 | 
			
		||||
	UBIFS_MSG_BUDG  = 0x20,
 | 
			
		||||
	UBIFS_MSG_GC    = 0x40,
 | 
			
		||||
	UBIFS_MSG_TNC   = 0x80,
 | 
			
		||||
	UBIFS_MSG_LP    = 0x100,
 | 
			
		||||
	UBIFS_MSG_IO    = 0x200,
 | 
			
		||||
	UBIFS_MSG_LOG   = 0x400,
 | 
			
		||||
	UBIFS_MSG_SCAN  = 0x800,
 | 
			
		||||
	UBIFS_MSG_RCVRY = 0x1000,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/* Debugging message type flags for each default debug message level */
 | 
			
		||||
#define UBIFS_MSG_LVL_0 0
 | 
			
		||||
#define UBIFS_MSG_LVL_1 0x1
 | 
			
		||||
#define UBIFS_MSG_LVL_2 0x7f
 | 
			
		||||
#define UBIFS_MSG_LVL_3 0xffff
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Debugging check flags (must match chk_names in debug.c).
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_CHK_GEN: general checks
 | 
			
		||||
 * UBIFS_CHK_TNC: check TNC
 | 
			
		||||
 * UBIFS_CHK_IDX_SZ: check index size
 | 
			
		||||
 * UBIFS_CHK_ORPH: check orphans
 | 
			
		||||
 * UBIFS_CHK_OLD_IDX: check the old index
 | 
			
		||||
 * UBIFS_CHK_LPROPS: check lprops
 | 
			
		||||
 * UBIFS_CHK_FS: check the file-system
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_CHK_GEN     = 0x1,
 | 
			
		||||
	UBIFS_CHK_TNC     = 0x2,
 | 
			
		||||
	UBIFS_CHK_IDX_SZ  = 0x4,
 | 
			
		||||
	UBIFS_CHK_ORPH    = 0x8,
 | 
			
		||||
	UBIFS_CHK_OLD_IDX = 0x10,
 | 
			
		||||
	UBIFS_CHK_LPROPS  = 0x20,
 | 
			
		||||
	UBIFS_CHK_FS      = 0x40,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Special testing flags (must match tst_names in debug.c).
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_TST_FORCE_IN_THE_GAPS: force the use of in-the-gaps method
 | 
			
		||||
 * UBIFS_TST_RCVRY: failure mode for recovery testing
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_TST_FORCE_IN_THE_GAPS = 0x2,
 | 
			
		||||
	UBIFS_TST_RCVRY             = 0x4,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#if CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 1
 | 
			
		||||
#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_1
 | 
			
		||||
#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 2
 | 
			
		||||
#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_2
 | 
			
		||||
#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 3
 | 
			
		||||
#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_3
 | 
			
		||||
#else
 | 
			
		||||
#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_0
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG_CHKS
 | 
			
		||||
#define UBIFS_CHK_FLAGS_DEFAULT 0xffffffff
 | 
			
		||||
#else
 | 
			
		||||
#define UBIFS_CHK_FLAGS_DEFAULT 0
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
extern spinlock_t dbg_lock;
 | 
			
		||||
 | 
			
		||||
extern unsigned int ubifs_msg_flags;
 | 
			
		||||
extern unsigned int ubifs_chk_flags;
 | 
			
		||||
extern unsigned int ubifs_tst_flags;
 | 
			
		||||
 | 
			
		||||
/* Dump functions */
 | 
			
		||||
 | 
			
		||||
const char *dbg_ntype(int type);
 | 
			
		||||
const char *dbg_cstate(int cmt_state);
 | 
			
		||||
const char *dbg_get_key_dump(const struct ubifs_info *c,
 | 
			
		||||
			     const union ubifs_key *key);
 | 
			
		||||
void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode);
 | 
			
		||||
void dbg_dump_node(const struct ubifs_info *c, const void *node);
 | 
			
		||||
void dbg_dump_budget_req(const struct ubifs_budget_req *req);
 | 
			
		||||
void dbg_dump_lstats(const struct ubifs_lp_stats *lst);
 | 
			
		||||
void dbg_dump_budg(struct ubifs_info *c);
 | 
			
		||||
void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp);
 | 
			
		||||
void dbg_dump_lprops(struct ubifs_info *c);
 | 
			
		||||
void dbg_dump_leb(const struct ubifs_info *c, int lnum);
 | 
			
		||||
void dbg_dump_znode(const struct ubifs_info *c,
 | 
			
		||||
		    const struct ubifs_znode *znode);
 | 
			
		||||
void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat);
 | 
			
		||||
void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 | 
			
		||||
		    struct ubifs_nnode *parent, int iip);
 | 
			
		||||
void dbg_dump_tnc(struct ubifs_info *c);
 | 
			
		||||
void dbg_dump_index(struct ubifs_info *c);
 | 
			
		||||
 | 
			
		||||
/* Checking helper functions */
 | 
			
		||||
 | 
			
		||||
typedef int (*dbg_leaf_callback)(struct ubifs_info *c,
 | 
			
		||||
				 struct ubifs_zbranch *zbr, void *priv);
 | 
			
		||||
typedef int (*dbg_znode_callback)(struct ubifs_info *c,
 | 
			
		||||
				  struct ubifs_znode *znode, void *priv);
 | 
			
		||||
 | 
			
		||||
int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
 | 
			
		||||
		   dbg_znode_callback znode_cb, void *priv);
 | 
			
		||||
 | 
			
		||||
/* Checking functions */
 | 
			
		||||
 | 
			
		||||
int dbg_check_lprops(struct ubifs_info *c);
 | 
			
		||||
 | 
			
		||||
int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot);
 | 
			
		||||
int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot);
 | 
			
		||||
 | 
			
		||||
int dbg_check_cats(struct ubifs_info *c);
 | 
			
		||||
 | 
			
		||||
int dbg_check_ltab(struct ubifs_info *c);
 | 
			
		||||
 | 
			
		||||
int dbg_check_synced_i_size(struct inode *inode);
 | 
			
		||||
 | 
			
		||||
int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir);
 | 
			
		||||
 | 
			
		||||
int dbg_check_tnc(struct ubifs_info *c, int extra);
 | 
			
		||||
 | 
			
		||||
int dbg_check_idx_size(struct ubifs_info *c, long long idx_size);
 | 
			
		||||
 | 
			
		||||
int dbg_check_filesystem(struct ubifs_info *c);
 | 
			
		||||
 | 
			
		||||
void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
 | 
			
		||||
		    int add_pos);
 | 
			
		||||
 | 
			
		||||
int dbg_check_lprops(struct ubifs_info *c);
 | 
			
		||||
int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
 | 
			
		||||
			int row, int col);
 | 
			
		||||
 | 
			
		||||
/* Force the use of in-the-gaps method for testing */
 | 
			
		||||
 | 
			
		||||
#define dbg_force_in_the_gaps_enabled \
 | 
			
		||||
	(ubifs_tst_flags & UBIFS_TST_FORCE_IN_THE_GAPS)
 | 
			
		||||
 | 
			
		||||
int dbg_force_in_the_gaps(void);
 | 
			
		||||
 | 
			
		||||
/* Failure mode for recovery testing */
 | 
			
		||||
 | 
			
		||||
#define dbg_failure_mode (ubifs_tst_flags & UBIFS_TST_RCVRY)
 | 
			
		||||
 | 
			
		||||
void dbg_failure_mode_registration(struct ubifs_info *c);
 | 
			
		||||
void dbg_failure_mode_deregistration(struct ubifs_info *c);
 | 
			
		||||
 | 
			
		||||
#ifndef UBIFS_DBG_PRESERVE_UBI
 | 
			
		||||
 | 
			
		||||
#define ubi_leb_read   dbg_leb_read
 | 
			
		||||
#define ubi_leb_write  dbg_leb_write
 | 
			
		||||
#define ubi_leb_change dbg_leb_change
 | 
			
		||||
#define ubi_leb_erase  dbg_leb_erase
 | 
			
		||||
#define ubi_leb_unmap  dbg_leb_unmap
 | 
			
		||||
#define ubi_is_mapped  dbg_is_mapped
 | 
			
		||||
#define ubi_leb_map    dbg_leb_map
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
 | 
			
		||||
		 int len, int check);
 | 
			
		||||
int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
 | 
			
		||||
		  int offset, int len, int dtype);
 | 
			
		||||
int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
 | 
			
		||||
		   int len, int dtype);
 | 
			
		||||
int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum);
 | 
			
		||||
int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum);
 | 
			
		||||
int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum);
 | 
			
		||||
int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype);
 | 
			
		||||
 | 
			
		||||
static inline int dbg_read(struct ubi_volume_desc *desc, int lnum, char *buf,
 | 
			
		||||
			   int offset, int len)
 | 
			
		||||
{
 | 
			
		||||
	return dbg_leb_read(desc, lnum, buf, offset, len, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline int dbg_write(struct ubi_volume_desc *desc, int lnum,
 | 
			
		||||
			    const void *buf, int offset, int len)
 | 
			
		||||
{
 | 
			
		||||
	return dbg_leb_write(desc, lnum, buf, offset, len, UBI_UNKNOWN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline int dbg_change(struct ubi_volume_desc *desc, int lnum,
 | 
			
		||||
				    const void *buf, int len)
 | 
			
		||||
{
 | 
			
		||||
	return dbg_leb_change(desc, lnum, buf, len, UBI_UNKNOWN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else /* !CONFIG_UBIFS_FS_DEBUG */
 | 
			
		||||
 | 
			
		||||
#define UBIFS_DBG(op)
 | 
			
		||||
#define ubifs_assert(expr)                         ({})
 | 
			
		||||
#define ubifs_assert_cmt_locked(c)
 | 
			
		||||
#define dbg_dump_stack()
 | 
			
		||||
#define dbg_err(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_msg(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_key(c, key, fmt, ...)                  ({})
 | 
			
		||||
 | 
			
		||||
#define dbg_gen(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_jnl(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_tnc(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_lp(fmt, ...)                           ({})
 | 
			
		||||
#define dbg_find(fmt, ...)                         ({})
 | 
			
		||||
#define dbg_mnt(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_io(fmt, ...)                           ({})
 | 
			
		||||
#define dbg_cmt(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_budg(fmt, ...)                         ({})
 | 
			
		||||
#define dbg_log(fmt, ...)                          ({})
 | 
			
		||||
#define dbg_gc(fmt, ...)                           ({})
 | 
			
		||||
#define dbg_scan(fmt, ...)                         ({})
 | 
			
		||||
#define dbg_rcvry(fmt, ...)                        ({})
 | 
			
		||||
 | 
			
		||||
#define dbg_ntype(type)                            ""
 | 
			
		||||
#define dbg_cstate(cmt_state)                      ""
 | 
			
		||||
#define dbg_get_key_dump(c, key)                   ({})
 | 
			
		||||
#define dbg_dump_inode(c, inode)                   ({})
 | 
			
		||||
#define dbg_dump_node(c, node)                     ({})
 | 
			
		||||
#define dbg_dump_budget_req(req)                   ({})
 | 
			
		||||
#define dbg_dump_lstats(lst)                       ({})
 | 
			
		||||
#define dbg_dump_budg(c)                           ({})
 | 
			
		||||
#define dbg_dump_lprop(c, lp)                      ({})
 | 
			
		||||
#define dbg_dump_lprops(c)                         ({})
 | 
			
		||||
#define dbg_dump_leb(c, lnum)                      ({})
 | 
			
		||||
#define dbg_dump_znode(c, znode)                   ({})
 | 
			
		||||
#define dbg_dump_heap(c, heap, cat)                ({})
 | 
			
		||||
#define dbg_dump_pnode(c, pnode, parent, iip)      ({})
 | 
			
		||||
#define dbg_dump_tnc(c)                            ({})
 | 
			
		||||
#define dbg_dump_index(c)                          ({})
 | 
			
		||||
 | 
			
		||||
#define dbg_walk_index(c, leaf_cb, znode_cb, priv) 0
 | 
			
		||||
 | 
			
		||||
#define dbg_old_index_check_init(c, zroot)         0
 | 
			
		||||
#define dbg_check_old_index(c, zroot)              0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_cats(c)                          0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_ltab(c)                          0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_synced_i_size(inode)             0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_dir_size(c, dir)                 0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_tnc(c, x)                        0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_idx_size(c, idx_size)            0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_filesystem(c)                    0
 | 
			
		||||
 | 
			
		||||
#define dbg_check_heap(c, heap, cat, add_pos)      ({})
 | 
			
		||||
 | 
			
		||||
#define dbg_check_lprops(c)                        0
 | 
			
		||||
#define dbg_check_lpt_nodes(c, cnode, row, col)    0
 | 
			
		||||
 | 
			
		||||
#define dbg_force_in_the_gaps_enabled              0
 | 
			
		||||
#define dbg_force_in_the_gaps()                    0
 | 
			
		||||
 | 
			
		||||
#define dbg_failure_mode                           0
 | 
			
		||||
#define dbg_failure_mode_registration(c)           ({})
 | 
			
		||||
#define dbg_failure_mode_deregistration(c)         ({})
 | 
			
		||||
 | 
			
		||||
#endif /* !CONFIG_UBIFS_FS_DEBUG */
 | 
			
		||||
 | 
			
		||||
#endif /* !__UBIFS_DEBUG_H__ */
 | 
			
		||||
							
								
								
									
										1240
									
								
								fs/ubifs/dir.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1240
									
								
								fs/ubifs/dir.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										1275
									
								
								fs/ubifs/file.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1275
									
								
								fs/ubifs/file.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										975
									
								
								fs/ubifs/find.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										975
									
								
								fs/ubifs/find.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,975 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file contains functions for finding LEBs for various purposes e.g.
 | 
			
		||||
 * garbage collection. In general, lprops category heaps and lists are used
 | 
			
		||||
 * for fast access, falling back on scanning the LPT as a last resort.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <linux/sort.h>
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct scan_data - data provided to scan callback functions
 | 
			
		||||
 * @min_space: minimum number of bytes for which to scan
 | 
			
		||||
 * @pick_free: whether it is OK to scan for empty LEBs
 | 
			
		||||
 * @lnum: LEB number found is returned here
 | 
			
		||||
 * @exclude_index: whether to exclude index LEBs
 | 
			
		||||
 */
 | 
			
		||||
struct scan_data {
 | 
			
		||||
	int min_space;
 | 
			
		||||
	int pick_free;
 | 
			
		||||
	int lnum;
 | 
			
		||||
	int exclude_index;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * valuable - determine whether LEB properties are valuable.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @lprops: LEB properties
 | 
			
		||||
 *
 | 
			
		||||
 * This function return %1 if the LEB properties should be added to the LEB
 | 
			
		||||
 * properties tree in memory. Otherwise %0 is returned.
 | 
			
		||||
 */
 | 
			
		||||
static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops)
 | 
			
		||||
{
 | 
			
		||||
	int n, cat = lprops->flags & LPROPS_CAT_MASK;
 | 
			
		||||
	struct ubifs_lpt_heap *heap;
 | 
			
		||||
 | 
			
		||||
	switch (cat) {
 | 
			
		||||
	case LPROPS_DIRTY:
 | 
			
		||||
	case LPROPS_DIRTY_IDX:
 | 
			
		||||
	case LPROPS_FREE:
 | 
			
		||||
		heap = &c->lpt_heap[cat - 1];
 | 
			
		||||
		if (heap->cnt < heap->max_cnt)
 | 
			
		||||
			return 1;
 | 
			
		||||
		if (lprops->free + lprops->dirty >= c->dark_wm)
 | 
			
		||||
			return 1;
 | 
			
		||||
		return 0;
 | 
			
		||||
	case LPROPS_EMPTY:
 | 
			
		||||
		n = c->lst.empty_lebs + c->freeable_cnt -
 | 
			
		||||
		    c->lst.taken_empty_lebs;
 | 
			
		||||
		if (n < c->lsave_cnt)
 | 
			
		||||
			return 1;
 | 
			
		||||
		return 0;
 | 
			
		||||
	case LPROPS_FREEABLE:
 | 
			
		||||
		return 1;
 | 
			
		||||
	case LPROPS_FRDI_IDX:
 | 
			
		||||
		return 1;
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_for_dirty_cb - dirty space scan callback.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @lprops: LEB properties to scan
 | 
			
		||||
 * @in_tree: whether the LEB properties are in main memory
 | 
			
		||||
 * @data: information passed to and from the caller of the scan
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a code that indicates whether the scan should continue
 | 
			
		||||
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | 
			
		||||
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | 
			
		||||
 * (%LPT_SCAN_STOP).
 | 
			
		||||
 */
 | 
			
		||||
static int scan_for_dirty_cb(struct ubifs_info *c,
 | 
			
		||||
			     const struct ubifs_lprops *lprops, int in_tree,
 | 
			
		||||
			     struct scan_data *data)
 | 
			
		||||
{
 | 
			
		||||
	int ret = LPT_SCAN_CONTINUE;
 | 
			
		||||
 | 
			
		||||
	/* Exclude LEBs that are currently in use */
 | 
			
		||||
	if (lprops->flags & LPROPS_TAKEN)
 | 
			
		||||
		return LPT_SCAN_CONTINUE;
 | 
			
		||||
	/* Determine whether to add these LEB properties to the tree */
 | 
			
		||||
	if (!in_tree && valuable(c, lprops))
 | 
			
		||||
		ret |= LPT_SCAN_ADD;
 | 
			
		||||
	/* Exclude LEBs with too little space */
 | 
			
		||||
	if (lprops->free + lprops->dirty < data->min_space)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* If specified, exclude index LEBs */
 | 
			
		||||
	if (data->exclude_index && lprops->flags & LPROPS_INDEX)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* If specified, exclude empty or freeable LEBs */
 | 
			
		||||
	if (lprops->free + lprops->dirty == c->leb_size) {
 | 
			
		||||
		if (!data->pick_free)
 | 
			
		||||
			return ret;
 | 
			
		||||
	/* Exclude LEBs with too little dirty space (unless it is empty) */
 | 
			
		||||
	} else if (lprops->dirty < c->dead_wm)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* Finally we found space */
 | 
			
		||||
	data->lnum = lprops->lnum;
 | 
			
		||||
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_for_dirty - find a data LEB with free space.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @min_space: minimum amount free plus dirty space the returned LEB has to
 | 
			
		||||
 *             have
 | 
			
		||||
 * @pick_free: if it is OK to return a free or freeable LEB
 | 
			
		||||
 * @exclude_index: whether to exclude index LEBs
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a pointer to the LEB properties found or a negative
 | 
			
		||||
 * error code.
 | 
			
		||||
 */
 | 
			
		||||
static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c,
 | 
			
		||||
						 int min_space, int pick_free,
 | 
			
		||||
						 int exclude_index)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lprops;
 | 
			
		||||
	struct ubifs_lpt_heap *heap;
 | 
			
		||||
	struct scan_data data;
 | 
			
		||||
	int err, i;
 | 
			
		||||
 | 
			
		||||
	/* There may be an LEB with enough dirty space on the free heap */
 | 
			
		||||
	heap = &c->lpt_heap[LPROPS_FREE - 1];
 | 
			
		||||
	for (i = 0; i < heap->cnt; i++) {
 | 
			
		||||
		lprops = heap->arr[i];
 | 
			
		||||
		if (lprops->free + lprops->dirty < min_space)
 | 
			
		||||
			continue;
 | 
			
		||||
		if (lprops->dirty < c->dead_wm)
 | 
			
		||||
			continue;
 | 
			
		||||
		return lprops;
 | 
			
		||||
	}
 | 
			
		||||
	/*
 | 
			
		||||
	 * A LEB may have fallen off of the bottom of the dirty heap, and ended
 | 
			
		||||
	 * up as uncategorized even though it has enough dirty space for us now,
 | 
			
		||||
	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
 | 
			
		||||
	 * can end up as uncategorized because they are kept on lists not
 | 
			
		||||
	 * finite-sized heaps.
 | 
			
		||||
	 */
 | 
			
		||||
	list_for_each_entry(lprops, &c->uncat_list, list) {
 | 
			
		||||
		if (lprops->flags & LPROPS_TAKEN)
 | 
			
		||||
			continue;
 | 
			
		||||
		if (lprops->free + lprops->dirty < min_space)
 | 
			
		||||
			continue;
 | 
			
		||||
		if (exclude_index && (lprops->flags & LPROPS_INDEX))
 | 
			
		||||
			continue;
 | 
			
		||||
		if (lprops->dirty < c->dead_wm)
 | 
			
		||||
			continue;
 | 
			
		||||
		return lprops;
 | 
			
		||||
	}
 | 
			
		||||
	/* We have looked everywhere in main memory, now scan the flash */
 | 
			
		||||
	if (c->pnodes_have >= c->pnode_cnt)
 | 
			
		||||
		/* All pnodes are in memory, so skip scan */
 | 
			
		||||
		return ERR_PTR(-ENOSPC);
 | 
			
		||||
	data.min_space = min_space;
 | 
			
		||||
	data.pick_free = pick_free;
 | 
			
		||||
	data.lnum = -1;
 | 
			
		||||
	data.exclude_index = exclude_index;
 | 
			
		||||
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | 
			
		||||
				    (ubifs_lpt_scan_callback)scan_for_dirty_cb,
 | 
			
		||||
				    &data);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return ERR_PTR(err);
 | 
			
		||||
	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | 
			
		||||
	c->lscan_lnum = data.lnum;
 | 
			
		||||
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | 
			
		||||
	if (IS_ERR(lprops))
 | 
			
		||||
		return lprops;
 | 
			
		||||
	ubifs_assert(lprops->lnum == data.lnum);
 | 
			
		||||
	ubifs_assert(lprops->free + lprops->dirty >= min_space);
 | 
			
		||||
	ubifs_assert(lprops->dirty >= c->dead_wm ||
 | 
			
		||||
		     (pick_free &&
 | 
			
		||||
		      lprops->free + lprops->dirty == c->leb_size));
 | 
			
		||||
	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | 
			
		||||
	ubifs_assert(!exclude_index || !(lprops->flags & LPROPS_INDEX));
 | 
			
		||||
	return lprops;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @ret_lp: LEB properties are returned here on exit
 | 
			
		||||
 * @min_space: minimum amount free plus dirty space the returned LEB has to
 | 
			
		||||
 *             have
 | 
			
		||||
 * @pick_free: controls whether it is OK to pick empty or index LEBs
 | 
			
		||||
 *
 | 
			
		||||
 * This function tries to find a dirty logical eraseblock which has at least
 | 
			
		||||
 * @min_space free and dirty space. It prefers to take an LEB from the dirty or
 | 
			
		||||
 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
 | 
			
		||||
 * or do not have an LEB which satisfies the @min_space criteria.
 | 
			
		||||
 *
 | 
			
		||||
 * Note:
 | 
			
		||||
 *   o LEBs which have less than dead watermark of dirty space are never picked
 | 
			
		||||
 *   by this function;
 | 
			
		||||
 *
 | 
			
		||||
 * Returns zero and the LEB properties of
 | 
			
		||||
 * found dirty LEB in case of success, %-ENOSPC if no dirty LEB was found and a
 | 
			
		||||
 * negative error code in case of other failures. The returned LEB is marked as
 | 
			
		||||
 * "taken".
 | 
			
		||||
 *
 | 
			
		||||
 * The additional @pick_free argument controls if this function has to return a
 | 
			
		||||
 * free or freeable LEB if one is present. For example, GC must to set it to %1,
 | 
			
		||||
 * when called from the journal space reservation function, because the
 | 
			
		||||
 * appearance of free space may coincide with the loss of enough dirty space
 | 
			
		||||
 * for GC to succeed anyway.
 | 
			
		||||
 *
 | 
			
		||||
 * In contrast, if the Garbage Collector is called from budgeting, it should
 | 
			
		||||
 * just make free space, not return LEBs which are already free or freeable.
 | 
			
		||||
 *
 | 
			
		||||
 * In addition @pick_free is set to %2 by the recovery process in order to
 | 
			
		||||
 * recover gc_lnum in which case an index LEB must not be returned.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
 | 
			
		||||
			 int min_space, int pick_free)
 | 
			
		||||
{
 | 
			
		||||
	int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0;
 | 
			
		||||
	const struct ubifs_lprops *lp = NULL, *idx_lp = NULL;
 | 
			
		||||
	struct ubifs_lpt_heap *heap, *idx_heap;
 | 
			
		||||
 | 
			
		||||
	ubifs_get_lprops(c);
 | 
			
		||||
 | 
			
		||||
	if (pick_free) {
 | 
			
		||||
		int lebs, rsvd_idx_lebs = 0;
 | 
			
		||||
 | 
			
		||||
		spin_lock(&c->space_lock);
 | 
			
		||||
		lebs = c->lst.empty_lebs;
 | 
			
		||||
		lebs += c->freeable_cnt - c->lst.taken_empty_lebs;
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * Note, the index may consume more LEBs than have been reserved
 | 
			
		||||
		 * for it. It is OK because it might be consolidated by GC.
 | 
			
		||||
		 * But if the index takes fewer LEBs than it is reserved for it,
 | 
			
		||||
		 * this function must avoid picking those reserved LEBs.
 | 
			
		||||
		 */
 | 
			
		||||
		if (c->min_idx_lebs >= c->lst.idx_lebs) {
 | 
			
		||||
			rsvd_idx_lebs = c->min_idx_lebs -  c->lst.idx_lebs;
 | 
			
		||||
			exclude_index = 1;
 | 
			
		||||
		}
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
 | 
			
		||||
		/* Check if there are enough free LEBs for the index */
 | 
			
		||||
		if (rsvd_idx_lebs < lebs) {
 | 
			
		||||
			/* OK, try to find an empty LEB */
 | 
			
		||||
			lp = ubifs_fast_find_empty(c);
 | 
			
		||||
			if (lp)
 | 
			
		||||
				goto found;
 | 
			
		||||
 | 
			
		||||
			/* Or a freeable LEB */
 | 
			
		||||
			lp = ubifs_fast_find_freeable(c);
 | 
			
		||||
			if (lp)
 | 
			
		||||
				goto found;
 | 
			
		||||
		} else
 | 
			
		||||
			/*
 | 
			
		||||
			 * We cannot pick free/freeable LEBs in the below code.
 | 
			
		||||
			 */
 | 
			
		||||
			pick_free = 0;
 | 
			
		||||
	} else {
 | 
			
		||||
		spin_lock(&c->space_lock);
 | 
			
		||||
		exclude_index = (c->min_idx_lebs >= c->lst.idx_lebs);
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Look on the dirty and dirty index heaps */
 | 
			
		||||
	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 | 
			
		||||
	idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 | 
			
		||||
 | 
			
		||||
	if (idx_heap->cnt && !exclude_index) {
 | 
			
		||||
		idx_lp = idx_heap->arr[0];
 | 
			
		||||
		sum = idx_lp->free + idx_lp->dirty;
 | 
			
		||||
		/*
 | 
			
		||||
		 * Since we reserve twice as more space for the index than it
 | 
			
		||||
		 * actually takes, it does not make sense to pick indexing LEBs
 | 
			
		||||
		 * with less than half LEB of dirty space.
 | 
			
		||||
		 */
 | 
			
		||||
		if (sum < min_space || sum < c->half_leb_size)
 | 
			
		||||
			idx_lp = NULL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (heap->cnt) {
 | 
			
		||||
		lp = heap->arr[0];
 | 
			
		||||
		if (lp->dirty + lp->free < min_space)
 | 
			
		||||
			lp = NULL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Pick the LEB with most space */
 | 
			
		||||
	if (idx_lp && lp) {
 | 
			
		||||
		if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty)
 | 
			
		||||
			lp = idx_lp;
 | 
			
		||||
	} else if (idx_lp && !lp)
 | 
			
		||||
		lp = idx_lp;
 | 
			
		||||
 | 
			
		||||
	if (lp) {
 | 
			
		||||
		ubifs_assert(lp->dirty >= c->dead_wm);
 | 
			
		||||
		goto found;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Did not find a dirty LEB on the dirty heaps, have to scan */
 | 
			
		||||
	dbg_find("scanning LPT for a dirty LEB");
 | 
			
		||||
	lp = scan_for_dirty(c, min_space, pick_free, exclude_index);
 | 
			
		||||
	if (IS_ERR(lp)) {
 | 
			
		||||
		err = PTR_ERR(lp);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
	ubifs_assert(lp->dirty >= c->dead_wm ||
 | 
			
		||||
		     (pick_free && lp->free + lp->dirty == c->leb_size));
 | 
			
		||||
 | 
			
		||||
found:
 | 
			
		||||
	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
 | 
			
		||||
		 lp->lnum, lp->free, lp->dirty, lp->flags);
 | 
			
		||||
 | 
			
		||||
	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 | 
			
		||||
			     lp->flags | LPROPS_TAKEN, 0);
 | 
			
		||||
	if (IS_ERR(lp)) {
 | 
			
		||||
		err = PTR_ERR(lp);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	memcpy(ret_lp, lp, sizeof(struct ubifs_lprops));
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_for_free_cb - free space scan callback.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @lprops: LEB properties to scan
 | 
			
		||||
 * @in_tree: whether the LEB properties are in main memory
 | 
			
		||||
 * @data: information passed to and from the caller of the scan
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a code that indicates whether the scan should continue
 | 
			
		||||
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | 
			
		||||
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | 
			
		||||
 * (%LPT_SCAN_STOP).
 | 
			
		||||
 */
 | 
			
		||||
static int scan_for_free_cb(struct ubifs_info *c,
 | 
			
		||||
			    const struct ubifs_lprops *lprops, int in_tree,
 | 
			
		||||
			    struct scan_data *data)
 | 
			
		||||
{
 | 
			
		||||
	int ret = LPT_SCAN_CONTINUE;
 | 
			
		||||
 | 
			
		||||
	/* Exclude LEBs that are currently in use */
 | 
			
		||||
	if (lprops->flags & LPROPS_TAKEN)
 | 
			
		||||
		return LPT_SCAN_CONTINUE;
 | 
			
		||||
	/* Determine whether to add these LEB properties to the tree */
 | 
			
		||||
	if (!in_tree && valuable(c, lprops))
 | 
			
		||||
		ret |= LPT_SCAN_ADD;
 | 
			
		||||
	/* Exclude index LEBs */
 | 
			
		||||
	if (lprops->flags & LPROPS_INDEX)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* Exclude LEBs with too little space */
 | 
			
		||||
	if (lprops->free < data->min_space)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* If specified, exclude empty LEBs */
 | 
			
		||||
	if (!data->pick_free && lprops->free == c->leb_size)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/*
 | 
			
		||||
	 * LEBs that have only free and dirty space must not be allocated
 | 
			
		||||
	 * because they may have been unmapped already or they may have data
 | 
			
		||||
	 * that is obsolete only because of nodes that are still sitting in a
 | 
			
		||||
	 * wbuf.
 | 
			
		||||
	 */
 | 
			
		||||
	if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* Finally we found space */
 | 
			
		||||
	data->lnum = lprops->lnum;
 | 
			
		||||
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * do_find_free_space - find a data LEB with free space.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @min_space: minimum amount of free space required
 | 
			
		||||
 * @pick_free: whether it is OK to scan for empty LEBs
 | 
			
		||||
 * @squeeze: whether to try to find space in a non-empty LEB first
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a pointer to the LEB properties found or a negative
 | 
			
		||||
 * error code.
 | 
			
		||||
 */
 | 
			
		||||
static
 | 
			
		||||
const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c,
 | 
			
		||||
					      int min_space, int pick_free,
 | 
			
		||||
					      int squeeze)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lprops;
 | 
			
		||||
	struct ubifs_lpt_heap *heap;
 | 
			
		||||
	struct scan_data data;
 | 
			
		||||
	int err, i;
 | 
			
		||||
 | 
			
		||||
	if (squeeze) {
 | 
			
		||||
		lprops = ubifs_fast_find_free(c);
 | 
			
		||||
		if (lprops && lprops->free >= min_space)
 | 
			
		||||
			return lprops;
 | 
			
		||||
	}
 | 
			
		||||
	if (pick_free) {
 | 
			
		||||
		lprops = ubifs_fast_find_empty(c);
 | 
			
		||||
		if (lprops)
 | 
			
		||||
			return lprops;
 | 
			
		||||
	}
 | 
			
		||||
	if (!squeeze) {
 | 
			
		||||
		lprops = ubifs_fast_find_free(c);
 | 
			
		||||
		if (lprops && lprops->free >= min_space)
 | 
			
		||||
			return lprops;
 | 
			
		||||
	}
 | 
			
		||||
	/* There may be an LEB with enough free space on the dirty heap */
 | 
			
		||||
	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 | 
			
		||||
	for (i = 0; i < heap->cnt; i++) {
 | 
			
		||||
		lprops = heap->arr[i];
 | 
			
		||||
		if (lprops->free >= min_space)
 | 
			
		||||
			return lprops;
 | 
			
		||||
	}
 | 
			
		||||
	/*
 | 
			
		||||
	 * A LEB may have fallen off of the bottom of the free heap, and ended
 | 
			
		||||
	 * up as uncategorized even though it has enough free space for us now,
 | 
			
		||||
	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
 | 
			
		||||
	 * can end up as uncategorized because they are kept on lists not
 | 
			
		||||
	 * finite-sized heaps.
 | 
			
		||||
	 */
 | 
			
		||||
	list_for_each_entry(lprops, &c->uncat_list, list) {
 | 
			
		||||
		if (lprops->flags & LPROPS_TAKEN)
 | 
			
		||||
			continue;
 | 
			
		||||
		if (lprops->flags & LPROPS_INDEX)
 | 
			
		||||
			continue;
 | 
			
		||||
		if (lprops->free >= min_space)
 | 
			
		||||
			return lprops;
 | 
			
		||||
	}
 | 
			
		||||
	/* We have looked everywhere in main memory, now scan the flash */
 | 
			
		||||
	if (c->pnodes_have >= c->pnode_cnt)
 | 
			
		||||
		/* All pnodes are in memory, so skip scan */
 | 
			
		||||
		return ERR_PTR(-ENOSPC);
 | 
			
		||||
	data.min_space = min_space;
 | 
			
		||||
	data.pick_free = pick_free;
 | 
			
		||||
	data.lnum = -1;
 | 
			
		||||
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | 
			
		||||
				    (ubifs_lpt_scan_callback)scan_for_free_cb,
 | 
			
		||||
				    &data);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return ERR_PTR(err);
 | 
			
		||||
	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | 
			
		||||
	c->lscan_lnum = data.lnum;
 | 
			
		||||
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | 
			
		||||
	if (IS_ERR(lprops))
 | 
			
		||||
		return lprops;
 | 
			
		||||
	ubifs_assert(lprops->lnum == data.lnum);
 | 
			
		||||
	ubifs_assert(lprops->free >= min_space);
 | 
			
		||||
	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | 
			
		||||
	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 | 
			
		||||
	return lprops;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_find_free_space - find a data LEB with free space.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @min_space: minimum amount of required free space
 | 
			
		||||
 * @free: contains amount of free space in the LEB on exit
 | 
			
		||||
 * @squeeze: whether to try to find space in a non-empty LEB first
 | 
			
		||||
 *
 | 
			
		||||
 * This function looks for an LEB with at least @min_space bytes of free space.
 | 
			
		||||
 * It tries to find an empty LEB if possible. If no empty LEBs are available,
 | 
			
		||||
 * this function searches for a non-empty data LEB. The returned LEB is marked
 | 
			
		||||
 * as "taken".
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns found LEB number in case of success, %-ENOSPC if it
 | 
			
		||||
 * failed to find a LEB with @min_space bytes of free space and other a negative
 | 
			
		||||
 * error codes in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *free,
 | 
			
		||||
			  int squeeze)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lprops;
 | 
			
		||||
	int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags;
 | 
			
		||||
 | 
			
		||||
	dbg_find("min_space %d", min_space);
 | 
			
		||||
	ubifs_get_lprops(c);
 | 
			
		||||
 | 
			
		||||
	/* Check if there are enough empty LEBs for commit */
 | 
			
		||||
	spin_lock(&c->space_lock);
 | 
			
		||||
	if (c->min_idx_lebs > c->lst.idx_lebs)
 | 
			
		||||
		rsvd_idx_lebs = c->min_idx_lebs -  c->lst.idx_lebs;
 | 
			
		||||
	else
 | 
			
		||||
		rsvd_idx_lebs = 0;
 | 
			
		||||
	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 | 
			
		||||
	       c->lst.taken_empty_lebs;
 | 
			
		||||
	ubifs_assert(lebs + c->lst.idx_lebs >= c->min_idx_lebs);
 | 
			
		||||
	if (rsvd_idx_lebs < lebs)
 | 
			
		||||
		/*
 | 
			
		||||
		 * OK to allocate an empty LEB, but we still don't want to go
 | 
			
		||||
		 * looking for one if there aren't any.
 | 
			
		||||
		 */
 | 
			
		||||
		if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
 | 
			
		||||
			pick_free = 1;
 | 
			
		||||
			/*
 | 
			
		||||
			 * Because we release the space lock, we must account
 | 
			
		||||
			 * for this allocation here. After the LEB properties
 | 
			
		||||
			 * flags have been updated, we subtract one. Note, the
 | 
			
		||||
			 * result of this is that lprops also decreases
 | 
			
		||||
			 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
 | 
			
		||||
			 * off by one for a short period of time which may
 | 
			
		||||
			 * introduce a small disturbance to budgeting
 | 
			
		||||
			 * calculations, but this is harmless because at the
 | 
			
		||||
			 * worst case this would make the budgeting subsystem
 | 
			
		||||
			 * be more pessimistic than needed.
 | 
			
		||||
			 *
 | 
			
		||||
			 * Fundamentally, this is about serialization of the
 | 
			
		||||
			 * budgeting and lprops subsystems. We could make the
 | 
			
		||||
			 * @space_lock a mutex and avoid dropping it before
 | 
			
		||||
			 * calling 'ubifs_change_lp()', but mutex is more
 | 
			
		||||
			 * heavy-weight, and we want budgeting to be as fast as
 | 
			
		||||
			 * possible.
 | 
			
		||||
			 */
 | 
			
		||||
			c->lst.taken_empty_lebs += 1;
 | 
			
		||||
		}
 | 
			
		||||
	spin_unlock(&c->space_lock);
 | 
			
		||||
 | 
			
		||||
	lprops = do_find_free_space(c, min_space, pick_free, squeeze);
 | 
			
		||||
	if (IS_ERR(lprops)) {
 | 
			
		||||
		err = PTR_ERR(lprops);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	lnum = lprops->lnum;
 | 
			
		||||
	flags = lprops->flags | LPROPS_TAKEN;
 | 
			
		||||
 | 
			
		||||
	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0);
 | 
			
		||||
	if (IS_ERR(lprops)) {
 | 
			
		||||
		err = PTR_ERR(lprops);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (pick_free) {
 | 
			
		||||
		spin_lock(&c->space_lock);
 | 
			
		||||
		c->lst.taken_empty_lebs -= 1;
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	*free = lprops->free;
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
 | 
			
		||||
	if (*free == c->leb_size) {
 | 
			
		||||
		/*
 | 
			
		||||
		 * Ensure that empty LEBs have been unmapped. They may not have
 | 
			
		||||
		 * been, for example, because of an unclean unmount.  Also
 | 
			
		||||
		 * LEBs that were freeable LEBs (free + dirty == leb_size) will
 | 
			
		||||
		 * not have been unmapped.
 | 
			
		||||
		 */
 | 
			
		||||
		err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dbg_find("found LEB %d, free %d", lnum, *free);
 | 
			
		||||
	ubifs_assert(*free >= min_space);
 | 
			
		||||
	return lnum;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	if (pick_free) {
 | 
			
		||||
		spin_lock(&c->space_lock);
 | 
			
		||||
		c->lst.taken_empty_lebs -= 1;
 | 
			
		||||
		spin_unlock(&c->space_lock);
 | 
			
		||||
	}
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @lprops: LEB properties to scan
 | 
			
		||||
 * @in_tree: whether the LEB properties are in main memory
 | 
			
		||||
 * @data: information passed to and from the caller of the scan
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a code that indicates whether the scan should continue
 | 
			
		||||
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | 
			
		||||
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | 
			
		||||
 * (%LPT_SCAN_STOP).
 | 
			
		||||
 */
 | 
			
		||||
static int scan_for_idx_cb(struct ubifs_info *c,
 | 
			
		||||
			   const struct ubifs_lprops *lprops, int in_tree,
 | 
			
		||||
			   struct scan_data *data)
 | 
			
		||||
{
 | 
			
		||||
	int ret = LPT_SCAN_CONTINUE;
 | 
			
		||||
 | 
			
		||||
	/* Exclude LEBs that are currently in use */
 | 
			
		||||
	if (lprops->flags & LPROPS_TAKEN)
 | 
			
		||||
		return LPT_SCAN_CONTINUE;
 | 
			
		||||
	/* Determine whether to add these LEB properties to the tree */
 | 
			
		||||
	if (!in_tree && valuable(c, lprops))
 | 
			
		||||
		ret |= LPT_SCAN_ADD;
 | 
			
		||||
	/* Exclude index LEBS */
 | 
			
		||||
	if (lprops->flags & LPROPS_INDEX)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* Exclude LEBs that cannot be made empty */
 | 
			
		||||
	if (lprops->free + lprops->dirty != c->leb_size)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/*
 | 
			
		||||
	 * We are allocating for the index so it is safe to allocate LEBs with
 | 
			
		||||
	 * only free and dirty space, because write buffers are sync'd at commit
 | 
			
		||||
	 * start.
 | 
			
		||||
	 */
 | 
			
		||||
	data->lnum = lprops->lnum;
 | 
			
		||||
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_for_leb_for_idx - scan for a free LEB for the index.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_lprops *lprops;
 | 
			
		||||
	struct scan_data data;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	data.lnum = -1;
 | 
			
		||||
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | 
			
		||||
				    (ubifs_lpt_scan_callback)scan_for_idx_cb,
 | 
			
		||||
				    &data);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return ERR_PTR(err);
 | 
			
		||||
	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | 
			
		||||
	c->lscan_lnum = data.lnum;
 | 
			
		||||
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | 
			
		||||
	if (IS_ERR(lprops))
 | 
			
		||||
		return lprops;
 | 
			
		||||
	ubifs_assert(lprops->lnum == data.lnum);
 | 
			
		||||
	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 | 
			
		||||
	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | 
			
		||||
	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 | 
			
		||||
	return lprops;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_find_free_leb_for_idx - find a free LEB for the index.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function looks for a free LEB and returns that LEB number. The returned
 | 
			
		||||
 * LEB is marked as "taken", "index".
 | 
			
		||||
 *
 | 
			
		||||
 * Only empty LEBs are allocated. This is for two reasons. First, the commit
 | 
			
		||||
 * calculates the number of LEBs to allocate based on the assumption that they
 | 
			
		||||
 * will be empty. Secondly, free space at the end of an index LEB is not
 | 
			
		||||
 * guaranteed to be empty because it may have been used by the in-the-gaps
 | 
			
		||||
 * method prior to an unclean unmount.
 | 
			
		||||
 *
 | 
			
		||||
 * If no LEB is found %-ENOSPC is returned. For other failures another negative
 | 
			
		||||
 * error code is returned.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_find_free_leb_for_idx(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lprops;
 | 
			
		||||
	int lnum = -1, err, flags;
 | 
			
		||||
 | 
			
		||||
	ubifs_get_lprops(c);
 | 
			
		||||
 | 
			
		||||
	lprops = ubifs_fast_find_empty(c);
 | 
			
		||||
	if (!lprops) {
 | 
			
		||||
		lprops = ubifs_fast_find_freeable(c);
 | 
			
		||||
		if (!lprops) {
 | 
			
		||||
			ubifs_assert(c->freeable_cnt == 0);
 | 
			
		||||
			if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
 | 
			
		||||
				lprops = scan_for_leb_for_idx(c);
 | 
			
		||||
				if (IS_ERR(lprops)) {
 | 
			
		||||
					err = PTR_ERR(lprops);
 | 
			
		||||
					goto out;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (!lprops) {
 | 
			
		||||
		err = -ENOSPC;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	lnum = lprops->lnum;
 | 
			
		||||
 | 
			
		||||
	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
 | 
			
		||||
		 lnum, lprops->free, lprops->dirty, lprops->flags);
 | 
			
		||||
 | 
			
		||||
	flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX;
 | 
			
		||||
	lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0);
 | 
			
		||||
	if (IS_ERR(lprops)) {
 | 
			
		||||
		err = PTR_ERR(lprops);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Ensure that empty LEBs have been unmapped. They may not have been,
 | 
			
		||||
	 * for example, because of an unclean unmount. Also LEBs that were
 | 
			
		||||
	 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
 | 
			
		||||
	 */
 | 
			
		||||
	err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 | 
			
		||||
				    LPROPS_TAKEN | LPROPS_INDEX, 0);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return lnum;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int cmp_dirty_idx(const struct ubifs_lprops **a,
 | 
			
		||||
			 const struct ubifs_lprops **b)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lpa = *a;
 | 
			
		||||
	const struct ubifs_lprops *lpb = *b;
 | 
			
		||||
 | 
			
		||||
	return lpa->dirty + lpa->free - lpb->dirty - lpb->free;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void swap_dirty_idx(struct ubifs_lprops **a, struct ubifs_lprops **b,
 | 
			
		||||
			   int size)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_lprops *t = *a;
 | 
			
		||||
 | 
			
		||||
	*a = *b;
 | 
			
		||||
	*b = t;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called each commit to create an array of LEB numbers of
 | 
			
		||||
 * dirty index LEBs sorted in order of dirty and free space.  This is used by
 | 
			
		||||
 * the in-the-gaps method of TNC commit.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_save_dirty_idx_lnums(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int i;
 | 
			
