mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	rust: alloc: implement kernel Vec type
				
					
				
			`Vec` provides a contiguous growable array type with contents allocated with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers the kernel's GFP flags for all appropriate functions, always reports allocation failures through `Result<_, AllocError>` and remains independent from unstable features. [ This patch starts using a new unstable feature, `inline_const`, but it was stabilized in Rust 1.79.0, i.e. the next version after the minimum one, thus it will not be an issue. - Miguel ] Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Danilo Krummrich <dakr@kernel.org> Link: https://lore.kernel.org/r/20241004154149.93856-17-dakr@kernel.org [ Cleaned `rustdoc` unescaped backtick warning, added a couple more backticks elsewhere, fixed typos, sorted `feature`s, rewrapped documentation lines. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This commit is contained in:
		
							parent
							
								
									9e7bbfa182
								
							
						
					
					
						commit
						2aac4cd7da
					
				
					 4 changed files with 656 additions and 1 deletions
				
			
		|  | @ -5,6 +5,7 @@ | |||
| #[cfg(not(any(test, testlib)))] | ||||
| pub mod allocator; | ||||
| pub mod kbox; | ||||
| pub mod kvec; | ||||
| pub mod layout; | ||||
| pub mod vec_ext; | ||||
| 
 | ||||
|  | @ -19,6 +20,11 @@ | |||
| pub use self::kbox::KVBox; | ||||
| pub use self::kbox::VBox; | ||||
| 
 | ||||
| pub use self::kvec::KVVec; | ||||
| pub use self::kvec::KVec; | ||||
| pub use self::kvec::VVec; | ||||
| pub use self::kvec::Vec; | ||||
| 
 | ||||
| /// Indicates an allocation error.
 | ||||
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] | ||||
| pub struct AllocError; | ||||
|  |  | |||
							
								
								
									
										648
									
								
								rust/kernel/alloc/kvec.rs
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										648
									