		||||
 | 
			
		||||
	ubifs_get_lprops(c);
 | 
			
		||||
	/* Copy the LPROPS_DIRTY_IDX heap */
 | 
			
		||||
	c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt;
 | 
			
		||||
	memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr,
 | 
			
		||||
	       sizeof(void *) * c->dirty_idx.cnt);
 | 
			
		||||
	/* Sort it so that the dirtiest is now at the end */
 | 
			
		||||
	sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *),
 | 
			
		||||
	     (int (*)(const void *, const void *))cmp_dirty_idx,
 | 
			
		||||
	     (void (*)(void *, void *, int))swap_dirty_idx);
 | 
			
		||||
	dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt);
 | 
			
		||||
	if (c->dirty_idx.cnt)
 | 
			
		||||
		dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
 | 
			
		||||
			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum,
 | 
			
		||||
			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty,
 | 
			
		||||
			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free);
 | 
			
		||||
	/* Replace the lprops pointers with LEB numbers */
 | 
			
		||||
	for (i = 0; i < c->dirty_idx.cnt; i++)
 | 
			
		||||
		c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum;
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @lprops: LEB properties to scan
 | 
			
		||||
 * @in_tree: whether the LEB properties are in main memory
 | 
			
		||||
 * @data: information passed to and from the caller of the scan
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a code that indicates whether the scan should continue
 | 
			
		||||
 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | 
			
		||||
 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | 
			
		||||
 * (%LPT_SCAN_STOP).
 | 
			
		||||
 */
 | 
			
		||||
static int scan_dirty_idx_cb(struct ubifs_info *c,
 | 
			
		||||
			   const struct ubifs_lprops *lprops, int in_tree,
 | 
			
		||||
			   struct scan_data *data)
 | 
			
		||||
{
 | 
			
		||||
	int ret = LPT_SCAN_CONTINUE;
 | 
			
		||||
 | 
			
		||||
	/* Exclude LEBs that are currently in use */
 | 
			
		||||
	if (lprops->flags & LPROPS_TAKEN)
 | 
			
		||||
		return LPT_SCAN_CONTINUE;
 | 
			
		||||
	/* Determine whether to add these LEB properties to the tree */
 | 
			
		||||
	if (!in_tree && valuable(c, lprops))
 | 
			
		||||
		ret |= LPT_SCAN_ADD;
 | 
			
		||||
	/* Exclude non-index LEBs */
 | 
			
		||||
	if (!(lprops->flags & LPROPS_INDEX))
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* Exclude LEBs with too little space */
 | 
			
		||||
	if (lprops->free + lprops->dirty < c->min_idx_node_sz)
 | 
			
		||||
		return ret;
 | 
			
		||||
	/* Finally we found space */
 | 
			
		||||
	data->lnum = lprops->lnum;
 | 
			
		||||
	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * find_dirty_idx_leb - find a dirty index LEB.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns LEB number upon success and a negative error code upon
 | 
			
		||||
 * failure.  In particular, -ENOSPC is returned if a dirty index LEB is not
 | 
			
		||||
 * found.
 | 
			
		||||
 *
 | 
			
		||||
 * Note that this function scans the entire LPT but it is called very rarely.
 | 
			
		||||
 */
 | 
			
		||||
static int find_dirty_idx_leb(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lprops;
 | 
			
		||||
	struct ubifs_lpt_heap *heap;
 | 
			
		||||
	struct scan_data data;
 | 
			
		||||
	int err, i, ret;
 | 
			
		||||
 | 
			
		||||
	/* Check all structures in memory first */
 | 
			
		||||
	data.lnum = -1;
 | 
			
		||||
	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 | 
			
		||||
	for (i = 0; i < heap->cnt; i++) {
 | 
			
		||||
		lprops = heap->arr[i];
 | 
			
		||||
		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
 | 
			
		||||
		if (ret & LPT_SCAN_STOP)
 | 
			
		||||
			goto found;
 | 
			
		||||
	}
 | 
			
		||||
	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 | 
			
		||||
		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
 | 
			
		||||
		if (ret & LPT_SCAN_STOP)
 | 
			
		||||
			goto found;
 | 
			
		||||
	}
 | 
			
		||||
	list_for_each_entry(lprops, &c->uncat_list, list) {
 | 
			
		||||
		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
 | 
			
		||||
		if (ret & LPT_SCAN_STOP)
 | 
			
		||||
			goto found;
 | 
			
		||||
	}
 | 
			
		||||
	if (c->pnodes_have >= c->pnode_cnt)
 | 
			
		||||
		/* All pnodes are in memory, so skip scan */
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | 
			
		||||
				    (ubifs_lpt_scan_callback)scan_dirty_idx_cb,
 | 
			
		||||
				    &data);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
found:
 | 
			
		||||
	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | 
			
		||||
	c->lscan_lnum = data.lnum;
 | 
			
		||||
	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | 
			
		||||
	if (IS_ERR(lprops))
 | 
			
		||||
		return PTR_ERR(lprops);
 | 
			
		||||
	ubifs_assert(lprops->lnum == data.lnum);
 | 
			
		||||
	ubifs_assert(lprops->free + lprops->dirty >= c->min_idx_node_sz);
 | 
			
		||||
	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | 
			
		||||
	ubifs_assert((lprops->flags & LPROPS_INDEX));
 | 
			
		||||
 | 
			
		||||
	dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
 | 
			
		||||
		 lprops->lnum, lprops->free, lprops->dirty, lprops->flags);
 | 
			
		||||
 | 
			
		||||
	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC,
 | 
			
		||||
				 lprops->flags | LPROPS_TAKEN, 0);
 | 
			
		||||
	if (IS_ERR(lprops))
 | 
			
		||||
		return PTR_ERR(lprops);
 | 
			
		||||
 | 
			
		||||
	return lprops->lnum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * get_idx_gc_leb - try to get a LEB number from trivial GC.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
static int get_idx_gc_leb(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lp;
 | 
			
		||||
	int err, lnum;
 | 
			
		||||
 | 
			
		||||
	err = ubifs_get_idx_gc_leb(c);
 | 
			
		||||
	if (err < 0)
 | 
			
		||||
		return err;
 | 
			
		||||
	lnum = err;
 | 
			
		||||
	/*
 | 
			
		||||
	 * The LEB was due to be unmapped after the commit but
 | 
			
		||||
	 * it is needed now for this commit.
 | 
			
		||||
	 */
 | 
			
		||||
	lp = ubifs_lpt_lookup_dirty(c, lnum);
 | 
			
		||||
	if (unlikely(IS_ERR(lp)))
 | 
			
		||||
		return PTR_ERR(lp);
 | 
			
		||||
	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 | 
			
		||||
			     lp->flags | LPROPS_INDEX, -1);
 | 
			
		||||
	if (unlikely(IS_ERR(lp)))
 | 
			
		||||
		return PTR_ERR(lp);
 | 
			
		||||
	dbg_find("LEB %d, dirty %d and free %d flags %#x",
 | 
			
		||||
		 lp->lnum, lp->dirty, lp->free, lp->flags);
 | 
			
		||||
	return lnum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
static int find_dirtiest_idx_leb(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_lprops *lp;
 | 
			
		||||
	int lnum;
 | 
			
		||||
 | 
			
		||||
	while (1) {
 | 
			
		||||
		if (!c->dirty_idx.cnt)
 | 
			
		||||
			return -ENOSPC;
 | 
			
		||||
		/* The lprops pointers were replaced by LEB numbers */
 | 
			
		||||
		lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt];
 | 
			
		||||
		lp = ubifs_lpt_lookup(c, lnum);
 | 
			
		||||
		if (IS_ERR(lp))
 | 
			
		||||
			return PTR_ERR(lp);
 | 
			
		||||
		if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX))
 | 
			
		||||
			continue;
 | 
			
		||||
		lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 | 
			
		||||
				     lp->flags | LPROPS_TAKEN, 0);
 | 
			
		||||
		if (IS_ERR(lp))
 | 
			
		||||
			return PTR_ERR(lp);
 | 
			
		||||
		break;
 | 
			
		||||
	}
 | 
			
		||||
	dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty,
 | 
			
		||||
		 lp->free, lp->flags);
 | 
			
		||||
	ubifs_assert(lp->flags | LPROPS_TAKEN);
 | 
			
		||||
	ubifs_assert(lp->flags | LPROPS_INDEX);
 | 
			
		||||
	return lnum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function attempts to find an untaken index LEB with the most free and
 | 
			
		||||
 * dirty space that can be used without overwriting index nodes that were in the
 | 
			
		||||
 * last index committed.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_find_dirty_idx_leb(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	ubifs_get_lprops(c);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * We made an array of the dirtiest index LEB numbers as at the start of
 | 
			
		||||
	 * last commit.  Try that array first.
 | 
			
		||||
	 */
 | 
			
		||||
	err = find_dirtiest_idx_leb(c);
 | 
			
		||||
 | 
			
		||||
	/* Next try scanning the entire LPT */
 | 
			
		||||
	if (err == -ENOSPC)
 | 
			
		||||
		err = find_dirty_idx_leb(c);
 | 
			
		||||
 | 
			
		||||
	/* Finally take any index LEBs awaiting trivial GC */
 | 
			
		||||
	if (err == -ENOSPC)
 | 
			
		||||
		err = get_idx_gc_leb(c);
 | 
			
		||||
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										773
									
								
								fs/ubifs/gc.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										773
									
								
								fs/ubifs/gc.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,773 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Adrian Hunter
 | 
			
		||||
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements garbage collection. The procedure for garbage collection
 | 
			
		||||
 * is different depending on whether a LEB as an index LEB (contains index
 | 
			
		||||
 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
 | 
			
		||||
 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
 | 
			
		||||
 * nodes to the journal, at which point the garbage-collected LEB is free to be
 | 
			
		||||
 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
 | 
			
		||||
 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
 | 
			
		||||
 * to be reused. Garbage collection will cause the number of dirty index nodes
 | 
			
		||||
 * to grow, however sufficient space is reserved for the index to ensure the
 | 
			
		||||
 * commit will never run out of space.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <linux/pagemap.h>
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * GC tries to optimize the way it fit nodes to available space, and it sorts
 | 
			
		||||
 * nodes a little. The below constants are watermarks which define "large",
 | 
			
		||||
 * "medium", and "small" nodes.
 | 
			
		||||
 */
 | 
			
		||||
#define MEDIUM_NODE_WM (UBIFS_BLOCK_SIZE / 4)
 | 
			
		||||
#define SMALL_NODE_WM  UBIFS_MAX_DENT_NODE_SZ
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * GC may need to move more then one LEB to make progress. The below constants
 | 
			
		||||
 * define "soft" and "hard" limits on the number of LEBs the garbage collector
 | 
			
		||||
 * may move.
 | 
			
		||||
 */
 | 
			
		||||
#define SOFT_LEBS_LIMIT 4
 | 
			
		||||
#define HARD_LEBS_LIMIT 32
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * switch_gc_head - switch the garbage collection journal head.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @buf: buffer to write
 | 
			
		||||
 * @len: length of the buffer to write
 | 
			
		||||
 * @lnum: LEB number written is returned here
 | 
			
		||||
 * @offs: offset written is returned here
 | 
			
		||||
 *
 | 
			
		||||
 * This function switch the GC head to the next LEB which is reserved in
 | 
			
		||||
 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
 | 
			
		||||
 * and other negative error code in case of failures.
 | 
			
		||||
 */
 | 
			
		||||
static int switch_gc_head(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, gc_lnum = c->gc_lnum;
 | 
			
		||||
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(gc_lnum != -1);
 | 
			
		||||
	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
 | 
			
		||||
	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
 | 
			
		||||
	       c->leb_size - wbuf->offs - wbuf->used);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The GC write-buffer was synchronized, we may safely unmap
 | 
			
		||||
	 * 'c->gc_lnum'.
 | 
			
		||||
	 */
 | 
			
		||||
	err = ubifs_leb_unmap(c, gc_lnum);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	c->gc_lnum = -1;
 | 
			
		||||
	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * move_nodes - move nodes.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @sleb: describes nodes to move
 | 
			
		||||
 *
 | 
			
		||||
 * This function moves valid nodes from data LEB described by @sleb to the GC
 | 
			
		||||
 * journal head. The obsolete nodes are dropped.
 | 
			
		||||
 *
 | 
			
		||||
 * When moving nodes we have to deal with classical bin-packing problem: the
 | 
			
		||||
 * space in the current GC journal head LEB and in @c->gc_lnum are the "bins",
 | 
			
		||||
 * where the nodes in the @sleb->nodes list are the elements which should be
 | 
			
		||||
 * fit optimally to the bins. This function uses the "first fit decreasing"
 | 
			
		||||
 * strategy, although it does not really sort the nodes but just split them on
 | 
			
		||||
 * 3 classes - large, medium, and small, so they are roughly sorted.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns zero in case of success, %-EAGAIN if commit is
 | 
			
		||||
 * required, and other negative error codes in case of other failures.
 | 
			
		||||
 */
 | 
			
		||||
static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_node *snod, *tmp;
 | 
			
		||||
	struct list_head large, medium, small;
 | 
			
		||||
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 | 
			
		||||
	int avail, err, min = INT_MAX;
 | 
			
		||||
 | 
			
		||||
	INIT_LIST_HEAD(&large);
 | 
			
		||||
	INIT_LIST_HEAD(&medium);
 | 
			
		||||
	INIT_LIST_HEAD(&small);
 | 
			
		||||
 | 
			
		||||
	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 | 
			
		||||
		struct list_head *lst;
 | 
			
		||||
 | 
			
		||||
		ubifs_assert(snod->type != UBIFS_IDX_NODE);
 | 
			
		||||
		ubifs_assert(snod->type != UBIFS_REF_NODE);
 | 
			
		||||
		ubifs_assert(snod->type != UBIFS_CS_NODE);
 | 
			
		||||
 | 
			
		||||
		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
 | 
			
		||||
					 snod->offs, 0);
 | 
			
		||||
		if (err < 0)
 | 
			
		||||
			goto out;
 | 
			
		||||
 | 
			
		||||
		lst = &snod->list;
 | 
			
		||||
		list_del(lst);
 | 
			
		||||
		if (!err) {
 | 
			
		||||
			/* The node is obsolete, remove it from the list */
 | 
			
		||||
			kfree(snod);
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * Sort the list of nodes so that large nodes go first, and
 | 
			
		||||
		 * small nodes go last.
 | 
			
		||||
		 */
 | 
			
		||||
		if (snod->len > MEDIUM_NODE_WM)
 | 
			
		||||
			list_add(lst, &large);
 | 
			
		||||
		else if (snod->len > SMALL_NODE_WM)
 | 
			
		||||
			list_add(lst, &medium);
 | 
			
		||||
		else
 | 
			
		||||
			list_add(lst, &small);
 | 
			
		||||
 | 
			
		||||
		/* And find the smallest node */
 | 
			
		||||
		if (snod->len < min)
 | 
			
		||||
			min = snod->len;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Join the tree lists so that we'd have one roughly sorted list
 | 
			
		||||
	 * ('large' will be the head of the joined list).
 | 
			
		||||
	 */
 | 
			
		||||
	list_splice(&medium, large.prev);
 | 
			
		||||
	list_splice(&small, large.prev);
 | 
			
		||||
 | 
			
		||||
	if (wbuf->lnum == -1) {
 | 
			
		||||
		/*
 | 
			
		||||
		 * The GC journal head is not set, because it is the first GC
 | 
			
		||||
		 * invocation since mount.
 | 
			
		||||
		 */
 | 
			
		||||
		err = switch_gc_head(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Write nodes to their new location. Use the first-fit strategy */
 | 
			
		||||
	while (1) {
 | 
			
		||||
		avail = c->leb_size - wbuf->offs - wbuf->used;
 | 
			
		||||
		list_for_each_entry_safe(snod, tmp, &large, list) {
 | 
			
		||||
			int new_lnum, new_offs;
 | 
			
		||||
 | 
			
		||||
			if (avail < min)
 | 
			
		||||
				break;
 | 
			
		||||
 | 
			
		||||
			if (snod->len > avail)
 | 
			
		||||
				/* This node does not fit */
 | 
			
		||||
				continue;
 | 
			
		||||
 | 
			
		||||
			cond_resched();
 | 
			
		||||
 | 
			
		||||
			new_lnum = wbuf->lnum;
 | 
			
		||||
			new_offs = wbuf->offs + wbuf->used;
 | 
			
		||||
			err = ubifs_wbuf_write_nolock(wbuf, snod->node,
 | 
			
		||||
						      snod->len);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
			err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
 | 
			
		||||
						snod->offs, new_lnum, new_offs,
 | 
			
		||||
						snod->len);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
 | 
			
		||||
			avail = c->leb_size - wbuf->offs - wbuf->used;
 | 
			
		||||
			list_del(&snod->list);
 | 
			
		||||
			kfree(snod);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (list_empty(&large))
 | 
			
		||||
			break;
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * Waste the rest of the space in the LEB and switch to the
 | 
			
		||||
		 * next LEB.
 | 
			
		||||
		 */
 | 
			
		||||
		err = switch_gc_head(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	list_for_each_entry_safe(snod, tmp, &large, list) {
 | 
			
		||||
		list_del(&snod->list);
 | 
			
		||||
		kfree(snod);
 | 
			
		||||
	}
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * gc_sync_wbufs - sync write-buffers for GC.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
 | 
			
		||||
 * be in a write-buffer instead. That is, a node could be written to a
 | 
			
		||||
 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
 | 
			
		||||
 * erased before the write-buffer is sync'd and then there is an unclean
 | 
			
		||||
 * unmount, then an existing node is lost. To avoid this, we sync all
 | 
			
		||||
 * write-buffers.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success or a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
static int gc_sync_wbufs(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, i;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < c->jhead_cnt; i++) {
 | 
			
		||||
		if (i == GCHD)
 | 
			
		||||
			continue;
 | 
			
		||||
		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lp: describes the LEB to garbage collect
 | 
			
		||||
 *
 | 
			
		||||
 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
 | 
			
		||||
 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
 | 
			
		||||
 * required, and other negative error codes in case of failures.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_leb *sleb;
 | 
			
		||||
	struct ubifs_scan_node *snod;
 | 
			
		||||
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 | 
			
		||||
	int err = 0, lnum = lp->lnum;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
 | 
			
		||||
		     c->need_recovery);
 | 
			
		||||
	ubifs_assert(c->gc_lnum != lnum);
 | 
			
		||||
	ubifs_assert(wbuf->lnum != lnum);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * We scan the entire LEB even though we only really need to scan up to
 | 
			
		||||
	 * (c->leb_size - lp->free).
 | 
			
		||||
	 */
 | 
			
		||||
	sleb = ubifs_scan(c, lnum, 0, c->sbuf);
 | 
			
		||||
	if (IS_ERR(sleb))
 | 
			
		||||
		return PTR_ERR(sleb);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(!list_empty(&sleb->nodes));
 | 
			
		||||
	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 | 
			
		||||
 | 
			
		||||
	if (snod->type == UBIFS_IDX_NODE) {
 | 
			
		||||
		struct ubifs_gced_idx_leb *idx_gc;
 | 
			
		||||
 | 
			
		||||
		dbg_gc("indexing LEB %d (free %d, dirty %d)",
 | 
			
		||||
		       lnum, lp->free, lp->dirty);
 | 
			
		||||
		list_for_each_entry(snod, &sleb->nodes, list) {
 | 
			
		||||
			struct ubifs_idx_node *idx = snod->node;
 | 
			
		||||
			int level = le16_to_cpu(idx->level);
 | 
			
		||||
 | 
			
		||||
			ubifs_assert(snod->type == UBIFS_IDX_NODE);
 | 
			
		||||
			key_read(c, ubifs_idx_key(c, idx), &snod->key);
 | 
			
		||||
			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
 | 
			
		||||
						   snod->offs);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 | 
			
		||||
		if (!idx_gc) {
 | 
			
		||||
			err = -ENOMEM;
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		idx_gc->lnum = lnum;
 | 
			
		||||
		idx_gc->unmap = 0;
 | 
			
		||||
		list_add(&idx_gc->list, &c->idx_gc);
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * Don't release the LEB until after the next commit, because
 | 
			
		||||
		 * it may contain date which is needed for recovery. So
 | 
			
		||||
		 * although we freed this LEB, it will become usable only after
 | 
			
		||||
		 * the commit.
 | 
			
		||||
		 */
 | 
			
		||||
		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
 | 
			
		||||
					  LPROPS_INDEX, 1);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
		err = LEB_FREED_IDX;
 | 
			
		||||
	} else {
 | 
			
		||||
		dbg_gc("data LEB %d (free %d, dirty %d)",
 | 
			
		||||
		       lnum, lp->free, lp->dirty);
 | 
			
		||||
 | 
			
		||||
		err = move_nodes(c, sleb);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
 | 
			
		||||
		err = gc_sync_wbufs(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
 | 
			
		||||
		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
 | 
			
		||||
		if (c->gc_lnum == -1) {
 | 
			
		||||
			c->gc_lnum = lnum;
 | 
			
		||||
			err = LEB_RETAINED;
 | 
			
		||||
		} else {
 | 
			
		||||
			err = ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
 | 
			
		||||
			err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
 | 
			
		||||
			err = LEB_FREED;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_scan_destroy(sleb);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_garbage_collect - UBIFS garbage collector.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @anyway: do GC even if there are free LEBs
 | 
			
		||||
 *
 | 
			
		||||
 * This function does out-of-place garbage collection. The return codes are:
 | 
			
		||||
 *   o positive LEB number if the LEB has been freed and may be used;
 | 
			
		||||
 *   o %-EAGAIN if the caller has to run commit;
 | 
			
		||||
 *   o %-ENOSPC if GC failed to make any progress;
 | 
			
		||||
 *   o other negative error codes in case of other errors.
 | 
			
		||||
 *
 | 
			
		||||
 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
 | 
			
		||||
 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
 | 
			
		||||
 * commit may be required. But commit cannot be run from inside GC, because the
 | 
			
		||||
 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
 | 
			
		||||
 * And this error code means that the caller has to run commit, and re-run GC
 | 
			
		||||
 * if there is still no free space.
 | 
			
		||||
 *
 | 
			
		||||
 * There are many reasons why this function may return %-EAGAIN:
 | 
			
		||||
 * o the log is full and there is no space to write an LEB reference for
 | 
			
		||||
 *   @c->gc_lnum;
 | 
			
		||||
 * o the journal is too large and exceeds size limitations;
 | 
			
		||||
 * o GC moved indexing LEBs, but they can be used only after the commit;
 | 
			
		||||
 * o the shrinker fails to find clean znodes to free and requests the commit;
 | 
			
		||||
 * o etc.
 | 
			
		||||
 *
 | 
			
		||||
 * Note, if the file-system is close to be full, this function may return
 | 
			
		||||
 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
 | 
			
		||||
 * the function. E.g., this happens if the limits on the journal size are too
 | 
			
		||||
 * tough and GC writes too much to the journal before an LEB is freed. This
 | 
			
		||||
 * might also mean that the journal is too large, and the TNC becomes to big,
 | 
			
		||||
 * so that the shrinker is constantly called, finds not clean znodes to free,
 | 
			
		||||
 * and requests commit. Well, this may also happen if the journal is all right,
 | 
			
		||||
 * but another kernel process consumes too much memory. Anyway, infinite
 | 
			
		||||
 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
 | 
			
		||||
{
 | 
			
		||||
	int i, err, ret, min_space = c->dead_wm;
 | 
			
		||||
	struct ubifs_lprops lp;
 | 
			
		||||
	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert_cmt_locked(c);
 | 
			
		||||
 | 
			
		||||
	if (ubifs_gc_should_commit(c))
 | 
			
		||||
		return -EAGAIN;
 | 
			
		||||
 | 
			
		||||
	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media) {
 | 
			
		||||
		ret = -EROFS;
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* We expect the write-buffer to be empty on entry */
 | 
			
		||||
	ubifs_assert(!wbuf->used);
 | 
			
		||||
 | 
			
		||||
	for (i = 0; ; i++) {
 | 
			
		||||
		int space_before = c->leb_size - wbuf->offs - wbuf->used;
 | 
			
		||||
		int space_after;
 | 
			
		||||
 | 
			
		||||
		cond_resched();
 | 
			
		||||
 | 
			
		||||
		/* Give the commit an opportunity to run */
 | 
			
		||||
		if (ubifs_gc_should_commit(c)) {
 | 
			
		||||
			ret = -EAGAIN;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * We've done enough iterations. Indexing LEBs were
 | 
			
		||||
			 * moved and will be available after the commit.
 | 
			
		||||
			 */
 | 
			
		||||
			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
 | 
			
		||||
			ubifs_commit_required(c);
 | 
			
		||||
			ret = -EAGAIN;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (i > HARD_LEBS_LIMIT) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * We've moved too many LEBs and have not made
 | 
			
		||||
			 * progress, give up.
 | 
			
		||||
			 */
 | 
			
		||||
			dbg_gc("hard limit, -ENOSPC");
 | 
			
		||||
			ret = -ENOSPC;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * Empty and freeable LEBs can turn up while we waited for
 | 
			
		||||
		 * the wbuf lock, or while we have been running GC. In that
 | 
			
		||||
		 * case, we should just return one of those instead of
 | 
			
		||||
		 * continuing to GC dirty LEBs. Hence we request
 | 
			
		||||
		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
 | 
			
		||||
		 */
 | 
			
		||||
		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
 | 
			
		||||
		if (ret) {
 | 
			
		||||
			if (ret == -ENOSPC)
 | 
			
		||||
				dbg_gc("no more dirty LEBs");
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
 | 
			
		||||
		       "(min. space %d)", lp.lnum, lp.free, lp.dirty,
 | 
			
		||||
		       lp.free + lp.dirty, min_space);
 | 
			
		||||
 | 
			
		||||
		if (lp.free + lp.dirty == c->leb_size) {
 | 
			
		||||
			/* An empty LEB was returned */
 | 
			
		||||
			dbg_gc("LEB %d is free, return it", lp.lnum);
 | 
			
		||||
			/*
 | 
			
		||||
			 * ubifs_find_dirty_leb() doesn't return freeable index
 | 
			
		||||
			 * LEBs.
 | 
			
		||||
			 */
 | 
			
		||||
			ubifs_assert(!(lp.flags & LPROPS_INDEX));
 | 
			
		||||
			if (lp.free != c->leb_size) {
 | 
			
		||||
				/*
 | 
			
		||||
				 * Write buffers must be sync'd before
 | 
			
		||||
				 * unmapping freeable LEBs, because one of them
 | 
			
		||||
				 * may contain data which obsoletes something
 | 
			
		||||
				 * in 'lp.pnum'.
 | 
			
		||||
				 */
 | 
			
		||||
				ret = gc_sync_wbufs(c);
 | 
			
		||||
				if (ret)
 | 
			
		||||
					goto out;
 | 
			
		||||
				ret = ubifs_change_one_lp(c, lp.lnum,
 | 
			
		||||
							  c->leb_size, 0, 0, 0,
 | 
			
		||||
							  0);
 | 
			
		||||
				if (ret)
 | 
			
		||||
					goto out;
 | 
			
		||||
			}
 | 
			
		||||
			ret = ubifs_leb_unmap(c, lp.lnum);
 | 
			
		||||
			if (ret)
 | 
			
		||||
				goto out;
 | 
			
		||||
			ret = lp.lnum;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		space_before = c->leb_size - wbuf->offs - wbuf->used;
 | 
			
		||||
		if (wbuf->lnum == -1)
 | 
			
		||||
			space_before = 0;
 | 
			
		||||
 | 
			
		||||
		ret = ubifs_garbage_collect_leb(c, &lp);
 | 
			
		||||
		if (ret < 0) {
 | 
			
		||||
			if (ret == -EAGAIN || ret == -ENOSPC) {
 | 
			
		||||
				/*
 | 
			
		||||
				 * These codes are not errors, so we have to
 | 
			
		||||
				 * return the LEB to lprops. But if the
 | 
			
		||||
				 * 'ubifs_return_leb()' function fails, its
 | 
			
		||||
				 * failure code is propagated to the caller
 | 
			
		||||
				 * instead of the original '-EAGAIN' or
 | 
			
		||||
				 * '-ENOSPC'.
 | 
			
		||||
				 */
 | 
			
		||||
				err = ubifs_return_leb(c, lp.lnum);
 | 
			
		||||
				if (err)
 | 
			
		||||
					ret = err;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (ret == LEB_FREED) {
 | 
			
		||||
			/* An LEB has been freed and is ready for use */
 | 
			
		||||
			dbg_gc("LEB %d freed, return", lp.lnum);
 | 
			
		||||
			ret = lp.lnum;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (ret == LEB_FREED_IDX) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * This was an indexing LEB and it cannot be
 | 
			
		||||
			 * immediately used. And instead of requesting the
 | 
			
		||||
			 * commit straight away, we try to garbage collect some
 | 
			
		||||
			 * more.
 | 
			
		||||
			 */
 | 
			
		||||
			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		ubifs_assert(ret == LEB_RETAINED);
 | 
			
		||||
		space_after = c->leb_size - wbuf->offs - wbuf->used;
 | 
			
		||||
		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
 | 
			
		||||
		       space_after - space_before);
 | 
			
		||||
 | 
			
		||||
		if (space_after > space_before) {
 | 
			
		||||
			/* GC makes progress, keep working */
 | 
			
		||||
			min_space >>= 1;
 | 
			
		||||
			if (min_space < c->dead_wm)
 | 
			
		||||
				min_space = c->dead_wm;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		dbg_gc("did not make progress");
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * GC moved an LEB bud have not done any progress. This means
 | 
			
		||||
		 * that the previous GC head LEB contained too few free space
 | 
			
		||||
		 * and the LEB which was GC'ed contained only large nodes which
 | 
			
		||||
		 * did not fit that space.
 | 
			
		||||
		 *
 | 
			
		||||
		 * We can do 2 things:
 | 
			
		||||
		 * 1. pick another LEB in a hope it'll contain a small node
 | 
			
		||||
		 *    which will fit the space we have at the end of current GC
 | 
			
		||||
		 *    head LEB, but there is no guarantee, so we try this out
 | 
			
		||||
		 *    unless we have already been working for too long;
 | 
			
		||||
		 * 2. request an LEB with more dirty space, which will force
 | 
			
		||||
		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
 | 
			
		||||
		 *    table, instead of just picking one from the heap
 | 
			
		||||
		 *    (previously it already picked the dirtiest LEB).
 | 
			
		||||
		 */
 | 
			
		||||
		if (i < SOFT_LEBS_LIMIT) {
 | 
			
		||||
			dbg_gc("try again");
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		min_space <<= 1;
 | 
			
		||||
		if (min_space > c->dark_wm)
 | 
			
		||||
			min_space = c->dark_wm;
 | 
			
		||||
		dbg_gc("set min. space to %d", min_space);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
 | 
			
		||||
		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
 | 
			
		||||
		ubifs_commit_required(c);
 | 
			
		||||
		ret = -EAGAIN;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
	if (!err)
 | 
			
		||||
		err = ubifs_leb_unmap(c, c->gc_lnum);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ret = err;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
out_unlock:
 | 
			
		||||
	mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
	return ret;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_assert(ret < 0);
 | 
			
		||||
	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
 | 
			
		||||
	ubifs_ro_mode(c, ret);
 | 
			
		||||
	ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
	mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
	ubifs_return_leb(c, lp.lnum);
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_gc_start_commit - garbage collection at start of commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * If a LEB has only dirty and free space, then we may safely unmap it and make
 | 
			
		||||
 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
 | 
			
		||||
 * correspond index nodes that are required for recovery.  In that case, the
 | 
			
		||||
 * LEB cannot be unmapped until after the next commit.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 upon success and a negative error code upon failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_gc_start_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_gced_idx_leb *idx_gc;
 | 
			
		||||
	const struct ubifs_lprops *lp;
 | 
			
		||||
	int err = 0, flags;
 | 
			
		||||
 | 
			
		||||
	ubifs_get_lprops(c);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
 | 
			
		||||
	 * wbufs are sync'd before this, which is done in 'do_commit()'.
 | 
			
		||||
	 */
 | 
			
		||||
	while (1) {
 | 
			
		||||
		lp = ubifs_fast_find_freeable(c);
 | 
			
		||||
		if (unlikely(IS_ERR(lp))) {
 | 
			
		||||
			err = PTR_ERR(lp);
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
		if (!lp)
 | 
			
		||||
			break;
 | 
			
		||||
		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 | 
			
		||||
		ubifs_assert(!(lp->flags & LPROPS_INDEX));
 | 
			
		||||
		err = ubifs_leb_unmap(c, lp->lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
 | 
			
		||||
		if (unlikely(IS_ERR(lp))) {
 | 
			
		||||
			err = PTR_ERR(lp);
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 | 
			
		||||
		ubifs_assert(!(lp->flags & LPROPS_INDEX));
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
 | 
			
		||||
	list_for_each_entry(idx_gc, &c->idx_gc, list)
 | 
			
		||||
		idx_gc->unmap = 1;
 | 
			
		||||
 | 
			
		||||
	/* Record index freeable LEBs for unmapping after commit */
 | 
			
		||||
	while (1) {
 | 
			
		||||
		lp = ubifs_fast_find_frdi_idx(c);
 | 
			
		||||
		if (unlikely(IS_ERR(lp))) {
 | 
			
		||||
			err = PTR_ERR(lp);
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
		if (!lp)
 | 
			
		||||
			break;
 | 
			
		||||
		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 | 
			
		||||
		if (!idx_gc) {
 | 
			
		||||
			err = -ENOMEM;
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 | 
			
		||||
		ubifs_assert(lp->flags & LPROPS_INDEX);
 | 
			
		||||
		/* Don't release the LEB until after the next commit */
 | 
			
		||||
		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
 | 
			
		||||
		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
 | 
			
		||||
		if (unlikely(IS_ERR(lp))) {
 | 
			
		||||
			err = PTR_ERR(lp);
 | 
			
		||||
			kfree(idx_gc);
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
		ubifs_assert(lp->flags & LPROPS_TAKEN);
 | 
			
		||||
		ubifs_assert(!(lp->flags & LPROPS_INDEX));
 | 
			
		||||
		idx_gc->lnum = lp->lnum;
 | 
			
		||||
		idx_gc->unmap = 1;
 | 
			
		||||
		list_add(&idx_gc->list, &c->idx_gc);
 | 
			
		||||
	}
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_release_lprops(c);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_gc_end_commit - garbage collection at end of commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function completes out-of-place garbage collection of index LEBs.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_gc_end_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_gced_idx_leb *idx_gc, *tmp;
 | 
			
		||||
	struct ubifs_wbuf *wbuf;
 | 
			
		||||
	int err = 0;
 | 
			
		||||
 | 
			
		||||
	wbuf = &c->jheads[GCHD].wbuf;
 | 
			
		||||
	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | 
			
		||||
	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
 | 
			
		||||
		if (idx_gc->unmap) {
 | 
			
		||||
			dbg_gc("LEB %d", idx_gc->lnum);
 | 
			
		||||
			err = ubifs_leb_unmap(c, idx_gc->lnum);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
 | 
			
		||||
					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
			list_del(&idx_gc->list);
 | 
			
		||||
			kfree(idx_gc);
 | 
			
		||||
		}
 | 
			
		||||
out:
 | 
			
		||||
	mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_destroy_idx_gc - destroy idx_gc list.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function destroys the idx_gc list. It is called when unmounting or
 | 
			
		||||
 * remounting read-only so locks are not needed.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_destroy_idx_gc(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	while (!list_empty(&c->idx_gc)) {
 | 
			
		||||
		struct ubifs_gced_idx_leb *idx_gc;
 | 
			
		||||
 | 
			
		||||
		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
 | 
			
		||||
				    list);
 | 
			
		||||
		c->idx_gc_cnt -= 1;
 | 
			
		||||
		list_del(&idx_gc->list);
 | 
			
		||||
		kfree(idx_gc);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * Called during start commit so locks are not needed.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_get_idx_gc_leb(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_gced_idx_leb *idx_gc;
 | 
			
		||||
	int lnum;
 | 
			
		||||
 | 
			
		||||
	if (list_empty(&c->idx_gc))
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
 | 
			
		||||
	lnum = idx_gc->lnum;
 | 
			
		||||
	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
 | 
			
		||||
	list_del(&idx_gc->list);
 | 
			
		||||
	kfree(idx_gc);
 | 
			
		||||
	return lnum;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										914
									
								
								fs/ubifs/io.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										914
									
								
								fs/ubifs/io.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,914 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 * Copyright (C) 2006, 2007 University of Szeged, Hungary
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 *          Zoltan Sogor
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements UBIFS I/O subsystem which provides various I/O-related
 | 
			
		||||
 * helper functions (reading/writing/checking/validating nodes) and implements
 | 
			
		||||
 * write-buffering support. Write buffers help to save space which otherwise
 | 
			
		||||
 * would have been wasted for padding to the nearest minimal I/O unit boundary.
 | 
			
		||||
 * Instead, data first goes to the write-buffer and is flushed when the
 | 
			
		||||
 * buffer is full or when it is not used for some time (by timer). This is
 | 
			
		||||
 * similarto the mechanism is used by JFFS2.
 | 
			
		||||
 *
 | 
			
		||||
 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
 | 
			
		||||
 * mutexes defined inside these objects. Since sometimes upper-level code
 | 
			
		||||
 * has to lock the write-buffer (e.g. journal space reservation code), many
 | 
			
		||||
 * functions related to write-buffers have "nolock" suffix which means that the
 | 
			
		||||
 * caller has to lock the write-buffer before calling this function.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
 | 
			
		||||
 * aligned, UBIFS starts the next node from the aligned address, and the padded
 | 
			
		||||
 * bytes may contain any rubbish. In other words, UBIFS does not put padding
 | 
			
		||||
 * bytes in those small gaps. Common headers of nodes store real node lengths,
 | 
			
		||||
 * not aligned lengths. Indexing nodes also store real lengths in branches.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
 | 
			
		||||
 * uses padding nodes or padding bytes, if the padding node does not fit.
 | 
			
		||||
 *
 | 
			
		||||
 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
 | 
			
		||||
 * every time they are read from the flash media.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <linux/crc32.h>
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_check_node - check node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @buf: node to check
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset within the logical eraseblock
 | 
			
		||||
 * @quiet: print no messages
 | 
			
		||||
 *
 | 
			
		||||
 * This function checks node magic number and CRC checksum. This function also
 | 
			
		||||
 * validates node length to prevent UBIFS from becoming crazy when an attacker
 | 
			
		||||
 * feeds it a file-system image with incorrect nodes. For example, too large
 | 
			
		||||
 * node length in the common header could cause UBIFS to read memory outside of
 | 
			
		||||
 * allocated buffer when checking the CRC checksum.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns zero in case of success %-EUCLEAN in case of bad CRC
 | 
			
		||||
 * or magic.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
 | 
			
		||||
		     int offs, int quiet)
 | 
			
		||||
{
 | 
			
		||||
	int err = -EINVAL, type, node_len;
 | 
			
		||||
	uint32_t crc, node_crc, magic;
 | 
			
		||||
	const struct ubifs_ch *ch = buf;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 | 
			
		||||
	ubifs_assert(!(offs & 7) && offs < c->leb_size);
 | 
			
		||||
 | 
			
		||||
	magic = le32_to_cpu(ch->magic);
 | 
			
		||||
	if (magic != UBIFS_NODE_MAGIC) {
 | 
			
		||||
		if (!quiet)
 | 
			
		||||
			ubifs_err("bad magic %#08x, expected %#08x",
 | 
			
		||||
				  magic, UBIFS_NODE_MAGIC);
 | 
			
		||||
		err = -EUCLEAN;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	type = ch->node_type;
 | 
			
		||||
	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 | 
			
		||||
		if (!quiet)
 | 
			
		||||
			ubifs_err("bad node type %d", type);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	node_len = le32_to_cpu(ch->len);
 | 
			
		||||
	if (node_len + offs > c->leb_size)
 | 
			
		||||
		goto out_len;
 | 
			
		||||
 | 
			
		||||
	if (c->ranges[type].max_len == 0) {
 | 
			
		||||
		if (node_len != c->ranges[type].len)
 | 
			
		||||
			goto out_len;
 | 
			
		||||
	} else if (node_len < c->ranges[type].min_len ||
 | 
			
		||||
		   node_len > c->ranges[type].max_len)
 | 
			
		||||
		goto out_len;
 | 
			
		||||
 | 
			
		||||
	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 | 
			
		||||
	node_crc = le32_to_cpu(ch->crc);
 | 
			
		||||
	if (crc != node_crc) {
 | 
			
		||||
		if (!quiet)
 | 
			
		||||
			ubifs_err("bad CRC: calculated %#08x, read %#08x",
 | 
			
		||||
				  crc, node_crc);
 | 
			
		||||
		err = -EUCLEAN;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_len:
 | 
			
		||||
	if (!quiet)
 | 
			
		||||
		ubifs_err("bad node length %d", node_len);
 | 
			
		||||
out:
 | 
			
		||||
	if (!quiet) {
 | 
			
		||||
		ubifs_err("bad node at LEB %d:%d", lnum, offs);
 | 
			
		||||
		dbg_dump_node(c, buf);
 | 
			
		||||
		dbg_dump_stack();
 | 
			
		||||
	}
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_pad - pad flash space.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @buf: buffer to put padding to
 | 
			
		||||
 * @pad: how many bytes to pad
 | 
			
		||||
 *
 | 
			
		||||
 * The flash media obliges us to write only in chunks of %c->min_io_size and
 | 
			
		||||
 * when we have to write less data we add padding node to the write-buffer and
 | 
			
		||||
 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
 | 
			
		||||
 * media is being scanned. If the amount of wasted space is not enough to fit a
 | 
			
		||||
 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
 | 
			
		||||
 * pattern (%UBIFS_PADDING_BYTE).
 | 
			
		||||
 *
 | 
			
		||||
 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
 | 
			
		||||
 * used.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
 | 
			
		||||
{
 | 
			
		||||
	uint32_t crc;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(pad >= 0 && !(pad & 7));
 | 
			
		||||
 | 
			
		||||
	if (pad >= UBIFS_PAD_NODE_SZ) {
 | 
			
		||||
		struct ubifs_ch *ch = buf;
 | 
			
		||||
		struct ubifs_pad_node *pad_node = buf;
 | 
			
		||||
 | 
			
		||||
		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 | 
			
		||||
		ch->node_type = UBIFS_PAD_NODE;
 | 
			
		||||
		ch->group_type = UBIFS_NO_NODE_GROUP;
 | 
			
		||||
		ch->padding[0] = ch->padding[1] = 0;
 | 
			
		||||
		ch->sqnum = 0;
 | 
			
		||||
		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
 | 
			
		||||
		pad -= UBIFS_PAD_NODE_SZ;
 | 
			
		||||
		pad_node->pad_len = cpu_to_le32(pad);
 | 
			
		||||
		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
 | 
			
		||||
		ch->crc = cpu_to_le32(crc);
 | 
			
		||||
		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
 | 
			
		||||
	} else if (pad > 0)
 | 
			
		||||
		/* Too little space, padding node won't fit */
 | 
			
		||||
		memset(buf, UBIFS_PADDING_BYTE, pad);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * next_sqnum - get next sequence number.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
static unsigned long long next_sqnum(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long long sqnum;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->cnt_lock);
 | 
			
		||||
	sqnum = ++c->max_sqnum;
 | 
			
		||||
	spin_unlock(&c->cnt_lock);
 | 
			
		||||
 | 
			
		||||
	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
 | 
			
		||||
		if (sqnum >= SQNUM_WATERMARK) {
 | 
			
		||||
			ubifs_err("sequence number overflow %llu, end of life",
 | 
			
		||||
				  sqnum);
 | 
			
		||||
			ubifs_ro_mode(c, -EINVAL);
 | 
			
		||||
		}
 | 
			
		||||
		ubifs_warn("running out of sequence numbers, end of life soon");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return sqnum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_prepare_node - prepare node to be written to flash.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @node: the node to pad
 | 
			
		||||
 * @len: node length
 | 
			
		||||
 * @pad: if the buffer has to be padded
 | 
			
		||||
 *
 | 
			
		||||
 * This function prepares node at @node to be written to the media - it
 | 
			
		||||
 * calculates node CRC, fills the common header, and adds proper padding up to
 | 
			
		||||
 * the next minimum I/O unit if @pad is not zero.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
 | 
			
		||||
{
 | 
			
		||||
	uint32_t crc;
 | 
			
		||||
	struct ubifs_ch *ch = node;
 | 
			
		||||
	unsigned long long sqnum = next_sqnum(c);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(len >= UBIFS_CH_SZ);
 | 
			
		||||
 | 
			
		||||
	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 | 
			
		||||
	ch->len = cpu_to_le32(len);
 | 
			
		||||
	ch->group_type = UBIFS_NO_NODE_GROUP;
 | 
			
		||||
	ch->sqnum = cpu_to_le64(sqnum);
 | 
			
		||||
	ch->padding[0] = ch->padding[1] = 0;
 | 
			
		||||
	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 | 
			
		||||
	ch->crc = cpu_to_le32(crc);
 | 
			
		||||
 | 
			
		||||
	if (pad) {
 | 
			
		||||
		len = ALIGN(len, 8);
 | 
			
		||||
		pad = ALIGN(len, c->min_io_size) - len;
 | 
			
		||||
		ubifs_pad(c, node + len, pad);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @node: the node to pad
 | 
			
		||||
 * @len: node length
 | 
			
		||||
 * @last: indicates the last node of the group
 | 
			
		||||
 *
 | 
			
		||||
 * This function prepares node at @node to be written to the media - it
 | 
			
		||||
 * calculates node CRC and fills the common header.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
 | 
			
		||||
{
 | 
			
		||||
	uint32_t crc;
 | 
			
		||||
	struct ubifs_ch *ch = node;
 | 
			
		||||
	unsigned long long sqnum = next_sqnum(c);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(len >= UBIFS_CH_SZ);
 | 
			
		||||
 | 
			
		||||
	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 | 
			
		||||
	ch->len = cpu_to_le32(len);
 | 
			
		||||
	if (last)
 | 
			
		||||
		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
 | 
			
		||||
	else
 | 
			
		||||
		ch->group_type = UBIFS_IN_NODE_GROUP;
 | 
			
		||||
	ch->sqnum = cpu_to_le64(sqnum);
 | 
			
		||||
	ch->padding[0] = ch->padding[1] = 0;
 | 
			
		||||
	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 | 
			
		||||
	ch->crc = cpu_to_le32(crc);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * wbuf_timer_callback - write-buffer timer callback function.
 | 
			
		||||
 * @data: timer data (write-buffer descriptor)
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called when the write-buffer timer expires.
 | 
			
		||||
 */
 | 
			
		||||
static void wbuf_timer_callback_nolock(unsigned long data)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data;
 | 
			
		||||
 | 
			
		||||
	wbuf->need_sync = 1;
 | 
			
		||||
	wbuf->c->need_wbuf_sync = 1;
 | 
			
		||||
	ubifs_wake_up_bgt(wbuf->c);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * new_wbuf_timer - start new write-buffer timer.
 | 
			
		||||
 * @wbuf: write-buffer descriptor
 | 
			
		||||
 */
 | 
			
		||||
static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 | 
			
		||||
{
 | 
			
		||||
	ubifs_assert(!timer_pending(&wbuf->timer));
 | 
			
		||||
 | 
			
		||||
	if (!wbuf->timeout)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	wbuf->timer.expires = jiffies + wbuf->timeout;
 | 
			
		||||
	add_timer(&wbuf->timer);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * cancel_wbuf_timer - cancel write-buffer timer.
 | 
			
		||||
 * @wbuf: write-buffer descriptor
 | 
			
		||||
 */
 | 
			
		||||
static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 | 
			
		||||
{
 | 
			
		||||
	/*
 | 
			
		||||
	 * If the syncer is waiting for the lock (from the background thread's
 | 
			
		||||
	 * context) and another task is changing write-buffer then the syncing
 | 
			
		||||
	 * should be canceled.
 | 
			
		||||
	 */
 | 
			
		||||
	wbuf->need_sync = 0;
 | 
			
		||||
	del_timer(&wbuf->timer);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
 | 
			
		||||
 * @wbuf: write-buffer to synchronize
 | 
			
		||||
 *
 | 
			
		||||
 * This function synchronizes write-buffer @buf and returns zero in case of
 | 
			
		||||
 * success or a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_info *c = wbuf->c;
 | 
			
		||||
	int err, dirt;
 | 
			
		||||
 | 
			
		||||
	cancel_wbuf_timer_nolock(wbuf);
 | 
			
		||||
	if (!wbuf->used || wbuf->lnum == -1)
 | 
			
		||||
		/* Write-buffer is empty or not seeked */
 | 
			
		||||
		return 0;
 | 
			
		||||
 | 
			
		||||
	dbg_io("LEB %d:%d, %d bytes",
 | 
			
		||||
	       wbuf->lnum, wbuf->offs, wbuf->used);
 | 
			
		||||
	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
 | 
			
		||||
	ubifs_assert(!(wbuf->avail & 7));
 | 
			
		||||
	ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media)
 | 
			
		||||
		return -EROFS;
 | 
			
		||||
 | 
			
		||||
	ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
 | 
			
		||||
	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
 | 
			
		||||
			    c->min_io_size, wbuf->dtype);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("cannot write %d bytes to LEB %d:%d",
 | 
			
		||||
			  c->min_io_size, wbuf->lnum, wbuf->offs);
 | 
			
		||||
		dbg_dump_stack();
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dirt = wbuf->avail;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&wbuf->lock);
 | 
			
		||||
	wbuf->offs += c->min_io_size;
 | 
			
		||||
	wbuf->avail = c->min_io_size;
 | 
			
		||||
	wbuf->used = 0;
 | 
			
		||||
	wbuf->next_ino = 0;
 | 
			
		||||
	spin_unlock(&wbuf->lock);
 | 
			
		||||
 | 
			
		||||
	if (wbuf->sync_callback)
 | 
			
		||||
		err = wbuf->sync_callback(c, wbuf->lnum,
 | 
			
		||||
					  c->leb_size - wbuf->offs, dirt);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_wbuf_seek_nolock - seek write-buffer.
 | 
			
		||||
 * @wbuf: write-buffer
 | 
			
		||||
 * @lnum: logical eraseblock number to seek to
 | 
			
		||||
 * @offs: logical eraseblock offset to seek to
 | 
			
		||||
 * @dtype: data type
 | 
			
		||||
 *
 | 
			
		||||
 * This function targets the write buffer to logical eraseblock @lnum:@offs.
 | 
			
		||||
 * The write-buffer is synchronized if it is not empty. Returns zero in case of
 | 
			
		||||
 * success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
 | 
			
		||||
			   int dtype)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_info *c = wbuf->c;
 | 
			
		||||
 | 
			
		||||
	dbg_io("LEB %d:%d", lnum, offs);
 | 
			
		||||
	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
 | 
			
		||||
	ubifs_assert(offs >= 0 && offs <= c->leb_size);
 | 
			
		||||
	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
 | 
			
		||||
	ubifs_assert(lnum != wbuf->lnum);
 | 
			
		||||
 | 
			
		||||
	if (wbuf->used > 0) {
 | 
			
		||||
		int err = ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	spin_lock(&wbuf->lock);
 | 
			
		||||
	wbuf->lnum = lnum;
 | 
			
		||||
	wbuf->offs = offs;
 | 
			
		||||
	wbuf->avail = c->min_io_size;
 | 
			
		||||
	wbuf->used = 0;
 | 
			
		||||
	spin_unlock(&wbuf->lock);
 | 
			
		||||
	wbuf->dtype = dtype;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_bg_wbufs_sync - synchronize write-buffers.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called by background thread to synchronize write-buffers.
 | 
			
		||||
 * Returns zero in case of success and a negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_bg_wbufs_sync(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, i;
 | 
			
		||||
 | 
			
		||||
	if (!c->need_wbuf_sync)
 | 
			
		||||
		return 0;
 | 
			
		||||
	c->need_wbuf_sync = 0;
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media) {
 | 
			
		||||
		err = -EROFS;
 | 
			
		||||
		goto out_timers;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dbg_io("synchronize");
 | 
			
		||||
	for (i = 0; i < c->jhead_cnt; i++) {
 | 
			
		||||
		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 | 
			
		||||
 | 
			
		||||
		cond_resched();
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * If the mutex is locked then wbuf is being changed, so
 | 
			
		||||
		 * synchronization is not necessary.
 | 
			
		||||
		 */
 | 
			
		||||
		if (mutex_is_locked(&wbuf->io_mutex))
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | 
			
		||||
		if (!wbuf->need_sync) {
 | 
			
		||||
			mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		err = ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
		mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
		if (err) {
 | 
			
		||||
			ubifs_err("cannot sync write-buffer, error %d", err);
 | 
			
		||||
			ubifs_ro_mode(c, err);
 | 
			
		||||
			goto out_timers;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_timers:
 | 
			
		||||
	/* Cancel all timers to prevent repeated errors */
 | 
			
		||||
	for (i = 0; i < c->jhead_cnt; i++) {
 | 
			
		||||
		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 | 
			
		||||
 | 
			
		||||
		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | 
			
		||||
		cancel_wbuf_timer_nolock(wbuf);
 | 
			
		||||
		mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
	}
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
 | 
			
		||||
 * @wbuf: write-buffer
 | 
			
		||||
 * @buf: node to write
 | 
			
		||||
 * @len: node length
 | 
			
		||||
 *
 | 
			
		||||
 * This function writes data to flash via write-buffer @wbuf. This means that
 | 
			
		||||
 * the last piece of the node won't reach the flash media immediately if it
 | 
			
		||||
 * does not take whole minimal I/O unit. Instead, the node will sit in RAM
 | 
			
		||||
 * until the write-buffer is synchronized (e.g., by timer).
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns zero in case of success and a negative error code in
 | 
			
		||||
 * case of failure. If the node cannot be written because there is no more
 | 
			
		||||
 * space in this logical eraseblock, %-ENOSPC is returned.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_info *c = wbuf->c;
 | 
			
		||||
	int err, written, n, aligned_len = ALIGN(len, 8), offs;
 | 
			
		||||
 | 
			
		||||
	dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len,
 | 
			
		||||
	       dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum,
 | 
			
		||||
	       wbuf->offs + wbuf->used);
 | 
			
		||||
	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
 | 
			
		||||
	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
 | 
			
		||||
	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
 | 
			
		||||
	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
 | 
			
		||||
	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
 | 
			
		||||
 | 
			
		||||
	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
 | 
			
		||||
		err = -ENOSPC;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	cancel_wbuf_timer_nolock(wbuf);
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media)
 | 
			
		||||
		return -EROFS;
 | 
			
		||||
 | 
			
		||||
	if (aligned_len <= wbuf->avail) {
 | 
			
		||||
		/*
 | 
			
		||||
		 * The node is not very large and fits entirely within
 | 
			
		||||
		 * write-buffer.
 | 
			
		||||
		 */
 | 
			
		||||
		memcpy(wbuf->buf + wbuf->used, buf, len);
 | 
			
		||||
 | 
			
		||||
		if (aligned_len == wbuf->avail) {
 | 
			
		||||
			dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum,
 | 
			
		||||
				wbuf->offs);
 | 
			
		||||
			err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
 | 
			
		||||
					    wbuf->offs, c->min_io_size,
 | 
			
		||||
					    wbuf->dtype);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
 | 
			
		||||
			spin_lock(&wbuf->lock);
 | 
			
		||||
			wbuf->offs += c->min_io_size;
 | 
			
		||||
			wbuf->avail = c->min_io_size;
 | 
			
		||||
			wbuf->used = 0;
 | 
			
		||||
			wbuf->next_ino = 0;
 | 
			
		||||
			spin_unlock(&wbuf->lock);
 | 
			
		||||
		} else {
 | 
			
		||||
			spin_lock(&wbuf->lock);
 | 
			
		||||
			wbuf->avail -= aligned_len;
 | 
			
		||||
			wbuf->used += aligned_len;
 | 
			
		||||
			spin_unlock(&wbuf->lock);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		goto exit;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The node is large enough and does not fit entirely within current
 | 
			
		||||
	 * minimal I/O unit. We have to fill and flush write-buffer and switch
 | 
			
		||||
	 * to the next min. I/O unit.
 | 
			
		||||
	 */
 | 
			
		||||
	dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs);
 | 
			
		||||
	memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
 | 
			
		||||
	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
 | 
			
		||||
			    c->min_io_size, wbuf->dtype);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	offs = wbuf->offs + c->min_io_size;
 | 
			
		||||
	len -= wbuf->avail;
 | 
			
		||||
	aligned_len -= wbuf->avail;
 | 
			
		||||
	written = wbuf->avail;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The remaining data may take more whole min. I/O units, so write the
 | 
			
		||||
	 * remains multiple to min. I/O unit size directly to the flash media.
 | 
			
		||||
	 * We align node length to 8-byte boundary because we anyway flash wbuf
 | 
			
		||||
	 * if the remaining space is less than 8 bytes.
 | 
			
		||||
	 */
 | 
			
		||||
	n = aligned_len >> c->min_io_shift;
 | 
			
		||||
	if (n) {
 | 
			
		||||
		n <<= c->min_io_shift;
 | 
			
		||||
		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
 | 
			
		||||
		err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
 | 
			
		||||
				    wbuf->dtype);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
		offs += n;
 | 
			
		||||
		aligned_len -= n;
 | 
			
		||||
		len -= n;
 | 
			
		||||
		written += n;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	spin_lock(&wbuf->lock);
 | 
			
		||||
	if (aligned_len)
 | 
			
		||||
		/*
 | 
			
		||||
		 * And now we have what's left and what does not take whole
 | 
			
		||||
		 * min. I/O unit, so write it to the write-buffer and we are
 | 
			
		||||
		 * done.
 | 
			
		||||
		 */
 | 
			
		||||
		memcpy(wbuf->buf, buf + written, len);
 | 
			
		||||
 | 
			
		||||
	wbuf->offs = offs;
 | 
			
		||||
	wbuf->used = aligned_len;
 | 
			
		||||
	wbuf->avail = c->min_io_size - aligned_len;
 | 
			
		||||
	wbuf->next_ino = 0;
 | 
			
		||||
	spin_unlock(&wbuf->lock);
 | 
			
		||||
 | 
			
		||||
exit:
 | 
			
		||||
	if (wbuf->sync_callback) {
 | 
			
		||||
		int free = c->leb_size - wbuf->offs - wbuf->used;
 | 
			
		||||
 | 
			
		||||
		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (wbuf->used)
 | 
			
		||||
		new_wbuf_timer_nolock(wbuf);
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
 | 
			
		||||
		  len, wbuf->lnum, wbuf->offs, err);
 | 
			
		||||
	dbg_dump_node(c, buf);
 | 
			
		||||
	dbg_dump_stack();
 | 
			
		||||
	dbg_dump_leb(c, wbuf->lnum);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_write_node - write node to the media.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @buf: the node to write
 | 
			
		||||
 * @len: node length
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset within the logical eraseblock
 | 
			
		||||
 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
 | 
			
		||||
 *
 | 
			
		||||
 * This function automatically fills node magic number, assigns sequence
 | 
			
		||||
 * number, and calculates node CRC checksum. The length of the @buf buffer has
 | 
			
		||||
 * to be aligned to the minimal I/O unit size. This function automatically
 | 
			
		||||
 * appends padding node and padding bytes if needed. Returns zero in case of
 | 
			
		||||
 * success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
 | 
			
		||||
		     int offs, int dtype)
 | 
			
		||||
{
 | 
			
		||||
	int err, buf_len = ALIGN(len, c->min_io_size);
 | 
			
		||||
 | 
			
		||||
	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
 | 
			
		||||
	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
 | 
			
		||||
	       buf_len);
 | 
			
		||||
	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 | 
			
		||||
	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media)
 | 
			
		||||
		return -EROFS;
 | 
			
		||||
 | 
			
		||||
	ubifs_prepare_node(c, buf, len, 1);
 | 
			
		||||
	err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
 | 
			
		||||
			  buf_len, lnum, offs, err);
 | 
			
		||||
		dbg_dump_node(c, buf);
 | 
			
		||||
		dbg_dump_stack();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_read_node_wbuf - read node from the media or write-buffer.
 | 
			
		||||
 * @wbuf: wbuf to check for un-written data
 | 
			
		||||
 * @buf: buffer to read to
 | 
			
		||||
 * @type: node type
 | 
			
		||||
 * @len: node length
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset within the logical eraseblock
 | 
			
		||||
 *
 | 
			
		||||
 * This function reads a node of known type and length, checks it and stores
 | 
			
		||||
 * in @buf. If the node partially or fully sits in the write-buffer, this
 | 
			
		||||
 * function takes data from the buffer, otherwise it reads the flash media.
 | 
			
		||||
 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
 | 
			
		||||
 * error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
 | 
			
		||||
			 int lnum, int offs)
 | 
			
		||||
{
 | 
			
		||||
	const struct ubifs_info *c = wbuf->c;
 | 
			
		||||
	int err, rlen, overlap;
 | 
			
		||||
	struct ubifs_ch *ch = buf;
 | 
			
		||||
 | 
			
		||||
	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 | 
			
		||||
	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 | 
			
		||||
	ubifs_assert(!(offs & 7) && offs < c->leb_size);
 | 
			
		||||
	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 | 
			
		||||
 | 
			
		||||
	spin_lock(&wbuf->lock);
 | 
			
		||||
	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
 | 
			
		||||
	if (!overlap) {
 | 
			
		||||
		/* We may safely unlock the write-buffer and read the data */
 | 
			
		||||
		spin_unlock(&wbuf->lock);
 | 
			
		||||
		return ubifs_read_node(c, buf, type, len, lnum, offs);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Don't read under wbuf */
 | 
			
		||||
	rlen = wbuf->offs - offs;
 | 
			
		||||
	if (rlen < 0)
 | 
			
		||||
		rlen = 0;
 | 
			
		||||
 | 
			
		||||
	/* Copy the rest from the write-buffer */
 | 
			
		||||
	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
 | 
			
		||||
	spin_unlock(&wbuf->lock);
 | 
			
		||||
 | 
			
		||||
	if (rlen > 0) {
 | 
			
		||||
		/* Read everything that goes before write-buffer */
 | 
			
		||||
		err = ubi_read(c->ubi, lnum, buf, offs, rlen);
 | 
			
		||||
		if (err && err != -EBADMSG) {
 | 
			
		||||
			ubifs_err("failed to read node %d from LEB %d:%d, "
 | 
			
		||||
				  "error %d", type, lnum, offs, err);
 | 
			
		||||
			dbg_dump_stack();
 | 
			
		||||
			return err;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (type != ch->node_type) {
 | 
			
		||||
		ubifs_err("bad node type (%d but expected %d)",
 | 
			
		||||
			  ch->node_type, type);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = ubifs_check_node(c, buf, lnum, offs, 0);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("expected node type %d", type);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	rlen = le32_to_cpu(ch->len);
 | 
			
		||||
	if (rlen != len) {
 | 
			
		||||
		ubifs_err("bad node length %d, expected %d", rlen, len);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_err("bad node at LEB %d:%d", lnum, offs);
 | 
			
		||||
	dbg_dump_node(c, buf);
 | 
			
		||||
	dbg_dump_stack();
 | 
			
		||||
	return -EINVAL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_read_node - read node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @buf: buffer to read to
 | 
			
		||||
 * @type: node type
 | 
			
		||||
 * @len: node length (not aligned)
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset within the logical eraseblock
 | 
			
		||||
 *
 | 
			
		||||
 * This function reads a node of known type and and length, checks it and
 | 
			
		||||
 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
 | 
			
		||||
 * and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
 | 
			
		||||
		    int lnum, int offs)
 | 
			
		||||
{
 | 
			
		||||
	int err, l;
 | 
			
		||||
	struct ubifs_ch *ch = buf;
 | 
			
		||||
 | 
			
		||||
	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 | 
			
		||||
	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 | 
			
		||||
	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
 | 
			
		||||
	ubifs_assert(!(offs & 7) && offs < c->leb_size);
 | 
			
		||||
	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 | 
			
		||||
 | 
			
		||||
	err = ubi_read(c->ubi, lnum, buf, offs, len);
 | 
			
		||||
	if (err && err != -EBADMSG) {
 | 
			
		||||
		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
 | 
			
		||||
			  type, lnum, offs, err);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (type != ch->node_type) {
 | 
			
		||||
		ubifs_err("bad node type (%d but expected %d)",
 | 
			
		||||
			  ch->node_type, type);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = ubifs_check_node(c, buf, lnum, offs, 0);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("expected node type %d", type);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	l = le32_to_cpu(ch->len);
 | 
			
		||||
	if (l != len) {
 | 
			
		||||
		ubifs_err("bad node length %d, expected %d", l, len);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_err("bad node at LEB %d:%d", lnum, offs);
 | 
			
		||||
	dbg_dump_node(c, buf);
 | 
			
		||||
	dbg_dump_stack();
 | 
			
		||||
	return -EINVAL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_wbuf_init - initialize write-buffer.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @wbuf: write-buffer to initialize
 | 
			
		||||
 *
 | 
			
		||||
 * This function initializes write buffer. Returns zero in case of success
 | 
			
		||||
 * %-ENOMEM in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
 | 
			
		||||
{
 | 
			
		||||
	size_t size;
 | 
			
		||||
 | 
			
		||||
	wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
 | 
			
		||||
	if (!wbuf->buf)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
 | 
			
		||||
	wbuf->inodes = kmalloc(size, GFP_KERNEL);
 | 
			
		||||
	if (!wbuf->inodes) {
 | 
			
		||||
		kfree(wbuf->buf);
 | 
			
		||||
		wbuf->buf = NULL;
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	wbuf->used = 0;
 | 
			
		||||
	wbuf->lnum = wbuf->offs = -1;
 | 
			
		||||
	wbuf->avail = c->min_io_size;
 | 
			
		||||
	wbuf->dtype = UBI_UNKNOWN;
 | 
			
		||||
	wbuf->sync_callback = NULL;
 | 
			
		||||
	mutex_init(&wbuf->io_mutex);
 | 
			
		||||
	spin_lock_init(&wbuf->lock);
 | 
			
		||||
 | 
			
		||||
	wbuf->c = c;
 | 
			
		||||
	init_timer(&wbuf->timer);
 | 
			
		||||
	wbuf->timer.function = wbuf_timer_callback_nolock;
 | 
			
		||||
	wbuf->timer.data = (unsigned long)wbuf;
 | 
			
		||||
	wbuf->timeout = DEFAULT_WBUF_TIMEOUT;
 | 
			
		||||
	wbuf->next_ino = 0;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
 | 
			
		||||
 * @wbuf: the write-buffer whereto add
 | 
			
		||||
 * @inum: the inode number
 | 
			
		||||
 *
 | 
			
		||||
 * This function adds an inode number to the inode array of the write-buffer.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	if (!wbuf->buf)
 | 
			
		||||
		/* NOR flash or something similar */
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&wbuf->lock);
 | 
			
		||||
	if (wbuf->used)
 | 
			
		||||
		wbuf->inodes[wbuf->next_ino++] = inum;
 | 
			
		||||
	spin_unlock(&wbuf->lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * wbuf_has_ino - returns if the wbuf contains data from the inode.
 | 
			
		||||
 * @wbuf: the write-buffer
 | 
			
		||||
 * @inum: the inode number
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns with %1 if the write-buffer contains some data from the
 | 
			
		||||
 * given inode otherwise it returns with %0.
 | 
			
		||||
 */
 | 
			
		||||
static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	int i, ret = 0;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&wbuf->lock);
 | 
			
		||||
	for (i = 0; i < wbuf->next_ino; i++)
 | 
			
		||||
		if (inum == wbuf->inodes[i]) {
 | 
			
		||||
			ret = 1;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
	spin_unlock(&wbuf->lock);
 | 
			
		||||
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @inode: inode to synchronize
 | 
			
		||||
 *
 | 
			
		||||
 * This function synchronizes write-buffers which contain nodes belonging to
 | 
			
		||||
 * @inode. Returns zero in case of success and a negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
 | 
			
		||||
{
 | 
			
		||||
	int i, err = 0;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < c->jhead_cnt; i++) {
 | 
			
		||||
		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 | 
			
		||||
 | 
			
		||||
		if (i == GCHD)
 | 
			
		||||
			/*
 | 
			
		||||
			 * GC head is special, do not look at it. Even if the
 | 
			
		||||
			 * head contains something related to this inode, it is
 | 
			
		||||
			 * a _copy_ of corresponding on-flash node which sits
 | 
			
		||||
			 * somewhere else.
 | 
			
		||||
			 */
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		if (!wbuf_has_ino(wbuf, inode->i_ino))
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | 
			
		||||
		if (wbuf_has_ino(wbuf, inode->i_ino))
 | 
			
		||||
			err = ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
		mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
 | 
			
		||||
		if (err) {
 | 
			
		||||
			ubifs_ro_mode(c, err);
 | 
			
		||||
			return err;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										204
									
								
								fs/ubifs/ioctl.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										204
									
								
								fs/ubifs/ioctl.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,204 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 * Copyright (C) 2006, 2007 University of Szeged, Hungary
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Zoltan Sogor
 | 
			
		||||
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* This file implements EXT2-compatible extended attribute ioctl() calls */
 | 
			
		||||
 | 
			
		||||
#include <linux/compat.h>
 | 
			
		||||
#include <linux/smp_lock.h>
 | 
			
		||||
#include <linux/mount.h>
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_set_inode_flags - set VFS inode flags.
 | 
			
		||||
 * @inode: VFS inode to set flags for
 | 
			
		||||
 *
 | 
			
		||||
 * This function propagates flags from UBIFS inode object to VFS inode object.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_set_inode_flags(struct inode *inode)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int flags = ubifs_inode(inode)->flags;
 | 
			
		||||
 | 
			
		||||
	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_DIRSYNC);
 | 
			
		||||
	if (flags & UBIFS_SYNC_FL)
 | 
			
		||||
		inode->i_flags |= S_SYNC;
 | 
			
		||||
	if (flags & UBIFS_APPEND_FL)
 | 
			
		||||
		inode->i_flags |= S_APPEND;
 | 
			
		||||
	if (flags & UBIFS_IMMUTABLE_FL)
 | 
			
		||||
		inode->i_flags |= S_IMMUTABLE;
 | 
			
		||||
	if (flags & UBIFS_DIRSYNC_FL)
 | 
			
		||||
		inode->i_flags |= S_DIRSYNC;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * ioctl2ubifs - convert ioctl inode flags to UBIFS inode flags.
 | 
			
		||||
 * @ioctl_flags: flags to convert
 | 
			
		||||
 *
 | 
			
		||||
 * This function convert ioctl flags (@FS_COMPR_FL, etc) to UBIFS inode flags
 | 
			
		||||
 * (@UBIFS_COMPR_FL, etc).
 | 
			
		||||
 */
 | 
			
		||||
static int ioctl2ubifs(int ioctl_flags)
 | 
			
		||||
{
 | 
			
		||||
	int ubifs_flags = 0;
 | 
			
		||||
 | 
			
		||||
	if (ioctl_flags & FS_COMPR_FL)
 | 
			
		||||
		ubifs_flags |= UBIFS_COMPR_FL;
 | 
			
		||||
	if (ioctl_flags & FS_SYNC_FL)
 | 
			
		||||
		ubifs_flags |= UBIFS_SYNC_FL;
 | 
			
		||||
	if (ioctl_flags & FS_APPEND_FL)
 | 
			
		||||
		ubifs_flags |= UBIFS_APPEND_FL;
 | 
			
		||||
	if (ioctl_flags & FS_IMMUTABLE_FL)
 | 
			
		||||
		ubifs_flags |= UBIFS_IMMUTABLE_FL;
 | 
			
		||||
	if (ioctl_flags & FS_DIRSYNC_FL)
 | 
			
		||||
		ubifs_flags |= UBIFS_DIRSYNC_FL;
 | 
			
		||||
 | 
			
		||||
	return ubifs_flags;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * ubifs2ioctl - convert UBIFS inode flags to ioctl inode flags.
 | 
			
		||||
 * @ubifs_flags: flags to convert
 | 
			
		||||
 *
 | 
			
		||||
 * This function convert UBIFS (@UBIFS_COMPR_FL, etc) to ioctl flags
 | 
			
		||||
 * (@FS_COMPR_FL, etc).
 | 
			
		||||
 */
 | 
			
		||||
static int ubifs2ioctl(int ubifs_flags)
 | 
			
		||||
{
 | 
			
		||||
	int ioctl_flags = 0;
 | 
			
		||||
 | 
			
		||||
	if (ubifs_flags & UBIFS_COMPR_FL)
 | 
			
		||||
		ioctl_flags |= FS_COMPR_FL;
 | 
			
		||||
	if (ubifs_flags & UBIFS_SYNC_FL)
 | 
			
		||||
		ioctl_flags |= FS_SYNC_FL;
 | 
			
		||||
	if (ubifs_flags & UBIFS_APPEND_FL)
 | 
			
		||||
		ioctl_flags |= FS_APPEND_FL;
 | 
			
		||||
	if (ubifs_flags & UBIFS_IMMUTABLE_FL)
 | 
			
		||||
		ioctl_flags |= FS_IMMUTABLE_FL;
 | 
			
		||||
	if (ubifs_flags & UBIFS_DIRSYNC_FL)
 | 
			
		||||
		ioctl_flags |= FS_DIRSYNC_FL;
 | 
			
		||||
 | 
			
		||||
	return ioctl_flags;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int setflags(struct inode *inode, int flags)
 | 
			
		||||
{
 | 
			
		||||
	int oldflags, err, release;
 | 
			
		||||
	struct ubifs_inode *ui = ubifs_inode(inode);
 | 
			
		||||
	struct ubifs_info *c = inode->i_sb->s_fs_info;
 | 
			
		||||
	struct ubifs_budget_req req = { .dirtied_ino = 1,
 | 
			
		||||
					.dirtied_ino_d = ui->data_len };
 | 
			
		||||
 | 
			
		||||
	err = ubifs_budget_space(c, &req);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
 | 
			
		||||
	 * the relevant capability.
 | 
			
		||||
	 */
 | 
			
		||||
	mutex_lock(&ui->ui_mutex);
 | 
			
		||||
	oldflags = ubifs2ioctl(ui->flags);
 | 
			
		||||
	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
 | 
			
		||||
		if (!capable(CAP_LINUX_IMMUTABLE)) {
 | 
			
		||||
			err = -EPERM;
 | 
			
		||||
			goto out_unlock;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ui->flags = ioctl2ubifs(flags);
 | 
			
		||||
	ubifs_set_inode_flags(inode);
 | 
			
		||||
	inode->i_ctime = ubifs_current_time(inode);
 | 
			
		||||
	release = ui->dirty;
 | 
			
		||||
	mark_inode_dirty_sync(inode);
 | 
			
		||||
	mutex_unlock(&ui->ui_mutex);
 | 
			
		||||
 | 
			
		||||
	if (release)
 | 
			
		||||
		ubifs_release_budget(c, &req);
 | 
			
		||||
	if (IS_SYNC(inode))
 | 
			
		||||
		err = write_inode_now(inode, 1);
 | 
			
		||||
	return err;
 | 
			
		||||
 | 
			
		||||
out_unlock:
 | 
			
		||||
	ubifs_err("can't modify inode %lu attributes", inode->i_ino);
 | 
			
		||||
	mutex_unlock(&ui->ui_mutex);
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | 
			
		||||
{
 | 
			
		||||
	int flags, err;
 | 
			
		||||
	struct inode *inode = file->f_path.dentry->d_inode;
 | 
			
		||||
 | 
			
		||||
	switch (cmd) {
 | 
			
		||||
	case FS_IOC_GETFLAGS:
 | 
			
		||||
		flags = ubifs2ioctl(ubifs_inode(inode)->flags);
 | 
			
		||||
 | 
			
		||||
		return put_user(flags, (int __user *) arg);
 | 
			
		||||
 | 
			
		||||
	case FS_IOC_SETFLAGS: {
 | 
			
		||||
		if (IS_RDONLY(inode))
 | 
			
		||||
			return -EROFS;
 | 
			
		||||
 | 
			
		||||
		if (!is_owner_or_cap(inode))
 | 
			
		||||
			return -EACCES;
 | 
			
		||||
 | 
			
		||||
		if (get_user(flags, (int __user *) arg))
 | 
			
		||||
			return -EFAULT;
 | 
			
		||||
 | 
			
		||||
		if (!S_ISDIR(inode->i_mode))
 | 
			
		||||
			flags &= ~FS_DIRSYNC_FL;
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * Make sure the file-system is read-write and make sure it
 | 
			
		||||
		 * will not become read-only while we are changing the flags.
 | 
			
		||||
		 */
 | 
			
		||||
		err = mnt_want_write(file->f_path.mnt);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
		err = setflags(inode, flags);
 | 
			
		||||
		mnt_drop_write(file->f_path.mnt);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	default:
 | 
			
		||||
		return -ENOTTY;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_COMPAT
 | 
			
		||||
long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | 
			
		||||
{
 | 
			
		||||
	switch (cmd) {
 | 
			
		||||
	case FS_IOC32_GETFLAGS:
 | 
			
		||||
		cmd = FS_IOC_GETFLAGS;
 | 
			
		||||
		break;
 | 
			
		||||
	case FS_IOC32_SETFLAGS:
 | 
			
		||||
		cmd = FS_IOC_SETFLAGS;
 | 
			
		||||
		break;
 | 
			
		||||
	default:
 | 
			
		||||
		return -ENOIOCTLCMD;
 | 
			
		||||
	}
 | 
			
		||||
	return ubifs_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										1387
									
								
								fs/ubifs/journal.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1387
									
								
								fs/ubifs/journal.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										533
									
								
								fs/ubifs/key.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										533
									
								
								fs/ubifs/key.h
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,533 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This header contains various key-related definitions and helper function.
 | 
			
		||||
 * UBIFS allows several key schemes, so we access key fields only via these
 | 
			