								
								rust/kernel/alloc/kvec.rs
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,648 @@ | |||
| // SPDX-License-Identifier: GPL-2.0
 | ||||
| 
 | ||||
| //! Implementation of [`Vec`].
 | ||||
| 
 | ||||
| use super::{ | ||||
|     allocator::{KVmalloc, Kmalloc, Vmalloc}, | ||||
|     layout::ArrayLayout, | ||||
|     AllocError, Allocator, Box, Flags, | ||||
| }; | ||||
| use core::{ | ||||
|     fmt, | ||||
|     marker::PhantomData, | ||||
|     mem::{ManuallyDrop, MaybeUninit}, | ||||
|     ops::Deref, | ||||
|     ops::DerefMut, | ||||
|     ops::Index, | ||||
|     ops::IndexMut, | ||||
|     ptr, | ||||
|     ptr::NonNull, | ||||
|     slice, | ||||
|     slice::SliceIndex, | ||||
| }; | ||||
| 
 | ||||
| /// Create a [`KVec`] containing the arguments.
 | ||||
| ///
 | ||||
| /// New memory is allocated with `GFP_KERNEL`.
 | ||||
| ///
 | ||||
| /// # Examples
 | ||||
| ///
 | ||||
| /// ```
 | ||||
| /// let mut v = kernel::kvec![];
 | ||||
| /// v.push(1, GFP_KERNEL)?;
 | ||||
| /// assert_eq!(v, [1]);
 | ||||
| ///
 | ||||
| /// let mut v = kernel::kvec![1; 3]?;
 | ||||
| /// v.push(4, GFP_KERNEL)?;
 | ||||
| /// assert_eq!(v, [1, 1, 1, 4]);
 | ||||
| ///
 | ||||
| /// let mut v = kernel::kvec![1, 2, 3]?;
 | ||||
| /// v.push(4, GFP_KERNEL)?;
 | ||||
| /// assert_eq!(v, [1, 2, 3, 4]);
 | ||||
| ///
 | ||||
| /// # Ok::<(), Error>(())
 | ||||
| /// ```
 | ||||
| #[macro_export] | ||||
| macro_rules! kvec { | ||||
|     () => ( | ||||
|         $crate::alloc::KVec::new() | ||||
|     ); | ||||
|     ($elem:expr; $n:expr) => ( | ||||
|         $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) | ||||
|     ); | ||||
|     ($($x:expr),+ $(,)?) => ( | ||||
|         match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { | ||||
|             Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), | ||||
|             Err(e) => Err(e), | ||||
|         } | ||||
|     ); | ||||
| } | ||||
| 
 | ||||
| /// The kernel's [`Vec`] type.
 | ||||
| ///
 | ||||
| /// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
 | ||||
| /// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
 | ||||
| ///
 | ||||
| /// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
 | ||||
| /// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
 | ||||
| ///
 | ||||
| /// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
 | ||||
| ///
 | ||||
| /// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
 | ||||
| /// capacity of the vector (the number of elements that currently fit into the vector), its length
 | ||||
| /// (the number of elements that are currently stored in the vector) and the `Allocator` type used
 | ||||
| /// to allocate (and free) the backing buffer.
 | ||||
| ///
 | ||||
| /// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
 | ||||
| /// and manually modified.
 | ||||
| ///
 | ||||
| /// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
 | ||||
| /// are added to the vector.
 | ||||
| ///
 | ||||
| /// # Invariants
 | ||||
| ///
 | ||||
| /// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
 | ||||
| ///   zero-sized types, is a dangling, well aligned pointer.
 | ||||
| ///
 | ||||
| /// - `self.len` always represents the exact number of elements stored in the vector.
 | ||||
| ///
 | ||||
| /// - `self.layout` represents the absolute number of elements that can be stored within the vector
 | ||||
| ///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
 | ||||
| ///   backing buffer to be larger than `layout`.
 | ||||
| ///
 | ||||
| /// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
 | ||||
| ///   was allocated with (and must be freed with).
 | ||||
| pub struct Vec<T, A: Allocator> { | ||||
|     ptr: NonNull<T>, | ||||
|     /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
 | ||||
|     ///
 | ||||
|     /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
 | ||||
|     /// elements we can still store without reallocating.
 | ||||
|     layout: ArrayLayout<T>, | ||||
|     len: usize, | ||||
|     _p: PhantomData<A>, | ||||
| } | ||||
| 
 | ||||
| /// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
 | ||||
| ///
 | ||||
| /// # Examples
 | ||||
| ///
 | ||||
| /// ```
 | ||||
| /// let mut v = KVec::new();
 | ||||
| /// v.push(1, GFP_KERNEL)?;
 | ||||
| /// assert_eq!(&v, &[1]);
 | ||||
| ///
 | ||||
| /// # Ok::<(), Error>(())
 | ||||
| /// ```
 | ||||
| pub type KVec<T> = Vec<T, Kmalloc>; | ||||
| 
 | ||||
| /// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
 | ||||
| ///
 | ||||
| /// # Examples
 | ||||
| ///
 | ||||
| /// ```
 | ||||
| /// let mut v = VVec::new();
 | ||||
| /// v.push(1, GFP_KERNEL)?;
 | ||||
| /// assert_eq!(&v, &[1]);
 | ||||
| ///
 | ||||
| /// # Ok::<(), Error>(())
 | ||||
| /// ```
 | ||||
| pub type VVec<T> = Vec<T, Vmalloc>; | ||||
| 
 | ||||
| /// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
 | ||||
| ///
 | ||||
| /// # Examples
 | ||||
| ///
 | ||||
| /// ```
 | ||||
| /// let mut v = KVVec::new();
 | ||||
| /// v.push(1, GFP_KERNEL)?;
 | ||||
| /// assert_eq!(&v, &[1]);