		||||
 * helpers. At the moment only one key scheme is supported.
 | 
			
		||||
 *
 | 
			
		||||
 * Simple key scheme
 | 
			
		||||
 * ~~~~~~~~~~~~~~~~~
 | 
			
		||||
 *
 | 
			
		||||
 * Keys are 64-bits long. First 32-bits are inode number (parent inode number
 | 
			
		||||
 * in case of direntry key). Next 3 bits are node type. The last 29 bits are
 | 
			
		||||
 * 4KiB offset in case of inode node, and direntry hash in case of a direntry
 | 
			
		||||
 * node. We use "r5" hash borrowed from reiserfs.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef __UBIFS_KEY_H__
 | 
			
		||||
#define __UBIFS_KEY_H__
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_r5_hash - R5 hash function (borrowed from reiserfs).
 | 
			
		||||
 * @s: direntry name
 | 
			
		||||
 * @len: name length
 | 
			
		||||
 */
 | 
			
		||||
static inline uint32_t key_r5_hash(const char *s, int len)
 | 
			
		||||
{
 | 
			
		||||
	uint32_t a = 0;
 | 
			
		||||
	const signed char *str = (const signed char *)s;
 | 
			
		||||
 | 
			
		||||
	while (*str) {
 | 
			
		||||
		a += *str << 4;
 | 
			
		||||
		a += *str >> 4;
 | 
			
		||||
		a *= 11;
 | 
			
		||||
		str++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	a &= UBIFS_S_KEY_HASH_MASK;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * We use hash values as offset in directories, so values %0 and %1 are
 | 
			
		||||
	 * reserved for "." and "..". %2 is reserved for "end of readdir"
 | 
			
		||||
	 * marker.
 | 
			
		||||
	 */
 | 
			
		||||
	if (unlikely(a >= 0 && a <= 2))
 | 
			
		||||
		a += 3;
 | 
			
		||||
	return a;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_test_hash - testing hash function.
 | 
			
		||||
 * @str: direntry name
 | 
			
		||||
 * @len: name length
 | 
			
		||||
 */
 | 
			
		||||
static inline uint32_t key_test_hash(const char *str, int len)
 | 
			
		||||
{
 | 
			
		||||
	uint32_t a = 0;
 | 
			
		||||
 | 
			
		||||
	len = min_t(uint32_t, len, 4);
 | 
			
		||||
	memcpy(&a, str, len);
 | 
			
		||||
	a &= UBIFS_S_KEY_HASH_MASK;
 | 
			
		||||
	if (unlikely(a >= 0 && a <= 2))
 | 
			
		||||
		a += 3;
 | 
			
		||||
	return a;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ino_key_init - initialize inode key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: inode number
 | 
			
		||||
 */
 | 
			
		||||
static inline void ino_key_init(const struct ubifs_info *c,
 | 
			
		||||
				union ubifs_key *key, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = UBIFS_INO_KEY << UBIFS_S_KEY_BLOCK_BITS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ino_key_init_flash - initialize on-flash inode key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: key to initialize
 | 
			
		||||
 * @inum: inode number
 | 
			
		||||
 */
 | 
			
		||||
static inline void ino_key_init_flash(const struct ubifs_info *c, void *k,
 | 
			
		||||
				      ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key *key = k;
 | 
			
		||||
 | 
			
		||||
	key->j32[0] = cpu_to_le32(inum);
 | 
			
		||||
	key->j32[1] = cpu_to_le32(UBIFS_INO_KEY << UBIFS_S_KEY_BLOCK_BITS);
 | 
			
		||||
	memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * lowest_ino_key - get the lowest possible inode key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: inode number
 | 
			
		||||
 */
 | 
			
		||||
static inline void lowest_ino_key(const struct ubifs_info *c,
 | 
			
		||||
				union ubifs_key *key, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * highest_ino_key - get the highest possible inode key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: inode number
 | 
			
		||||
 */
 | 
			
		||||
static inline void highest_ino_key(const struct ubifs_info *c,
 | 
			
		||||
				union ubifs_key *key, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = 0xffffffff;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * dent_key_init - initialize directory entry key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: parent inode number
 | 
			
		||||
 * @nm: direntry name and length
 | 
			
		||||
 */
 | 
			
		||||
static inline void dent_key_init(const struct ubifs_info *c,
 | 
			
		||||
				 union ubifs_key *key, ino_t inum,
 | 
			
		||||
				 const struct qstr *nm)
 | 
			
		||||
{
 | 
			
		||||
	uint32_t hash = c->key_hash(nm->name, nm->len);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = hash | (UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * dent_key_init_hash - initialize directory entry key without re-calculating
 | 
			
		||||
 *                      hash function.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: parent inode number
 | 
			
		||||
 * @hash: direntry name hash
 | 
			
		||||
 */
 | 
			
		||||
static inline void dent_key_init_hash(const struct ubifs_info *c,
 | 
			
		||||
				      union ubifs_key *key, ino_t inum,
 | 
			
		||||
				      uint32_t hash)
 | 
			
		||||
{
 | 
			
		||||
	ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = hash | (UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * dent_key_init_flash - initialize on-flash directory entry key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: key to initialize
 | 
			
		||||
 * @inum: parent inode number
 | 
			
		||||
 * @nm: direntry name and length
 | 
			
		||||
 */
 | 
			
		||||
static inline void dent_key_init_flash(const struct ubifs_info *c, void *k,
 | 
			
		||||
				       ino_t inum, const struct qstr *nm)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key *key = k;
 | 
			
		||||
	uint32_t hash = c->key_hash(nm->name, nm->len);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
 | 
			
		||||
	key->j32[0] = cpu_to_le32(inum);
 | 
			
		||||
	key->j32[1] = cpu_to_le32(hash |
 | 
			
		||||
				  (UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS));
 | 
			
		||||
	memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * lowest_dent_key - get the lowest possible directory entry key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: where to store the lowest key
 | 
			
		||||
 * @inum: parent inode number
 | 
			
		||||
 */
 | 
			
		||||
static inline void lowest_dent_key(const struct ubifs_info *c,
 | 
			
		||||
				   union ubifs_key *key, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * xent_key_init - initialize extended attribute entry key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: host inode number
 | 
			
		||||
 * @nm: extended attribute entry name and length
 | 
			
		||||
 */
 | 
			
		||||
static inline void xent_key_init(const struct ubifs_info *c,
 | 
			
		||||
				 union ubifs_key *key, ino_t inum,
 | 
			
		||||
				 const struct qstr *nm)
 | 
			
		||||
{
 | 
			
		||||
	uint32_t hash = c->key_hash(nm->name, nm->len);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = hash | (UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * xent_key_init_hash - initialize extended attribute entry key without
 | 
			
		||||
 *                      re-calculating hash function.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: host inode number
 | 
			
		||||
 * @hash: extended attribute entry name hash
 | 
			
		||||
 */
 | 
			
		||||
static inline void xent_key_init_hash(const struct ubifs_info *c,
 | 
			
		||||
				      union ubifs_key *key, ino_t inum,
 | 
			
		||||
				      uint32_t hash)
 | 
			
		||||
{
 | 
			
		||||
	ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = hash | (UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * xent_key_init_flash - initialize on-flash extended attribute entry key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: key to initialize
 | 
			
		||||
 * @inum: host inode number
 | 
			
		||||
 * @nm: extended attribute entry name and length
 | 
			
		||||
 */
 | 
			
		||||
static inline void xent_key_init_flash(const struct ubifs_info *c, void *k,
 | 
			
		||||
				       ino_t inum, const struct qstr *nm)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key *key = k;
 | 
			
		||||
	uint32_t hash = c->key_hash(nm->name, nm->len);
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
 | 
			
		||||
	key->j32[0] = cpu_to_le32(inum);
 | 
			
		||||
	key->j32[1] = cpu_to_le32(hash |
 | 
			
		||||
				  (UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS));
 | 
			
		||||
	memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * lowest_xent_key - get the lowest possible extended attribute entry key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: where to store the lowest key
 | 
			
		||||
 * @inum: host inode number
 | 
			
		||||
 */
 | 
			
		||||
static inline void lowest_xent_key(const struct ubifs_info *c,
 | 
			
		||||
				   union ubifs_key *key, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * data_key_init - initialize data key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: inode number
 | 
			
		||||
 * @block: block number
 | 
			
		||||
 */
 | 
			
		||||
static inline void data_key_init(const struct ubifs_info *c,
 | 
			
		||||
				 union ubifs_key *key, ino_t inum,
 | 
			
		||||
				 unsigned int block)
 | 
			
		||||
{
 | 
			
		||||
	ubifs_assert(!(block & ~UBIFS_S_KEY_BLOCK_MASK));
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = block | (UBIFS_DATA_KEY << UBIFS_S_KEY_BLOCK_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * data_key_init_flash - initialize on-flash data key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: key to initialize
 | 
			
		||||
 * @inum: inode number
 | 
			
		||||
 * @block: block number
 | 
			
		||||
 */
 | 
			
		||||
static inline void data_key_init_flash(const struct ubifs_info *c, void *k,
 | 
			
		||||
				       ino_t inum, unsigned int block)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key *key = k;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(!(block & ~UBIFS_S_KEY_BLOCK_MASK));
 | 
			
		||||
	key->j32[0] = cpu_to_le32(inum);
 | 
			
		||||
	key->j32[1] = cpu_to_le32(block |
 | 
			
		||||
				  (UBIFS_DATA_KEY << UBIFS_S_KEY_BLOCK_BITS));
 | 
			
		||||
	memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * trun_key_init - initialize truncation node key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to initialize
 | 
			
		||||
 * @inum: inode number
 | 
			
		||||
 *
 | 
			
		||||
 * Note, UBIFS does not have truncation keys on the media and this function is
 | 
			
		||||
 * only used for purposes of replay.
 | 
			
		||||
 */
 | 
			
		||||
static inline void trun_key_init(const struct ubifs_info *c,
 | 
			
		||||
				 union ubifs_key *key, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	key->u32[0] = inum;
 | 
			
		||||
	key->u32[1] = UBIFS_TRUN_KEY << UBIFS_S_KEY_BLOCK_BITS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_type - get key type.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key to get type of
 | 
			
		||||
 */
 | 
			
		||||
static inline int key_type(const struct ubifs_info *c,
 | 
			
		||||
			   const union ubifs_key *key)
 | 
			
		||||
{
 | 
			
		||||
	return key->u32[1] >> UBIFS_S_KEY_BLOCK_BITS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_type_flash - get type of a on-flash formatted key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: key to get type of
 | 
			
		||||
 */
 | 
			
		||||
static inline int key_type_flash(const struct ubifs_info *c, const void *k)
 | 
			
		||||
{
 | 
			
		||||
	const union ubifs_key *key = k;
 | 
			
		||||
 | 
			
		||||
	return le32_to_cpu(key->u32[1]) >> UBIFS_S_KEY_BLOCK_BITS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_inum - fetch inode number from key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: key to fetch inode number from
 | 
			
		||||
 */
 | 
			
		||||
static inline ino_t key_inum(const struct ubifs_info *c, const void *k)
 | 
			
		||||
{
 | 
			
		||||
	const union ubifs_key *key = k;
 | 
			
		||||
 | 
			
		||||
	return key->u32[0];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_inum_flash - fetch inode number from an on-flash formatted key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: key to fetch inode number from
 | 
			
		||||
 */
 | 
			
		||||
static inline ino_t key_inum_flash(const struct ubifs_info *c, const void *k)
 | 
			
		||||
{
 | 
			
		||||
	const union ubifs_key *key = k;
 | 
			
		||||
 | 
			
		||||
	return le32_to_cpu(key->j32[0]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_hash - get directory entry hash.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: the key to get hash from
 | 
			
		||||
 */
 | 
			
		||||
static inline int key_hash(const struct ubifs_info *c,
 | 
			
		||||
			   const union ubifs_key *key)
 | 
			
		||||
{
 | 
			
		||||
	return key->u32[1] & UBIFS_S_KEY_HASH_MASK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_hash_flash - get directory entry hash from an on-flash formatted key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: the key to get hash from
 | 
			
		||||
 */
 | 
			
		||||
static inline int key_hash_flash(const struct ubifs_info *c, const void *k)
 | 
			
		||||
{
 | 
			
		||||
	const union ubifs_key *key = k;
 | 
			
		||||
 | 
			
		||||
	return le32_to_cpu(key->j32[1]) & UBIFS_S_KEY_HASH_MASK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_block - get data block number.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: the key to get the block number from
 | 
			
		||||
 */
 | 
			
		||||
static inline unsigned int key_block(const struct ubifs_info *c,
 | 
			
		||||
				     const union ubifs_key *key)
 | 
			
		||||
{
 | 
			
		||||
	return key->u32[1] & UBIFS_S_KEY_BLOCK_MASK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_block_flash - get data block number from an on-flash formatted key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @k: the key to get the block number from
 | 
			
		||||
 */
 | 
			
		||||
static inline unsigned int key_block_flash(const struct ubifs_info *c,
 | 
			
		||||
					   const void *k)
 | 
			
		||||
{
 | 
			
		||||
	const union ubifs_key *key = k;
 | 
			
		||||
 | 
			
		||||
	return le32_to_cpu(key->u32[1]) & UBIFS_S_KEY_BLOCK_MASK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_read - transform a key to in-memory format.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @from: the key to transform
 | 
			
		||||
 * @to: the key to store the result
 | 
			
		||||
 */
 | 
			
		||||
static inline void key_read(const struct ubifs_info *c, const void *from,
 | 
			
		||||
			    union ubifs_key *to)
 | 
			
		||||
{
 | 
			
		||||
	const union ubifs_key *f = from;
 | 
			
		||||
 | 
			
		||||
	to->u32[0] = le32_to_cpu(f->j32[0]);
 | 
			
		||||
	to->u32[1] = le32_to_cpu(f->j32[1]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_write - transform a key from in-memory format.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @from: the key to transform
 | 
			
		||||
 * @to: the key to store the result
 | 
			
		||||
 */
 | 
			
		||||
static inline void key_write(const struct ubifs_info *c,
 | 
			
		||||
			     const union ubifs_key *from, void *to)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key *t = to;
 | 
			
		||||
 | 
			
		||||
	t->j32[0] = cpu_to_le32(from->u32[0]);
 | 
			
		||||
	t->j32[1] = cpu_to_le32(from->u32[1]);
 | 
			
		||||
	memset(to + 8, 0, UBIFS_MAX_KEY_LEN - 8);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_write_idx - transform a key from in-memory format for the index.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @from: the key to transform
 | 
			
		||||
 * @to: the key to store the result
 | 
			
		||||
 */
 | 
			
		||||
static inline void key_write_idx(const struct ubifs_info *c,
 | 
			
		||||
				 const union ubifs_key *from, void *to)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key *t = to;
 | 
			
		||||
 | 
			
		||||
	t->j32[0] = cpu_to_le32(from->u32[0]);
 | 
			
		||||
	t->j32[1] = cpu_to_le32(from->u32[1]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_copy - copy a key.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @from: the key to copy from
 | 
			
		||||
 * @to: the key to copy to
 | 
			
		||||
 */
 | 
			
		||||
static inline void key_copy(const struct ubifs_info *c,
 | 
			
		||||
			    const union ubifs_key *from, union ubifs_key *to)
 | 
			
		||||
{
 | 
			
		||||
	to->u64[0] = from->u64[0];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * keys_cmp - compare keys.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key1: the first key to compare
 | 
			
		||||
 * @key2: the second key to compare
 | 
			
		||||
 *
 | 
			
		||||
 * This function compares 2 keys and returns %-1 if @key1 is less than
 | 
			
		||||
 * @key2, 0 if the keys are equivalent and %1 if @key1 is greater than @key2.
 | 
			
		||||
 */
 | 
			
		||||
static inline int keys_cmp(const struct ubifs_info *c,
 | 
			
		||||
			   const union ubifs_key *key1,
 | 
			
		||||
			   const union ubifs_key *key2)
 | 
			
		||||
{
 | 
			
		||||
	if (key1->u32[0] < key2->u32[0])
 | 
			
		||||
		return -1;
 | 
			
		||||
	if (key1->u32[0] > key2->u32[0])
 | 
			
		||||
		return 1;
 | 
			
		||||
	if (key1->u32[1] < key2->u32[1])
 | 
			
		||||
		return -1;
 | 
			
		||||
	if (key1->u32[1] > key2->u32[1])
 | 
			
		||||
		return 1;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * is_hash_key - is a key vulnerable to hash collisions.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @key: key
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %1 if @key is a hashed key or %0 otherwise.
 | 
			
		||||
 */
 | 
			
		||||
static inline int is_hash_key(const struct ubifs_info *c,
 | 
			
		||||
			      const union ubifs_key *key)
 | 
			
		||||
{
 | 
			
		||||
	int type = key_type(c, key);
 | 
			
		||||
 | 
			
		||||
	return type == UBIFS_DENT_KEY || type == UBIFS_XENT_KEY;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * key_max_inode_size - get maximum file size allowed by current key format.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
static inline unsigned long long key_max_inode_size(const struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	switch (c->key_fmt) {
 | 
			
		||||
	case UBIFS_SIMPLE_KEY_FMT:
 | 
			
		||||
		return (1ULL << UBIFS_S_KEY_BLOCK_BITS) * UBIFS_BLOCK_SIZE;
 | 
			
		||||
	default:
 | 
			
		||||
		return 0;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
#endif /* !__UBIFS_KEY_H__ */
 | 
			
		||||
							
								
								
									
										805
									
								
								fs/ubifs/log.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										805
									
								
								fs/ubifs/log.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,805 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file is a part of UBIFS journal implementation and contains various
 | 
			
		||||
 * functions which manipulate the log. The log is a fixed area on the flash
 | 
			
		||||
 * which does not contain any data but refers to buds. The log is a part of the
 | 
			
		||||
 * journal.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
			
		||||
static int dbg_check_bud_bytes(struct ubifs_info *c);
 | 
			
		||||
#else
 | 
			
		||||
#define dbg_check_bud_bytes(c) 0
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_search_bud - search bud LEB.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: logical eraseblock number to search
 | 
			
		||||
 *
 | 
			
		||||
 * This function searches bud LEB @lnum. Returns bud description object in case
 | 
			
		||||
 * of success and %NULL if there is no bud with this LEB number.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node *p;
 | 
			
		||||
	struct ubifs_bud *bud;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->buds_lock);
 | 
			
		||||
	p = c->buds.rb_node;
 | 
			
		||||
	while (p) {
 | 
			
		||||
		bud = rb_entry(p, struct ubifs_bud, rb);
 | 
			
		||||
		if (lnum < bud->lnum)
 | 
			
		||||
			p = p->rb_left;
 | 
			
		||||
		else if (lnum > bud->lnum)
 | 
			
		||||
			p = p->rb_right;
 | 
			
		||||
		else {
 | 
			
		||||
			spin_unlock(&c->buds_lock);
 | 
			
		||||
			return bud;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->buds_lock);
 | 
			
		||||
	return NULL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_get_wbuf - get the wbuf associated with a LEB, if there is one.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: logical eraseblock number to search
 | 
			
		||||
 *
 | 
			
		||||
 * This functions returns the wbuf for @lnum or %NULL if there is not one.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node *p;
 | 
			
		||||
	struct ubifs_bud *bud;
 | 
			
		||||
	int jhead;
 | 
			
		||||
 | 
			
		||||
	if (!c->jheads)
 | 
			
		||||
		return NULL;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->buds_lock);
 | 
			
		||||
	p = c->buds.rb_node;
 | 
			
		||||
	while (p) {
 | 
			
		||||
		bud = rb_entry(p, struct ubifs_bud, rb);
 | 
			
		||||
		if (lnum < bud->lnum)
 | 
			
		||||
			p = p->rb_left;
 | 
			
		||||
		else if (lnum > bud->lnum)
 | 
			
		||||
			p = p->rb_right;
 | 
			
		||||
		else {
 | 
			
		||||
			jhead = bud->jhead;
 | 
			
		||||
			spin_unlock(&c->buds_lock);
 | 
			
		||||
			return &c->jheads[jhead].wbuf;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->buds_lock);
 | 
			
		||||
	return NULL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * next_log_lnum - switch to the next log LEB.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: current log LEB
 | 
			
		||||
 */
 | 
			
		||||
static inline int next_log_lnum(const struct ubifs_info *c, int lnum)
 | 
			
		||||
{
 | 
			
		||||
	lnum += 1;
 | 
			
		||||
	if (lnum > c->log_last)
 | 
			
		||||
		lnum = UBIFS_LOG_LNUM;
 | 
			
		||||
 | 
			
		||||
	return lnum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * empty_log_bytes - calculate amount of empty space in the log.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
static inline long long empty_log_bytes(const struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	long long h, t;
 | 
			
		||||
 | 
			
		||||
	h = (long long)c->lhead_lnum * c->leb_size + c->lhead_offs;
 | 
			
		||||
	t = (long long)c->ltail_lnum * c->leb_size;
 | 
			
		||||
 | 
			
		||||
	if (h >= t)
 | 
			
		||||
		return c->log_bytes - h + t;
 | 
			
		||||
	else
 | 
			
		||||
		return t - h;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_add_bud - add bud LEB to the tree of buds and its journal head list.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @bud: the bud to add
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node **p, *parent = NULL;
 | 
			
		||||
	struct ubifs_bud *b;
 | 
			
		||||
	struct ubifs_jhead *jhead;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->buds_lock);
 | 
			
		||||
	p = &c->buds.rb_node;
 | 
			
		||||
	while (*p) {
 | 
			
		||||
		parent = *p;
 | 
			
		||||
		b = rb_entry(parent, struct ubifs_bud, rb);
 | 
			
		||||
		ubifs_assert(bud->lnum != b->lnum);
 | 
			
		||||
		if (bud->lnum < b->lnum)
 | 
			
		||||
			p = &(*p)->rb_left;
 | 
			
		||||
		else
 | 
			
		||||
			p = &(*p)->rb_right;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	rb_link_node(&bud->rb, parent, p);
 | 
			
		||||
	rb_insert_color(&bud->rb, &c->buds);
 | 
			
		||||
	if (c->jheads) {
 | 
			
		||||
		jhead = &c->jheads[bud->jhead];
 | 
			
		||||
		list_add_tail(&bud->list, &jhead->buds_list);
 | 
			
		||||
	} else
 | 
			
		||||
		ubifs_assert(c->replaying && (c->vfs_sb->s_flags & MS_RDONLY));
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Note, although this is a new bud, we anyway account this space now,
 | 
			
		||||
	 * before any data has been written to it, because this is about to
 | 
			
		||||
	 * guarantee fixed mount time, and this bud will anyway be read and
 | 
			
		||||
	 * scanned.
 | 
			
		||||
	 */
 | 
			
		||||
	c->bud_bytes += c->leb_size - bud->start;
 | 
			
		||||
 | 
			
		||||
	dbg_log("LEB %d:%d, jhead %d, bud_bytes %lld", bud->lnum,
 | 
			
		||||
		bud->start, bud->jhead, c->bud_bytes);
 | 
			
		||||
	spin_unlock(&c->buds_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_create_buds_lists - create journal head buds lists for remount rw.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_create_buds_lists(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node *p;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->buds_lock);
 | 
			
		||||
	p = rb_first(&c->buds);
 | 
			
		||||
	while (p) {
 | 
			
		||||
		struct ubifs_bud *bud = rb_entry(p, struct ubifs_bud, rb);
 | 
			
		||||
		struct ubifs_jhead *jhead = &c->jheads[bud->jhead];
 | 
			
		||||
 | 
			
		||||
		list_add_tail(&bud->list, &jhead->buds_list);
 | 
			
		||||
		p = rb_next(p);
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->buds_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_add_bud_to_log - add a new bud to the log.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @jhead: journal head the bud belongs to
 | 
			
		||||
 * @lnum: LEB number of the bud
 | 
			
		||||
 * @offs: starting offset of the bud
 | 
			
		||||
 *
 | 
			
		||||
 * This function writes reference node for the new bud LEB @lnum it to the log,
 | 
			
		||||
 * and adds it to the buds tress. It also makes sure that log size does not
 | 
			
		||||
 * exceed the 'c->max_bud_bytes' limit. Returns zero in case of success,
 | 
			
		||||
 * %-EAGAIN if commit is required, and a negative error codes in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct ubifs_bud *bud;
 | 
			
		||||
	struct ubifs_ref_node *ref;
 | 
			
		||||
 | 
			
		||||
	bud = kmalloc(sizeof(struct ubifs_bud), GFP_NOFS);
 | 
			
		||||
	if (!bud)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	ref = kzalloc(c->ref_node_alsz, GFP_NOFS);
 | 
			
		||||
	if (!ref) {
 | 
			
		||||
		kfree(bud);
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&c->log_mutex);
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media) {
 | 
			
		||||
		err = -EROFS;
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Make sure we have enough space in the log */
 | 
			
		||||
	if (empty_log_bytes(c) - c->ref_node_alsz < c->min_log_bytes) {
 | 
			
		||||
		dbg_log("not enough log space - %lld, required %d",
 | 
			
		||||
			empty_log_bytes(c), c->min_log_bytes);
 | 
			
		||||
		ubifs_commit_required(c);
 | 
			
		||||
		err = -EAGAIN;
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Make sure the the amount of space in buds will not exceed
 | 
			
		||||
	 * 'c->max_bud_bytes' limit, because we want to guarantee mount time
 | 
			
		||||
	 * limits.
 | 
			
		||||
	 *
 | 
			
		||||
	 * It is not necessary to hold @c->buds_lock when reading @c->bud_bytes
 | 
			
		||||
	 * because we are holding @c->log_mutex. All @c->bud_bytes take place
 | 
			
		||||
	 * when both @c->log_mutex and @c->bud_bytes are locked.
 | 
			
		||||
	 */
 | 
			
		||||
	if (c->bud_bytes + c->leb_size - offs > c->max_bud_bytes) {
 | 
			
		||||
		dbg_log("bud bytes %lld (%lld max), require commit",
 | 
			
		||||
			c->bud_bytes, c->max_bud_bytes);
 | 
			
		||||
		ubifs_commit_required(c);
 | 
			
		||||
		err = -EAGAIN;
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * If the journal is full enough - start background commit. Note, it is
 | 
			
		||||
	 * OK to read 'c->cmt_state' without spinlock because integer reads
 | 
			
		||||
	 * are atomic in the kernel.
 | 
			
		||||
	 */
 | 
			
		||||
	if (c->bud_bytes >= c->bg_bud_bytes &&
 | 
			
		||||
	    c->cmt_state == COMMIT_RESTING) {
 | 
			
		||||
		dbg_log("bud bytes %lld (%lld max), initiate BG commit",
 | 
			
		||||
			c->bud_bytes, c->max_bud_bytes);
 | 
			
		||||
		ubifs_request_bg_commit(c);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	bud->lnum = lnum;
 | 
			
		||||
	bud->start = offs;
 | 
			
		||||
	bud->jhead = jhead;
 | 
			
		||||
 | 
			
		||||
	ref->ch.node_type = UBIFS_REF_NODE;
 | 
			
		||||
	ref->lnum = cpu_to_le32(bud->lnum);
 | 
			
		||||
	ref->offs = cpu_to_le32(bud->start);
 | 
			
		||||
	ref->jhead = cpu_to_le32(jhead);
 | 
			
		||||
 | 
			
		||||
	if (c->lhead_offs > c->leb_size - c->ref_node_alsz) {
 | 
			
		||||
		c->lhead_lnum = next_log_lnum(c, c->lhead_lnum);
 | 
			
		||||
		c->lhead_offs = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lhead_offs == 0) {
 | 
			
		||||
		/* Must ensure next log LEB has been unmapped */
 | 
			
		||||
		err = ubifs_leb_unmap(c, c->lhead_lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (bud->start == 0) {
 | 
			
		||||
		/*
 | 
			
		||||
		 * Before writing the LEB reference which refers an empty LEB
 | 
			
		||||
		 * to the log, we have to make sure it is mapped, because
 | 
			
		||||
		 * otherwise we'd risk to refer an LEB with garbage in case of
 | 
			
		||||
		 * an unclean reboot, because the target LEB might have been
 | 
			
		||||
		 * unmapped, but not yet physically erased.
 | 
			
		||||
		 */
 | 
			
		||||
		err = ubi_leb_map(c->ubi, bud->lnum, UBI_SHORTTERM);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dbg_log("write ref LEB %d:%d",
 | 
			
		||||
		c->lhead_lnum, c->lhead_offs);
 | 
			
		||||
	err = ubifs_write_node(c, ref, UBIFS_REF_NODE_SZ, c->lhead_lnum,
 | 
			
		||||
			       c->lhead_offs, UBI_SHORTTERM);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
 | 
			
		||||
	c->lhead_offs += c->ref_node_alsz;
 | 
			
		||||
 | 
			
		||||
	ubifs_add_bud(c, bud);
 | 
			
		||||
 | 
			
		||||
	mutex_unlock(&c->log_mutex);
 | 
			
		||||
	kfree(ref);
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_unlock:
 | 
			
		||||
	mutex_unlock(&c->log_mutex);
 | 
			
		||||
	kfree(ref);
 | 
			
		||||
	kfree(bud);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * remove_buds - remove used buds.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function removes use buds from the buds tree. It does not remove the
 | 
			
		||||
 * buds which are pointed to by journal heads.
 | 
			
		||||
 */
 | 
			
		||||
static void remove_buds(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node *p;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(list_empty(&c->old_buds));
 | 
			
		||||
	c->cmt_bud_bytes = 0;
 | 
			
		||||
	spin_lock(&c->buds_lock);
 | 
			
		||||
	p = rb_first(&c->buds);
 | 
			
		||||
	while (p) {
 | 
			
		||||
		struct rb_node *p1 = p;
 | 
			
		||||
		struct ubifs_bud *bud;
 | 
			
		||||
		struct ubifs_wbuf *wbuf;
 | 
			
		||||
 | 
			
		||||
		p = rb_next(p);
 | 
			
		||||
		bud = rb_entry(p1, struct ubifs_bud, rb);
 | 
			
		||||
		wbuf = &c->jheads[bud->jhead].wbuf;
 | 
			
		||||
 | 
			
		||||
		if (wbuf->lnum == bud->lnum) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * Do not remove buds which are pointed to by journal
 | 
			
		||||
			 * heads (non-closed buds).
 | 
			
		||||
			 */
 | 
			
		||||
			c->cmt_bud_bytes += wbuf->offs - bud->start;
 | 
			
		||||
			dbg_log("preserve %d:%d, jhead %d, bud bytes %d, "
 | 
			
		||||
				"cmt_bud_bytes %lld", bud->lnum, bud->start,
 | 
			
		||||
				bud->jhead, wbuf->offs - bud->start,
 | 
			
		||||
				c->cmt_bud_bytes);
 | 
			
		||||
			bud->start = wbuf->offs;
 | 
			
		||||
		} else {
 | 
			
		||||
			c->cmt_bud_bytes += c->leb_size - bud->start;
 | 
			
		||||
			dbg_log("remove %d:%d, jhead %d, bud bytes %d, "
 | 
			
		||||
				"cmt_bud_bytes %lld", bud->lnum, bud->start,
 | 
			
		||||
				bud->jhead, c->leb_size - bud->start,
 | 
			
		||||
				c->cmt_bud_bytes);
 | 
			
		||||
			rb_erase(p1, &c->buds);
 | 
			
		||||
			list_del(&bud->list);
 | 
			
		||||
			/*
 | 
			
		||||
			 * If the commit does not finish, the recovery will need
 | 
			
		||||
			 * to replay the journal, in which case the old buds
 | 
			
		||||
			 * must be unchanged. Do not release them until post
 | 
			
		||||
			 * commit i.e. do not allow them to be garbage
 | 
			
		||||
			 * collected.
 | 
			
		||||
			 */
 | 
			
		||||
			list_add(&bud->list, &c->old_buds);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->buds_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_log_start_commit - start commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @ltail_lnum: return new log tail LEB number
 | 
			
		||||
 *
 | 
			
		||||
 * The commit operation starts with writing "commit start" node to the log and
 | 
			
		||||
 * reference nodes for all journal heads which will define new journal after
 | 
			
		||||
 * the commit has been finished. The commit start and reference nodes are
 | 
			
		||||
 * written in one go to the nearest empty log LEB (hence, when commit is
 | 
			
		||||
 * finished UBIFS may safely unmap all the previous log LEBs). This function
 | 
			
		||||
 * returns zero in case of success and a negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum)
 | 
			
		||||
{
 | 
			
		||||
	void *buf;
 | 
			
		||||
	struct ubifs_cs_node *cs;
 | 
			
		||||
	struct ubifs_ref_node *ref;
 | 
			
		||||
	int err, i, max_len, len;
 | 
			
		||||
 | 
			
		||||
	err = dbg_check_bud_bytes(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	max_len = UBIFS_CS_NODE_SZ + c->jhead_cnt * UBIFS_REF_NODE_SZ;
 | 
			
		||||
	max_len = ALIGN(max_len, c->min_io_size);
 | 
			
		||||
	buf = cs = kmalloc(max_len, GFP_NOFS);
 | 
			
		||||
	if (!buf)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	cs->ch.node_type = UBIFS_CS_NODE;
 | 
			
		||||
	cs->cmt_no = cpu_to_le64(c->cmt_no + 1);
 | 
			
		||||
	ubifs_prepare_node(c, cs, UBIFS_CS_NODE_SZ, 0);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Note, we do not lock 'c->log_mutex' because this is the commit start
 | 
			
		||||
	 * phase and we are exclusively using the log. And we do not lock
 | 
			
		||||
	 * write-buffer because nobody can write to the file-system at this
 | 
			
		||||
	 * phase.
 | 
			
		||||
	 */
 | 
			
		||||
 | 
			
		||||
	len = UBIFS_CS_NODE_SZ;
 | 
			
		||||
	for (i = 0; i < c->jhead_cnt; i++) {
 | 
			
		||||
		int lnum = c->jheads[i].wbuf.lnum;
 | 
			
		||||
		int offs = c->jheads[i].wbuf.offs;
 | 
			
		||||
 | 
			
		||||
		if (lnum == -1 || offs == c->leb_size)
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		dbg_log("add ref to LEB %d:%d for jhead %d", lnum, offs, i);
 | 
			
		||||
		ref = buf + len;
 | 
			
		||||
		ref->ch.node_type = UBIFS_REF_NODE;
 | 
			
		||||
		ref->lnum = cpu_to_le32(lnum);
 | 
			
		||||
		ref->offs = cpu_to_le32(offs);
 | 
			
		||||
		ref->jhead = cpu_to_le32(i);
 | 
			
		||||
 | 
			
		||||
		ubifs_prepare_node(c, ref, UBIFS_REF_NODE_SZ, 0);
 | 
			
		||||
		len += UBIFS_REF_NODE_SZ;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ubifs_pad(c, buf + len, ALIGN(len, c->min_io_size) - len);
 | 
			
		||||
 | 
			
		||||
	/* Switch to the next log LEB */
 | 
			
		||||
	if (c->lhead_offs) {
 | 
			
		||||
		c->lhead_lnum = next_log_lnum(c, c->lhead_lnum);
 | 
			
		||||
		c->lhead_offs = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lhead_offs == 0) {
 | 
			
		||||
		/* Must ensure next LEB has been unmapped */
 | 
			
		||||
		err = ubifs_leb_unmap(c, c->lhead_lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	len = ALIGN(len, c->min_io_size);
 | 
			
		||||
	dbg_log("writing commit start at LEB %d:0, len %d", c->lhead_lnum, len);
 | 
			
		||||
	err = ubifs_leb_write(c, c->lhead_lnum, cs, 0, len, UBI_SHORTTERM);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	*ltail_lnum = c->lhead_lnum;
 | 
			
		||||
 | 
			
		||||
	c->lhead_offs += len;
 | 
			
		||||
	if (c->lhead_offs == c->leb_size) {
 | 
			
		||||
		c->lhead_lnum = next_log_lnum(c, c->lhead_lnum);
 | 
			
		||||
		c->lhead_offs = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	remove_buds(c);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * We have started the commit and now users may use the rest of the log
 | 
			
		||||
	 * for new writes.
 | 
			
		||||
	 */
 | 
			
		||||
	c->min_log_bytes = 0;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	kfree(buf);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_log_end_commit - end commit.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @ltail_lnum: new log tail LEB number
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called on when the commit operation was finished. It
 | 
			
		||||
 * moves log tail to new position and unmaps LEBs which contain obsolete data.
 | 
			
		||||
 * Returns zero in case of success and a negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_log_end_commit(struct ubifs_info *c, int ltail_lnum)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * At this phase we have to lock 'c->log_mutex' because UBIFS allows FS
 | 
			
		||||
	 * writes during commit. Its only short "commit" start phase when
 | 
			
		||||
	 * writers are blocked.
 | 
			
		||||
	 */
 | 
			
		||||
	mutex_lock(&c->log_mutex);
 | 
			
		||||
 | 
			
		||||
	dbg_log("old tail was LEB %d:0, new tail is LEB %d:0",
 | 
			
		||||
		c->ltail_lnum, ltail_lnum);
 | 
			
		||||
 | 
			
		||||
	c->ltail_lnum = ltail_lnum;
 | 
			
		||||
	/*
 | 
			
		||||
	 * The commit is finished and from now on it must be guaranteed that
 | 
			
		||||
	 * there is always enough space for the next commit.
 | 
			
		||||
	 */
 | 
			
		||||
	c->min_log_bytes = c->leb_size;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->buds_lock);
 | 
			
		||||
	c->bud_bytes -= c->cmt_bud_bytes;
 | 
			
		||||
	spin_unlock(&c->buds_lock);
 | 
			
		||||
 | 
			
		||||
	err = dbg_check_bud_bytes(c);
 | 
			
		||||
 | 
			
		||||
	mutex_unlock(&c->log_mutex);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_log_post_commit - things to do after commit is completed.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @old_ltail_lnum: old log tail LEB number
 | 
			
		||||
 *
 | 
			
		||||
 * Release buds only after commit is completed, because they must be unchanged
 | 
			
		||||
 * if recovery is needed.
 | 
			
		||||
 *
 | 
			
		||||
 * Unmap log LEBs only after commit is completed, because they may be needed for
 | 
			
		||||
 * recovery.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum)
 | 
			
		||||
{
 | 
			
		||||
	int lnum, err = 0;
 | 
			
		||||
 | 
			
		||||
	while (!list_empty(&c->old_buds)) {
 | 
			
		||||
		struct ubifs_bud *bud;
 | 
			
		||||
 | 
			
		||||
		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
 | 
			
		||||
		err = ubifs_return_leb(c, bud->lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
		list_del(&bud->list);
 | 
			
		||||
		kfree(bud);
 | 
			
		||||
	}
 | 
			
		||||
	mutex_lock(&c->log_mutex);
 | 
			
		||||
	for (lnum = old_ltail_lnum; lnum != c->ltail_lnum;
 | 
			
		||||
	     lnum = next_log_lnum(c, lnum)) {
 | 
			
		||||
		dbg_log("unmap log LEB %d", lnum);
 | 
			
		||||
		err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out;
 | 
			
		||||
	}
 | 
			
		||||
out:
 | 
			
		||||
	mutex_unlock(&c->log_mutex);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct done_ref - references that have been done.
 | 
			
		||||
 * @rb: rb-tree node
 | 
			
		||||
 * @lnum: LEB number
 | 
			
		||||
 */
 | 
			
		||||
struct done_ref {
 | 
			
		||||
	struct rb_node rb;
 | 
			
		||||
	int lnum;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * done_already - determine if a reference has been done already.
 | 
			
		||||
 * @done_tree: rb-tree to store references that have been done
 | 
			
		||||
 * @lnum: LEB number of reference
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %1 if the reference has been done, %0 if not, otherwise
 | 
			
		||||
 * a negative error code is returned.
 | 
			
		||||
 */
 | 
			
		||||
static int done_already(struct rb_root *done_tree, int lnum)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node **p = &done_tree->rb_node, *parent = NULL;
 | 
			
		||||
	struct done_ref *dr;
 | 
			
		||||
 | 
			
		||||
	while (*p) {
 | 
			
		||||
		parent = *p;
 | 
			
		||||
		dr = rb_entry(parent, struct done_ref, rb);
 | 
			
		||||
		if (lnum < dr->lnum)
 | 
			
		||||
			p = &(*p)->rb_left;
 | 
			
		||||
		else if (lnum > dr->lnum)
 | 
			
		||||
			p = &(*p)->rb_right;
 | 
			
		||||
		else
 | 
			
		||||
			return 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dr = kzalloc(sizeof(struct done_ref), GFP_NOFS);
 | 
			
		||||
	if (!dr)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	dr->lnum = lnum;
 | 
			
		||||
 | 
			
		||||
	rb_link_node(&dr->rb, parent, p);
 | 
			
		||||
	rb_insert_color(&dr->rb, done_tree);
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * destroy_done_tree - destroy the done tree.
 | 
			
		||||
 * @done_tree: done tree to destroy
 | 
			
		||||
 */
 | 
			
		||||
static void destroy_done_tree(struct rb_root *done_tree)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node *this = done_tree->rb_node;
 | 
			
		||||
	struct done_ref *dr;
 | 
			
		||||
 | 
			
		||||
	while (this) {
 | 
			
		||||
		if (this->rb_left) {
 | 
			
		||||
			this = this->rb_left;
 | 
			
		||||
			continue;
 | 
			
		||||
		} else if (this->rb_right) {
 | 
			
		||||
			this = this->rb_right;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
		dr = rb_entry(this, struct done_ref, rb);
 | 
			
		||||
		this = rb_parent(this);
 | 
			
		||||
		if (this) {
 | 
			
		||||
			if (this->rb_left == &dr->rb)
 | 
			
		||||
				this->rb_left = NULL;
 | 
			
		||||
			else
 | 
			
		||||
				this->rb_right = NULL;
 | 
			
		||||
		}
 | 
			
		||||
		kfree(dr);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * add_node - add a node to the consolidated log.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @buf: buffer to which to add
 | 
			
		||||
 * @lnum: LEB number to which to write is passed and returned here
 | 
			
		||||
 * @offs: offset to where to write is passed and returned here
 | 
			
		||||
 * @node: node to add
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
static int add_node(struct ubifs_info *c, void *buf, int *lnum, int *offs,
 | 
			
		||||
		    void *node)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_ch *ch = node;
 | 
			
		||||
	int len = le32_to_cpu(ch->len), remains = c->leb_size - *offs;
 | 
			
		||||
 | 
			
		||||
	if (len > remains) {
 | 
			
		||||
		int sz = ALIGN(*offs, c->min_io_size), err;
 | 
			
		||||
 | 
			
		||||
		ubifs_pad(c, buf + *offs, sz - *offs);
 | 
			
		||||
		err = ubifs_leb_change(c, *lnum, buf, sz, UBI_SHORTTERM);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
		*lnum = next_log_lnum(c, *lnum);
 | 
			
		||||
		*offs = 0;
 | 
			
		||||
	}
 | 
			
		||||
	memcpy(buf + *offs, node, len);
 | 
			
		||||
	*offs += ALIGN(len, 8);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_consolidate_log - consolidate the log.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * Repeated failed commits could cause the log to be full, but at least 1 LEB is
 | 
			
		||||
 * needed for commit. This function rewrites the reference nodes in the log
 | 
			
		||||
 * omitting duplicates, and failed CS nodes, and leaving no gaps.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_consolidate_log(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_leb *sleb;
 | 
			
		||||
	struct ubifs_scan_node *snod;
 | 
			
		||||
	struct rb_root done_tree = RB_ROOT;
 | 
			
		||||
	int lnum, err, first = 1, write_lnum, offs = 0;
 | 
			
		||||
	void *buf;
 | 
			
		||||
 | 
			
		||||
	dbg_rcvry("log tail LEB %d, log head LEB %d", c->ltail_lnum,
 | 
			
		||||
		  c->lhead_lnum);
 | 
			
		||||
	buf = vmalloc(c->leb_size);
 | 
			
		||||
	if (!buf)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	lnum = c->ltail_lnum;
 | 
			
		||||
	write_lnum = lnum;
 | 
			
		||||
	while (1) {
 | 
			
		||||
		sleb = ubifs_scan(c, lnum, 0, c->sbuf);
 | 
			
		||||
		if (IS_ERR(sleb)) {
 | 
			
		||||
			err = PTR_ERR(sleb);
 | 
			
		||||
			goto out_free;
 | 
			
		||||
		}
 | 
			
		||||
		list_for_each_entry(snod, &sleb->nodes, list) {
 | 
			
		||||
			switch (snod->type) {
 | 
			
		||||
			case UBIFS_REF_NODE: {
 | 
			
		||||
				struct ubifs_ref_node *ref = snod->node;
 | 
			
		||||
				int ref_lnum = le32_to_cpu(ref->lnum);
 | 
			
		||||
 | 
			
		||||
				err = done_already(&done_tree, ref_lnum);
 | 
			
		||||
				if (err < 0)
 | 
			
		||||
					goto out_scan;
 | 
			
		||||
				if (err != 1) {
 | 
			
		||||
					err = add_node(c, buf, &write_lnum,
 | 
			
		||||
						       &offs, snod->node);
 | 
			
		||||
					if (err)
 | 
			
		||||
						goto out_scan;
 | 
			
		||||
				}
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
			case UBIFS_CS_NODE:
 | 
			
		||||
				if (!first)
 | 
			
		||||
					break;
 | 
			
		||||
				err = add_node(c, buf, &write_lnum, &offs,
 | 
			
		||||
					       snod->node);
 | 
			
		||||
				if (err)
 | 
			
		||||
					goto out_scan;
 | 
			
		||||
				first = 0;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		ubifs_scan_destroy(sleb);
 | 
			
		||||
		if (lnum == c->lhead_lnum)
 | 
			
		||||
			break;
 | 
			
		||||
		lnum = next_log_lnum(c, lnum);
 | 
			
		||||
	}
 | 
			
		||||
	if (offs) {
 | 
			
		||||
		int sz = ALIGN(offs, c->min_io_size);
 | 
			
		||||
 | 
			
		||||
		ubifs_pad(c, buf + offs, sz - offs);
 | 
			
		||||
		err = ubifs_leb_change(c, write_lnum, buf, sz, UBI_SHORTTERM);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto out_free;
 | 
			
		||||
		offs = ALIGN(offs, c->min_io_size);
 | 
			
		||||
	}
 | 
			
		||||
	destroy_done_tree(&done_tree);
 | 
			
		||||
	vfree(buf);
 | 
			
		||||
	if (write_lnum == c->lhead_lnum) {
 | 
			
		||||
		ubifs_err("log is too full");
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
	/* Unmap remaining LEBs */
 | 
			
		||||
	lnum = write_lnum;
 | 
			
		||||
	do {
 | 
			
		||||
		lnum = next_log_lnum(c, lnum);
 | 
			
		||||
		err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	} while (lnum != c->lhead_lnum);
 | 
			
		||||
	c->lhead_lnum = write_lnum;
 | 
			
		||||
	c->lhead_offs = offs;
 | 
			
		||||
	dbg_rcvry("new log head at %d:%d", c->lhead_lnum, c->lhead_offs);
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_scan:
 | 
			
		||||
	ubifs_scan_destroy(sleb);
 | 
			
		||||
out_free:
 | 
			
		||||
	destroy_done_tree(&done_tree);
 | 
			
		||||
	vfree(buf);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * dbg_check_bud_bytes - make sure bud bytes calculation are all right.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function makes sure the amount of flash space used by closed buds
 | 
			
		||||
 * ('c->bud_bytes' is correct). Returns zero in case of success and %-EINVAL in
 | 
			
		||||
 * case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int dbg_check_bud_bytes(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int i, err = 0;
 | 
			
		||||
	struct ubifs_bud *bud;
 | 
			
		||||
	long long bud_bytes = 0;
 | 
			
		||||
 | 
			
		||||
	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
 | 
			
		||||
		return 0;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->buds_lock);
 | 
			
		||||
	for (i = 0; i < c->jhead_cnt; i++)
 | 
			
		||||
		list_for_each_entry(bud, &c->jheads[i].buds_list, list)
 | 
			
		||||
			bud_bytes += c->leb_size - bud->start;
 | 
			
		||||
 | 
			
		||||
	if (c->bud_bytes != bud_bytes) {
 | 
			
		||||
		ubifs_err("bad bud_bytes %lld, calculated %lld",
 | 
			
		||||
			  c->bud_bytes, bud_bytes);
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->buds_lock);
 | 
			
		||||
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif /* CONFIG_UBIFS_FS_DEBUG */
 | 
			
		||||
							
								
								
									
										1357
									
								
								fs/ubifs/lprops.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1357
									
								
								fs/ubifs/lprops.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										2243
									
								
								fs/ubifs/lpt.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2243
									
								
								fs/ubifs/lpt.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										1648
									
								
								fs/ubifs/lpt_commit.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1648
									
								
								fs/ubifs/lpt_commit.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										387
									
								
								fs/ubifs/master.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										387
									
								
								fs/ubifs/master.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,387 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* This file implements reading and writing the master node */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_for_master - search the valid master node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function scans the master node LEBs and search for the latest master
 | 
			
		||||
 * node. Returns zero in case of success and a negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
static int scan_for_master(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_leb *sleb;
 | 
			
		||||
	struct ubifs_scan_node *snod;
 | 
			
		||||
	int lnum, offs = 0, nodes_cnt;
 | 
			
		||||
 | 
			
		||||
	lnum = UBIFS_MST_LNUM;
 | 
			
		||||
 | 
			
		||||
	sleb = ubifs_scan(c, lnum, 0, c->sbuf);
 | 
			
		||||
	if (IS_ERR(sleb))
 | 
			
		||||
		return PTR_ERR(sleb);
 | 
			
		||||
	nodes_cnt = sleb->nodes_cnt;
 | 
			
		||||
	if (nodes_cnt > 0) {
 | 
			
		||||
		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 | 
			
		||||
				  list);
 | 
			
		||||
		if (snod->type != UBIFS_MST_NODE)
 | 
			
		||||
			goto out;
 | 
			
		||||
		memcpy(c->mst_node, snod->node, snod->len);
 | 
			
		||||
		offs = snod->offs;
 | 
			
		||||
	}
 | 
			
		||||
	ubifs_scan_destroy(sleb);
 | 
			
		||||
 | 
			
		||||
	lnum += 1;
 | 
			
		||||
 | 
			
		||||
	sleb = ubifs_scan(c, lnum, 0, c->sbuf);
 | 
			
		||||
	if (IS_ERR(sleb))
 | 
			
		||||
		return PTR_ERR(sleb);
 | 
			
		||||
	if (sleb->nodes_cnt != nodes_cnt)
 | 
			
		||||
		goto out;
 | 
			
		||||
	if (!sleb->nodes_cnt)
 | 
			
		||||
		goto out;
 | 
			
		||||
	snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list);
 | 
			
		||||
	if (snod->type != UBIFS_MST_NODE)
 | 
			
		||||
		goto out;
 | 
			
		||||
	if (snod->offs != offs)
 | 
			
		||||
		goto out;
 | 
			
		||||
	if (memcmp((void *)c->mst_node + UBIFS_CH_SZ,
 | 
			
		||||
		   (void *)snod->node + UBIFS_CH_SZ,
 | 
			
		||||
		   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
 | 
			
		||||
		goto out;
 | 
			
		||||
	c->mst_offs = offs;
 | 
			
		||||
	ubifs_scan_destroy(sleb);
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_scan_destroy(sleb);
 | 
			
		||||
	return -EINVAL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * validate_master - validate master node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function validates data which was read from master node. Returns zero
 | 
			
		||||
 * if the data is all right and %-EINVAL if not.
 | 
			
		||||
 */
 | 
			
		||||
static int validate_master(const struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	long long main_sz;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	if (c->max_sqnum >= SQNUM_WATERMARK) {
 | 
			
		||||
		err = 1;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->cmt_no >= c->max_sqnum) {
 | 
			
		||||
		err = 2;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->highest_inum >= INUM_WATERMARK) {
 | 
			
		||||
		err = 3;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lhead_lnum < UBIFS_LOG_LNUM ||
 | 
			
		||||
	    c->lhead_lnum >= UBIFS_LOG_LNUM + c->log_lebs ||
 | 
			
		||||
	    c->lhead_offs < 0 || c->lhead_offs >= c->leb_size ||
 | 
			
		||||
	    c->lhead_offs & (c->min_io_size - 1)) {
 | 
			
		||||
		err = 4;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->zroot.lnum >= c->leb_cnt || c->zroot.lnum < c->main_first ||
 | 
			
		||||
	    c->zroot.offs >= c->leb_size || c->zroot.offs & 7) {
 | 
			
		||||
		err = 5;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->zroot.len < c->ranges[UBIFS_IDX_NODE].min_len ||
 | 
			
		||||
	    c->zroot.len > c->ranges[UBIFS_IDX_NODE].max_len) {
 | 
			
		||||
		err = 6;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->gc_lnum >= c->leb_cnt || c->gc_lnum < c->main_first) {
 | 
			
		||||
		err = 7;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->ihead_lnum >= c->leb_cnt || c->ihead_lnum < c->main_first ||
 | 
			
		||||
	    c->ihead_offs % c->min_io_size || c->ihead_offs < 0 ||
 | 
			
		||||
	    c->ihead_offs > c->leb_size || c->ihead_offs & 7) {
 | 
			
		||||
		err = 8;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	main_sz = (long long)c->main_lebs * c->leb_size;
 | 
			
		||||
	if (c->old_idx_sz & 7 || c->old_idx_sz >= main_sz) {
 | 
			
		||||
		err = 9;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lpt_lnum < c->lpt_first || c->lpt_lnum > c->lpt_last ||
 | 
			
		||||
	    c->lpt_offs < 0 || c->lpt_offs + c->nnode_sz > c->leb_size) {
 | 
			
		||||
		err = 10;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->nhead_lnum < c->lpt_first || c->nhead_lnum > c->lpt_last ||
 | 
			
		||||
	    c->nhead_offs < 0 || c->nhead_offs % c->min_io_size ||
 | 
			
		||||
	    c->nhead_offs > c->leb_size) {
 | 
			
		||||
		err = 11;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->ltab_lnum < c->lpt_first || c->ltab_lnum > c->lpt_last ||
 | 
			
		||||
	    c->ltab_offs < 0 ||
 | 
			
		||||
	    c->ltab_offs + c->ltab_sz > c->leb_size) {
 | 
			
		||||
		err = 12;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->big_lpt && (c->lsave_lnum < c->lpt_first ||
 | 
			
		||||
	    c->lsave_lnum > c->lpt_last || c->lsave_offs < 0 ||
 | 
			
		||||
	    c->lsave_offs + c->lsave_sz > c->leb_size)) {
 | 
			
		||||
		err = 13;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lscan_lnum < c->main_first || c->lscan_lnum >= c->leb_cnt) {
 | 
			
		||||
		err = 14;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.empty_lebs < 0 || c->lst.empty_lebs > c->main_lebs - 2) {
 | 
			
		||||
		err = 15;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.idx_lebs < 0 || c->lst.idx_lebs > c->main_lebs - 1) {
 | 
			
		||||
		err = 16;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.total_free < 0 || c->lst.total_free > main_sz ||
 | 
			
		||||
	    c->lst.total_free & 7) {
 | 
			
		||||
		err = 17;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.total_dirty < 0 || (c->lst.total_dirty & 7)) {
 | 
			
		||||
		err = 18;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.total_used < 0 || (c->lst.total_used & 7)) {
 | 
			
		||||
		err = 19;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.total_free + c->lst.total_dirty +
 | 
			
		||||
	    c->lst.total_used > main_sz) {
 | 
			
		||||
		err = 20;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.total_dead + c->lst.total_dark +
 | 
			
		||||
	    c->lst.total_used + c->old_idx_sz > main_sz) {
 | 
			
		||||
		err = 21;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.total_dead < 0 ||
 | 
			
		||||
	    c->lst.total_dead > c->lst.total_free + c->lst.total_dirty ||
 | 
			
		||||
	    c->lst.total_dead & 7) {
 | 
			
		||||
		err = 22;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lst.total_dark < 0 ||
 | 
			
		||||
	    c->lst.total_dark > c->lst.total_free + c->lst.total_dirty ||
 | 
			
		||||
	    c->lst.total_dark & 7) {
 | 
			
		||||
		err = 23;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	ubifs_err("bad master node at offset %d error %d", c->mst_offs, err);
 | 
			
		||||
	dbg_dump_node(c, c->mst_node);
 | 
			
		||||
	return -EINVAL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_read_master - read master node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function finds and reads the master node during file-system mount. If
 | 
			
		||||
 * the flash is empty, it creates default master node as well. Returns zero in
 | 
			
		||||
 * case of success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_read_master(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, old_leb_cnt;
 | 
			
		||||
 | 
			
		||||
	c->mst_node = kzalloc(c->mst_node_alsz, GFP_KERNEL);
 | 
			
		||||
	if (!c->mst_node)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	err = scan_for_master(c);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		err = ubifs_recover_master_node(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			/*
 | 
			
		||||
			 * Note, we do not free 'c->mst_node' here because the
 | 
			
		||||
			 * unmount routine will take care of this.
 | 
			
		||||
			 */
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Make sure that the recovery flag is clear */
 | 
			
		||||
	c->mst_node->flags &= cpu_to_le32(~UBIFS_MST_RCVRY);
 | 
			
		||||
 | 
			
		||||
	c->max_sqnum       = le64_to_cpu(c->mst_node->ch.sqnum);
 | 
			
		||||
	c->highest_inum    = le64_to_cpu(c->mst_node->highest_inum);
 | 
			
		||||
	c->cmt_no          = le64_to_cpu(c->mst_node->cmt_no);
 | 
			
		||||
	c->zroot.lnum      = le32_to_cpu(c->mst_node->root_lnum);
 | 
			
		||||
	c->zroot.offs      = le32_to_cpu(c->mst_node->root_offs);
 | 
			
		||||
	c->zroot.len       = le32_to_cpu(c->mst_node->root_len);
 | 
			
		||||
	c->lhead_lnum      = le32_to_cpu(c->mst_node->log_lnum);
 | 
			
		||||
	c->gc_lnum         = le32_to_cpu(c->mst_node->gc_lnum);
 | 
			
		||||
	c->ihead_lnum      = le32_to_cpu(c->mst_node->ihead_lnum);
 | 
			
		||||
	c->ihead_offs      = le32_to_cpu(c->mst_node->ihead_offs);
 | 
			
		||||
	c->old_idx_sz      = le64_to_cpu(c->mst_node->index_size);
 | 
			
		||||
	c->lpt_lnum        = le32_to_cpu(c->mst_node->lpt_lnum);
 | 
			
		||||
	c->lpt_offs        = le32_to_cpu(c->mst_node->lpt_offs);
 | 
			
		||||
	c->nhead_lnum      = le32_to_cpu(c->mst_node->nhead_lnum);
 | 
			
		||||
	c->nhead_offs      = le32_to_cpu(c->mst_node->nhead_offs);
 | 
			
		||||
	c->ltab_lnum       = le32_to_cpu(c->mst_node->ltab_lnum);
 | 
			
		||||
	c->ltab_offs       = le32_to_cpu(c->mst_node->ltab_offs);
 | 
			
		||||
	c->lsave_lnum      = le32_to_cpu(c->mst_node->lsave_lnum);
 | 
			
		||||
	c->lsave_offs      = le32_to_cpu(c->mst_node->lsave_offs);
 | 
			
		||||
	c->lscan_lnum      = le32_to_cpu(c->mst_node->lscan_lnum);
 | 
			
		||||
	c->lst.empty_lebs  = le32_to_cpu(c->mst_node->empty_lebs);
 | 
			
		||||
	c->lst.idx_lebs    = le32_to_cpu(c->mst_node->idx_lebs);
 | 
			
		||||
	old_leb_cnt        = le32_to_cpu(c->mst_node->leb_cnt);
 | 
			
		||||
	c->lst.total_free  = le64_to_cpu(c->mst_node->total_free);
 | 
			
		||||
	c->lst.total_dirty = le64_to_cpu(c->mst_node->total_dirty);
 | 
			
		||||
	c->lst.total_used  = le64_to_cpu(c->mst_node->total_used);
 | 
			
		||||
	c->lst.total_dead  = le64_to_cpu(c->mst_node->total_dead);
 | 
			
		||||
	c->lst.total_dark  = le64_to_cpu(c->mst_node->total_dark);
 | 
			
		||||
 | 
			
		||||
	c->calc_idx_sz = c->old_idx_sz;
 | 
			
		||||
 | 
			
		||||
	if (c->mst_node->flags & cpu_to_le32(UBIFS_MST_NO_ORPHS))
 | 
			
		||||
		c->no_orphs = 1;
 | 
			
		||||
 | 
			
		||||
	if (old_leb_cnt != c->leb_cnt) {
 | 
			
		||||
		/* The file system has been resized */
 | 
			
		||||
		int growth = c->leb_cnt - old_leb_cnt;
 | 
			
		||||
 | 
			
		||||
		if (c->leb_cnt < old_leb_cnt ||
 | 
			
		||||
		    c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 | 
			
		||||
			ubifs_err("bad leb_cnt on master node");
 | 
			
		||||
			dbg_dump_node(c, c->mst_node);
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		dbg_mnt("Auto resizing (master) from %d LEBs to %d LEBs",
 | 
			
		||||
			old_leb_cnt, c->leb_cnt);
 | 
			
		||||
		c->lst.empty_lebs += growth;
 | 
			
		||||
		c->lst.total_free += growth * (long long)c->leb_size;
 | 
			
		||||
		c->lst.total_dark += growth * (long long)c->dark_wm;
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * Reflect changes back onto the master node. N.B. the master
 | 
			
		||||
		 * node gets written immediately whenever mounting (or
 | 
			
		||||
		 * remounting) in read-write mode, so we do not need to write it
 | 
			
		||||
		 * here.
 | 
			
		||||
		 */
 | 
			
		||||
		c->mst_node->leb_cnt = cpu_to_le32(c->leb_cnt);
 | 
			
		||||
		c->mst_node->empty_lebs = cpu_to_le32(c->lst.empty_lebs);
 | 
			
		||||
		c->mst_node->total_free = cpu_to_le64(c->lst.total_free);
 | 
			
		||||
		c->mst_node->total_dark = cpu_to_le64(c->lst.total_dark);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = validate_master(c);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	err = dbg_old_index_check_init(c, &c->zroot);
 | 
			
		||||
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_write_master - write master node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function writes the master node. The caller has to take the
 | 
			
		||||
 * @c->mst_mutex lock before calling this function. Returns zero in case of
 | 
			
		||||
 * success and a negative error code in case of failure. The master node is
 | 
			
		||||
 * written twice to enable recovery.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_write_master(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, lnum, offs, len;
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media)
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
 | 
			
		||||
	lnum = UBIFS_MST_LNUM;
 | 
			
		||||
	offs = c->mst_offs + c->mst_node_alsz;
 | 
			
		||||
	len = UBIFS_MST_NODE_SZ;
 | 
			
		||||
 | 
			
		||||
	if (offs + UBIFS_MST_NODE_SZ > c->leb_size) {
 | 
			
		||||
		err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
		offs = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	c->mst_offs = offs;
 | 
			
		||||
	c->mst_node->highest_inum = cpu_to_le64(c->highest_inum);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_write_node(c, c->mst_node, len, lnum, offs, UBI_SHORTTERM);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	lnum += 1;
 | 
			
		||||
 | 
			
		||||
	if (offs == 0) {
 | 
			
		||||
		err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
	err = ubifs_write_node(c, c->mst_node, len, lnum, offs, UBI_SHORTTERM);
 | 
			
		||||
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										342
									
								
								fs/ubifs/misc.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										342
									
								
								fs/ubifs/misc.h
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,342 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file contains miscellaneous helper functions.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef __UBIFS_MISC_H__
 | 
			
		||||
#define __UBIFS_MISC_H__
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_zn_dirty - check if znode is dirty.
 | 
			
		||||
 * @znode: znode to check
 | 
			
		||||
 *
 | 
			
		||||
 * This helper function returns %1 if @znode is dirty and %0 otherwise.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_zn_dirty(const struct ubifs_znode *znode)
 | 
			
		||||
{
 | 
			
		||||
	return !!test_bit(DIRTY_ZNODE, &znode->flags);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_wake_up_bgt - wake up background thread.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 */
 | 
			
		||||
static inline void ubifs_wake_up_bgt(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	if (c->bgt && !c->need_bgt) {
 | 
			
		||||
		c->need_bgt = 1;
 | 
			
		||||
		wake_up_process(c->bgt);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_tnc_find_child - find next child in znode.
 | 
			
		||||
 * @znode: znode to search at
 | 
			
		||||
 * @start: the zbranch index to start at
 | 
			
		||||
 *
 | 
			
		||||
 * This helper function looks for znode child starting at index @start. Returns
 | 
			
		||||
 * the child or %NULL if no children were found.
 | 
			
		||||
 */
 | 
			
		||||
static inline struct ubifs_znode *
 | 
			
		||||
ubifs_tnc_find_child(struct ubifs_znode *znode, int start)
 | 
			
		||||
{
 | 
			
		||||
	while (start < znode->child_cnt) {
 | 
			
		||||
		if (znode->zbranch[start].znode)
 | 
			
		||||
			return znode->zbranch[start].znode;
 | 
			
		||||
		start += 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return NULL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_inode - get UBIFS inode information by VFS 'struct inode' object.
 | 
			
		||||
 * @inode: the VFS 'struct inode' pointer
 | 
			
		||||
 */
 | 
			
		||||
static inline struct ubifs_inode *ubifs_inode(const struct inode *inode)
 | 
			
		||||
{
 | 
			
		||||
	return container_of(inode, struct ubifs_inode, vfs_inode);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_ro_mode - switch UBIFS to read read-only mode.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @err: error code which is the reason of switching to R/O mode
 | 
			
		||||
 */
 | 
			
		||||
static inline void ubifs_ro_mode(struct ubifs_info *c, int err)
 | 
			
		||||
{
 | 
			
		||||
	if (!c->ro_media) {
 | 
			
		||||
		c->ro_media = 1;
 | 
			
		||||
		ubifs_warn("switched to read-only mode, error %d", err);
 | 
			
		||||
		dbg_dump_stack();
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_compr_present - check if compressor was compiled in.
 | 
			
		||||
 * @compr_type: compressor type to check
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %1 of compressor of type @compr_type is present, and
 | 
			
		||||
 * %0 if not.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_compr_present(int compr_type)
 | 
			
		||||
{
 | 
			
		||||
	ubifs_assert(compr_type >= 0 && compr_type < UBIFS_COMPR_TYPES_CNT);
 | 
			
		||||
	return !!ubifs_compressors[compr_type]->capi_name;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_compr_name - get compressor name string by its type.
 | 
			
		||||
 * @compr_type: compressor type
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns compressor type string.
 | 
			
		||||
 */
 | 
			
		||||
static inline const char *ubifs_compr_name(int compr_type)
 | 
			
		||||
{
 | 
			
		||||
	ubifs_assert(compr_type >= 0 && compr_type < UBIFS_COMPR_TYPES_CNT);
 | 
			
		||||
	return ubifs_compressors[compr_type]->name;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_wbuf_sync - synchronize write-buffer.
 | 
			
		||||
 * @wbuf: write-buffer to synchronize
 | 
			
		||||
 *
 | 
			
		||||
 * This is the same as as 'ubifs_wbuf_sync_nolock()' but it does not assume
 | 
			
		||||
 * that the write-buffer is already locked.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_wbuf_sync(struct ubifs_wbuf *wbuf)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | 
			
		||||
	err = ubifs_wbuf_sync_nolock(wbuf);
 | 
			
		||||
	mutex_unlock(&wbuf->io_mutex);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_leb_unmap - unmap an LEB.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: LEB number to unmap
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_leb_unmap(const struct ubifs_info *c, int lnum)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media)
 | 
			
		||||
		return -EROFS;
 | 
			
		||||
	err = ubi_leb_unmap(c->ubi, lnum);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("unmap LEB %d failed, error %d", lnum, err);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_leb_write - write to a LEB.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: LEB number to write
 | 
			
		||||
 * @buf: buffer to write from
 | 
			
		||||
 * @offs: offset within LEB to write to
 | 
			
		||||
 * @len: length to write
 | 
			
		||||
 * @dtype: data type
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_leb_write(const struct ubifs_info *c, int lnum,
 | 
			
		||||
				  const void *buf, int offs, int len, int dtype)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media)
 | 
			
		||||
		return -EROFS;
 | 
			
		||||
	err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("writing %d bytes at %d:%d, error %d",
 | 
			
		||||
			  len, lnum, offs, err);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_leb_change - atomic LEB change.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: LEB number to write
 | 
			
		||||
 * @buf: buffer to write from
 | 
			
		||||
 * @len: length to write
 | 
			
		||||
 * @dtype: data type
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_leb_change(const struct ubifs_info *c, int lnum,
 | 
			
		||||
				   const void *buf, int len, int dtype)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	if (c->ro_media)
 | 
			
		||||
		return -EROFS;
 | 
			
		||||
	err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("changing %d bytes in LEB %d, error %d",
 | 
			
		||||
			  len, lnum, err);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_encode_dev - encode device node IDs.
 | 
			
		||||
 * @dev: UBIFS device node information
 | 
			
		||||
 * @rdev: device IDs to encode
 | 
			
		||||
 *
 | 
			
		||||
 * This is a helper function which encodes major/minor numbers of a device node
 | 
			
		||||
 * into UBIFS device node description. We use standard Linux "new" and "huge"
 | 
			
		||||
 * encodings.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_encode_dev(union ubifs_dev_desc *dev, dev_t rdev)
 | 
			
		||||
{
 | 
			
		||||
	if (new_valid_dev(rdev)) {
 | 
			
		||||
		dev->new = cpu_to_le32(new_encode_dev(rdev));
 | 
			
		||||
		return sizeof(dev->new);
 | 
			
		||||
	} else {
 | 
			
		||||
		dev->huge = cpu_to_le64(huge_encode_dev(rdev));
 | 
			
		||||
		return sizeof(dev->huge);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_add_dirt - add dirty space to LEB properties.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @lnum: LEB to add dirty space for
 | 
			
		||||
 * @dirty: dirty space to add
 | 
			
		||||
 *
 | 
			
		||||
 * This is a helper function which increased amount of dirty LEB space. Returns
 | 
			
		||||
 * zero in case of success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_add_dirt(struct ubifs_info *c, int lnum, int dirty)
 | 
			
		||||
{
 | 
			
		||||
	return ubifs_update_one_lp(c, lnum, LPROPS_NC, dirty, 0, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_return_leb - return LEB to lprops.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @lnum: LEB to return
 | 
			
		||||
 *
 | 
			
		||||
 * This helper function cleans the "taken" flag of a logical eraseblock in the
 | 
			
		||||
 * lprops. Returns zero in case of success and a negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_return_leb(struct ubifs_info *c, int lnum)
 | 
			
		||||
{
 | 
			
		||||
	return ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 | 
			
		||||
				   LPROPS_TAKEN, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_idx_node_sz - return index node size.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @child_cnt: number of children of this index node
 | 
			
		||||
 */
 | 
			
		||||
static inline int ubifs_idx_node_sz(const struct ubifs_info *c, int child_cnt)
 | 
			
		||||
{
 | 
			
		||||
	return UBIFS_IDX_NODE_SZ + (UBIFS_BRANCH_SZ + c->key_len) * child_cnt;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_idx_branch - return pointer to an index branch.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @idx: index node
 | 
			
		||||
 * @bnum: branch number
 | 
			
		||||
 */
 | 
			
		||||
static inline
 | 
			
		||||
struct ubifs_branch *ubifs_idx_branch(const struct ubifs_info *c,
 | 
			
		||||
				      const struct ubifs_idx_node *idx,
 | 
			
		||||
				      int bnum)
 | 
			
		||||
{
 | 
			
		||||
	return (struct ubifs_branch *)((void *)idx->branches +
 | 
			
		||||
				       (UBIFS_BRANCH_SZ + c->key_len) * bnum);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_idx_key - return pointer to an index key.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @idx: index node
 | 
			
		||||
 */
 | 
			
		||||
static inline void *ubifs_idx_key(const struct ubifs_info *c,
 | 
			
		||||
				  const struct ubifs_idx_node *idx)
 | 
			
		||||
{
 | 
			
		||||
	return (void *)((struct ubifs_branch *)idx->branches)->key;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_reported_space - calculate reported free space.
 | 
			
		||||
 * @c: the UBIFS file-system description object
 | 
			
		||||
 * @free: amount of free space
 | 
			
		||||
 *
 | 
			
		||||
 * This function calculates amount of free space which will be reported to
 | 
			
		||||
 * user-space. User-space application tend to expect that if the file-system
 | 
			
		||||
 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
 | 
			
		||||
 * are able to write a file of size N. UBIFS attaches node headers to each data
 | 
			
		||||
 * node and it has to write indexind nodes as well. This introduces additional
 | 
			
		||||
 * overhead, and UBIFS it has to report sligtly less free space to meet the
 | 
			
		||||
 * above expectetion.
 | 
			
		||||
 *
 | 
			
		||||
 * This function assumes free space is made up of uncompressed data nodes and
 | 
			
		||||
 * full index nodes (one per data node, doubled because we always allow enough
 | 
			
		||||
 * space to write the index twice).
 | 
			
		||||
 *
 | 
			
		||||
 * Note, the calculation is pessimistic, which means that most of the time
 | 
			
		||||
 * UBIFS reports less space than it actually has.
 | 
			
		||||
 */
 | 
			
		||||
static inline long long ubifs_reported_space(const struct ubifs_info *c,
 | 
			
		||||
					     uint64_t free)
 | 
			
		||||
{
 | 
			
		||||
	int divisor, factor;
 | 
			
		||||
 | 
			
		||||
	divisor = UBIFS_MAX_DATA_NODE_SZ + (c->max_idx_node_sz << 1);
 | 
			
		||||
	factor = UBIFS_MAX_DATA_NODE_SZ - UBIFS_DATA_NODE_SZ;
 | 
			
		||||
	do_div(free, divisor);
 | 
			
		||||
 | 
			
		||||
	return free * factor;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_current_time - round current time to time granularity.
 | 
			
		||||
 * @inode: inode
 | 
			
		||||
 */
 | 
			
		||||
static inline struct timespec ubifs_current_time(struct inode *inode)
 | 
			
		||||
{
 | 
			
		||||
	return (inode->i_sb->s_time_gran < NSEC_PER_SEC) ?
 | 
			
		||||
		current_fs_time(inode->i_sb) : CURRENT_TIME_SEC;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif /* __UBIFS_MISC_H__ */
 | 
			
		||||
							
								
								
									
										958
									
								
								fs/ubifs/orphan.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										958
									
								
								fs/ubifs/orphan.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,958 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Author: Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * An orphan is an inode number whose inode node has been committed to the index
 | 
			
		||||
 * with a link count of zero. That happens when an open file is deleted
 | 
			
		||||
 * (unlinked) and then a commit is run. In the normal course of events the inode
 | 
			
		||||
 * would be deleted when the file is closed. However in the case of an unclean
 | 
			
		||||
 * unmount, orphans need to be accounted for. After an unclean unmount, the
 | 
			
		||||
 * orphans' inodes must be deleted which means either scanning the entire index
 | 
			
		||||
 * looking for them, or keeping a list on flash somewhere. This unit implements
 | 
			
		||||
 * the latter approach.
 | 
			
		||||
 *
 | 
			
		||||
 * The orphan area is a fixed number of LEBs situated between the LPT area and
 | 
			
		||||
 * the main area. The number of orphan area LEBs is specified when the file
 | 
			
		||||
 * system is created. The minimum number is 1. The size of the orphan area
 | 
			
		||||
 * should be so that it can hold the maximum number of orphans that are expected
 | 
			
		||||
 * to ever exist at one time.
 | 
			
		||||
 *
 | 
			
		||||
 * The number of orphans that can fit in a LEB is:
 | 
			
		||||
 *
 | 
			
		||||
 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
 | 
			
		||||
 *
 | 
			
		||||
 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
 | 
			
		||||
 *
 | 
			
		||||
 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
 | 
			
		||||
 * zero, the inode number is added to the rb-tree. It is removed from the tree
 | 
			
		||||
 * when the inode is deleted.  Any new orphans that are in the orphan tree when
 | 
			
		||||
 * the commit is run, are written to the orphan area in 1 or more orph nodes.
 | 
			
		||||
 * If the orphan area is full, it is consolidated to make space.  There is
 | 
			
		||||
 * always enough space because validation prevents the user from creating more
 | 
			
		||||
 * than the maximum number of orphans allowed.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
			
		||||
static int dbg_check_orphans(struct ubifs_info *c);
 | 
			
		||||
#else
 | 
			
		||||
#define dbg_check_orphans(c) 0
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_add_orphan - add an orphan.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @inum: orphan inode number
 | 
			
		||||
 *
 | 
			
		||||
 * Add an orphan. This function is called when an inodes link count drops to
 | 
			
		||||
 * zero.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_orphan *orphan, *o;
 | 
			
		||||
	struct rb_node **p, *parent = NULL;
 | 
			
		||||
 | 
			
		||||
	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
 | 
			
		||||
	if (!orphan)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	orphan->inum = inum;
 | 
			
		||||
	orphan->new = 1;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->orphan_lock);
 | 
			
		||||
	if (c->tot_orphans >= c->max_orphans) {
 | 
			
		||||
		spin_unlock(&c->orphan_lock);
 | 
			
		||||
		kfree(orphan);
 | 
			
		||||
		return -ENFILE;
 | 
			
		||||
	}
 | 
			
		||||
	p = &c->orph_tree.rb_node;
 | 
			
		||||
	while (*p) {
 | 
			
		||||
		parent = *p;
 | 
			
		||||
		o = rb_entry(parent, struct ubifs_orphan, rb);
 | 
			
		||||
		if (inum < o->inum)
 | 
			
		||||
			p = &(*p)->rb_left;
 | 
			
		||||
		else if (inum > o->inum)
 | 
			
		||||
			p = &(*p)->rb_right;
 | 
			
		||||
		else {
 | 
			
		||||
			dbg_err("orphaned twice");
 | 
			
		||||
			spin_unlock(&c->orphan_lock);
 | 
			
		||||
			kfree(orphan);
 | 
			
		||||
			return 0;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	c->tot_orphans += 1;
 | 
			
		||||
	c->new_orphans += 1;
 | 
			
		||||
	rb_link_node(&orphan->rb, parent, p);
 | 
			
		||||
	rb_insert_color(&orphan->rb, &c->orph_tree);
 | 
			
		||||
	list_add_tail(&orphan->list, &c->orph_list);
 | 
			
		||||
	list_add_tail(&orphan->new_list, &c->orph_new);
 | 
			
		||||
	spin_unlock(&c->orphan_lock);
 | 
			
		||||
	dbg_gen("ino %lu", inum);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_delete_orphan - delete an orphan.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @inum: orphan inode number
 | 
			
		||||
 *
 | 
			
		||||
 * Delete an orphan. This function is called when an inode is deleted.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_orphan *o;
 | 
			
		||||
	struct rb_node *p;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->orphan_lock);
 | 
			
		||||
	p = c->orph_tree.rb_node;
 | 
			
		||||
	while (p) {
 | 
			
		||||
		o = rb_entry(p, struct ubifs_orphan, rb);
 | 
			
		||||
		if (inum < o->inum)
 | 
			
		||||
			p = p->rb_left;
 | 
			
		||||
		else if (inum > o->inum)
 | 
			
		||||
			p = p->rb_right;
 | 
			
		||||
		else {
 | 
			
		||||
			if (o->dnext) {
 | 
			
		||||
				spin_unlock(&c->orphan_lock);
 | 
			
		||||
				dbg_gen("deleted twice ino %lu", inum);
 | 
			
		||||
				return;
 | 
			
		||||
			}
 | 
			
		||||
			if (o->cnext) {
 | 
			
		||||
				o->dnext = c->orph_dnext;
 | 
			
		||||
				c->orph_dnext = o;
 | 
			
		||||
				spin_unlock(&c->orphan_lock);
 | 
			
		||||
				dbg_gen("delete later ino %lu", inum);
 | 
			
		||||
				return;
 | 
			
		||||
			}
 | 
			
		||||
			rb_erase(p, &c->orph_tree);
 | 
			
		||||
			list_del(&o->list);
 | 
			
		||||
			c->tot_orphans -= 1;
 | 
			
		||||
			if (o->new) {
 | 
			
		||||
				list_del(&o->new_list);
 | 
			
		||||
				c->new_orphans -= 1;
 | 
			
		||||
			}
 | 
			
		||||
			spin_unlock(&c->orphan_lock);
 | 
			
		||||
			kfree(o);
 | 
			
		||||
			dbg_gen("inum %lu", inum);
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->orphan_lock);
 | 
			
		||||
	dbg_err("missing orphan ino %lu", inum);
 | 
			
		||||
	dbg_dump_stack();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_orphan_start_commit - start commit of orphans.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * Start commit of orphans.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_orphan_start_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_orphan *orphan, **last;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->orphan_lock);
 | 
			
		||||
	last = &c->orph_cnext;
 | 
			
		||||
	list_for_each_entry(orphan, &c->orph_new, new_list) {
 | 
			
		||||
		ubifs_assert(orphan->new);
 | 
			
		||||
		orphan->new = 0;
 | 
			
		||||
		*last = orphan;
 | 
			
		||||
		last = &orphan->cnext;
 | 
			
		||||
	}
 | 
			
		||||
	*last = orphan->cnext;
 | 
			
		||||
	c->cmt_orphans = c->new_orphans;
 | 
			
		||||
	c->new_orphans = 0;
 | 
			
		||||
	dbg_cmt("%d orphans to commit", c->cmt_orphans);
 | 
			
		||||
	INIT_LIST_HEAD(&c->orph_new);
 | 
			
		||||
	if (c->tot_orphans == 0)
 | 
			
		||||
		c->no_orphs = 1;
 | 
			
		||||
	else
 | 
			
		||||
		c->no_orphs = 0;
 | 
			
		||||
	spin_unlock(&c->orphan_lock);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * avail_orphs - calculate available space.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns the number of orphans that can be written in the
 | 
			
		||||
 * available space.
 | 
			
		||||
 */
 | 
			
		||||
static int avail_orphs(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int avail_lebs, avail, gap;
 | 
			
		||||
 | 
			
		||||
	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
 | 
			
		||||
	avail = avail_lebs *
 | 
			
		||||
	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 | 
			
		||||
	gap = c->leb_size - c->ohead_offs;
 | 
			
		||||
	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
 | 
			
		||||
		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 | 
			
		||||
	return avail;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * tot_avail_orphs - calculate total space.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns the number of orphans that can be written in half
 | 
			
		||||
 * the total space. That leaves half the space for adding new orphans.
 | 
			
		||||
 */
 | 
			
		||||
static int tot_avail_orphs(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int avail_lebs, avail;
 | 
			
		||||
 | 
			
		||||
	avail_lebs = c->orph_lebs;
 | 
			
		||||
	avail = avail_lebs *
 | 
			
		||||
	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 | 
			
		||||
	return avail / 2;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * do_write_orph_node - write a node
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @len: length of node
 | 
			
		||||
 * @atomic: write atomically
 | 
			
		||||
 *
 | 
			
		||||
 * This function writes a node to the orphan head from the orphan buffer. If
 | 
			
		||||
 * %atomic is not zero, then the write is done atomically. On success, %0 is
 | 
			
		||||
 * returned, otherwise a negative error code is returned.
 | 
			
		||||
 */
 | 
			
		||||
static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
 | 
			
		||||
{
 | 
			
		||||
	int err = 0;
 | 
			
		||||
 | 
			
		||||
	if (atomic) {
 | 
			
		||||
		ubifs_assert(c->ohead_offs == 0);
 | 
			
		||||
		ubifs_prepare_node(c, c->orph_buf, len, 1);
 | 
			
		||||
		len = ALIGN(len, c->min_io_size);
 | 
			
		||||
		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
 | 
			
		||||
				       UBI_SHORTTERM);
 | 
			
		||||
	} else {
 | 
			
		||||
		if (c->ohead_offs == 0) {
 | 
			
		||||
			/* Ensure LEB has been unmapped */
 | 
			
		||||
			err = ubifs_leb_unmap(c, c->ohead_lnum);
 | 
			
		||||
			if (err)
 | 
			
		||||
				return err;
 | 
			
		||||
		}
 | 
			
		||||
		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
 | 
			
		||||
				       c->ohead_offs, UBI_SHORTTERM);
 | 
			
		||||
	}
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * write_orph_node - write an orph node
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @atomic: write atomically
 | 
			
		||||
 *
 | 
			
		||||
 * This function builds an orph node from the cnext list and writes it to the
 | 
			
		||||
 * orphan head. On success, %0 is returned, otherwise a negative error code
 | 
			
		||||
 * is returned.
 | 
			
		||||
 */
 | 
			
		||||
static int write_orph_node(struct ubifs_info *c, int atomic)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_orphan *orphan, *cnext;
 | 
			
		||||
	struct ubifs_orph_node *orph;
 | 
			
		||||
	int gap, err, len, cnt, i;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(c->cmt_orphans > 0);
 | 
			
		||||
	gap = c->leb_size - c->ohead_offs;
 | 
			
		||||
	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
 | 
			
		||||
		c->ohead_lnum += 1;
 | 
			
		||||
		c->ohead_offs = 0;
 | 
			
		||||
		gap = c->leb_size;
 | 
			
		||||
		if (c->ohead_lnum > c->orph_last) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * We limit the number of orphans so that this should
 | 
			
		||||
			 * never happen.
 | 
			
		||||
			 */
 | 
			
		||||
			ubifs_err("out of space in orphan area");
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 | 
			
		||||
	if (cnt > c->cmt_orphans)
 | 
			
		||||
		cnt = c->cmt_orphans;
 | 
			
		||||
	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
 | 
			
		||||
	ubifs_assert(c->orph_buf);
 | 
			
		||||
	orph = c->orph_buf;
 | 
			
		||||
	orph->ch.node_type = UBIFS_ORPH_NODE;
 | 
			
		||||
	spin_lock(&c->orphan_lock);
 | 
			
		||||
	cnext = c->orph_cnext;
 | 
			
		||||
	for (i = 0; i < cnt; i++) {
 | 
			
		||||
		orphan = cnext;
 | 
			
		||||
		orph->inos[i] = cpu_to_le64(orphan->inum);
 | 
			
		||||
		cnext = orphan->cnext;
 | 
			
		||||
		orphan->cnext = NULL;
 | 
			
		||||
	}
 | 
			
		||||
	c->orph_cnext = cnext;
 | 
			
		||||
	c->cmt_orphans -= cnt;
 | 
			
		||||
	spin_unlock(&c->orphan_lock);
 | 
			
		||||
	if (c->cmt_orphans)
 | 
			
		||||
		orph->cmt_no = cpu_to_le64(c->cmt_no + 1);
 | 
			
		||||
	else
 | 
			
		||||
		/* Mark the last node of the commit */
 | 
			
		||||
		orph->cmt_no = cpu_to_le64((c->cmt_no + 1) | (1ULL << 63));
 | 
			
		||||
	ubifs_assert(c->ohead_offs + len <= c->leb_size);
 | 
			
		||||
	ubifs_assert(c->ohead_lnum >= c->orph_first);
 | 
			
		||||
	ubifs_assert(c->ohead_lnum <= c->orph_last);
 | 
			
		||||
	err = do_write_orph_node(c, len, atomic);
 | 
			
		||||
	c->ohead_offs += ALIGN(len, c->min_io_size);
 | 
			
		||||
	c->ohead_offs = ALIGN(c->ohead_offs, 8);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * write_orph_nodes - write orph nodes until there are no more to commit
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @atomic: write atomically
 | 
			
		||||
 *
 | 
			
		||||
 * This function writes orph nodes for all the orphans to commit. On success,
 | 
			
		||||
 * %0 is returned, otherwise a negative error code is returned.
 | 
			
		||||
 */
 | 
			
		||||
static int write_orph_nodes(struct ubifs_info *c, int atomic)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	while (c->cmt_orphans > 0) {
 | 
			
		||||
		err = write_orph_node(c, atomic);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
	if (atomic) {
 | 
			
		||||
		int lnum;
 | 
			
		||||
 | 
			
		||||
		/* Unmap any unused LEBs after consolidation */
 | 
			
		||||
		lnum = c->ohead_lnum + 1;
 | 
			
		||||
		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
 | 
			
		||||
			err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
			if (err)
 | 
			
		||||
				return err;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * consolidate - consolidate the orphan area.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function enables consolidation by putting all the orphans into the list
 | 
			
		||||
 * to commit. The list is in the order that the orphans were added, and the
 | 
			
		||||
 * LEBs are written atomically in order, so at no time can orphans be lost by
 | 
			
		||||
 * an unclean unmount.
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
static int consolidate(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int tot_avail = tot_avail_orphs(c), err = 0;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->orphan_lock);
 | 
			
		||||
	dbg_cmt("there is space for %d orphans and there are %d",
 | 
			
		||||
		tot_avail, c->tot_orphans);
 | 
			
		||||
	if (c->tot_orphans - c->new_orphans <= tot_avail) {
 | 
			
		||||
		struct ubifs_orphan *orphan, **last;
 | 
			
		||||
		int cnt = 0;
 | 
			
		||||
 | 
			
		||||
		/* Change the cnext list to include all non-new orphans */
 | 
			
		||||
		last = &c->orph_cnext;
 | 
			
		||||
		list_for_each_entry(orphan, &c->orph_list, list) {
 | 
			
		||||
			if (orphan->new)
 | 
			
		||||
				continue;
 | 
			
		||||
			*last = orphan;
 | 
			
		||||
			last = &orphan->cnext;
 | 
			
		||||
			cnt += 1;
 | 
			
		||||
		}
 | 
			
		||||
		*last = orphan->cnext;
 | 
			
		||||
		ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
 | 
			
		||||
		c->cmt_orphans = cnt;
 | 
			
		||||
		c->ohead_lnum = c->orph_first;
 | 
			
		||||
		c->ohead_offs = 0;
 | 
			
		||||
	} else {
 | 
			
		||||
		/*
 | 
			
		||||
		 * We limit the number of orphans so that this should
 | 
			
		||||
		 * never happen.
 | 
			
		||||
		 */
 | 
			
		||||
		ubifs_err("out of space in orphan area");
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->orphan_lock);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * commit_orphans - commit orphans.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function commits orphans to flash. On success, %0 is returned,
 | 
			
		||||
 * otherwise a negative error code is returned.
 | 
			
		||||
 */
 | 
			
		||||
static int commit_orphans(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int avail, atomic = 0, err;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(c->cmt_orphans > 0);
 | 
			
		||||
	avail = avail_orphs(c);
 | 
			
		||||
	if (avail < c->cmt_orphans) {
 | 
			
		||||
		/* Not enough space to write new orphans, so consolidate */
 | 
			
		||||
		err = consolidate(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
		atomic = 1;
 | 
			
		||||
	}
 | 
			
		||||
	err = write_orph_nodes(c, atomic);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * erase_deleted - erase the orphans marked for deletion.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * During commit, the orphans being committed cannot be deleted, so they are
 | 
			
		||||
 * marked for deletion and deleted by this function. Also, the recovery
 | 
			
		||||
 * adds killed orphans to the deletion list, and therefore they are deleted
 | 
			
		||||
 * here too.
 | 
			
		||||
 */
 | 
			
		||||
static void erase_deleted(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_orphan *orphan, *dnext;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->orphan_lock);
 | 
			
		||||
	dnext = c->orph_dnext;
 | 
			
		||||
	while (dnext) {
 | 
			
		||||
		orphan = dnext;
 | 
			
		||||
		dnext = orphan->dnext;
 | 
			
		||||
		ubifs_assert(!orphan->new);
 | 
			
		||||
		rb_erase(&orphan->rb, &c->orph_tree);
 | 
			
		||||
		list_del(&orphan->list);
 | 
			
		||||
		c->tot_orphans -= 1;
 | 
			
		||||
		dbg_gen("deleting orphan ino %lu", orphan->inum);
 | 
			
		||||
		kfree(orphan);
 | 
			
		||||
	}
 | 
			
		||||
	c->orph_dnext = NULL;
 | 
			
		||||
	spin_unlock(&c->orphan_lock);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_orphan_end_commit - end commit of orphans.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * End commit of orphans.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_orphan_end_commit(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	if (c->cmt_orphans != 0) {
 | 
			
		||||
		err = commit_orphans(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
	erase_deleted(c);
 | 
			
		||||
	err = dbg_check_orphans(c);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * clear_orphans - erase all LEBs used for orphans.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * If recovery is not required, then the orphans from the previous session
 | 
			
		||||
 * are not needed. This function locates the LEBs used to record
 | 
			
		||||
 * orphans, and un-maps them.
 | 
			
		||||
 */
 | 
			
		||||
static int clear_orphans(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int lnum, err;
 | 
			
		||||
 | 
			
		||||
	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 | 
			
		||||
		err = ubifs_leb_unmap(c, lnum);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
	c->ohead_lnum = c->orph_first;
 | 
			
		||||
	c->ohead_offs = 0;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * insert_dead_orphan - insert an orphan.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @inum: orphan inode number
 | 
			
		||||
 *
 | 
			
		||||
 * This function is a helper to the 'do_kill_orphans()' function. The orphan
 | 
			
		||||
 * must be kept until the next commit, so it is added to the rb-tree and the
 | 
			
		||||
 * deletion list.
 | 
			
		||||
 */
 | 
			
		||||
static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_orphan *orphan, *o;
 | 
			
		||||
	struct rb_node **p, *parent = NULL;
 | 
			
		||||
 | 
			
		||||
	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
 | 
			
		||||
	if (!orphan)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	orphan->inum = inum;
 | 
			
		||||
 | 
			
		||||
	p = &c->orph_tree.rb_node;
 | 
			
		||||
	while (*p) {
 | 
			
		||||
		parent = *p;
 | 
			
		||||