 | ||||
| ///
 | ||||
| /// # Ok::<(), Error>(())
 | ||||
| /// ```
 | ||||
| pub type KVVec<T> = Vec<T, KVmalloc>; | ||||
| 
 | ||||
| // SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
 | ||||
| unsafe impl<T, A> Send for Vec<T, A> | ||||
| where | ||||
|     T: Send, | ||||
|     A: Allocator, | ||||
| { | ||||
| } | ||||
| 
 | ||||
| // SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
 | ||||
| unsafe impl<T, A> Sync for Vec<T, A> | ||||
| where | ||||
|     T: Sync, | ||||
|     A: Allocator, | ||||
| { | ||||
| } | ||||
| 
 | ||||
| impl<T, A> Vec<T, A> | ||||
| where | ||||
|     A: Allocator, | ||||
| { | ||||
|     #[inline] | ||||
|     const fn is_zst() -> bool { | ||||
|         core::mem::size_of::<T>() == 0 | ||||
|     } | ||||
| 
 | ||||
|     /// Returns the number of elements that can be stored within the vector without allocating
 | ||||
|     /// additional memory.
 | ||||
|     pub fn capacity(&self) -> usize { | ||||
|         if const { Self::is_zst() } { | ||||
|             usize::MAX | ||||
|         } else { | ||||
|             self.layout.len() | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     /// Returns the number of elements stored within the vector.
 | ||||
|     #[inline] | ||||
|     pub fn len(&self) -> usize { | ||||
|         self.len | ||||
|     } | ||||
| 
 | ||||
|     /// Forcefully sets `self.len` to `new_len`.
 | ||||
|     ///
 | ||||
|     /// # Safety
 | ||||
|     ///
 | ||||
|     /// - `new_len` must be less than or equal to [`Self::capacity`].
 | ||||
|     /// - If `new_len` is greater than `self.len`, all elements within the interval
 | ||||
|     ///   [`self.len`,`new_len`) must be initialized.
 | ||||
|     #[inline] | ||||
|     pub unsafe fn set_len(&mut self, new_len: usize) { | ||||
|         debug_assert!(new_len <= self.capacity()); | ||||
|         self.len = new_len; | ||||
|     } | ||||
| 
 | ||||
|     /// Returns a slice of the entire vector.
 | ||||
|     #[inline] | ||||
|     pub fn as_slice(&self) -> &[T] { | ||||
|         self | ||||
|     } | ||||
| 
 | ||||
|     /// Returns a mutable slice of the entire vector.
 | ||||
|     #[inline] | ||||
|     pub fn as_mut_slice(&mut self) -> &mut [T] { | ||||
|         self | ||||
|     } | ||||
| 
 | ||||
|     /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
 | ||||
|     /// dangling raw pointer.
 | ||||
|     #[inline] | ||||
|     pub fn as_mut_ptr(&mut self) -> *mut T { | ||||
|         self.ptr.as_ptr() | ||||
|     } | ||||
| 
 | ||||
|     /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
 | ||||
|     /// pointer.
 | ||||
|     #[inline] | ||||
|     pub fn as_ptr(&self) -> *const T { | ||||
|         self.ptr.as_ptr() | ||||
|     } | ||||
| 
 | ||||
|     /// Returns `true` if the vector contains no elements, `false` otherwise.
 | ||||
|     ///
 | ||||
|     /// # Examples
 | ||||
|     ///
 | ||||
|     /// ```
 | ||||
|     /// let mut v = KVec::new();
 | ||||
|     /// assert!(v.is_empty());
 | ||||
|     ///
 | ||||
|     /// v.push(1, GFP_KERNEL);
 | ||||
|     /// assert!(!v.is_empty());
 | ||||
|     /// ```
 | ||||
|     #[inline] | ||||
|     pub fn is_empty(&self) -> bool { | ||||
|         self.len() == 0 | ||||
|     } | ||||
| 
 | ||||
|     /// Creates a new, empty `Vec<T, A>`.
 | ||||
|     ///
 | ||||
|     /// This method does not allocate by itself.
 | ||||
|     #[inline] | ||||
|     pub const fn new() -> Self { | ||||
|         // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
 | ||||
|         // - `ptr` is a properly aligned dangling pointer for type `T`,
 | ||||
|         // - `layout` is an empty `ArrayLayout` (zero capacity)
 | ||||
|         // - `len` is zero, since no elements can be or have been stored,
 | ||||
|         // - `A` is always valid.
 | ||||
|         Self { | ||||
|             ptr: NonNull::dangling(), | ||||
|             layout: ArrayLayout::empty(), | ||||
|             len: 0, | ||||
|             _p: PhantomData::<A>, | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
 | ||||
|     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { | ||||
|         // SAFETY:
 | ||||
|         // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
 | ||||
|         //   guaranteed to be part of the same allocated object.
 | ||||
|         // - `self.len` can not overflow `isize`.
 | ||||
|         let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>; | ||||
| 
 | ||||
|         // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
 | ||||
|         // and valid, but uninitialized.
 | ||||
|         unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) } | ||||
|     } | ||||
| 
 | ||||
|     /// Appends an element to the back of the [`Vec`] instance.
 | ||||
|     ///
 | ||||
|     /// # Examples
 | ||||
|     ///
 | ||||
|     /// ```
 | ||||
|     /// let mut v = KVec::new();
 | ||||
|     /// v.push(1, GFP_KERNEL)?;
 | ||||
|     /// assert_eq!(&v, &[1]);
 | ||||
|     ///
 | ||||
|     /// v.push(2, GFP_KERNEL)?;
 | ||||
|     /// assert_eq!(&v, &[1, 2]);
 | ||||