		o = rb_entry(parent, struct ubifs_orphan, rb);
 | 
			
		||||
		if (inum < o->inum)
 | 
			
		||||
			p = &(*p)->rb_left;
 | 
			
		||||
		else if (inum > o->inum)
 | 
			
		||||
			p = &(*p)->rb_right;
 | 
			
		||||
		else {
 | 
			
		||||
			/* Already added - no problem */
 | 
			
		||||
			kfree(orphan);
 | 
			
		||||
			return 0;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	c->tot_orphans += 1;
 | 
			
		||||
	rb_link_node(&orphan->rb, parent, p);
 | 
			
		||||
	rb_insert_color(&orphan->rb, &c->orph_tree);
 | 
			
		||||
	list_add_tail(&orphan->list, &c->orph_list);
 | 
			
		||||
	orphan->dnext = c->orph_dnext;
 | 
			
		||||
	c->orph_dnext = orphan;
 | 
			
		||||
	dbg_mnt("ino %lu, new %d, tot %d",
 | 
			
		||||
		inum, c->new_orphans, c->tot_orphans);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * do_kill_orphans - remove orphan inodes from the index.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @sleb: scanned LEB
 | 
			
		||||
 * @last_cmt_no: cmt_no of last orph node read is passed and returned here
 | 
			
		||||
 * @outofdate: whether the LEB is out of date is returned here
 | 
			
		||||
 * @last_flagged: whether the end orph node is encountered
 | 
			
		||||
 *
 | 
			
		||||
 * This function is a helper to the 'kill_orphans()' function. It goes through
 | 
			
		||||
 * every orphan node in a LEB and for every inode number recorded, removes
 | 
			
		||||
 * all keys for that inode from the TNC.
 | 
			
		||||
 */
 | 
			
		||||
static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 | 
			
		||||
			   unsigned long long *last_cmt_no, int *outofdate,
 | 
			
		||||
			   int *last_flagged)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_node *snod;
 | 
			
		||||
	struct ubifs_orph_node *orph;
 | 
			
		||||
	unsigned long long cmt_no;
 | 
			
		||||
	ino_t inum;
 | 
			
		||||
	int i, n, err, first = 1;
 | 
			
		||||
 | 
			
		||||
	list_for_each_entry(snod, &sleb->nodes, list) {
 | 
			
		||||
		if (snod->type != UBIFS_ORPH_NODE) {
 | 
			
		||||
			ubifs_err("invalid node type %d in orphan area at "
 | 
			
		||||
				  "%d:%d", snod->type, sleb->lnum, snod->offs);
 | 
			
		||||
			dbg_dump_node(c, snod->node);
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		orph = snod->node;
 | 
			
		||||
 | 
			
		||||
		/* Check commit number */
 | 
			
		||||
		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
 | 
			
		||||
		/*
 | 
			
		||||
		 * The commit number on the master node may be less, because
 | 
			
		||||
		 * of a failed commit. If there are several failed commits in a
 | 
			
		||||
		 * row, the commit number written on orph nodes will continue to
 | 
			
		||||
		 * increase (because the commit number is adjusted here) even
 | 
			
		||||
		 * though the commit number on the master node stays the same
 | 
			
		||||
		 * because the master node has not been re-written.
 | 
			
		||||
		 */
 | 
			
		||||
		if (cmt_no > c->cmt_no)
 | 
			
		||||
			c->cmt_no = cmt_no;
 | 
			
		||||
		if (cmt_no < *last_cmt_no && *last_flagged) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * The last orph node had a higher commit number and was
 | 
			
		||||
			 * flagged as the last written for that commit number.
 | 
			
		||||
			 * That makes this orph node, out of date.
 | 
			
		||||
			 */
 | 
			
		||||
			if (!first) {
 | 
			
		||||
				ubifs_err("out of order commit number %llu in "
 | 
			
		||||
					  "orphan node at %d:%d",
 | 
			
		||||
					  cmt_no, sleb->lnum, snod->offs);
 | 
			
		||||
				dbg_dump_node(c, snod->node);
 | 
			
		||||
				return -EINVAL;
 | 
			
		||||
			}
 | 
			
		||||
			dbg_rcvry("out of date LEB %d", sleb->lnum);
 | 
			
		||||
			*outofdate = 1;
 | 
			
		||||
			return 0;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (first)
 | 
			
		||||
			first = 0;
 | 
			
		||||
 | 
			
		||||
		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 | 
			
		||||
		for (i = 0; i < n; i++) {
 | 
			
		||||
			inum = le64_to_cpu(orph->inos[i]);
 | 
			
		||||
			dbg_rcvry("deleting orphaned inode %lu", inum);
 | 
			
		||||
			err = ubifs_tnc_remove_ino(c, inum);
 | 
			
		||||
			if (err)
 | 
			
		||||
				return err;
 | 
			
		||||
			err = insert_dead_orphan(c, inum);
 | 
			
		||||
			if (err)
 | 
			
		||||
				return err;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		*last_cmt_no = cmt_no;
 | 
			
		||||
		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
 | 
			
		||||
			dbg_rcvry("last orph node for commit %llu at %d:%d",
 | 
			
		||||
				  cmt_no, sleb->lnum, snod->offs);
 | 
			
		||||
			*last_flagged = 1;
 | 
			
		||||
		} else
 | 
			
		||||
			*last_flagged = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * kill_orphans - remove all orphan inodes from the index.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * If recovery is required, then orphan inodes recorded during the previous
 | 
			
		||||
 * session (which ended with an unclean unmount) must be deleted from the index.
 | 
			
		||||
 * This is done by updating the TNC, but since the index is not updated until
 | 
			
		||||
 * the next commit, the LEBs where the orphan information is recorded are not
 | 
			
		||||
 * erased until the next commit.
 | 
			
		||||
 */
 | 
			
		||||
static int kill_orphans(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long long last_cmt_no = 0;
 | 
			
		||||
	int lnum, err = 0, outofdate = 0, last_flagged = 0;
 | 
			
		||||
 | 
			
		||||
	c->ohead_lnum = c->orph_first;
 | 
			
		||||
	c->ohead_offs = 0;
 | 
			
		||||
	/* Check no-orphans flag and skip this if no orphans */
 | 
			
		||||
	if (c->no_orphs) {
 | 
			
		||||
		dbg_rcvry("no orphans");
 | 
			
		||||
		return 0;
 | 
			
		||||
	}
 | 
			
		||||
	/*
 | 
			
		||||
	 * Orph nodes always start at c->orph_first and are written to each
 | 
			
		||||
	 * successive LEB in turn. Generally unused LEBs will have been unmapped
 | 
			
		||||
	 * but may contain out of date orph nodes if the unmap didn't go
 | 
			
		||||
	 * through. In addition, the last orph node written for each commit is
 | 
			
		||||
	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
 | 
			
		||||
	 * there are orph nodes from the next commit (i.e. the commit did not
 | 
			
		||||
	 * complete successfully). In that case, no orphans will have been lost
 | 
			
		||||
	 * due to the way that orphans are written, and any orphans added will
 | 
			
		||||
	 * be valid orphans anyway and so can be deleted.
 | 
			
		||||
	 */
 | 
			
		||||
	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 | 
			
		||||
		struct ubifs_scan_leb *sleb;
 | 
			
		||||
 | 
			
		||||
		dbg_rcvry("LEB %d", lnum);
 | 
			
		||||
		sleb = ubifs_scan(c, lnum, 0, c->sbuf);
 | 
			
		||||
		if (IS_ERR(sleb)) {
 | 
			
		||||
			sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0);
 | 
			
		||||
			if (IS_ERR(sleb)) {
 | 
			
		||||
				err = PTR_ERR(sleb);
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
 | 
			
		||||
				      &last_flagged);
 | 
			
		||||
		if (err || outofdate) {
 | 
			
		||||
			ubifs_scan_destroy(sleb);
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
		if (sleb->endpt) {
 | 
			
		||||
			c->ohead_lnum = lnum;
 | 
			
		||||
			c->ohead_offs = sleb->endpt;
 | 
			
		||||
		}
 | 
			
		||||
		ubifs_scan_destroy(sleb);
 | 
			
		||||
	}
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @unclean: indicates recovery from unclean unmount
 | 
			
		||||
 * @read_only: indicates read only mount
 | 
			
		||||
 *
 | 
			
		||||
 * This function is called when mounting to erase orphans from the previous
 | 
			
		||||
 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 | 
			
		||||
 * orphans are deleted.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
 | 
			
		||||
{
 | 
			
		||||
	int err = 0;
 | 
			
		||||
 | 
			
		||||
	c->max_orphans = tot_avail_orphs(c);
 | 
			
		||||
 | 
			
		||||
	if (!read_only) {
 | 
			
		||||
		c->orph_buf = vmalloc(c->leb_size);
 | 
			
		||||
		if (!c->orph_buf)
 | 
			
		||||
			return -ENOMEM;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (unclean)
 | 
			
		||||
		err = kill_orphans(c);
 | 
			
		||||
	else if (!read_only)
 | 
			
		||||
		err = clear_orphans(c);
 | 
			
		||||
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
			
		||||
 | 
			
		||||
struct check_orphan {
 | 
			
		||||
	struct rb_node rb;
 | 
			
		||||
	ino_t inum;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct check_info {
 | 
			
		||||
	unsigned long last_ino;
 | 
			
		||||
	unsigned long tot_inos;
 | 
			
		||||
	unsigned long missing;
 | 
			
		||||
	unsigned long long leaf_cnt;
 | 
			
		||||
	struct ubifs_ino_node *node;
 | 
			
		||||
	struct rb_root root;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_orphan *o;
 | 
			
		||||
	struct rb_node *p;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&c->orphan_lock);
 | 
			
		||||
	p = c->orph_tree.rb_node;
 | 
			
		||||
	while (p) {
 | 
			
		||||
		o = rb_entry(p, struct ubifs_orphan, rb);
 | 
			
		||||
		if (inum < o->inum)
 | 
			
		||||
			p = p->rb_left;
 | 
			
		||||
		else if (inum > o->inum)
 | 
			
		||||
			p = p->rb_right;
 | 
			
		||||
		else {
 | 
			
		||||
			spin_unlock(&c->orphan_lock);
 | 
			
		||||
			return 1;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&c->orphan_lock);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	struct check_orphan *orphan, *o;
 | 
			
		||||
	struct rb_node **p, *parent = NULL;
 | 
			
		||||
 | 
			
		||||
	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
 | 
			
		||||
	if (!orphan)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	orphan->inum = inum;
 | 
			
		||||
 | 
			
		||||
	p = &root->rb_node;
 | 
			
		||||
	while (*p) {
 | 
			
		||||
		parent = *p;
 | 
			
		||||
		o = rb_entry(parent, struct check_orphan, rb);
 | 
			
		||||
		if (inum < o->inum)
 | 
			
		||||
			p = &(*p)->rb_left;
 | 
			
		||||
		else if (inum > o->inum)
 | 
			
		||||
			p = &(*p)->rb_right;
 | 
			
		||||
		else {
 | 
			
		||||
			kfree(orphan);
 | 
			
		||||
			return 0;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	rb_link_node(&orphan->rb, parent, p);
 | 
			
		||||
	rb_insert_color(&orphan->rb, root);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	struct check_orphan *o;
 | 
			
		||||
	struct rb_node *p;
 | 
			
		||||
 | 
			
		||||
	p = root->rb_node;
 | 
			
		||||
	while (p) {
 | 
			
		||||
		o = rb_entry(p, struct check_orphan, rb);
 | 
			
		||||
		if (inum < o->inum)
 | 
			
		||||
			p = p->rb_left;
 | 
			
		||||
		else if (inum > o->inum)
 | 
			
		||||
			p = p->rb_right;
 | 
			
		||||
		else
 | 
			
		||||
			return 1;
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void dbg_free_check_tree(struct rb_root *root)
 | 
			
		||||
{
 | 
			
		||||
	struct rb_node *this = root->rb_node;
 | 
			
		||||
	struct check_orphan *o;
 | 
			
		||||
 | 
			
		||||
	while (this) {
 | 
			
		||||
		if (this->rb_left) {
 | 
			
		||||
			this = this->rb_left;
 | 
			
		||||
			continue;
 | 
			
		||||
		} else if (this->rb_right) {
 | 
			
		||||
			this = this->rb_right;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
		o = rb_entry(this, struct check_orphan, rb);
 | 
			
		||||
		this = rb_parent(this);
 | 
			
		||||
		if (this) {
 | 
			
		||||
			if (this->rb_left == &o->rb)
 | 
			
		||||
				this->rb_left = NULL;
 | 
			
		||||
			else
 | 
			
		||||
				this->rb_right = NULL;
 | 
			
		||||
		}
 | 
			
		||||
		kfree(o);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | 
			
		||||
			    void *priv)
 | 
			
		||||
{
 | 
			
		||||
	struct check_info *ci = priv;
 | 
			
		||||
	ino_t inum;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	inum = key_inum(c, &zbr->key);
 | 
			
		||||
	if (inum != ci->last_ino) {
 | 
			
		||||
		/* Lowest node type is the inode node, so it comes first */
 | 
			
		||||
		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
 | 
			
		||||
			ubifs_err("found orphan node ino %lu, type %d", inum,
 | 
			
		||||
				  key_type(c, &zbr->key));
 | 
			
		||||
		ci->last_ino = inum;
 | 
			
		||||
		ci->tot_inos += 1;
 | 
			
		||||
		err = ubifs_tnc_read_node(c, zbr, ci->node);
 | 
			
		||||
		if (err) {
 | 
			
		||||
			ubifs_err("node read failed, error %d", err);
 | 
			
		||||
			return err;
 | 
			
		||||
		}
 | 
			
		||||
		if (ci->node->nlink == 0)
 | 
			
		||||
			/* Must be recorded as an orphan */
 | 
			
		||||
			if (!dbg_find_check_orphan(&ci->root, inum) &&
 | 
			
		||||
			    !dbg_find_orphan(c, inum)) {
 | 
			
		||||
				ubifs_err("missing orphan, ino %lu", inum);
 | 
			
		||||
				ci->missing += 1;
 | 
			
		||||
			}
 | 
			
		||||
	}
 | 
			
		||||
	ci->leaf_cnt += 1;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_node *snod;
 | 
			
		||||
	struct ubifs_orph_node *orph;
 | 
			
		||||
	ino_t inum;
 | 
			
		||||
	int i, n, err;
 | 
			
		||||
 | 
			
		||||
	list_for_each_entry(snod, &sleb->nodes, list) {
 | 
			
		||||
		cond_resched();
 | 
			
		||||
		if (snod->type != UBIFS_ORPH_NODE)
 | 
			
		||||
			continue;
 | 
			
		||||
		orph = snod->node;
 | 
			
		||||
		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 | 
			
		||||
		for (i = 0; i < n; i++) {
 | 
			
		||||
			inum = le64_to_cpu(orph->inos[i]);
 | 
			
		||||
			err = dbg_ins_check_orphan(&ci->root, inum);
 | 
			
		||||
			if (err)
 | 
			
		||||
				return err;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
 | 
			
		||||
{
 | 
			
		||||
	int lnum, err = 0;
 | 
			
		||||
 | 
			
		||||
	/* Check no-orphans flag and skip this if no orphans */
 | 
			
		||||
	if (c->no_orphs)
 | 
			
		||||
		return 0;
 | 
			
		||||
 | 
			
		||||
	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 | 
			
		||||
		struct ubifs_scan_leb *sleb;
 | 
			
		||||
 | 
			
		||||
		sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
 | 
			
		||||
		if (IS_ERR(sleb)) {
 | 
			
		||||
			err = PTR_ERR(sleb);
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		err = dbg_read_orphans(ci, sleb);
 | 
			
		||||
		ubifs_scan_destroy(sleb);
 | 
			
		||||
		if (err)
 | 
			
		||||
			break;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int dbg_check_orphans(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct check_info ci;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	if (!(ubifs_chk_flags & UBIFS_CHK_ORPH))
 | 
			
		||||
		return 0;
 | 
			
		||||
 | 
			
		||||
	ci.last_ino = 0;
 | 
			
		||||
	ci.tot_inos = 0;
 | 
			
		||||
	ci.missing  = 0;
 | 
			
		||||
	ci.leaf_cnt = 0;
 | 
			
		||||
	ci.root = RB_ROOT;
 | 
			
		||||
	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 | 
			
		||||
	if (!ci.node) {
 | 
			
		||||
		ubifs_err("out of memory");
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = dbg_scan_orphans(c, &ci);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ubifs_err("cannot scan TNC, error %d", err);
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (ci.missing) {
 | 
			
		||||
		ubifs_err("%lu missing orphan(s)", ci.missing);
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	dbg_cmt("last inode number is %lu", ci.last_ino);
 | 
			
		||||
	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
 | 
			
		||||
	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	dbg_free_check_tree(&ci.root);
 | 
			
		||||
	kfree(ci.node);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif /* CONFIG_UBIFS_FS_DEBUG */
 | 
			
		||||
							
								
								
									
										1519
									
								
								fs/ubifs/recovery.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1519
									
								
								fs/ubifs/recovery.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										1075
									
								
								fs/ubifs/replay.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1075
									
								
								fs/ubifs/replay.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										629
									
								
								fs/ubifs/sb.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										629
									
								
								fs/ubifs/sb.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,629 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements UBIFS superblock. The superblock is stored at the first
 | 
			
		||||
 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
 | 
			
		||||
 * change it. The superblock node mostly contains geometry information.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
#include <linux/random.h>
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Default journal size in logical eraseblocks as a percent of total
 | 
			
		||||
 * flash size.
 | 
			
		||||
 */
 | 
			
		||||
#define DEFAULT_JNL_PERCENT 5
 | 
			
		||||
 | 
			
		||||
/* Default maximum journal size in bytes */
 | 
			
		||||
#define DEFAULT_MAX_JNL (32*1024*1024)
 | 
			
		||||
 | 
			
		||||
/* Default indexing tree fanout */
 | 
			
		||||
#define DEFAULT_FANOUT 8
 | 
			
		||||
 | 
			
		||||
/* Default number of data journal heads */
 | 
			
		||||
#define DEFAULT_JHEADS_CNT 1
 | 
			
		||||
 | 
			
		||||
/* Default positions of different LEBs in the main area */
 | 
			
		||||
#define DEFAULT_IDX_LEB  0
 | 
			
		||||
#define DEFAULT_DATA_LEB 1
 | 
			
		||||
#define DEFAULT_GC_LEB   2
 | 
			
		||||
 | 
			
		||||
/* Default number of LEB numbers in LPT's save table */
 | 
			
		||||
#define DEFAULT_LSAVE_CNT 256
 | 
			
		||||
 | 
			
		||||
/* Default reserved pool size as a percent of maximum free space */
 | 
			
		||||
#define DEFAULT_RP_PERCENT 5
 | 
			
		||||
 | 
			
		||||
/* The default maximum size of reserved pool in bytes */
 | 
			
		||||
#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
 | 
			
		||||
 | 
			
		||||
/* Default time granularity in nanoseconds */
 | 
			
		||||
#define DEFAULT_TIME_GRAN 1000000000
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * create_default_filesystem - format empty UBI volume.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function creates default empty file-system. Returns zero in case of
 | 
			
		||||
 * success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int create_default_filesystem(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_sb_node *sup;
 | 
			
		||||
	struct ubifs_mst_node *mst;
 | 
			
		||||
	struct ubifs_idx_node *idx;
 | 
			
		||||
	struct ubifs_branch *br;
 | 
			
		||||
	struct ubifs_ino_node *ino;
 | 
			
		||||
	struct ubifs_cs_node *cs;
 | 
			
		||||
	union ubifs_key key;
 | 
			
		||||
	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
 | 
			
		||||
	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
 | 
			
		||||
	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
 | 
			
		||||
	uint64_t tmp64, main_bytes;
 | 
			
		||||
 | 
			
		||||
	/* Some functions called from here depend on the @c->key_len filed */
 | 
			
		||||
	c->key_len = UBIFS_SK_LEN;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * First of all, we have to calculate default file-system geometry -
 | 
			
		||||
	 * log size, journal size, etc.
 | 
			
		||||
	 */
 | 
			
		||||
	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
 | 
			
		||||
		/* We can first multiply then divide and have no overflow */
 | 
			
		||||
		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
 | 
			
		||||
	else
 | 
			
		||||
		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
 | 
			
		||||
 | 
			
		||||
	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
 | 
			
		||||
		jnl_lebs = UBIFS_MIN_JNL_LEBS;
 | 
			
		||||
	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
 | 
			
		||||
		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The log should be large enough to fit reference nodes for all bud
 | 
			
		||||
	 * LEBs. Because buds do not have to start from the beginning of LEBs
 | 
			
		||||
	 * (half of the LEB may contain committed data), the log should
 | 
			
		||||
	 * generally be larger, make it twice as large.
 | 
			
		||||
	 */
 | 
			
		||||
	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
 | 
			
		||||
	log_lebs = tmp / c->leb_size;
 | 
			
		||||
	/* Plus one LEB reserved for commit */
 | 
			
		||||
	log_lebs += 1;
 | 
			
		||||
	if (c->leb_cnt - min_leb_cnt > 8) {
 | 
			
		||||
		/* And some extra space to allow writes while committing */
 | 
			
		||||
		log_lebs += 1;
 | 
			
		||||
		min_leb_cnt += 1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	max_buds = jnl_lebs - log_lebs;
 | 
			
		||||
	if (max_buds < UBIFS_MIN_BUD_LEBS)
 | 
			
		||||
		max_buds = UBIFS_MIN_BUD_LEBS;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Orphan nodes are stored in a separate area. One node can store a lot
 | 
			
		||||
	 * of orphan inode numbers, but when new orphan comes we just add a new
 | 
			
		||||
	 * orphan node. At some point the nodes are consolidated into one
 | 
			
		||||
	 * orphan node.
 | 
			
		||||
	 */
 | 
			
		||||
	orph_lebs = UBIFS_MIN_ORPH_LEBS;
 | 
			
		||||
#ifdef CONFIG_UBIFS_FS_DEBUG
 | 
			
		||||
	if (c->leb_cnt - min_leb_cnt > 1)
 | 
			
		||||
		/*
 | 
			
		||||
		 * For debugging purposes it is better to have at least 2
 | 
			
		||||
		 * orphan LEBs, because the orphan subsystem would need to do
 | 
			
		||||
		 * consolidations and would be stressed more.
 | 
			
		||||
		 */
 | 
			
		||||
		orph_lebs += 1;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
 | 
			
		||||
	main_lebs -= orph_lebs;
 | 
			
		||||
 | 
			
		||||
	lpt_first = UBIFS_LOG_LNUM + log_lebs;
 | 
			
		||||
	c->lsave_cnt = DEFAULT_LSAVE_CNT;
 | 
			
		||||
	c->max_leb_cnt = c->leb_cnt;
 | 
			
		||||
	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
 | 
			
		||||
				    &big_lpt);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
 | 
			
		||||
		lpt_first + lpt_lebs - 1);
 | 
			
		||||
 | 
			
		||||
	main_first = c->leb_cnt - main_lebs;
 | 
			
		||||
 | 
			
		||||
	/* Create default superblock */
 | 
			
		||||
	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
 | 
			
		||||
	sup = kzalloc(tmp, GFP_KERNEL);
 | 
			
		||||
	if (!sup)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	tmp64 = (uint64_t)max_buds * c->leb_size;
 | 
			
		||||
	if (big_lpt)
 | 
			
		||||
		sup_flags |= UBIFS_FLG_BIGLPT;
 | 
			
		||||
 | 
			
		||||
	sup->ch.node_type  = UBIFS_SB_NODE;
 | 
			
		||||
	sup->key_hash      = UBIFS_KEY_HASH_R5;
 | 
			
		||||
	sup->flags         = cpu_to_le32(sup_flags);
 | 
			
		||||
	sup->min_io_size   = cpu_to_le32(c->min_io_size);
 | 
			
		||||
	sup->leb_size      = cpu_to_le32(c->leb_size);
 | 
			
		||||
	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
 | 
			
		||||
	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
 | 
			
		||||
	sup->max_bud_bytes = cpu_to_le64(tmp64);
 | 
			
		||||
	sup->log_lebs      = cpu_to_le32(log_lebs);
 | 
			
		||||
	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
 | 
			
		||||
	sup->orph_lebs     = cpu_to_le32(orph_lebs);
 | 
			
		||||
	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
 | 
			
		||||
	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
 | 
			
		||||
	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
 | 
			
		||||
	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
 | 
			
		||||
	sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
 | 
			
		||||
	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
 | 
			
		||||
 | 
			
		||||
	generate_random_uuid(sup->uuid);
 | 
			
		||||
 | 
			
		||||
	main_bytes = (uint64_t)main_lebs * c->leb_size;
 | 
			
		||||
	tmp64 = main_bytes * DEFAULT_RP_PERCENT;
 | 
			
		||||
	do_div(tmp64, 100);
 | 
			
		||||
	if (tmp64 > DEFAULT_MAX_RP_SIZE)
 | 
			
		||||
		tmp64 = DEFAULT_MAX_RP_SIZE;
 | 
			
		||||
	sup->rp_size = cpu_to_le64(tmp64);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0, UBI_LONGTERM);
 | 
			
		||||
	kfree(sup);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("default superblock created at LEB 0:0");
 | 
			
		||||
 | 
			
		||||
	/* Create default master node */
 | 
			
		||||
	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
 | 
			
		||||
	if (!mst)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	mst->ch.node_type = UBIFS_MST_NODE;
 | 
			
		||||
	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
 | 
			
		||||
	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
 | 
			
		||||
	mst->cmt_no       = 0;
 | 
			
		||||
	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
 | 
			
		||||
	mst->root_offs    = 0;
 | 
			
		||||
	tmp = ubifs_idx_node_sz(c, 1);
 | 
			
		||||
	mst->root_len     = cpu_to_le32(tmp);
 | 
			
		||||
	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
 | 
			
		||||
	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
 | 
			
		||||
	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
 | 
			
		||||
	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
 | 
			
		||||
	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
 | 
			
		||||
	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
 | 
			
		||||
	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
 | 
			
		||||
	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
 | 
			
		||||
	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
 | 
			
		||||
	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
 | 
			
		||||
	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
 | 
			
		||||
	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
 | 
			
		||||
	mst->lscan_lnum   = cpu_to_le32(main_first);
 | 
			
		||||
	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
 | 
			
		||||
	mst->idx_lebs     = cpu_to_le32(1);
 | 
			
		||||
	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
 | 
			
		||||
 | 
			
		||||
	/* Calculate lprops statistics */
 | 
			
		||||
	tmp64 = main_bytes;
 | 
			
		||||
	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
 | 
			
		||||
	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
 | 
			
		||||
	mst->total_free = cpu_to_le64(tmp64);
 | 
			
		||||
 | 
			
		||||
	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
 | 
			
		||||
	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
 | 
			
		||||
			  UBIFS_INO_NODE_SZ;
 | 
			
		||||
	tmp64 += ino_waste;
 | 
			
		||||
	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
 | 
			
		||||
	mst->total_dirty = cpu_to_le64(tmp64);
 | 
			
		||||
 | 
			
		||||
	/*  The indexing LEB does not contribute to dark space */
 | 
			
		||||
	tmp64 = (c->main_lebs - 1) * c->dark_wm;
 | 
			
		||||
	mst->total_dark = cpu_to_le64(tmp64);
 | 
			
		||||
 | 
			
		||||
	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
 | 
			
		||||
			       UBI_UNKNOWN);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		kfree(mst);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 0,
 | 
			
		||||
			       UBI_UNKNOWN);
 | 
			
		||||
	kfree(mst);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
 | 
			
		||||
 | 
			
		||||
	/* Create the root indexing node */
 | 
			
		||||
	tmp = ubifs_idx_node_sz(c, 1);
 | 
			
		||||
	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
 | 
			
		||||
	if (!idx)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
 | 
			
		||||
	c->key_hash = key_r5_hash;
 | 
			
		||||
 | 
			
		||||
	idx->ch.node_type = UBIFS_IDX_NODE;
 | 
			
		||||
	idx->child_cnt = cpu_to_le16(1);
 | 
			
		||||
	ino_key_init(c, &key, UBIFS_ROOT_INO);
 | 
			
		||||
	br = ubifs_idx_branch(c, idx, 0);
 | 
			
		||||
	key_write_idx(c, &key, &br->key);
 | 
			
		||||
	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
 | 
			
		||||
	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
 | 
			
		||||
	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0,
 | 
			
		||||
			       UBI_UNKNOWN);
 | 
			
		||||
	kfree(idx);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("default root indexing node created LEB %d:0",
 | 
			
		||||
		main_first + DEFAULT_IDX_LEB);
 | 
			
		||||
 | 
			
		||||
	/* Create default root inode */
 | 
			
		||||
	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
 | 
			
		||||
	ino = kzalloc(tmp, GFP_KERNEL);
 | 
			
		||||
	if (!ino)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
 | 
			
		||||
	ino->ch.node_type = UBIFS_INO_NODE;
 | 
			
		||||
	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
 | 
			
		||||
	ino->nlink = cpu_to_le32(2);
 | 
			
		||||
	tmp = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
 | 
			
		||||
	ino->atime_sec   = tmp;
 | 
			
		||||
	ino->ctime_sec   = tmp;
 | 
			
		||||
	ino->mtime_sec   = tmp;
 | 
			
		||||
	ino->atime_nsec  = 0;
 | 
			
		||||
	ino->ctime_nsec  = 0;
 | 
			
		||||
	ino->mtime_nsec  = 0;
 | 
			
		||||
	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
 | 
			
		||||
	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
 | 
			
		||||
 | 
			
		||||
	/* Set compression enabled by default */
 | 
			
		||||
	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
 | 
			
		||||
			       main_first + DEFAULT_DATA_LEB, 0,
 | 
			
		||||
			       UBI_UNKNOWN);
 | 
			
		||||
	kfree(ino);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("root inode created at LEB %d:0",
 | 
			
		||||
		main_first + DEFAULT_DATA_LEB);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The first node in the log has to be the commit start node. This is
 | 
			
		||||
	 * always the case during normal file-system operation. Write a fake
 | 
			
		||||
	 * commit start node to the log.
 | 
			
		||||
	 */
 | 
			
		||||
	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
 | 
			
		||||
	cs = kzalloc(tmp, GFP_KERNEL);
 | 
			
		||||
	if (!cs)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	cs->ch.node_type = UBIFS_CS_NODE;
 | 
			
		||||
	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM,
 | 
			
		||||
			       0, UBI_UNKNOWN);
 | 
			
		||||
	kfree(cs);
 | 
			
		||||
 | 
			
		||||
	ubifs_msg("default file-system created");
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * validate_sb - validate superblock node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @sup: superblock node
 | 
			
		||||
 *
 | 
			
		||||
 * This function validates superblock node @sup. Since most of data was read
 | 
			
		||||
 * from the superblock and stored in @c, the function validates fields in @c
 | 
			
		||||
 * instead. Returns zero in case of success and %-EINVAL in case of validation
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
 | 
			
		||||
{
 | 
			
		||||
	long long max_bytes;
 | 
			
		||||
	int err = 1, min_leb_cnt;
 | 
			
		||||
 | 
			
		||||
	if (!c->key_hash) {
 | 
			
		||||
		err = 2;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
 | 
			
		||||
		err = 3;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
 | 
			
		||||
		ubifs_err("min. I/O unit mismatch: %d in superblock, %d real",
 | 
			
		||||
			  le32_to_cpu(sup->min_io_size), c->min_io_size);
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
 | 
			
		||||
		ubifs_err("LEB size mismatch: %d in superblock, %d real",
 | 
			
		||||
			  le32_to_cpu(sup->leb_size), c->leb_size);
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
 | 
			
		||||
	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
 | 
			
		||||
	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
 | 
			
		||||
	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
 | 
			
		||||
		err = 4;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Calculate minimum allowed amount of main area LEBs. This is very
 | 
			
		||||
	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
 | 
			
		||||
	 * have just read from the superblock.
 | 
			
		||||
	 */
 | 
			
		||||
	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
 | 
			
		||||
	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
 | 
			
		||||
 | 
			
		||||
	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
 | 
			
		||||
		ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, "
 | 
			
		||||
			  "%d minimum required", c->leb_cnt, c->vi.size,
 | 
			
		||||
			  min_leb_cnt);
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->max_leb_cnt < c->leb_cnt) {
 | 
			
		||||
		ubifs_err("max. LEB count %d less than LEB count %d",
 | 
			
		||||
			  c->max_leb_cnt, c->leb_cnt);
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
 | 
			
		||||
		err = 7;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->max_bud_bytes < (long long)c->leb_size * UBIFS_MIN_BUD_LEBS ||
 | 
			
		||||
	    c->max_bud_bytes > (long long)c->leb_size * c->main_lebs) {
 | 
			
		||||
		err = 8;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
 | 
			
		||||
	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
 | 
			
		||||
		err = 9;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->fanout < UBIFS_MIN_FANOUT ||
 | 
			
		||||
	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
 | 
			
		||||
		err = 10;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
 | 
			
		||||
	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
 | 
			
		||||
	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
 | 
			
		||||
		err = 11;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
 | 
			
		||||
	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
 | 
			
		||||
		err = 12;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
 | 
			
		||||
		err = 13;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	max_bytes = c->main_lebs * (long long)c->leb_size;
 | 
			
		||||
	if (c->rp_size < 0 || max_bytes < c->rp_size) {
 | 
			
		||||
		err = 14;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
 | 
			
		||||
	    le32_to_cpu(sup->time_gran) < 1) {
 | 
			
		||||
		err = 15;
 | 
			
		||||
		goto failed;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
failed:
 | 
			
		||||
	ubifs_err("bad superblock, error %d", err);
 | 
			
		||||
	dbg_dump_node(c, sup);
 | 
			
		||||
	return -EINVAL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_read_sb_node - read superblock node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a pointer to the superblock node or a negative error
 | 
			
		||||
 * code.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_sb_node *sup;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
 | 
			
		||||
	if (!sup)
 | 
			
		||||
		return ERR_PTR(-ENOMEM);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
 | 
			
		||||
			      UBIFS_SB_LNUM, 0);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		kfree(sup);
 | 
			
		||||
		return ERR_PTR(err);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return sup;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_write_sb_node - write superblock node.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @sup: superblock node read with 'ubifs_read_sb_node()'
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
 | 
			
		||||
{
 | 
			
		||||
	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
 | 
			
		||||
 | 
			
		||||
	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
 | 
			
		||||
	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len, UBI_LONGTERM);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_read_superblock - read superblock.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 *
 | 
			
		||||
 * This function finds, reads and checks the superblock. If an empty UBI volume
 | 
			
		||||
 * is being mounted, this function creates default superblock. Returns zero in
 | 
			
		||||
 * case of success, and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_read_superblock(struct ubifs_info *c)
 | 
			
		||||
{
 | 
			
		||||
	int err, sup_flags;
 | 
			
		||||
	struct ubifs_sb_node *sup;
 | 
			
		||||
 | 
			
		||||
	if (c->empty) {
 | 
			
		||||
		err = create_default_filesystem(c);
 | 
			
		||||
		if (err)
 | 
			
		||||
			return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	sup = ubifs_read_sb_node(c);
 | 
			
		||||
	if (IS_ERR(sup))
 | 
			
		||||
		return PTR_ERR(sup);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The software supports all previous versions but not future versions,
 | 
			
		||||
	 * due to the unavailability of time-travelling equipment.
 | 
			
		||||
	 */
 | 
			
		||||
	c->fmt_version = le32_to_cpu(sup->fmt_version);
 | 
			
		||||
	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
 | 
			
		||||
		ubifs_err("on-flash format version is %d, but software only "
 | 
			
		||||
			  "supports up to version %d", c->fmt_version,
 | 
			
		||||
			  UBIFS_FORMAT_VERSION);
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (c->fmt_version < 3) {
 | 
			
		||||
		ubifs_err("on-flash format version %d is not supported",
 | 
			
		||||
			  c->fmt_version);
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	switch (sup->key_hash) {
 | 
			
		||||
	case UBIFS_KEY_HASH_R5:
 | 
			
		||||
		c->key_hash = key_r5_hash;
 | 
			
		||||
		c->key_hash_type = UBIFS_KEY_HASH_R5;
 | 
			
		||||
		break;
 | 
			
		||||
 | 
			
		||||
	case UBIFS_KEY_HASH_TEST:
 | 
			
		||||
		c->key_hash = key_test_hash;
 | 
			
		||||
		c->key_hash_type = UBIFS_KEY_HASH_TEST;
 | 
			
		||||
		break;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	c->key_fmt = sup->key_fmt;
 | 
			
		||||
 | 
			
		||||
	switch (c->key_fmt) {
 | 
			
		||||
	case UBIFS_SIMPLE_KEY_FMT:
 | 
			
		||||
		c->key_len = UBIFS_SK_LEN;
 | 
			
		||||
		break;
 | 
			
		||||
	default:
 | 
			
		||||
		ubifs_err("unsupported key format");
 | 
			
		||||
		err = -EINVAL;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
 | 
			
		||||
	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
 | 
			
		||||
	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
 | 
			
		||||
	c->log_lebs      = le32_to_cpu(sup->log_lebs);
 | 
			
		||||
	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
 | 
			
		||||
	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
 | 
			
		||||
	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
 | 
			
		||||
	c->fanout        = le32_to_cpu(sup->fanout);
 | 
			
		||||
	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
 | 
			
		||||
	c->default_compr = le16_to_cpu(sup->default_compr);
 | 
			
		||||
	c->rp_size       = le64_to_cpu(sup->rp_size);
 | 
			
		||||
	c->rp_uid        = le32_to_cpu(sup->rp_uid);
 | 
			
		||||
	c->rp_gid        = le32_to_cpu(sup->rp_gid);
 | 
			
		||||
	sup_flags        = le32_to_cpu(sup->flags);
 | 
			
		||||
 | 
			
		||||
	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
 | 
			
		||||
 | 
			
		||||
	memcpy(&c->uuid, &sup->uuid, 16);
 | 
			
		||||
 | 
			
		||||
	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
 | 
			
		||||
 | 
			
		||||
	/* Automatically increase file system size to the maximum size */
 | 
			
		||||
	c->old_leb_cnt = c->leb_cnt;
 | 
			
		||||
	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
 | 
			
		||||
		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
 | 
			
		||||
		if (c->vfs_sb->s_flags & MS_RDONLY)
 | 
			
		||||
			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
 | 
			
		||||
				c->old_leb_cnt,	c->leb_cnt);
 | 
			
		||||
		else {
 | 
			
		||||
			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
 | 
			
		||||
				c->old_leb_cnt, c->leb_cnt);
 | 
			
		||||
			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
 | 
			
		||||
			err = ubifs_write_sb_node(c, sup);
 | 
			
		||||
			if (err)
 | 
			
		||||
				goto out;
 | 
			
		||||
			c->old_leb_cnt = c->leb_cnt;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	c->log_bytes = (long long)c->log_lebs * c->leb_size;
 | 
			
		||||
	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
 | 
			
		||||
	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
 | 
			
		||||
	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
 | 
			
		||||
	c->orph_first = c->lpt_last + 1;
 | 
			
		||||
	c->orph_last = c->orph_first + c->orph_lebs - 1;
 | 
			
		||||
	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
 | 
			
		||||
	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
 | 
			
		||||
	c->main_first = c->leb_cnt - c->main_lebs;
 | 
			
		||||
	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 | 
			
		||||
 | 
			
		||||
	err = validate_sb(c, sup);
 | 
			
		||||
out:
 | 
			
		||||
	kfree(sup);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										362
									
								
								fs/ubifs/scan.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										362
									
								
								fs/ubifs/scan.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,362 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Adrian Hunter
 | 
			
		||||
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements the scan which is a general-purpose function for
 | 
			
		||||
 * determining what nodes are in an eraseblock. The scan is used to replay the
 | 
			
		||||
 * journal, to do garbage collection. for the TNC in-the-gaps method, and by
 | 
			
		||||
 * debugging functions.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * scan_padding_bytes - scan for padding bytes.
 | 
			
		||||
 * @buf: buffer to scan
 | 
			
		||||
 * @len: length of buffer
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns the number of padding bytes on success and
 | 
			
		||||
 * %SCANNED_GARBAGE on failure.
 | 
			
		||||
 */
 | 
			
		||||
static int scan_padding_bytes(void *buf, int len)
 | 
			
		||||
{
 | 
			
		||||
	int pad_len = 0, max_pad_len = min_t(int, UBIFS_PAD_NODE_SZ, len);
 | 
			
		||||
	uint8_t *p = buf;
 | 
			
		||||
 | 
			
		||||
	dbg_scan("not a node");
 | 
			
		||||
 | 
			
		||||
	while (pad_len < max_pad_len && *p++ == UBIFS_PADDING_BYTE)
 | 
			
		||||
		pad_len += 1;
 | 
			
		||||
 | 
			
		||||
	if (!pad_len || (pad_len & 7))
 | 
			
		||||
		return SCANNED_GARBAGE;
 | 
			
		||||
 | 
			
		||||
	dbg_scan("%d padding bytes", pad_len);
 | 
			
		||||
 | 
			
		||||
	return pad_len;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_scan_a_node - scan for a node or padding.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @buf: buffer to scan
 | 
			
		||||
 * @len: length of buffer
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset within the logical eraseblock
 | 
			
		||||
 * @quiet: print no messages
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns a scanning code to indicate what was scanned.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
 | 
			
		||||
		      int offs, int quiet)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_ch *ch = buf;
 | 
			
		||||
	uint32_t magic;
 | 
			
		||||
 | 
			
		||||
	magic = le32_to_cpu(ch->magic);
 | 
			
		||||
 | 
			
		||||
	if (magic == 0xFFFFFFFF) {
 | 
			
		||||
		dbg_scan("hit empty space");
 | 
			
		||||
		return SCANNED_EMPTY_SPACE;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (magic != UBIFS_NODE_MAGIC)
 | 
			
		||||
		return scan_padding_bytes(buf, len);
 | 
			
		||||
 | 
			
		||||
	if (len < UBIFS_CH_SZ)
 | 
			
		||||
		return SCANNED_GARBAGE;
 | 
			
		||||
 | 
			
		||||
	dbg_scan("scanning %s", dbg_ntype(ch->node_type));
 | 
			
		||||
 | 
			
		||||
	if (ubifs_check_node(c, buf, lnum, offs, quiet))
 | 
			
		||||
		return SCANNED_A_CORRUPT_NODE;
 | 
			
		||||
 | 
			
		||||
	if (ch->node_type == UBIFS_PAD_NODE) {
 | 
			
		||||
		struct ubifs_pad_node *pad = buf;
 | 
			
		||||
		int pad_len = le32_to_cpu(pad->pad_len);
 | 
			
		||||
		int node_len = le32_to_cpu(ch->len);
 | 
			
		||||
 | 
			
		||||
		/* Validate the padding node */
 | 
			
		||||
		if (pad_len < 0 ||
 | 
			
		||||
		    offs + node_len + pad_len > c->leb_size) {
 | 
			
		||||
			if (!quiet) {
 | 
			
		||||
				ubifs_err("bad pad node at LEB %d:%d",
 | 
			
		||||
					  lnum, offs);
 | 
			
		||||
				dbg_dump_node(c, pad);
 | 
			
		||||
			}
 | 
			
		||||
			return SCANNED_A_BAD_PAD_NODE;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/* Make the node pads to 8-byte boundary */
 | 
			
		||||
		if ((node_len + pad_len) & 7) {
 | 
			
		||||
			if (!quiet) {
 | 
			
		||||
				dbg_err("bad padding length %d - %d",
 | 
			
		||||
					offs, offs + node_len + pad_len);
 | 
			
		||||
			}
 | 
			
		||||
			return SCANNED_A_BAD_PAD_NODE;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		dbg_scan("%d bytes padded, offset now %d",
 | 
			
		||||
			 pad_len, ALIGN(offs + node_len + pad_len, 8));
 | 
			
		||||
 | 
			
		||||
		return node_len + pad_len;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return SCANNED_A_NODE;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_start_scan - create LEB scanning information at start of scan.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset to start at (usually zero)
 | 
			
		||||
 * @sbuf: scan buffer (must be c->leb_size)
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum,
 | 
			
		||||
					int offs, void *sbuf)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_leb *sleb;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	dbg_scan("scan LEB %d:%d", lnum, offs);
 | 
			
		||||
 | 
			
		||||
	sleb = kzalloc(sizeof(struct ubifs_scan_leb), GFP_NOFS);
 | 
			
		||||
	if (!sleb)
 | 
			
		||||
		return ERR_PTR(-ENOMEM);
 | 
			
		||||
 | 
			
		||||
	sleb->lnum = lnum;
 | 
			
		||||
	INIT_LIST_HEAD(&sleb->nodes);
 | 
			
		||||
	sleb->buf = sbuf;
 | 
			
		||||
 | 
			
		||||
	err = ubi_read(c->ubi, lnum, sbuf + offs, offs, c->leb_size - offs);
 | 
			
		||||
	if (err && err != -EBADMSG) {
 | 
			
		||||
		ubifs_err("cannot read %d bytes from LEB %d:%d,"
 | 
			
		||||
			  " error %d", c->leb_size - offs, lnum, offs, err);
 | 
			
		||||
		kfree(sleb);
 | 
			
		||||
		return ERR_PTR(err);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (err == -EBADMSG)
 | 
			
		||||
		sleb->ecc = 1;
 | 
			
		||||
 | 
			
		||||
	return sleb;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_end_scan - update LEB scanning information at end of scan.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @sleb: scanning information
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset to start at (usually zero)
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 | 
			
		||||
		    int lnum, int offs)
 | 
			
		||||
{
 | 
			
		||||
	lnum = lnum;
 | 
			
		||||
	dbg_scan("stop scanning LEB %d at offset %d", lnum, offs);
 | 
			
		||||
	ubifs_assert(offs % c->min_io_size == 0);
 | 
			
		||||
 | 
			
		||||
	sleb->endpt = ALIGN(offs, c->min_io_size);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_add_snod - add a scanned node to LEB scanning information.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @sleb: scanning information
 | 
			
		||||
 * @buf: buffer containing node
 | 
			
		||||
 * @offs: offset of node on flash
 | 
			
		||||
 *
 | 
			
		||||
 * This function returns %0 on success and a negative error code on failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 | 
			
		||||
		   void *buf, int offs)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_ch *ch = buf;
 | 
			
		||||
	struct ubifs_ino_node *ino = buf;
 | 
			
		||||
	struct ubifs_scan_node *snod;
 | 
			
		||||
 | 
			
		||||
	snod = kzalloc(sizeof(struct ubifs_scan_node), GFP_NOFS);
 | 
			
		||||
	if (!snod)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	snod->sqnum = le64_to_cpu(ch->sqnum);
 | 
			
		||||
	snod->type = ch->node_type;
 | 
			
		||||
	snod->offs = offs;
 | 
			
		||||
	snod->len = le32_to_cpu(ch->len);
 | 
			
		||||
	snod->node = buf;
 | 
			
		||||
 | 
			
		||||
	switch (ch->node_type) {
 | 
			
		||||
	case UBIFS_INO_NODE:
 | 
			
		||||
	case UBIFS_DENT_NODE:
 | 
			
		||||
	case UBIFS_XENT_NODE:
 | 
			
		||||
	case UBIFS_DATA_NODE:
 | 
			
		||||
	case UBIFS_TRUN_NODE:
 | 
			
		||||
		/*
 | 
			
		||||
		 * The key is in the same place in all keyed
 | 
			
		||||
		 * nodes.
 | 
			
		||||
		 */
 | 
			
		||||
		key_read(c, &ino->key, &snod->key);
 | 
			
		||||
		break;
 | 
			
		||||
	}
 | 
			
		||||
	list_add_tail(&snod->list, &sleb->nodes);
 | 
			
		||||
	sleb->nodes_cnt += 1;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_scanned_corruption - print information after UBIFS scanned corruption.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: LEB number of corruption
 | 
			
		||||
 * @offs: offset of corruption
 | 
			
		||||
 * @buf: buffer containing corruption
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
 | 
			
		||||
			      void *buf)
 | 
			
		||||
{
 | 
			
		||||
	int len;
 | 
			
		||||
 | 
			
		||||
	ubifs_err("corrupted data at LEB %d:%d", lnum, offs);
 | 
			
		||||
	if (dbg_failure_mode)
 | 
			
		||||
		return;
 | 
			
		||||
	len = c->leb_size - offs;
 | 
			
		||||
	if (len > 4096)
 | 
			
		||||
		len = 4096;
 | 
			
		||||
	dbg_err("first %d bytes from LEB %d:%d", len, lnum, offs);
 | 
			
		||||
	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 4, buf, len, 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_scan - scan a logical eraseblock.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: logical eraseblock number
 | 
			
		||||
 * @offs: offset to start at (usually zero)
 | 
			
		||||
 * @sbuf: scan buffer (must be c->leb_size)
 | 
			
		||||
 *
 | 
			
		||||
 * This function scans LEB number @lnum and returns complete information about
 | 
			
		||||
 * its contents. Returns an error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
 | 
			
		||||
				  int offs, void *sbuf)
 | 
			
		||||
{
 | 
			
		||||
	void *buf = sbuf + offs;
 | 
			
		||||
	int err, len = c->leb_size - offs;
 | 
			
		||||
	struct ubifs_scan_leb *sleb;
 | 
			
		||||
 | 
			
		||||
	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
 | 
			
		||||
	if (IS_ERR(sleb))
 | 
			
		||||
		return sleb;
 | 
			
		||||
 | 
			
		||||
	while (len >= 8) {
 | 
			
		||||
		struct ubifs_ch *ch = buf;
 | 
			
		||||
		int node_len, ret;
 | 
			
		||||
 | 
			
		||||
		dbg_scan("look at LEB %d:%d (%d bytes left)",
 | 
			
		||||
			 lnum, offs, len);
 | 
			
		||||
 | 
			
		||||
		cond_resched();
 | 
			
		||||
 | 
			
		||||
		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
 | 
			
		||||
 | 
			
		||||
		if (ret > 0) {
 | 
			
		||||
			/* Padding bytes or a valid padding node */
 | 
			
		||||
			offs += ret;
 | 
			
		||||
			buf += ret;
 | 
			
		||||
			len -= ret;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (ret == SCANNED_EMPTY_SPACE)
 | 
			
		||||
			/* Empty space is checked later */
 | 
			
		||||
			break;
 | 
			
		||||
 | 
			
		||||
		switch (ret) {
 | 
			
		||||
		case SCANNED_GARBAGE:
 | 
			
		||||
			dbg_err("garbage");
 | 
			
		||||
			goto corrupted;
 | 
			
		||||
		case SCANNED_A_NODE:
 | 
			
		||||
			break;
 | 
			
		||||
		case SCANNED_A_CORRUPT_NODE:
 | 
			
		||||
		case SCANNED_A_BAD_PAD_NODE:
 | 
			
		||||
			dbg_err("bad node");
 | 
			
		||||
			goto corrupted;
 | 
			
		||||
		default:
 | 
			
		||||
			dbg_err("unknown");
 | 
			
		||||
			goto corrupted;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		err = ubifs_add_snod(c, sleb, buf, offs);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto error;
 | 
			
		||||
 | 
			
		||||
		node_len = ALIGN(le32_to_cpu(ch->len), 8);
 | 
			
		||||
		offs += node_len;
 | 
			
		||||
		buf += node_len;
 | 
			
		||||
		len -= node_len;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (offs % c->min_io_size)
 | 
			
		||||
		goto corrupted;
 | 
			
		||||
 | 
			
		||||
	ubifs_end_scan(c, sleb, lnum, offs);
 | 
			
		||||
 | 
			
		||||
	for (; len > 4; offs += 4, buf = buf + 4, len -= 4)
 | 
			
		||||
		if (*(uint32_t *)buf != 0xffffffff)
 | 
			
		||||
			break;
 | 
			
		||||
	for (; len; offs++, buf++, len--)
 | 
			
		||||
		if (*(uint8_t *)buf != 0xff) {
 | 
			
		||||
			ubifs_err("corrupt empty space at LEB %d:%d",
 | 
			
		||||
				  lnum, offs);
 | 
			
		||||
			goto corrupted;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	return sleb;
 | 
			
		||||
 | 
			
		||||
corrupted:
 | 
			
		||||
	ubifs_scanned_corruption(c, lnum, offs, buf);
 | 
			
		||||
	err = -EUCLEAN;
 | 
			
		||||
error:
 | 
			
		||||
	ubifs_err("LEB %d scanning failed", lnum);
 | 
			
		||||
	ubifs_scan_destroy(sleb);
 | 
			
		||||
	return ERR_PTR(err);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_scan_destroy - destroy LEB scanning information.
 | 
			
		||||
 * @sleb: scanning information to free
 | 
			
		||||
 */
 | 
			
		||||
void ubifs_scan_destroy(struct ubifs_scan_leb *sleb)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_scan_node *node;
 | 
			
		||||
	struct list_head *head;
 | 
			
		||||
 | 
			
		||||
	head = &sleb->nodes;
 | 
			
		||||
	while (!list_empty(head)) {
 | 
			
		||||
		node = list_entry(head->next, struct ubifs_scan_node, list);
 | 
			
		||||
		list_del(&node->list);
 | 
			
		||||
		kfree(node);
 | 
			
		||||
	}
 | 
			
		||||
	kfree(sleb);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										322
									
								
								fs/ubifs/shrinker.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										322
									
								
								fs/ubifs/shrinker.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,322 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements UBIFS shrinker which evicts clean znodes from the TNC
 | 
			
		||||
 * tree when Linux VM needs more RAM.
 | 
			
		||||
 *
 | 
			
		||||
 * We do not implement any LRU lists to find oldest znodes to free because it
 | 
			
		||||
 * would add additional overhead to the file system fast paths. So the shrinker
 | 
			
		||||
 * just walks the TNC tree when searching for znodes to free.
 | 
			
		||||
 *
 | 
			
		||||
 * If the root of a TNC sub-tree is clean and old enough, then the children are
 | 
			
		||||
 * also clean and old enough. So the shrinker walks the TNC in level order and
 | 
			
		||||
 * dumps entire sub-trees.
 | 
			
		||||
 *
 | 
			
		||||
 * The age of znodes is just the time-stamp when they were last looked at.
 | 
			
		||||
 * The current shrinker first tries to evict old znodes, then young ones.
 | 
			
		||||
 *
 | 
			
		||||
 * Since the shrinker is global, it has to protect against races with FS
 | 
			
		||||
 * un-mounts, which is done by the 'ubifs_infos_lock' and 'c->umount_mutex'.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/* List of all UBIFS file-system instances */
 | 
			
		||||
LIST_HEAD(ubifs_infos);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * We number each shrinker run and record the number on the ubifs_info structure
 | 
			
		||||
 * so that we can easily work out which ubifs_info structures have already been
 | 
			
		||||
 * done by the current run.
 | 
			
		||||
 */
 | 
			
		||||
static unsigned int shrinker_run_no;
 | 
			
		||||
 | 
			
		||||
/* Protects 'ubifs_infos' list */
 | 
			
		||||
DEFINE_SPINLOCK(ubifs_infos_lock);
 | 
			
		||||
 | 
			
		||||
/* Global clean znode counter (for all mounted UBIFS instances) */
 | 
			
		||||
atomic_long_t ubifs_clean_zn_cnt;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * shrink_tnc - shrink TNC tree.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @nr: number of znodes to free
 | 
			
		||||
 * @age: the age of znodes to free
 | 
			
		||||
 * @contention: if any contention, this is set to %1
 | 
			
		||||
 *
 | 
			
		||||
 * This function traverses TNC tree and frees clean znodes. It does not free
 | 
			
		||||
 * clean znodes which younger then @age. Returns number of freed znodes.
 | 
			
		||||
 */
 | 
			
		||||
static int shrink_tnc(struct ubifs_info *c, int nr, int age, int *contention)
 | 
			
		||||
{
 | 
			
		||||
	int total_freed = 0;
 | 
			
		||||
	struct ubifs_znode *znode, *zprev;
 | 
			
		||||
	int time = get_seconds();
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(mutex_is_locked(&c->umount_mutex));
 | 
			
		||||
	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
 | 
			
		||||
 | 
			
		||||
	if (!c->zroot.znode || atomic_long_read(&c->clean_zn_cnt) == 0)
 | 
			
		||||
		return 0;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Traverse the TNC tree in levelorder manner, so that it is possible
 | 
			
		||||
	 * to destroy large sub-trees. Indeed, if a znode is old, then all its
 | 
			
		||||
	 * children are older or of the same age.
 | 
			
		||||
	 *
 | 
			
		||||
	 * Note, we are holding 'c->tnc_mutex', so we do not have to lock the
 | 
			
		||||
	 * 'c->space_lock' when _reading_ 'c->clean_zn_cnt', because it is
 | 
			
		||||
	 * changed only when the 'c->tnc_mutex' is held.
 | 
			
		||||
	 */
 | 
			
		||||
	zprev = NULL;
 | 
			
		||||
	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 | 
			
		||||
	while (znode && total_freed < nr &&
 | 
			
		||||
	       atomic_long_read(&c->clean_zn_cnt) > 0) {
 | 
			
		||||
		int freed;
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * If the znode is clean, but it is in the 'c->cnext' list, this
 | 
			
		||||
		 * means that this znode has just been written to flash as a
 | 
			
		||||
		 * part of commit and was marked clean. They will be removed
 | 
			
		||||
		 * from the list at end commit. We cannot change the list,
 | 
			
		||||
		 * because it is not protected by any mutex (design decision to
 | 
			
		||||
		 * make commit really independent and parallel to main I/O). So
 | 
			
		||||
		 * we just skip these znodes.
 | 
			
		||||
		 *
 | 
			
		||||
		 * Note, the 'clean_zn_cnt' counters are not updated until
 | 
			
		||||
		 * after the commit, so the UBIFS shrinker does not report
 | 
			
		||||
		 * the znodes which are in the 'c->cnext' list as freeable.
 | 
			
		||||
		 *
 | 
			
		||||
		 * Also note, if the root of a sub-tree is not in 'c->cnext',
 | 
			
		||||
		 * then the whole sub-tree is not in 'c->cnext' as well, so it
 | 
			
		||||
		 * is safe to dump whole sub-tree.
 | 
			
		||||
		 */
 | 
			
		||||
 | 
			
		||||
		if (znode->cnext) {
 | 
			
		||||
			/*
 | 
			
		||||
			 * Very soon these znodes will be removed from the list
 | 
			
		||||
			 * and become freeable.
 | 
			
		||||
			 */
 | 
			
		||||
			*contention = 1;
 | 
			
		||||
		} else if (!ubifs_zn_dirty(znode) &&
 | 
			
		||||
			   abs(time - znode->time) >= age) {
 | 
			
		||||
			if (znode->parent)
 | 
			
		||||
				znode->parent->zbranch[znode->iip].znode = NULL;
 | 
			
		||||
			else
 | 
			
		||||
				c->zroot.znode = NULL;
 | 
			
		||||
 | 
			
		||||
			freed = ubifs_destroy_tnc_subtree(znode);
 | 
			
		||||
			atomic_long_sub(freed, &ubifs_clean_zn_cnt);
 | 
			
		||||
			atomic_long_sub(freed, &c->clean_zn_cnt);
 | 
			
		||||
			ubifs_assert(atomic_long_read(&c->clean_zn_cnt) >= 0);
 | 
			
		||||
			total_freed += freed;
 | 
			
		||||
			znode = zprev;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (unlikely(!c->zroot.znode))
 | 
			
		||||
			break;
 | 
			
		||||
 | 
			
		||||
		zprev = znode;
 | 
			
		||||
		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 | 
			
		||||
		cond_resched();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return total_freed;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * shrink_tnc_trees - shrink UBIFS TNC trees.
 | 
			
		||||
 * @nr: number of znodes to free
 | 
			
		||||
 * @age: the age of znodes to free
 | 
			
		||||
 * @contention: if any contention, this is set to %1
 | 
			
		||||
 *
 | 
			
		||||
 * This function walks the list of mounted UBIFS file-systems and frees clean
 | 
			
		||||
 * znodes which are older then @age, until at least @nr znodes are freed.
 | 
			
		||||
 * Returns the number of freed znodes.
 | 
			
		||||
 */
 | 
			
		||||
static int shrink_tnc_trees(int nr, int age, int *contention)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_info *c;
 | 
			
		||||
	struct list_head *p;
 | 
			
		||||
	unsigned int run_no;
 | 
			
		||||
	int freed = 0;
 | 
			
		||||
 | 
			
		||||
	spin_lock(&ubifs_infos_lock);
 | 
			
		||||
	do {
 | 
			
		||||
		run_no = ++shrinker_run_no;
 | 
			
		||||
	} while (run_no == 0);
 | 
			
		||||
	/* Iterate over all mounted UBIFS file-systems and try to shrink them */
 | 
			
		||||
	p = ubifs_infos.next;
 | 
			
		||||
	while (p != &ubifs_infos) {
 | 
			
		||||
		c = list_entry(p, struct ubifs_info, infos_list);
 | 
			
		||||
		/*
 | 
			
		||||
		 * We move the ones we do to the end of the list, so we stop
 | 
			
		||||
		 * when we see one we have already done.
 | 
			
		||||
		 */
 | 
			
		||||
		if (c->shrinker_run_no == run_no)
 | 
			
		||||
			break;
 | 
			
		||||
		if (!mutex_trylock(&c->umount_mutex)) {
 | 
			
		||||
			/* Some un-mount is in progress, try next FS */
 | 
			
		||||
			*contention = 1;
 | 
			
		||||
			p = p->next;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
		/*
 | 
			
		||||
		 * We're holding 'c->umount_mutex', so the file-system won't go
 | 
			
		||||
		 * away.
 | 
			
		||||
		 */
 | 
			
		||||
		if (!mutex_trylock(&c->tnc_mutex)) {
 | 
			
		||||
			mutex_unlock(&c->umount_mutex);
 | 
			
		||||
			*contention = 1;
 | 
			
		||||
			p = p->next;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
		spin_unlock(&ubifs_infos_lock);
 | 
			
		||||
		/*
 | 
			
		||||
		 * OK, now we have TNC locked, the file-system cannot go away -
 | 
			
		||||
		 * it is safe to reap the cache.
 | 
			
		||||
		 */
 | 
			
		||||
		c->shrinker_run_no = run_no;
 | 
			
		||||
		freed += shrink_tnc(c, nr, age, contention);
 | 
			
		||||
		mutex_unlock(&c->tnc_mutex);
 | 
			
		||||
		spin_lock(&ubifs_infos_lock);
 | 
			
		||||
		/* Get the next list element before we move this one */
 | 
			
		||||
		p = p->next;
 | 
			
		||||
		/*
 | 
			
		||||
		 * Move this one to the end of the list to provide some
 | 
			
		||||
		 * fairness.
 | 
			
		||||
		 */
 | 
			
		||||
		list_del(&c->infos_list);
 | 
			
		||||
		list_add_tail(&c->infos_list, &ubifs_infos);
 | 
			
		||||
		mutex_unlock(&c->umount_mutex);
 | 
			
		||||
		if (freed >= nr)
 | 
			
		||||
			break;
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&ubifs_infos_lock);
 | 
			
		||||
	return freed;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * kick_a_thread - kick a background thread to start commit.
 | 
			
		||||
 *
 | 
			
		||||
 * This function kicks a background thread to start background commit. Returns
 | 
			
		||||
 * %-1 if a thread was kicked or there is another reason to assume the memory
 | 
			
		||||
 * will soon be freed or become freeable. If there are no dirty znodes, returns
 | 
			
		||||
 * %0.
 | 
			
		||||
 */
 | 
			
		||||
static int kick_a_thread(void)
 | 
			
		||||
{
 | 
			
		||||
	int i;
 | 
			
		||||
	struct ubifs_info *c;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Iterate over all mounted UBIFS file-systems and find out if there is
 | 
			
		||||
	 * already an ongoing commit operation there. If no, then iterate for
 | 
			
		||||
	 * the second time and initiate background commit.
 | 
			
		||||
	 */
 | 
			
		||||
	spin_lock(&ubifs_infos_lock);
 | 
			
		||||
	for (i = 0; i < 2; i++) {
 | 
			
		||||
		list_for_each_entry(c, &ubifs_infos, infos_list) {
 | 
			
		||||
			long dirty_zn_cnt;
 | 
			
		||||
 | 
			
		||||
			if (!mutex_trylock(&c->umount_mutex)) {
 | 
			
		||||
				/*
 | 
			
		||||
				 * Some un-mount is in progress, it will
 | 
			
		||||
				 * certainly free memory, so just return.
 | 
			
		||||
				 */
 | 
			
		||||
				spin_unlock(&ubifs_infos_lock);
 | 
			
		||||
				return -1;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			dirty_zn_cnt = atomic_long_read(&c->dirty_zn_cnt);
 | 
			
		||||
 | 
			
		||||
			if (!dirty_zn_cnt || c->cmt_state == COMMIT_BROKEN ||
 | 
			
		||||
			    c->ro_media) {
 | 
			
		||||
				mutex_unlock(&c->umount_mutex);
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (c->cmt_state != COMMIT_RESTING) {
 | 
			
		||||
				spin_unlock(&ubifs_infos_lock);
 | 
			
		||||
				mutex_unlock(&c->umount_mutex);
 | 
			
		||||
				return -1;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (i == 1) {
 | 
			
		||||
				list_del(&c->infos_list);
 | 
			
		||||
				list_add_tail(&c->infos_list, &ubifs_infos);
 | 
			
		||||
				spin_unlock(&ubifs_infos_lock);
 | 
			
		||||
 | 
			
		||||
				ubifs_request_bg_commit(c);
 | 
			
		||||
				mutex_unlock(&c->umount_mutex);
 | 
			
		||||
				return -1;
 | 
			
		||||
			}
 | 
			
		||||
			mutex_unlock(&c->umount_mutex);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	spin_unlock(&ubifs_infos_lock);
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int ubifs_shrinker(int nr, gfp_t gfp_mask)
 | 
			
		||||
{
 | 
			
		||||
	int freed, contention = 0;
 | 
			
		||||
	long clean_zn_cnt = atomic_long_read(&ubifs_clean_zn_cnt);
 | 
			
		||||
 | 
			
		||||
	if (nr == 0)
 | 
			
		||||
		return clean_zn_cnt;
 | 
			
		||||
 | 
			
		||||
	if (!clean_zn_cnt) {
 | 
			
		||||
		/*
 | 
			
		||||
		 * No clean znodes, nothing to reap. All we can do in this case
 | 
			
		||||
		 * is to kick background threads to start commit, which will
 | 
			
		||||
		 * probably make clean znodes which, in turn, will be freeable.
 | 
			
		||||
		 * And we return -1 which means will make VM call us again
 | 
			
		||||
		 * later.
 | 
			
		||||
		 */
 | 
			
		||||
		dbg_tnc("no clean znodes, kick a thread");
 | 
			
		||||
		return kick_a_thread();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	freed = shrink_tnc_trees(nr, OLD_ZNODE_AGE, &contention);
 | 
			
		||||
	if (freed >= nr)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	dbg_tnc("not enough old znodes, try to free young ones");
 | 
			
		||||
	freed += shrink_tnc_trees(nr - freed, YOUNG_ZNODE_AGE, &contention);
 | 
			
		||||
	if (freed >= nr)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	dbg_tnc("not enough young znodes, free all");
 | 
			
		||||
	freed += shrink_tnc_trees(nr - freed, 0, &contention);
 | 
			
		||||
 | 
			
		||||
	if (!freed && contention) {
 | 
			
		||||
		dbg_tnc("freed nothing, but contention");
 | 
			
		||||
		return -1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	dbg_tnc("%d znodes were freed, requested %d", freed, nr);
 | 
			
		||||
	return freed;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										1951
									
								
								fs/ubifs/super.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1951
									
								
								fs/ubifs/super.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										2956
									
								
								fs/ubifs/tnc.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2956
									
								
								fs/ubifs/tnc.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										1103
									
								
								fs/ubifs/tnc_commit.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1103
									
								
								fs/ubifs/tnc_commit.c
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										494
									
								
								fs/ubifs/tnc_misc.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										494
									
								
								fs/ubifs/tnc_misc.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,494 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Adrian Hunter
 | 
			
		||||
 *          Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file contains miscelanious TNC-related functions shared betweend
 | 
			
		||||
 * different files. This file does not form any logically separate TNC
 | 
			
		||||
 * sub-system. The file was created because there is a lot of TNC code and
 | 
			
		||||
 * putting it all in one file would make that file too big and unreadable.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
 | 
			
		||||
 * @zr: root of the subtree to traverse
 | 
			
		||||
 * @znode: previous znode
 | 
			
		||||
 *
 | 
			
		||||
 * This function implements levelorder TNC traversal. The LNC is ignored.
 | 
			
		||||
 * Returns the next element or %NULL if @znode is already the last one.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
 | 
			
		||||
					      struct ubifs_znode *znode)
 | 
			
		||||
{
 | 
			
		||||
	int level, iip, level_search = 0;
 | 
			
		||||
	struct ubifs_znode *zn;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(zr);
 | 
			
		||||
 | 
			
		||||
	if (unlikely(!znode))
 | 
			
		||||
		return zr;
 | 
			
		||||
 | 
			
		||||
	if (unlikely(znode == zr)) {
 | 
			
		||||
		if (znode->level == 0)
 | 
			
		||||
			return NULL;
 | 
			
		||||
		return ubifs_tnc_find_child(zr, 0);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	level = znode->level;
 | 
			
		||||
 | 
			
		||||
	iip = znode->iip;
 | 
			
		||||
	while (1) {
 | 
			
		||||
		ubifs_assert(znode->level <= zr->level);
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * First walk up until there is a znode with next branch to
 | 
			
		||||
		 * look at.
 | 
			
		||||
		 */
 | 
			
		||||
		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
 | 
			
		||||
			znode = znode->parent;
 | 
			
		||||
			iip = znode->iip;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (unlikely(znode->parent == zr &&
 | 
			
		||||
			     iip >= znode->parent->child_cnt)) {
 | 
			
		||||
			/* This level is done, switch to the lower one */
 | 
			
		||||
			level -= 1;
 | 
			
		||||
			if (level_search || level < 0)
 | 
			
		||||
				/*
 | 
			
		||||
				 * We were already looking for znode at lower
 | 
			
		||||
				 * level ('level_search'). As we are here
 | 
			
		||||
				 * again, it just does not exist. Or all levels
 | 
			
		||||
				 * were finished ('level < 0').
 | 
			
		||||
				 */
 | 
			
		||||
				return NULL;
 | 
			
		||||
 | 
			
		||||
			level_search = 1;
 | 
			
		||||
			iip = -1;
 | 
			
		||||
			znode = ubifs_tnc_find_child(zr, 0);
 | 
			
		||||
			ubifs_assert(znode);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/* Switch to the next index */
 | 
			
		||||
		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
 | 
			
		||||
		if (!zn) {
 | 
			
		||||
			/* No more children to look at, we have walk up */
 | 
			
		||||
			iip = znode->parent->child_cnt;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/* Walk back down to the level we came from ('level') */
 | 
			
		||||
		while (zn->level != level) {
 | 
			
		||||
			znode = zn;
 | 
			
		||||
			zn = ubifs_tnc_find_child(zn, 0);
 | 
			
		||||
			if (!zn) {
 | 
			
		||||
				/*
 | 
			
		||||
				 * This path is not too deep so it does not
 | 
			
		||||
				 * reach 'level'. Try next path.
 | 
			
		||||
				 */
 | 
			
		||||
				iip = znode->iip;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (zn) {
 | 
			
		||||
			ubifs_assert(zn->level >= 0);
 | 
			
		||||
			return zn;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_search_zbranch - search znode branch.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @znode: znode to search in
 | 
			
		||||
 * @key: key to search for
 | 
			
		||||
 * @n: znode branch slot number is returned here
 | 
			
		||||
 *
 | 
			
		||||
 * This is a helper function which search branch with key @key in @znode using
 | 
			
		||||
 * binary search. The result of the search may be:
 | 
			
		||||
 *   o exact match, then %1 is returned, and the slot number of the branch is
 | 
			
		||||
 *     stored in @n;
 | 
			
		||||
 *   o no exact match, then %0 is returned and the slot number of the left
 | 
			
		||||
 *     closest branch is returned in @n; the slot if all keys in this znode are
 | 
			
		||||
 *     greater than @key, then %-1 is returned in @n.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_search_zbranch(const struct ubifs_info *c,
 | 
			
		||||
			 const struct ubifs_znode *znode,
 | 
			
		||||
			 const union ubifs_key *key, int *n)
 | 
			
		||||
{
 | 
			
		||||
	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
 | 
			
		||||
	int uninitialized_var(cmp);
 | 
			
		||||
	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(end > beg);
 | 
			
		||||
 | 
			
		||||
	while (end > beg) {
 | 
			
		||||
		mid = (beg + end) >> 1;
 | 
			
		||||
		cmp = keys_cmp(c, key, &zbr[mid].key);
 | 
			
		||||
		if (cmp > 0)
 | 
			
		||||
			beg = mid + 1;
 | 
			
		||||
		else if (cmp < 0)
 | 
			
		||||
			end = mid;
 | 
			
		||||
		else {
 | 
			
		||||
			*n = mid;
 | 
			
		||||
			return 1;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	*n = end - 1;
 | 
			
		||||
 | 
			
		||||
	/* The insert point is after *n */
 | 
			
		||||
	ubifs_assert(*n >= -1 && *n < znode->child_cnt);
 | 
			
		||||
	if (*n == -1)
 | 
			
		||||
		ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
 | 
			
		||||
	else
 | 
			
		||||
		ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
 | 
			
		||||
	if (*n + 1 < znode->child_cnt)
 | 
			
		||||
		ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
 | 
			
		||||
 * @znode: znode to start at (root of the sub-tree to traverse)
 | 
			
		||||
 *
 | 
			
		||||
 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
 | 
			
		||||
 * ignored.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
 | 
			
		||||
{
 | 
			
		||||
	if (unlikely(!znode))
 | 
			
		||||
		return NULL;
 | 
			
		||||
 | 
			
		||||
	while (znode->level > 0) {
 | 
			
		||||
		struct ubifs_znode *child;
 | 
			
		||||
 | 
			
		||||
		child = ubifs_tnc_find_child(znode, 0);
 | 
			
		||||
		if (!child)
 | 
			
		||||
			return znode;
 | 
			
		||||
		znode = child;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return znode;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
 | 
			
		||||
 * @znode: previous znode
 | 
			
		||||
 *
 | 
			
		||||
 * This function implements postorder TNC traversal. The LNC is ignored.
 | 
			
		||||
 * Returns the next element or %NULL if @znode is already the last one.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_znode *zn;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(znode);
 | 
			
		||||
	if (unlikely(!znode->parent))
 | 
			
		||||
		return NULL;
 | 
			
		||||
 | 
			
		||||
	/* Switch to the next index in the parent */
 | 
			
		||||
	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
 | 
			
		||||
	if (!zn)
 | 
			
		||||
		/* This is in fact the last child, return parent */
 | 
			
		||||
		return znode->parent;
 | 
			
		||||
 | 
			
		||||
	/* Go to the first znode in this new subtree */
 | 
			
		||||
	return ubifs_tnc_postorder_first(zn);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
 | 
			
		||||
 * @znode: znode defining subtree to destroy
 | 
			
		||||
 *
 | 
			
		||||
 * This function destroys subtree of the TNC tree. Returns number of clean
 | 
			
		||||
 * znodes in the subtree.
 | 
			
		||||
 */
 | 
			
		||||
long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
 | 
			
		||||
{
 | 
			
		||||
	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
 | 
			
		||||
	long clean_freed = 0;
 | 
			
		||||
	int n;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(zn);
 | 
			
		||||
	while (1) {
 | 
			
		||||
		for (n = 0; n < zn->child_cnt; n++) {
 | 
			
		||||
			if (!zn->zbranch[n].znode)
 | 
			
		||||
				continue;
 | 
			
		||||
 | 
			
		||||
			if (zn->level > 0 &&
 | 
			
		||||
			    !ubifs_zn_dirty(zn->zbranch[n].znode))
 | 
			
		||||
				clean_freed += 1;
 | 
			
		||||
 | 
			
		||||
			cond_resched();
 | 
			
		||||
			kfree(zn->zbranch[n].znode);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (zn == znode) {
 | 
			
		||||
			if (!ubifs_zn_dirty(zn))
 | 
			
		||||
				clean_freed += 1;
 | 
			
		||||
			kfree(zn);
 | 
			
		||||
			return clean_freed;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		zn = ubifs_tnc_postorder_next(zn);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * read_znode - read an indexing node from flash and fill znode.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @lnum: LEB of the indexing node to read
 | 
			
		||||
 * @offs: node offset
 | 
			
		||||
 * @len: node length
 | 
			
		||||
 * @znode: znode to read to
 | 
			
		||||
 *
 | 
			
		||||
 * This function reads an indexing node from the flash media and fills znode
 | 
			
		||||
 * with the read data. Returns zero in case of success and a negative error
 | 
			
		||||
 * code in case of failure. The read indexing node is validated and if anything
 | 
			
		||||
 * is wrong with it, this function prints complaint messages and returns
 | 
			
		||||
 * %-EINVAL.
 | 
			
		||||
 */
 | 
			
		||||
static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
 | 
			
		||||
		      struct ubifs_znode *znode)
 | 
			
		||||
{
 | 
			
		||||
	int i, err, type, cmp;
 | 
			
		||||
	struct ubifs_idx_node *idx;
 | 
			
		||||
 | 
			
		||||
	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
 | 
			
		||||
	if (!idx)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
 | 
			
		||||
	if (err < 0) {
 | 
			
		||||
		kfree(idx);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	znode->child_cnt = le16_to_cpu(idx->child_cnt);
 | 
			
		||||
	znode->level = le16_to_cpu(idx->level);
 | 
			
		||||
 | 
			
		||||
	dbg_tnc("LEB %d:%d, level %d, %d branch",
 | 
			
		||||
		lnum, offs, znode->level, znode->child_cnt);
 | 
			
		||||
 | 
			
		||||
	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
 | 
			
		||||
		dbg_err("current fanout %d, branch count %d",
 | 
			
		||||
			c->fanout, znode->child_cnt);
 | 
			
		||||
		dbg_err("max levels %d, znode level %d",
 | 
			
		||||
			UBIFS_MAX_LEVELS, znode->level);
 | 
			
		||||
		err = 1;
 | 
			
		||||
		goto out_dump;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < znode->child_cnt; i++) {
 | 
			
		||||
		const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 | 
			
		||||
		struct ubifs_zbranch *zbr = &znode->zbranch[i];
 | 
			
		||||
 | 
			
		||||
		key_read(c, &br->key, &zbr->key);
 | 
			
		||||
		zbr->lnum = le32_to_cpu(br->lnum);
 | 
			
		||||
		zbr->offs = le32_to_cpu(br->offs);
 | 
			
		||||
		zbr->len  = le32_to_cpu(br->len);
 | 
			
		||||
		zbr->znode = NULL;
 | 
			
		||||
 | 
			
		||||
		/* Validate branch */
 | 
			
		||||
 | 
			
		||||
		if (zbr->lnum < c->main_first ||
 | 
			
		||||
		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
 | 
			
		||||
		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
 | 
			
		||||
			dbg_err("bad branch %d", i);
 | 
			
		||||
			err = 2;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		switch (key_type(c, &zbr->key)) {
 | 
			
		||||
		case UBIFS_INO_KEY:
 | 
			
		||||
		case UBIFS_DATA_KEY:
 | 
			
		||||
		case UBIFS_DENT_KEY:
 | 
			
		||||
		case UBIFS_XENT_KEY:
 | 
			
		||||
			break;
 | 
			
		||||
		default:
 | 
			
		||||
			dbg_msg("bad key type at slot %d: %s", i,
 | 
			
		||||
				DBGKEY(&zbr->key));
 | 
			
		||||
			err = 3;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (znode->level)
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		type = key_type(c, &zbr->key);
 | 
			
		||||
		if (c->ranges[type].max_len == 0) {
 | 
			
		||||
			if (zbr->len != c->ranges[type].len) {
 | 
			
		||||
				dbg_err("bad target node (type %d) length (%d)",
 | 
			
		||||
					type, zbr->len);
 | 
			
		||||
				dbg_err("have to be %d", c->ranges[type].len);
 | 
			
		||||
				err = 4;
 | 
			
		||||
				goto out_dump;
 | 
			
		||||
			}
 | 
			
		||||
		} else if (zbr->len < c->ranges[type].min_len ||
 | 
			
		||||
			   zbr->len > c->ranges[type].max_len) {
 | 
			
		||||
			dbg_err("bad target node (type %d) length (%d)",
 | 
			
		||||
				type, zbr->len);
 | 
			
		||||
			dbg_err("have to be in range of %d-%d",
 | 
			
		||||
				c->ranges[type].min_len,
 | 
			
		||||
				c->ranges[type].max_len);
 | 
			
		||||
			err = 5;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Ensure that the next key is greater or equivalent to the
 | 
			
		||||
	 * previous one.
 | 
			
		||||
	 */
 | 
			
		||||
	for (i = 0; i < znode->child_cnt - 1; i++) {
 | 
			
		||||
		const union ubifs_key *key1, *key2;
 | 
			
		||||
 | 
			
		||||
		key1 = &znode->zbranch[i].key;
 | 
			
		||||
		key2 = &znode->zbranch[i + 1].key;
 | 
			
		||||
 | 
			
		||||
		cmp = keys_cmp(c, key1, key2);
 | 
			
		||||
		if (cmp > 0) {
 | 
			
		||||
			dbg_err("bad key order (keys %d and %d)", i, i + 1);
 | 
			
		||||
			err = 6;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		} else if (cmp == 0 && !is_hash_key(c, key1)) {
 | 
			
		||||
			/* These can only be keys with colliding hash */
 | 
			
		||||
			dbg_err("keys %d and %d are not hashed but equivalent",
 | 
			
		||||
				i, i + 1);
 | 
			
		||||
			err = 7;
 | 
			
		||||
			goto out_dump;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	kfree(idx);
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_dump:
 | 
			
		||||
	ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
 | 
			
		||||
	dbg_dump_node(c, idx);
 | 
			
		||||
	kfree(idx);
 | 
			
		||||
	return -EINVAL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_load_znode - load znode to TNC cache.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @zbr: znode branch
 | 
			
		||||
 * @parent: znode's parent
 | 
			
		||||
 * @iip: index in parent
 | 
			
		||||
 *
 | 
			
		||||
 * This function loads znode pointed to by @zbr into the TNC cache and
 | 
			
		||||
 * returns pointer to it in case of success and a negative error code in case
 | 
			
		||||
 * of failure.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
 | 
			
		||||
				     struct ubifs_zbranch *zbr,
 | 
			
		||||
				     struct ubifs_znode *parent, int iip)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct ubifs_znode *znode;
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(!zbr->znode);
 | 
			
		||||
	/*
 | 
			
		||||
	 * A slab cache is not presently used for znodes because the znode size
 | 
			
		||||
	 * depends on the fanout which is stored in the superblock.
 | 
			
		||||
	 */
 | 
			
		||||
	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
 | 
			
		||||
	if (!znode)
 | 
			
		||||
		return ERR_PTR(-ENOMEM);
 | 
			
		||||
 | 
			
		||||
	err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out;
 | 
			
		||||
 | 
			
		||||
	atomic_long_inc(&c->clean_zn_cnt);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Increment the global clean znode counter as well. It is OK that
 | 
			
		||||
	 * global and per-FS clean znode counters may be inconsistent for some
 | 
			
		||||
	 * short time (because we might be preempted at this point), the global
 | 
			
		||||
	 * one is only used in shrinker.
 | 
			
		||||
	 */
 | 
			
		||||
	atomic_long_inc(&ubifs_clean_zn_cnt);
 | 
			
		||||
 | 
			
		||||
	zbr->znode = znode;
 | 
			
		||||
	znode->parent = parent;
 | 
			
		||||
	znode->time = get_seconds();
 | 
			
		||||
	znode->iip = iip;
 | 
			
		||||
 | 
			
		||||
	return znode;
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	kfree(znode);
 | 
			
		||||
	return ERR_PTR(err);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ubifs_tnc_read_node - read a leaf node from the flash media.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @zbr: key and position of the node
 | 
			
		||||
 * @node: node is returned here
 | 
			
		||||
 *
 | 
			
		||||
 * This function reads a node defined by @zbr from the flash media. Returns
 | 
			
		||||
 * zero in case of success or a negative negative error code in case of
 | 
			
		||||
 * failure.
 | 
			
		||||
 */
 | 
			
		||||
int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | 
			
		||||
			void *node)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key key1, *key = &zbr->key;
 | 
			
		||||
	int err, type = key_type(c, key);
 | 
			
		||||
	struct ubifs_wbuf *wbuf;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
 | 
			
		||||
	 * may even be in a write buffer, so we have to take care about this.
 | 
			
		||||
	 */
 | 
			
		||||
	wbuf = ubifs_get_wbuf(c, zbr->lnum);
 | 
			
		||||
	if (wbuf)
 | 
			
		||||
		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
 | 
			
		||||
					   zbr->lnum, zbr->offs);
 | 
			
		||||
	else
 | 
			
		||||
		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
 | 
			
		||||
				      zbr->offs);
 | 
			
		||||
 | 
			
		||||
	if (err) {
 | 
			
		||||
		dbg_tnc("key %s", DBGKEY(key));
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Make sure the key of the read node is correct */
 | 
			
		||||
	key_read(c, key, &key1);
 | 
			
		||||
	if (memcmp(node + UBIFS_KEY_OFFSET, &key1, c->key_len)) {
 | 
			
		||||
		ubifs_err("bad key in node at LEB %d:%d",
 | 
			
		||||
			  zbr->lnum, zbr->offs);
 | 
			
		||||
		dbg_tnc("looked for key %s found node's key %s",
 | 
			
		||||
			DBGKEY(key), DBGKEY1(&key1));
 | 
			
		||||
		dbg_dump_node(c, node);
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										745
									
								
								fs/ubifs/ubifs-media.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										745
									
								
								fs/ubifs/ubifs-media.h
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,745 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file describes UBIFS on-flash format and contains definitions of all the
 | 
			
		||||
 * relevant data structures and constants.
 | 
			
		||||
 *
 | 
			
		||||
 * All UBIFS on-flash objects are stored in the form of nodes. All nodes start
 | 
			
		||||
 * with the UBIFS node magic number and have the same common header. Nodes
 | 
			
		||||
 * always sit at 8-byte aligned positions on the media and node header sizes are
 | 
			
		||||
 * also 8-byte aligned (except for the indexing node and the padding node).
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef __UBIFS_MEDIA_H__
 | 
			
		||||
#define __UBIFS_MEDIA_H__
 | 
			
		||||
 | 
			
		||||
/* UBIFS node magic number (must not have the padding byte first or last) */
 | 
			
		||||
#define UBIFS_NODE_MAGIC  0x06101831
 | 
			
		||||
 | 
			
		||||
/* UBIFS on-flash format version */
 | 
			
		||||
#define UBIFS_FORMAT_VERSION 4
 | 
			
		||||
 | 
			
		||||
/* Minimum logical eraseblock size in bytes */
 | 
			
		||||
#define UBIFS_MIN_LEB_SZ (15*1024)
 | 
			
		||||
 | 
			
		||||
/* Initial CRC32 value used when calculating CRC checksums */
 | 
			
		||||
#define UBIFS_CRC32_INIT 0xFFFFFFFFU
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * UBIFS does not try to compress data if its length is less than the below
 | 
			
		||||
 * constant.
 | 
			
		||||
 */
 | 
			
		||||
#define UBIFS_MIN_COMPR_LEN 128
 | 
			
		||||
 | 
			
		||||
/* Root inode number */
 | 
			
		||||
#define UBIFS_ROOT_INO 1
 | 
			
		||||
 | 
			
		||||
/* Lowest inode number used for regular inodes (not UBIFS-only internal ones) */
 | 
			
		||||
#define UBIFS_FIRST_INO 64
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Maximum file name and extended attribute length (must be a multiple of 8,
 | 
			
		||||
 * minus 1).
 | 
			
		||||
 */
 | 
			
		||||
#define UBIFS_MAX_NLEN 255
 | 
			
		||||
 | 
			
		||||
/* Maximum number of data journal heads */
 | 
			
		||||
#define UBIFS_MAX_JHEADS 1
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Size of UBIFS data block. Note, UBIFS is not a block oriented file-system,
 | 
			
		||||
 * which means that it does not treat the underlying media as consisting of
 | 
			
		||||
 * blocks like in case of hard drives. Do not be confused. UBIFS block is just
 | 
			
		||||
 * the maximum amount of data which one data node can have or which can be
 | 
			
		||||
 * attached to an inode node.
 | 
			
		||||
 */
 | 
			
		||||
#define UBIFS_BLOCK_SIZE  4096
 | 
			
		||||
#define UBIFS_BLOCK_SHIFT 12
 | 
			
		||||
#define UBIFS_BLOCK_MASK  0x00000FFF
 | 
			
		||||
 | 
			
		||||
/* UBIFS padding byte pattern (must not be first or last byte of node magic) */
 | 
			
		||||
#define UBIFS_PADDING_BYTE 0xCE
 | 
			
		||||
 | 
			
		||||
/* Maximum possible key length */
 | 
			
		||||
#define UBIFS_MAX_KEY_LEN 16
 | 
			
		||||
 | 
			
		||||
/* Key length ("simple" format) */
 | 
			
		||||
#define UBIFS_SK_LEN 8
 | 
			
		||||
 | 
			
		||||
/* Minimum index tree fanout */
 | 
			
		||||
#define UBIFS_MIN_FANOUT 2
 | 
			
		||||
 | 
			
		||||
/* Maximum number of levels in UBIFS indexing B-tree */
 | 
			
		||||
#define UBIFS_MAX_LEVELS 512
 | 
			
		||||
 | 
			
		||||
/* Maximum amount of data attached to an inode in bytes */
 | 
			
		||||
#define UBIFS_MAX_INO_DATA UBIFS_BLOCK_SIZE
 | 
			
		||||
 | 
			
		||||
/* LEB Properties Tree fanout (must be power of 2) and fanout shift */
 | 
			
		||||
#define UBIFS_LPT_FANOUT 4
 | 
			
		||||
#define UBIFS_LPT_FANOUT_SHIFT 2
 | 
			
		||||
 | 
			
		||||
/* LEB Properties Tree bit field sizes */
 | 
			
		||||
#define UBIFS_LPT_CRC_BITS 16
 | 
			
		||||
#define UBIFS_LPT_CRC_BYTES 2
 | 
			
		||||
#define UBIFS_LPT_TYPE_BITS 4
 | 
			
		||||
 | 
			
		||||
/* The key is always at the same position in all keyed nodes */
 | 
			
		||||
#define UBIFS_KEY_OFFSET offsetof(struct ubifs_ino_node, key)
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * LEB Properties Tree node types.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_LPT_PNODE: LPT leaf node (contains LEB properties)
 | 
			
		||||
 * UBIFS_LPT_NNODE: LPT internal node
 | 
			
		||||
 * UBIFS_LPT_LTAB: LPT's own lprops table
 | 
			
		||||
 * UBIFS_LPT_LSAVE: LPT's save table (big model only)
 | 
			
		||||
 * UBIFS_LPT_NODE_CNT: count of LPT node types
 | 
			
		||||
 * UBIFS_LPT_NOT_A_NODE: all ones (15 for 4 bits) is never a valid node type
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_LPT_PNODE,
 | 
			
		||||
	UBIFS_LPT_NNODE,
 | 
			
		||||
	UBIFS_LPT_LTAB,
 | 
			
		||||
	UBIFS_LPT_LSAVE,
 | 
			
		||||
	UBIFS_LPT_NODE_CNT,
 | 
			
		||||
	UBIFS_LPT_NOT_A_NODE = (1 << UBIFS_LPT_TYPE_BITS) - 1,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * UBIFS inode types.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_ITYPE_REG: regular file
 | 
			
		||||
 * UBIFS_ITYPE_DIR: directory
 | 
			
		||||
 * UBIFS_ITYPE_LNK: soft link
 | 
			
		||||
 * UBIFS_ITYPE_BLK: block device node
 | 
			
		||||
 * UBIFS_ITYPE_CHR: character device node
 | 
			
		||||
 * UBIFS_ITYPE_FIFO: fifo
 | 
			
		||||
 * UBIFS_ITYPE_SOCK: socket
 | 
			
		||||
 * UBIFS_ITYPES_CNT: count of supported file types
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_ITYPE_REG,
 | 
			
		||||
	UBIFS_ITYPE_DIR,
 | 
			
		||||
	UBIFS_ITYPE_LNK,
 | 
			
		||||
	UBIFS_ITYPE_BLK,
 | 
			
		||||
	UBIFS_ITYPE_CHR,
 | 
			
		||||
	UBIFS_ITYPE_FIFO,
 | 
			
		||||
	UBIFS_ITYPE_SOCK,
 | 
			
		||||
	UBIFS_ITYPES_CNT,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Supported key hash functions.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_KEY_HASH_R5: R5 hash
 | 
			
		||||
 * UBIFS_KEY_HASH_TEST: test hash which just returns first 4 bytes of the name
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_KEY_HASH_R5,
 | 
			
		||||
	UBIFS_KEY_HASH_TEST,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Supported key formats.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_SIMPLE_KEY_FMT: simple key format
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_SIMPLE_KEY_FMT,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * The simple key format uses 29 bits for storing UBIFS block number and hash
 | 
			
		||||
 * value.
 | 
			
		||||
 */
 | 
			
		||||
#define UBIFS_S_KEY_BLOCK_BITS 29
 | 
			
		||||
#define UBIFS_S_KEY_BLOCK_MASK 0x1FFFFFFF
 | 
			
		||||
#define UBIFS_S_KEY_HASH_BITS  UBIFS_S_KEY_BLOCK_BITS
 | 
			
		||||
#define UBIFS_S_KEY_HASH_MASK  UBIFS_S_KEY_BLOCK_MASK
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Key types.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_INO_KEY: inode node key
 | 
			
		||||
 * UBIFS_DATA_KEY: data node key
 | 
			
		||||
 * UBIFS_DENT_KEY: directory entry node key
 | 
			
		||||
 * UBIFS_XENT_KEY: extended attribute entry key
 | 
			
		||||
 * UBIFS_KEY_TYPES_CNT: number of supported key types
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_INO_KEY,
 | 
			
		||||
	UBIFS_DATA_KEY,
 | 
			
		||||
	UBIFS_DENT_KEY,
 | 
			
		||||
	UBIFS_XENT_KEY,
 | 
			
		||||
	UBIFS_KEY_TYPES_CNT,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/* Count of LEBs reserved for the superblock area */
 | 
			
		||||
#define UBIFS_SB_LEBS 1
 | 
			
		||||
/* Count of LEBs reserved for the master area */
 | 
			
		||||
#define UBIFS_MST_LEBS 2
 | 
			
		||||
 | 
			
		||||
/* First LEB of the superblock area */
 | 
			
		||||
#define UBIFS_SB_LNUM 0
 | 
			
		||||
/* First LEB of the master area */
 | 
			
		||||
#define UBIFS_MST_LNUM (UBIFS_SB_LNUM + UBIFS_SB_LEBS)
 | 
			
		||||
/* First LEB of the log area */
 | 
			
		||||
#define UBIFS_LOG_LNUM (UBIFS_MST_LNUM + UBIFS_MST_LEBS)
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * The below constants define the absolute minimum values for various UBIFS
 | 
			
		||||
 * media areas. Many of them actually depend of flash geometry and the FS
 | 
			
		||||
 * configuration (number of journal heads, orphan LEBs, etc). This means that
 | 
			
		||||
 * the smallest volume size which can be used for UBIFS cannot be pre-defined
 | 
			
		||||
 * by these constants. The file-system that meets the below limitation will not
 | 
			
		||||
 * necessarily mount. UBIFS does run-time calculations and validates the FS
 | 
			
		||||
 * size.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* Minimum number of logical eraseblocks in the log */
 | 
			
		||||
#define UBIFS_MIN_LOG_LEBS 2
 | 
			
		||||
/* Minimum number of bud logical eraseblocks (one for each head) */
 | 
			
		||||
#define UBIFS_MIN_BUD_LEBS 3
 | 
			
		||||
/* Minimum number of journal logical eraseblocks */
 | 
			
		||||
#define UBIFS_MIN_JNL_LEBS (UBIFS_MIN_LOG_LEBS + UBIFS_MIN_BUD_LEBS)
 | 
			
		||||
/* Minimum number of LPT area logical eraseblocks */
 | 
			
		||||
#define UBIFS_MIN_LPT_LEBS 2
 | 
			
		||||
/* Minimum number of orphan area logical eraseblocks */
 | 
			
		||||
#define UBIFS_MIN_ORPH_LEBS 1
 | 
			
		||||
/*
 | 
			
		||||
 * Minimum number of main area logical eraseblocks (buds, 2 for the index, 1
 | 
			
		||||
 * for GC, 1 for deletions, and at least 1 for committed data).
 | 
			
		||||
 */
 | 
			
		||||
#define UBIFS_MIN_MAIN_LEBS (UBIFS_MIN_BUD_LEBS + 5)
 | 
			
		||||
 | 
			
		||||
/* Minimum number of logical eraseblocks */
 | 
			
		||||
#define UBIFS_MIN_LEB_CNT (UBIFS_SB_LEBS + UBIFS_MST_LEBS + \
 | 
			
		||||
			   UBIFS_MIN_LOG_LEBS + UBIFS_MIN_LPT_LEBS + \
 | 
			
		||||
			   UBIFS_MIN_ORPH_LEBS + UBIFS_MIN_MAIN_LEBS)
 | 
			
		||||
 | 
			
		||||
/* Node sizes (N.B. these are guaranteed to be multiples of 8) */
 | 
			
		||||
#define UBIFS_CH_SZ        sizeof(struct ubifs_ch)
 | 
			
		||||
#define UBIFS_INO_NODE_SZ  sizeof(struct ubifs_ino_node)
 | 
			
		||||
#define UBIFS_DATA_NODE_SZ sizeof(struct ubifs_data_node)
 | 
			
		||||
#define UBIFS_DENT_NODE_SZ sizeof(struct ubifs_dent_node)
 | 
			
		||||
#define UBIFS_TRUN_NODE_SZ sizeof(struct ubifs_trun_node)
 | 
			
		||||
#define UBIFS_PAD_NODE_SZ  sizeof(struct ubifs_pad_node)
 | 
			
		||||
#define UBIFS_SB_NODE_SZ   sizeof(struct ubifs_sb_node)
 | 
			
		||||
#define UBIFS_MST_NODE_SZ  sizeof(struct ubifs_mst_node)
 | 
			
		||||
#define UBIFS_REF_NODE_SZ  sizeof(struct ubifs_ref_node)
 | 
			
		||||
#define UBIFS_IDX_NODE_SZ  sizeof(struct ubifs_idx_node)
 | 
			
		||||
#define UBIFS_CS_NODE_SZ   sizeof(struct ubifs_cs_node)
 | 
			
		||||
#define UBIFS_ORPH_NODE_SZ sizeof(struct ubifs_orph_node)
 | 
			
		||||
/* Extended attribute entry nodes are identical to directory entry nodes */
 | 
			
		||||
#define UBIFS_XENT_NODE_SZ UBIFS_DENT_NODE_SZ
 | 
			
		||||
/* Only this does not have to be multiple of 8 bytes */
 | 
			
		||||
#define UBIFS_BRANCH_SZ    sizeof(struct ubifs_branch)
 | 
			
		||||
 | 
			
		||||
/* Maximum node sizes (N.B. these are guaranteed to be multiples of 8) */
 | 
			
		||||
#define UBIFS_MAX_DATA_NODE_SZ  (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE)
 | 
			
		||||
#define UBIFS_MAX_INO_NODE_SZ   (UBIFS_INO_NODE_SZ + UBIFS_MAX_INO_DATA)
 | 
			
		||||
#define UBIFS_MAX_DENT_NODE_SZ  (UBIFS_DENT_NODE_SZ + UBIFS_MAX_NLEN + 1)
 | 
			
		||||
#define UBIFS_MAX_XENT_NODE_SZ  UBIFS_MAX_DENT_NODE_SZ
 | 
			
		||||
 | 
			
		||||
/* The largest UBIFS node */
 | 
			
		||||
#define UBIFS_MAX_NODE_SZ UBIFS_MAX_INO_NODE_SZ
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * On-flash inode flags.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_COMPR_FL: use compression for this inode
 | 
			
		||||
 * UBIFS_SYNC_FL:  I/O on this inode has to be synchronous
 | 
			
		||||
 * UBIFS_IMMUTABLE_FL: inode is immutable
 | 
			
		||||
 * UBIFS_APPEND_FL: writes to the inode may only append data
 | 
			
		||||
 * UBIFS_DIRSYNC_FL: I/O on this directory inode has to be synchronous
 | 
			
		||||
 * UBIFS_XATTR_FL: this inode is the inode for an extended attribute value
 | 
			
		||||
 *
 | 
			
		||||
 * Note, these are on-flash flags which correspond to ioctl flags
 | 
			
		||||
 * (@FS_COMPR_FL, etc). They have the same values now, but generally, do not
 | 
			
		||||
 * have to be the same.
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_COMPR_FL     = 0x01,
 | 
			
		||||
	UBIFS_SYNC_FL      = 0x02,
 | 
			
		||||
	UBIFS_IMMUTABLE_FL = 0x04,
 | 
			
		||||
	UBIFS_APPEND_FL    = 0x08,
 | 
			
		||||
	UBIFS_DIRSYNC_FL   = 0x10,
 | 
			
		||||
	UBIFS_XATTR_FL     = 0x20,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/* Inode flag bits used by UBIFS */
 | 
			
		||||
#define UBIFS_FL_MASK 0x0000001F
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * UBIFS compression algorithms.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_COMPR_NONE: no compression
 | 
			
		||||
 * UBIFS_COMPR_LZO: LZO compression
 | 
			
		||||
 * UBIFS_COMPR_ZLIB: ZLIB compression
 | 
			
		||||
 * UBIFS_COMPR_TYPES_CNT: count of supported compression types
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_COMPR_NONE,
 | 
			
		||||
	UBIFS_COMPR_LZO,
 | 
			
		||||
	UBIFS_COMPR_ZLIB,
 | 
			
		||||
	UBIFS_COMPR_TYPES_CNT,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * UBIFS node types.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_INO_NODE: inode node
 | 
			
		||||
 * UBIFS_DATA_NODE: data node
 | 
			
		||||
 * UBIFS_DENT_NODE: directory entry node
 | 
			
		||||
 * UBIFS_XENT_NODE: extended attribute node
 | 
			
		||||
 * UBIFS_TRUN_NODE: truncation node
 | 
			
		||||
 * UBIFS_PAD_NODE: padding node
 | 
			
		||||
 * UBIFS_SB_NODE: superblock node
 | 
			
		||||
 * UBIFS_MST_NODE: master node
 | 
			
		||||
 * UBIFS_REF_NODE: LEB reference node
 | 
			
		||||
 * UBIFS_IDX_NODE: index node
 | 
			
		||||
 * UBIFS_CS_NODE: commit start node
 | 
			
		||||
 * UBIFS_ORPH_NODE: orphan node
 | 
			
		||||
 * UBIFS_NODE_TYPES_CNT: count of supported node types
 | 
			
		||||
 *
 | 
			
		||||
 * Note, we index arrays by these numbers, so keep them low and contiguous.
 | 
			
		||||
 * Node type constants for inodes, direntries and so on have to be the same as
 | 
			
		||||
 * corresponding key type constants.
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_INO_NODE,
 | 
			
		||||
	UBIFS_DATA_NODE,
 | 
			
		||||
	UBIFS_DENT_NODE,
 | 
			
		||||
	UBIFS_XENT_NODE,
 | 
			
		||||
	UBIFS_TRUN_NODE,
 | 
			
		||||
	UBIFS_PAD_NODE,
 | 
			
		||||
	UBIFS_SB_NODE,
 | 
			
		||||
	UBIFS_MST_NODE,
 | 
			
		||||
	UBIFS_REF_NODE,
 | 
			
		||||
	UBIFS_IDX_NODE,
 | 
			
		||||
	UBIFS_CS_NODE,
 | 
			
		||||
	UBIFS_ORPH_NODE,
 | 
			
		||||
	UBIFS_NODE_TYPES_CNT,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Master node flags.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_MST_DIRTY: rebooted uncleanly - master node is dirty
 | 
			
		||||
 * UBIFS_MST_NO_ORPHS: no orphan inodes present
 | 
			
		||||
 * UBIFS_MST_RCVRY: written by recovery
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_MST_DIRTY = 1,
 | 
			
		||||
	UBIFS_MST_NO_ORPHS = 2,
 | 
			
		||||
	UBIFS_MST_RCVRY = 4,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Node group type (used by recovery to recover whole group or none).
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_NO_NODE_GROUP: this node is not part of a group
 | 
			
		||||
 * UBIFS_IN_NODE_GROUP: this node is a part of a group
 | 
			
		||||
 * UBIFS_LAST_OF_NODE_GROUP: this node is the last in a group
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_NO_NODE_GROUP = 0,
 | 
			
		||||
	UBIFS_IN_NODE_GROUP,
 | 
			
		||||
	UBIFS_LAST_OF_NODE_GROUP,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Superblock flags.
 | 
			
		||||
 *
 | 
			
		||||
 * UBIFS_FLG_BIGLPT: if "big" LPT model is used if set
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	UBIFS_FLG_BIGLPT = 0x02,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_ch - common header node.
 | 
			
		||||
 * @magic: UBIFS node magic number (%UBIFS_NODE_MAGIC)
 | 
			
		||||
 * @crc: CRC-32 checksum of the node header
 | 
			
		||||
 * @sqnum: sequence number
 | 
			
		||||
 * @len: full node length
 | 
			
		||||
 * @node_type: node type
 | 
			
		||||
 * @group_type: node group type
 | 
			
		||||
 * @padding: reserved for future, zeroes
 | 
			
		||||
 *
 | 
			
		||||
 * Every UBIFS node starts with this common part. If the node has a key, the
 | 
			
		||||
 * key always goes next.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_ch {
 | 
			
		||||
	__le32 magic;
 | 
			
		||||
	__le32 crc;
 | 
			
		||||
	__le64 sqnum;
 | 
			
		||||
	__le32 len;
 | 
			
		||||
	__u8 node_type;
 | 
			
		||||
	__u8 group_type;
 | 
			
		||||
	__u8 padding[2];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * union ubifs_dev_desc - device node descriptor.
 | 
			
		||||
 * @new: new type device descriptor
 | 
			
		||||
 * @huge: huge type device descriptor
 | 
			
		||||
 *
 | 
			
		||||
 * This data structure describes major/minor numbers of a device node. In an
 | 
			
		||||
 * inode is a device node then its data contains an object of this type. UBIFS
 | 
			
		||||
 * uses standard Linux "new" and "huge" device node encodings.
 | 
			
		||||
 */
 | 
			
		||||
union ubifs_dev_desc {
 | 
			
		||||
	__le32 new;
 | 
			
		||||
	__le64 huge;
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_ino_node - inode node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @key: node key
 | 
			
		||||
 * @creat_sqnum: sequence number at time of creation
 | 
			
		||||
 * @size: inode size in bytes (amount of uncompressed data)
 | 
			
		||||
 * @atime_sec: access time seconds
 | 
			
		||||
 * @ctime_sec: creation time seconds
 | 
			
		||||
 * @mtime_sec: modification time seconds
 | 
			
		||||
 * @atime_nsec: access time nanoseconds
 | 
			
		||||
 * @ctime_nsec: creation time nanoseconds
 | 
			
		||||
 * @mtime_nsec: modification time nanoseconds
 | 
			
		||||
 * @nlink: number of hard links
 | 
			
		||||
 * @uid: owner ID
 | 
			
		||||
 * @gid: group ID
 | 
			
		||||
 * @mode: access flags
 | 
			
		||||
 * @flags: per-inode flags (%UBIFS_COMPR_FL, %UBIFS_SYNC_FL, etc)
 | 
			
		||||
 * @data_len: inode data length
 | 
			
		||||
 * @xattr_cnt: count of extended attributes this inode has
 | 
			
		||||
 * @xattr_size: summarized size of all extended attributes in bytes
 | 
			
		||||
 * @padding1: reserved for future, zeroes
 | 
			
		||||
 * @xattr_names: sum of lengths of all extended attribute names belonging to
 | 
			
		||||
 *               this inode
 | 
			
		||||
 * @compr_type: compression type used for this inode
 | 
			
		||||
 * @padding2: reserved for future, zeroes
 | 
			
		||||
 * @data: data attached to the inode
 | 
			
		||||
 *
 | 
			
		||||
 * Note, even though inode compression type is defined by @compr_type, some
 | 
			
		||||
 * nodes of this inode may be compressed with different compressor - this
 | 
			
		||||
 * happens if compression type is changed while the inode already has data
 | 
			
		||||
 * nodes. But @compr_type will be use for further writes to the inode.
 | 
			
		||||
 *
 | 
			
		||||
 * Note, do not forget to amend 'zero_ino_node_unused()' function when changing
 | 
			
		||||
 * the padding fields.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_ino_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__u8 key[UBIFS_MAX_KEY_LEN];
 | 
			
		||||
	__le64 creat_sqnum;
 | 
			
		||||
	__le64 size;
 | 
			
		||||
	__le64 atime_sec;
 | 
			
		||||
	__le64 ctime_sec;
 | 
			
		||||
	__le64 mtime_sec;
 | 
			
		||||
	__le32 atime_nsec;
 | 
			
		||||
	__le32 ctime_nsec;
 | 
			
		||||
	__le32 mtime_nsec;
 | 
			
		||||
	__le32 nlink;
 | 
			
		||||
	__le32 uid;
 | 
			
		||||
	__le32 gid;
 | 
			
		||||
	__le32 mode;
 | 
			
		||||
	__le32 flags;
 | 
			
		||||
	__le32 data_len;
 | 
			
		||||
	__le32 xattr_cnt;
 | 
			
		||||
	__le32 xattr_size;
 | 
			
		||||
	__u8 padding1[4]; /* Watch 'zero_ino_node_unused()' if changing! */
 | 
			
		||||
	__le32 xattr_names;
 | 
			
		||||
	__le16 compr_type;
 | 
			
		||||
	__u8 padding2[26]; /* Watch 'zero_ino_node_unused()' if changing! */
 | 
			
		||||
	__u8 data[];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_dent_node - directory entry node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @key: node key
 | 
			
		||||
 * @inum: target inode number
 | 
			
		||||
 * @padding1: reserved for future, zeroes
 | 
			
		||||
 * @type: type of the target inode (%UBIFS_ITYPE_REG, %UBIFS_ITYPE_DIR, etc)
 | 
			
		||||
 * @nlen: name length
 | 
			
		||||
 * @padding2: reserved for future, zeroes
 | 
			
		||||
 * @name: zero-terminated name
 | 
			
		||||
 *
 | 
			
		||||
 * Note, do not forget to amend 'zero_dent_node_unused()' function when
 | 
			
		||||
 * changing the padding fields.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_dent_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__u8 key[UBIFS_MAX_KEY_LEN];
 | 
			
		||||
	__le64 inum;
 | 
			
		||||
	__u8 padding1;
 | 
			
		||||
	__u8 type;
 | 
			
		||||
	__le16 nlen;
 | 
			
		||||
	__u8 padding2[4]; /* Watch 'zero_dent_node_unused()' if changing! */
 | 
			
		||||
	__u8 name[];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_data_node - data node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @key: node key
 | 
			
		||||
 * @size: uncompressed data size in bytes
 | 
			
		||||
 * @compr_type: compression type (%UBIFS_COMPR_NONE, %UBIFS_COMPR_LZO, etc)
 | 
			
		||||
 * @padding: reserved for future, zeroes
 | 
			
		||||
 * @data: data
 | 
			
		||||
 *
 | 
			
		||||
 * Note, do not forget to amend 'zero_data_node_unused()' function when
 | 
			
		||||
 * changing the padding fields.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_data_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__u8 key[UBIFS_MAX_KEY_LEN];
 | 
			
		||||
	__le32 size;
 | 
			
		||||
	__le16 compr_type;
 | 
			
		||||
	__u8 padding[2]; /* Watch 'zero_data_node_unused()' if changing! */
 | 
			
		||||
	__u8 data[];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_trun_node - truncation node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @inum: truncated inode number
 | 
			
		||||
 * @padding: reserved for future, zeroes
 | 
			
		||||
 * @old_size: size before truncation
 | 
			
		||||
 * @new_size: size after truncation
 | 
			
		||||
 *
 | 
			
		||||
 * This node exists only in the journal and never goes to the main area. Note,
 | 
			
		||||
 * do not forget to amend 'zero_trun_node_unused()' function when changing the
 | 
			
		||||
 * padding fields.
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_trun_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__le32 inum;
 | 
			
		||||
	__u8 padding[12]; /* Watch 'zero_trun_node_unused()' if changing! */
 | 
			
		||||
	__le64 old_size;
 | 
			
		||||
	__le64 new_size;
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_pad_node - padding node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @pad_len: how many bytes after this node are unused (because padded)
 | 
			
		||||
 * @padding: reserved for future, zeroes
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_pad_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__le32 pad_len;
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_sb_node - superblock node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @padding: reserved for future, zeroes
 | 
			
		||||
 * @key_hash: type of hash function used in keys
 | 
			
		||||
 * @key_fmt: format of the key
 | 
			
		||||
 * @flags: file-system flags (%UBIFS_FLG_BIGLPT, etc)
 | 
			
		||||
 * @min_io_size: minimal input/output unit size
 | 
			
		||||
 * @leb_size: logical eraseblock size in bytes
 | 
			
		||||
 * @leb_cnt: count of LEBs used by file-system
 | 
			
		||||
 * @max_leb_cnt: maximum count of LEBs used by file-system
 | 
			
		||||
 * @max_bud_bytes: maximum amount of data stored in buds
 | 
			
		||||
 * @log_lebs: log size in logical eraseblocks
 | 
			
		||||
 * @lpt_lebs: number of LEBs used for lprops table
 | 
			
		||||
 * @orph_lebs: number of LEBs used for recording orphans
 | 
			
		||||
 * @jhead_cnt: count of journal heads
 | 
			
		||||
 * @fanout: tree fanout (max. number of links per indexing node)
 | 
			
		||||
 * @lsave_cnt: number of LEB numbers in LPT's save table
 | 
			
		||||
 * @fmt_version: UBIFS on-flash format version
 | 
			
		||||
 * @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc)
 | 
			
		||||
 * @padding1: reserved for future, zeroes
 | 
			
		||||
 * @rp_uid: reserve pool UID
 | 
			
		||||
 * @rp_gid: reserve pool GID
 | 
			
		||||
 * @rp_size: size of the reserved pool in bytes
 | 
			
		||||
 * @padding2: reserved for future, zeroes
 | 
			
		||||
 * @time_gran: time granularity in nanoseconds
 | 
			
		||||
 * @uuid: UUID generated when the file system image was created
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_sb_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__u8 padding[2];
 | 
			
		||||
	__u8 key_hash;
 | 
			
		||||
	__u8 key_fmt;
 | 
			
		||||
	__le32 flags;
 | 
			
		||||
	__le32 min_io_size;
 | 
			
		||||
	__le32 leb_size;
 | 
			
		||||
	__le32 leb_cnt;
 | 
			
		||||
	__le32 max_leb_cnt;
 | 
			
		||||
	__le64 max_bud_bytes;
 | 
			
		||||
	__le32 log_lebs;
 | 
			
		||||
	__le32 lpt_lebs;
 | 
			
		||||
	__le32 orph_lebs;
 | 
			
		||||
	__le32 jhead_cnt;
 | 
			
		||||
	__le32 fanout;
 | 
			
		||||
	__le32 lsave_cnt;
 | 
			
		||||
	__le32 fmt_version;
 | 
			
		||||
	__le16 default_compr;
 | 
			
		||||
	__u8 padding1[2];
 | 
			
		||||
	__le32 rp_uid;
 | 
			
		||||
	__le32 rp_gid;
 | 
			
		||||
	__le64 rp_size;
 | 
			
		||||
	__le32 time_gran;
 | 
			
		||||
	__u8 uuid[16];
 | 
			
		||||
	__u8 padding2[3972];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_mst_node - master node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @highest_inum: highest inode number in the committed index
 | 
			
		||||
 * @cmt_no: commit number
 | 
			
		||||
 * @flags: various flags (%UBIFS_MST_DIRTY, etc)
 | 
			
		||||
 * @log_lnum: start of the log
 | 
			
		||||
 * @root_lnum: LEB number of the root indexing node
 | 
			
		||||
 * @root_offs: offset within @root_lnum
 | 
			
		||||
 * @root_len: root indexing node length
 | 
			
		||||
 * @gc_lnum: LEB reserved for garbage collection (%-1 value means the LEB was
 | 
			
		||||
 * not reserved and should be reserved on mount)
 | 
			
		||||
 * @ihead_lnum: LEB number of index head
 | 
			
		||||
 * @ihead_offs: offset of index head
 | 
			
		||||
 * @index_size: size of index on flash
 | 
			
		||||
 * @total_free: total free space in bytes
 | 
			
		||||
 * @total_dirty: total dirty space in bytes
 | 
			
		||||
 * @total_used: total used space in bytes (includes only data LEBs)
 | 
			
		||||
 * @total_dead: total dead space in bytes (includes only data LEBs)
 | 
			
		||||
 * @total_dark: total dark space in bytes (includes only data LEBs)
 | 
			
		||||
 * @lpt_lnum: LEB number of LPT root nnode
 | 
			
		||||
 * @lpt_offs: offset of LPT root nnode
 | 
			
		||||
 * @nhead_lnum: LEB number of LPT head
 | 
			
		||||
 * @nhead_offs: offset of LPT head
 | 
			
		||||
 * @ltab_lnum: LEB number of LPT's own lprops table
 | 
			
		||||
 * @ltab_offs: offset of LPT's own lprops table
 | 
			
		||||
 * @lsave_lnum: LEB number of LPT's save table (big model only)
 | 
			
		||||
 * @lsave_offs: offset of LPT's save table (big model only)
 | 
			
		||||
 * @lscan_lnum: LEB number of last LPT scan
 | 
			
		||||
 * @empty_lebs: number of empty logical eraseblocks
 | 
			
		||||
 * @idx_lebs: number of indexing logical eraseblocks
 | 
			
		||||
 * @leb_cnt: count of LEBs used by file-system
 | 
			
		||||
 * @padding: reserved for future, zeroes
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_mst_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__le64 highest_inum;
 | 
			
		||||
	__le64 cmt_no;
 | 
			
		||||
	__le32 flags;
 | 
			
		||||
	__le32 log_lnum;
 | 
			
		||||
	__le32 root_lnum;
 | 
			
		||||
	__le32 root_offs;
 | 
			
		||||
	__le32 root_len;
 | 
			
		||||
	__le32 gc_lnum;
 | 
			
		||||
	__le32 ihead_lnum;
 | 
			
		||||
	__le32 ihead_offs;
 | 
			
		||||
	__le64 index_size;
 | 
			
		||||
	__le64 total_free;
 | 
			
		||||
	__le64 total_dirty;
 | 
			
		||||
	__le64 total_used;
 | 
			
		||||
	__le64 total_dead;
 | 
			
		||||
	__le64 total_dark;
 | 
			
		||||
	__le32 lpt_lnum;
 | 
			
		||||
	__le32 lpt_offs;
 | 
			
		||||
	__le32 nhead_lnum;
 | 
			
		||||
	__le32 nhead_offs;
 | 
			
		||||
	__le32 ltab_lnum;
 | 
			
		||||
	__le32 ltab_offs;
 | 
			
		||||
	__le32 lsave_lnum;
 | 
			
		||||
	__le32 lsave_offs;
 | 
			
		||||
	__le32 lscan_lnum;
 | 
			
		||||
	__le32 empty_lebs;
 | 
			
		||||
	__le32 idx_lebs;
 | 
			
		||||
	__le32 leb_cnt;
 | 
			
		||||
	__u8 padding[344];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_ref_node - logical eraseblock reference node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @lnum: the referred logical eraseblock number
 | 
			
		||||
 * @offs: start offset in the referred LEB
 | 
			
		||||
 * @jhead: journal head number
 | 
			
		||||
 * @padding: reserved for future, zeroes
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_ref_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__le32 lnum;
 | 
			
		||||
	__le32 offs;
 | 
			
		||||
	__le32 jhead;
 | 
			
		||||
	__u8 padding[28];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_branch - key/reference/length branch
 | 
			
		||||
 * @lnum: LEB number of the target node
 | 
			
		||||
 * @offs: offset within @lnum
 | 
			
		||||
 * @len: target node length
 | 
			
		||||
 * @key: key
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_branch {
 | 
			
		||||
	__le32 lnum;
 | 
			
		||||
	__le32 offs;
 | 
			
		||||
	__le32 len;
 | 
			
		||||
	__u8 key[];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_idx_node - indexing node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @child_cnt: number of child index nodes
 | 
			
		||||
 * @level: tree level
 | 
			
		||||
 * @branches: LEB number / offset / length / key branches
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_idx_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__le16 child_cnt;
 | 
			
		||||
	__le16 level;
 | 
			
		||||
	__u8 branches[];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_cs_node - commit start node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @cmt_no: commit number
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_cs_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__le64 cmt_no;
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * struct ubifs_orph_node - orphan node.
 | 
			
		||||
 * @ch: common header
 | 
			
		||||
 * @cmt_no: commit number (also top bit is set on the last node of the commit)
 | 
			
		||||
 * @inos: inode numbers of orphans
 | 
			
		||||
 */
 | 
			
		||||
struct ubifs_orph_node {
 | 
			
		||||
	struct ubifs_ch ch;
 | 
			
		||||
	__le64 cmt_no;
 | 
			
		||||
	__le64 inos[];
 | 
			
		||||
} __attribute__ ((packed));
 | 
			
		||||
 | 
			
		||||
#endif /* __UBIFS_MEDIA_H__ */
 | 
			
		||||
							
								
								
									
										1649
									
								
								fs/ubifs/ubifs.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1649
									
								
								fs/ubifs/ubifs.h
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										581
									
								
								fs/ubifs/xattr.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										581
									
								
								fs/ubifs/xattr.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,581 @@
 | 
			
		|||
/*
 | 
			
		||||
 * This file is part of UBIFS.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2006-2008 Nokia Corporation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software; you can redistribute it and/or modify it
 | 
			
		||||
 * under the terms of the GNU General Public License version 2 as published by
 | 
			
		||||
 * the Free Software Foundation.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
			
		||||
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
			
		||||
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
			
		||||
 * more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License along with
 | 
			
		||||
 * this program; if not, write to the Free Software Foundation, Inc., 51
 | 
			
		||||
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
			
		||||
 *
 | 
			
		||||
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 | 
			
		||||
 *          Adrian Hunter
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * This file implements UBIFS extended attributes support.
 | 
			
		||||
 *
 | 
			
		||||
 * Extended attributes are implemented as regular inodes with attached data,
 | 
			
		||||
 * which limits extended attribute size to UBIFS block size (4KiB). Names of
 | 
			
		||||
 * extended attributes are described by extended attribute entries (xentries),
 | 
			
		||||
 * which are almost identical to directory entries, but have different key type.
 | 
			
		||||
 *
 | 
			
		||||
 * In other words, the situation with extended attributes is very similar to
 | 
			
		||||
 * directories. Indeed, any inode (but of course not xattr inodes) may have a
 | 
			
		||||
 * number of associated xentries, just like directory inodes have associated
 | 
			
		||||
 * directory entries. Extended attribute entries store the name of the extended
 | 
			
		||||
 * attribute, the host inode number, and the extended attribute inode number.
 | 
			
		||||
 * Similarly, direntries store the name, the parent and the target inode
 | 
			
		||||
 * numbers. Thus, most of the common UBIFS mechanisms may be re-used for
 | 
			
		||||
 * extended attributes.
 | 
			
		||||
 *
 | 
			
		||||
 * The number of extended attributes is not limited, but there is Linux
 | 
			
		||||
 * limitation on the maximum possible size of the list of all extended
 | 
			
		||||
 * attributes associated with an inode (%XATTR_LIST_MAX), so UBIFS makes sure
 | 
			
		||||
 * the sum of all extended attribute names of the inode does not exceed that
 | 
			
		||||
 * limit.
 | 
			
		||||
 *
 | 
			
		||||
 * Extended attributes are synchronous, which means they are written to the
 | 
			
		||||
 * flash media synchronously and there is no write-back for extended attribute
 | 
			
		||||
 * inodes. The extended attribute values are not stored in compressed form on
 | 
			
		||||
 * the media.
 | 
			
		||||
 *
 | 
			
		||||
 * Since extended attributes are represented by regular inodes, they are cached
 | 
			
		||||
 * in the VFS inode cache. The xentries are cached in the LNC cache (see
 | 
			
		||||
 * tnc.c).
 | 
			
		||||
 *
 | 
			
		||||
 * ACL support is not implemented.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <linux/xattr.h>
 | 
			
		||||
#include <linux/posix_acl_xattr.h>
 | 
			
		||||
#include "ubifs.h"
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Limit the number of extended attributes per inode so that the total size
 | 
			
		||||
 * (xattr_size) is guaranteeded to fit in an 'unsigned int'.
 | 
			
		||||
 */
 | 
			
		||||
#define MAX_XATTRS_PER_INODE 65535
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Extended attribute type constants.
 | 
			
		||||
 *
 | 
			
		||||
 * USER_XATTR: user extended attribute ("user.*")
 | 
			
		||||
 * TRUSTED_XATTR: trusted extended attribute ("trusted.*)
 | 
			
		||||
 * SECURITY_XATTR: security extended attribute ("security.*")
 | 
			
		||||
 */
 | 
			
		||||
enum {
 | 
			
		||||
	USER_XATTR,
 | 
			
		||||
	TRUSTED_XATTR,
 | 
			
		||||
	SECURITY_XATTR,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static struct inode_operations none_inode_operations;
 | 
			
		||||
static struct address_space_operations none_address_operations;
 | 
			
		||||
static struct file_operations none_file_operations;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * create_xattr - create an extended attribute.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @host: host inode
 | 
			
		||||
 * @nm: extended attribute name
 | 
			
		||||
 * @value: extended attribute value
 | 
			
		||||
 * @size: size of extended attribute value
 | 
			
		||||
 *
 | 
			
		||||
 * This is a helper function which creates an extended attribute of name @nm
 | 
			
		||||
 * and value @value for inode @host. The host inode is also updated on flash
 | 
			
		||||
 * because the ctime and extended attribute accounting data changes. This
 | 
			
		||||
 * function returns zero in case of success and a negative error code in case
 | 
			
		||||
 * of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int create_xattr(struct ubifs_info *c, struct inode *host,
 | 
			
		||||
			const struct qstr *nm, const void *value, int size)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct inode *inode;
 | 
			
		||||
	struct ubifs_inode *ui, *host_ui = ubifs_inode(host);
 | 
			
		||||
	struct ubifs_budget_req req = { .new_ino = 1, .new_dent = 1,
 | 
			
		||||
					.new_ino_d = size, .dirtied_ino = 1,
 | 
			
		||||
					.dirtied_ino_d = host_ui->data_len};
 | 
			
		||||
 | 
			
		||||
	if (host_ui->xattr_cnt >= MAX_XATTRS_PER_INODE)
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
	/*
 | 
			
		||||
	 * Linux limits the maximum size of the extended attribute names list
 | 
			
		||||
	 * to %XATTR_LIST_MAX. This means we should not allow creating more*
 | 
			
		||||
	 * extended attributes if the name list becomes larger. This limitation
 | 
			
		||||
	 * is artificial for UBIFS, though.
 | 
			
		||||
	 */
 | 
			
		||||
	if (host_ui->xattr_names + host_ui->xattr_cnt +
 | 
			
		||||
					nm->len + 1 > XATTR_LIST_MAX)
 | 
			
		||||
		return -ENOSPC;
 | 
			
		||||
 | 
			
		||||
	err = ubifs_budget_space(c, &req);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	inode = ubifs_new_inode(c, host, S_IFREG | S_IRWXUGO);
 | 
			
		||||
	if (IS_ERR(inode)) {
 | 
			
		||||
		err = PTR_ERR(inode);
 | 
			
		||||
		goto out_budg;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&host_ui->ui_mutex);
 | 
			
		||||
	/* Re-define all operations to be "nothing" */
 | 
			
		||||
	inode->i_mapping->a_ops = &none_address_operations;
 | 
			
		||||
	inode->i_op = &none_inode_operations;
 | 
			
		||||
	inode->i_fop = &none_file_operations;
 | 
			
		||||
 | 
			
		||||
	inode->i_flags |= S_SYNC | S_NOATIME | S_NOCMTIME | S_NOQUOTA;
 | 
			
		||||
	ui = ubifs_inode(inode);
 | 
			
		||||
	ui->xattr = 1;
 | 
			
		||||
	ui->flags |= UBIFS_XATTR_FL;
 | 
			
		||||
	ui->data = kmalloc(size, GFP_NOFS);
 | 
			
		||||
	if (!ui->data) {
 | 
			
		||||
		err = -ENOMEM;
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	memcpy(ui->data, value, size);
 | 
			
		||||
	host->i_ctime = ubifs_current_time(host);
 | 
			
		||||
	host_ui->xattr_cnt += 1;
 | 
			
		||||
	host_ui->xattr_size += CALC_DENT_SIZE(nm->len);
 | 
			
		||||
	host_ui->xattr_size += CALC_XATTR_BYTES(size);
 | 
			
		||||
	host_ui->xattr_names += nm->len;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * We do not use i_size_write() because nobody can race with us as we
 | 
			
		||||
	 * are holding host @host->i_mutex - every xattr operation for this
 | 
			
		||||
	 * inode is serialized by it.
 | 
			
		||||
	 */
 | 
			
		||||
	inode->i_size = ui->ui_size = size;
 | 
			
		||||
	ui->data_len = size;
 | 
			
		||||
	err = ubifs_jnl_update(c, host, nm, inode, 0, 1);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_cancel;
 | 
			
		||||
	mutex_unlock(&host_ui->ui_mutex);
 | 
			
		||||
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
	insert_inode_hash(inode);
 | 
			
		||||
	iput(inode);
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_cancel:
 | 
			
		||||
	host_ui->xattr_cnt -= 1;
 | 
			
		||||
	host_ui->xattr_size -= CALC_DENT_SIZE(nm->len);
 | 
			
		||||
	host_ui->xattr_size -= CALC_XATTR_BYTES(size);
 | 
			
		||||
out_unlock:
 | 
			
		||||
	mutex_unlock(&host_ui->ui_mutex);
 | 
			
		||||
	make_bad_inode(inode);
 | 
			
		||||
	iput(inode);
 | 
			
		||||
out_budg:
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * change_xattr - change an extended attribute.
 | 
			
		||||
 * @c: UBIFS file-system description object
 | 
			
		||||
 * @host: host inode
 | 
			
		||||
 * @inode: extended attribute inode
 | 
			
		||||
 * @value: extended attribute value
 | 
			
		||||
 * @size: size of extended attribute value
 | 
			
		||||
 *
 | 
			
		||||
 * This helper function changes the value of extended attribute @inode with new
 | 
			
		||||
 * data from @value. Returns zero in case of success and a negative error code
 | 
			
		||||
 * in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int change_xattr(struct ubifs_info *c, struct inode *host,
 | 
			
		||||
			struct inode *inode, const void *value, int size)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct ubifs_inode *host_ui = ubifs_inode(host);
 | 
			
		||||
	struct ubifs_inode *ui = ubifs_inode(inode);
 | 
			
		||||
	struct ubifs_budget_req req = { .dirtied_ino = 2,
 | 
			
		||||
				.dirtied_ino_d = size + host_ui->data_len };
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(ui->data_len == inode->i_size);
 | 
			
		||||
	err = ubifs_budget_space(c, &req);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&host_ui->ui_mutex);
 | 
			
		||||
	host->i_ctime = ubifs_current_time(host);
 | 
			
		||||
	host_ui->xattr_size -= CALC_XATTR_BYTES(ui->data_len);
 | 
			
		||||
	host_ui->xattr_size += CALC_XATTR_BYTES(size);
 | 
			
		||||
 | 
			
		||||
	kfree(ui->data);
 | 
			
		||||
	ui->data = kmalloc(size, GFP_NOFS);
 | 
			
		||||
	if (!ui->data) {
 | 
			
		||||
		err = -ENOMEM;
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	memcpy(ui->data, value, size);
 | 
			
		||||
	inode->i_size = ui->ui_size = size;
 | 
			
		||||
	ui->data_len = size;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * It is important to write the host inode after the xattr inode
 | 
			
		||||
	 * because if the host inode gets synchronized (via 'fsync()'), then
 | 
			
		||||
	 * the extended attribute inode gets synchronized, because it goes
 | 
			
		||||
	 * before the host inode in the write-buffer.
 | 
			
		||||
	 */
 | 
			
		||||
	err = ubifs_jnl_change_xattr(c, inode, host);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_cancel;
 | 
			
		||||
	mutex_unlock(&host_ui->ui_mutex);
 | 
			
		||||
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_cancel:
 | 
			
		||||
	host_ui->xattr_size -= CALC_XATTR_BYTES(size);
 | 
			
		||||
	host_ui->xattr_size += CALC_XATTR_BYTES(ui->data_len);
 | 
			
		||||
	make_bad_inode(inode);
 | 
			
		||||
out_unlock:
 | 
			
		||||
	mutex_unlock(&host_ui->ui_mutex);
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * check_namespace - check extended attribute name-space.
 | 
			
		||||
 * @nm: extended attribute name
 | 
			
		||||
 *
 | 
			
		||||
 * This function makes sure the extended attribute name belongs to one of the
 | 
			
		||||
 * supported extended attribute name-spaces. Returns name-space index in case
 | 
			
		||||
 * of success and a negative error code in case of failure.
 | 
			
		||||
 */
 | 
			
		||||
static int check_namespace(const struct qstr *nm)
 | 
			
		||||
{
 | 
			
		||||
	int type;
 | 
			
		||||
 | 
			
		||||
	if (nm->len > UBIFS_MAX_NLEN)
 | 
			
		||||
		return -ENAMETOOLONG;
 | 
			
		||||
 | 
			
		||||
	if (!strncmp(nm->name, XATTR_TRUSTED_PREFIX,
 | 
			
		||||
		     XATTR_TRUSTED_PREFIX_LEN)) {
 | 
			
		||||
		if (nm->name[sizeof(XATTR_TRUSTED_PREFIX) - 1] == '\0')
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
		type = TRUSTED_XATTR;
 | 
			
		||||
	} else if (!strncmp(nm->name, XATTR_USER_PREFIX,
 | 
			
		||||
				      XATTR_USER_PREFIX_LEN)) {
 | 
			
		||||
		if (nm->name[XATTR_USER_PREFIX_LEN] == '\0')
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
		type = USER_XATTR;
 | 
			
		||||
	} else if (!strncmp(nm->name, XATTR_SECURITY_PREFIX,
 | 
			
		||||
				     XATTR_SECURITY_PREFIX_LEN)) {
 | 
			
		||||
		if (nm->name[sizeof(XATTR_SECURITY_PREFIX) - 1] == '\0')
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
		type = SECURITY_XATTR;
 | 
			
		||||
	} else
 | 
			
		||||
		return -EOPNOTSUPP;
 | 
			
		||||
 | 
			
		||||
	return type;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static struct inode *iget_xattr(struct ubifs_info *c, ino_t inum)
 | 
			
		||||
{
 | 
			
		||||
	struct inode *inode;
 | 
			
		||||
 | 
			
		||||
	inode = ubifs_iget(c->vfs_sb, inum);
 | 
			
		||||
	if (IS_ERR(inode)) {
 | 
			
		||||
		ubifs_err("dead extended attribute entry, error %d",
 | 
			
		||||
			  (int)PTR_ERR(inode));
 | 
			
		||||
		return inode;
 | 
			
		||||
	}
 | 
			
		||||
	if (ubifs_inode(inode)->xattr)
 | 
			
		||||
		return inode;
 | 
			
		||||
	ubifs_err("corrupt extended attribute entry");
 | 
			
		||||
	iput(inode);
 | 
			
		||||
	return ERR_PTR(-EINVAL);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int ubifs_setxattr(struct dentry *dentry, const char *name,
 | 
			
		||||
		   const void *value, size_t size, int flags)
 | 
			
		||||
{
 | 
			
		||||
	struct inode *inode, *host = dentry->d_inode;
 | 
			
		||||
	struct ubifs_info *c = host->i_sb->s_fs_info;
 | 
			
		||||
	struct qstr nm = { .name = name, .len = strlen(name) };
 | 
			
		||||
	struct ubifs_dent_node *xent;
 | 
			
		||||
	union ubifs_key key;
 | 
			
		||||
	int err, type;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("xattr '%s', host ino %lu ('%.*s'), size %zd", name,
 | 
			
		||||
		host->i_ino, dentry->d_name.len, dentry->d_name.name, size);
 | 
			
		||||
 | 
			
		||||
	if (size > UBIFS_MAX_INO_DATA)
 | 
			
		||||
		return -ERANGE;
 | 
			
		||||
 | 
			
		||||
	type = check_namespace(&nm);
 | 
			
		||||
	if (type < 0)
 | 
			
		||||
		return type;
 | 
			
		||||
 | 
			
		||||
	xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS);
 | 
			
		||||
	if (!xent)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The extended attribute entries are stored in LNC, so multiple
 | 
			
		||||
	 * look-ups do not involve reading the flash.
 | 
			
		||||
	 */
 | 
			
		||||
	xent_key_init(c, &key, host->i_ino, &nm);
 | 
			
		||||
	err = ubifs_tnc_lookup_nm(c, &key, xent, &nm);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		if (err != -ENOENT)
 | 
			
		||||
			goto out_free;
 | 
			
		||||
 | 
			
		||||
		if (flags & XATTR_REPLACE)
 | 
			
		||||
			/* We are asked not to create the xattr */
 | 
			
		||||
			err = -ENODATA;
 | 
			
		||||
		else
 | 
			
		||||
			err = create_xattr(c, host, &nm, value, size);
 | 
			
		||||
		goto out_free;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (flags & XATTR_CREATE) {
 | 
			
		||||
		/* We are asked not to replace the xattr */
 | 
			
		||||
		err = -EEXIST;
 | 
			
		||||
		goto out_free;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	inode = iget_xattr(c, le64_to_cpu(xent->inum));
 | 
			
		||||
	if (IS_ERR(inode)) {
 | 
			
		||||
		err = PTR_ERR(inode);
 | 
			
		||||
		goto out_free;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	err = change_xattr(c, host, inode, value, size);
 | 
			
		||||
	iput(inode);
 | 
			
		||||
 | 
			
		||||
out_free:
 | 
			
		||||
	kfree(xent);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ssize_t ubifs_getxattr(struct dentry *dentry, const char *name, void *buf,
 | 
			
		||||
		       size_t size)
 | 
			
		||||
{
 | 
			
		||||
	struct inode *inode, *host = dentry->d_inode;
 | 
			
		||||
	struct ubifs_info *c = host->i_sb->s_fs_info;
 | 
			
		||||
	struct qstr nm = { .name = name, .len = strlen(name) };
 | 
			
		||||
	struct ubifs_inode *ui;
 | 
			
		||||
	struct ubifs_dent_node *xent;
 | 
			
		||||
	union ubifs_key key;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("xattr '%s', ino %lu ('%.*s'), buf size %zd", name,
 | 
			
		||||
		host->i_ino, dentry->d_name.len, dentry->d_name.name, size);
 | 
			
		||||
 | 
			
		||||
	err = check_namespace(&nm);
 | 
			
		||||
	if (err < 0)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS);
 | 
			
		||||
	if (!xent)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&host->i_mutex);
 | 
			
		||||
	xent_key_init(c, &key, host->i_ino, &nm);
 | 
			
		||||
	err = ubifs_tnc_lookup_nm(c, &key, xent, &nm);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		if (err == -ENOENT)
 | 
			
		||||
			err = -ENODATA;
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	inode = iget_xattr(c, le64_to_cpu(xent->inum));
 | 
			
		||||
	if (IS_ERR(inode)) {
 | 
			
		||||
		err = PTR_ERR(inode);
 | 
			
		||||
		goto out_unlock;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ui = ubifs_inode(inode);
 | 
			
		||||
	ubifs_assert(inode->i_size == ui->data_len);
 | 
			
		||||
	ubifs_assert(ubifs_inode(host)->xattr_size > ui->data_len);
 | 
			
		||||
 | 
			
		||||
	if (buf) {
 | 
			
		||||
		/* If @buf is %NULL we are supposed to return the length */
 | 
			
		||||
		if (ui->data_len > size) {
 | 
			
		||||
			dbg_err("buffer size %zd, xattr len %d",
 | 
			
		||||
				size, ui->data_len);
 | 
			
		||||
			err = -ERANGE;
 | 
			
		||||
			goto out_iput;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		memcpy(buf, ui->data, ui->data_len);
 | 
			
		||||
	}
 | 
			
		||||
	err = ui->data_len;
 | 
			
		||||
 | 
			
		||||
out_iput:
 | 
			
		||||
	iput(inode);
 | 
			
		||||
out_unlock:
 | 
			
		||||
	mutex_unlock(&host->i_mutex);
 | 
			
		||||
	kfree(xent);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size)
 | 
			
		||||
{
 | 
			
		||||
	union ubifs_key key;
 | 
			
		||||
	struct inode *host = dentry->d_inode;
 | 
			
		||||
	struct ubifs_info *c = host->i_sb->s_fs_info;
 | 
			
		||||
	struct ubifs_inode *host_ui = ubifs_inode(host);
 | 
			
		||||
	struct ubifs_dent_node *xent, *pxent = NULL;
 | 
			
		||||
	int err, len, written = 0;
 | 
			
		||||
	struct qstr nm = { .name = NULL };
 | 
			
		||||
 | 
			
		||||
	dbg_gen("ino %lu ('%.*s'), buffer size %zd", host->i_ino,
 | 
			
		||||
		dentry->d_name.len, dentry->d_name.name, size);
 | 
			
		||||
 | 
			
		||||
	len = host_ui->xattr_names + host_ui->xattr_cnt;
 | 
			
		||||
	if (!buffer)
 | 
			
		||||
		/*
 | 
			
		||||
		 * We should return the minimum buffer size which will fit a
 | 
			
		||||
		 * null-terminated list of all the extended attribute names.
 | 
			
		||||
		 */
 | 
			
		||||
		return len;
 | 
			
		||||
 | 
			
		||||
	if (len > size)
 | 
			
		||||
		return -ERANGE;
 | 
			
		||||
 | 
			
		||||
	lowest_xent_key(c, &key, host->i_ino);
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&host->i_mutex);
 | 
			
		||||
	while (1) {
 | 
			
		||||
		int type;
 | 
			
		||||
 | 
			
		||||
		xent = ubifs_tnc_next_ent(c, &key, &nm);
 | 
			
		||||
		if (unlikely(IS_ERR(xent))) {
 | 
			
		||||
			err = PTR_ERR(xent);
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		nm.name = xent->name;
 | 
			
		||||
		nm.len = le16_to_cpu(xent->nlen);
 | 
			
		||||
 | 
			
		||||
		type = check_namespace(&nm);
 | 
			
		||||
		if (unlikely(type < 0)) {
 | 
			
		||||
			err = type;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/* Show trusted namespace only for "power" users */
 | 
			
		||||
		if (type != TRUSTED_XATTR || capable(CAP_SYS_ADMIN)) {
 | 
			
		||||
			memcpy(buffer + written, nm.name, nm.len + 1);
 | 
			
		||||
			written += nm.len + 1;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		kfree(pxent);
 | 
			
		||||
		pxent = xent;
 | 
			
		||||
		key_read(c, &xent->key, &key);
 | 
			
		||||
	}
 | 
			
		||||
	mutex_unlock(&host->i_mutex);
 | 
			
		||||
 | 
			
		||||
	kfree(pxent);
 | 
			
		||||
	if (err != -ENOENT) {
 | 
			
		||||
		ubifs_err("cannot find next direntry, error %d", err);
 | 
			
		||||
		return err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(written <= size);
 | 
			
		||||
	return written;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int remove_xattr(struct ubifs_info *c, struct inode *host,
 | 
			
		||||
			struct inode *inode, const struct qstr *nm)
 | 
			
		||||
{
 | 
			
		||||
	int err;
 | 
			
		||||
	struct ubifs_inode *host_ui = ubifs_inode(host);
 | 
			
		||||
	struct ubifs_inode *ui = ubifs_inode(inode);
 | 
			
		||||
	struct ubifs_budget_req req = { .dirtied_ino = 1, .mod_dent = 1,
 | 
			
		||||
					.dirtied_ino_d = host_ui->data_len };
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(ui->data_len == inode->i_size);
 | 
			
		||||
 | 
			
		||||
	err = ubifs_budget_space(c, &req);
 | 
			
		||||
	if (err)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&host_ui->ui_mutex);
 | 
			
		||||
	host->i_ctime = ubifs_current_time(host);
 | 
			
		||||
	host_ui->xattr_cnt -= 1;
 | 
			
		||||
	host_ui->xattr_size -= CALC_DENT_SIZE(nm->len);
 | 
			
		||||
	host_ui->xattr_size -= CALC_XATTR_BYTES(ui->data_len);
 | 
			
		||||
	host_ui->xattr_names -= nm->len;
 | 
			
		||||
 | 
			
		||||
	err = ubifs_jnl_delete_xattr(c, host, inode, nm);
 | 
			
		||||
	if (err)
 | 
			
		||||
		goto out_cancel;
 | 
			
		||||
	mutex_unlock(&host_ui->ui_mutex);
 | 
			
		||||
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
	return 0;
 | 
			
		||||
 | 
			
		||||
out_cancel:
 | 
			
		||||
	host_ui->xattr_cnt += 1;
 | 
			
		||||
	host_ui->xattr_size += CALC_DENT_SIZE(nm->len);
 | 
			
		||||
	host_ui->xattr_size += CALC_XATTR_BYTES(ui->data_len);
 | 
			
		||||
	mutex_unlock(&host_ui->ui_mutex);
 | 
			
		||||
	ubifs_release_budget(c, &req);
 | 
			
		||||
	make_bad_inode(inode);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int ubifs_removexattr(struct dentry *dentry, const char *name)
 | 
			
		||||
{
 | 
			
		||||
	struct inode *inode, *host = dentry->d_inode;
 | 
			
		||||
	struct ubifs_info *c = host->i_sb->s_fs_info;
 | 
			
		||||
	struct qstr nm = { .name = name, .len = strlen(name) };
 | 
			
		||||
	struct ubifs_dent_node *xent;
 | 
			
		||||
	union ubifs_key key;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	dbg_gen("xattr '%s', ino %lu ('%.*s')", name,
 | 
			
		||||
		host->i_ino, dentry->d_name.len, dentry->d_name.name);
 | 
			
		||||
	ubifs_assert(mutex_is_locked(&host->i_mutex));
 | 
			
		||||
 | 
			
		||||
	err = check_namespace(&nm);
 | 
			
		||||
	if (err < 0)
 | 
			
		||||
		return err;
 | 
			
		||||
 | 
			
		||||
	xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS);
 | 
			
		||||
	if (!xent)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	xent_key_init(c, &key, host->i_ino, &nm);
 | 
			
		||||
	err = ubifs_tnc_lookup_nm(c, &key, xent, &nm);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		if (err == -ENOENT)
 | 
			
		||||
			err = -ENODATA;
 | 
			
		||||
		goto out_free;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	inode = iget_xattr(c, le64_to_cpu(xent->inum));
 | 
			
		||||
	if (IS_ERR(inode)) {
 | 
			
		||||
		err = PTR_ERR(inode);
 | 
			
		||||
		goto out_free;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ubifs_assert(inode->i_nlink == 1);
 | 
			
		||||
	inode->i_nlink = 0;
 | 
			
		||||
	err = remove_xattr(c, host, inode, &nm);
 | 
			
		||||
	if (err)
 | 
			
		||||
		inode->i_nlink = 1;
 | 
			
		||||
 | 
			
		||||
	/* If @i_nlink is 0, 'iput()' will delete the inode */
 | 
			
		||||
	iput(inode);
 | 
			
		||||
 | 
			
		||||
out_free:
 | 
			
		||||
	kfree(xent);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
		Loading…
	
		Reference in a new issue