|     /// # Ok::<(), Error>(())
 | ||||
|     /// ```
 | ||||
|     pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { | ||||
|         self.reserve(1, flags)?; | ||||
| 
 | ||||
|         // SAFETY:
 | ||||
|         // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
 | ||||
|         //   guaranteed to be part of the same allocated object.
 | ||||
|         // - `self.len` can not overflow `isize`.
 | ||||
|         let ptr = unsafe { self.as_mut_ptr().add(self.len) }; | ||||
| 
 | ||||
|         // SAFETY:
 | ||||
|         // - `ptr` is properly aligned and valid for writes.
 | ||||
|         unsafe { core::ptr::write(ptr, v) }; | ||||
| 
 | ||||
|         // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
 | ||||
|         // by 1. We also know that the new length is <= capacity because of the previous call to
 | ||||
|         // `reserve` above.
 | ||||
|         unsafe { self.set_len(self.len() + 1) }; | ||||
|         Ok(()) | ||||
|     } | ||||
| 
 | ||||
|     /// Creates a new [`Vec`] instance with at least the given capacity.
 | ||||
|     ///
 | ||||
|     /// # Examples
 | ||||
|     ///
 | ||||
|     /// ```
 | ||||
|     /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
 | ||||
|     ///
 | ||||
|     /// assert!(v.capacity() >= 20);
 | ||||
|     /// # Ok::<(), Error>(())
 | ||||
|     /// ```
 | ||||
|     pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { | ||||
|         let mut v = Vec::new(); | ||||
| 
 | ||||
|         v.reserve(capacity, flags)?; | ||||
| 
 | ||||
|         Ok(v) | ||||
|     } | ||||
| 
 | ||||
|     /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
 | ||||
|     ///
 | ||||
|     /// # Examples
 | ||||
|     ///
 | ||||
|     /// ```
 | ||||
|     /// let mut v = kernel::kvec![1, 2, 3]?;
 | ||||
|     /// v.reserve(1, GFP_KERNEL)?;
 | ||||
|     ///
 | ||||
|     /// let (mut ptr, mut len, cap) = v.into_raw_parts();
 | ||||
|     ///
 | ||||
|     /// // SAFETY: We've just reserved memory for another element.
 | ||||
|     /// unsafe { ptr.add(len).write(4) };
 | ||||
|     /// len += 1;
 | ||||
|     ///
 | ||||
|     /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
 | ||||
|     /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
 | ||||
|     /// // from the exact same raw parts.
 | ||||
|     /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
 | ||||
|     ///
 | ||||
|     /// assert_eq!(v, [1, 2, 3, 4]);
 | ||||
|     ///
 | ||||
|     /// # Ok::<(), Error>(())
 | ||||
|     /// ```
 | ||||
|     ///
 | ||||
|     /// # Safety
 | ||||
|     ///
 | ||||
|     /// If `T` is a ZST:
 | ||||
|     ///
 | ||||
|     /// - `ptr` must be a dangling, well aligned pointer.
 | ||||
|     ///
 | ||||
|     /// Otherwise:
 | ||||
|     ///
 | ||||
|     /// - `ptr` must have been allocated with the allocator `A`.
 | ||||
|     /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
 | ||||
|     /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
 | ||||
|     /// - The allocated size in bytes must not be larger than `isize::MAX`.
 | ||||
|     /// - `length` must be less than or equal to `capacity`.
 | ||||
|     /// - The first `length` elements must be initialized values of type `T`.
 | ||||
|     ///
 | ||||
|     /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
 | ||||
|     /// `cap` and `len`.
 | ||||
|     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { | ||||
|         let layout = if Self::is_zst() { | ||||
|             ArrayLayout::empty() | ||||
|         } else { | ||||
|             // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
 | ||||
|             // smaller than `isize::MAX`.
 | ||||
|             unsafe { ArrayLayout::new_unchecked(capacity) } | ||||
|         }; | ||||
| 
 | ||||
|         // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
 | ||||
|         // covered by the safety requirements of this function.
 | ||||
|         Self { | ||||
|             // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
 | ||||
|             // memory allocation, allocated with `A`.
 | ||||
|             ptr: unsafe { NonNull::new_unchecked(ptr) }, | ||||
|             layout, | ||||
|             len: length, | ||||
|             _p: PhantomData::<A>, | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
 | ||||
|     ///
 | ||||
|     /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
 | ||||
|     /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
 | ||||
|     /// elements and free the allocation, if any.
 | ||||
|     pub fn into_raw_parts(self) -> (*mut T, usize, usize) { | ||||
|         let mut me = ManuallyDrop::new(self); | ||||
|         let len = me.len(); | ||||
|         let capacity = me.capacity(); | ||||
|         let ptr = me.as_mut_ptr(); | ||||
|         (ptr, len, capacity) | ||||
|     } | ||||
| 
 | ||||
|     /// Ensures that the capacity exceeds the length by at least `additional` elements.
 | ||||
|     ///
 | ||||
|     /// # Examples
 | ||||
|     ///
 | ||||
|     /// ```
 | ||||
|     /// let mut v = KVec::new();
 | ||||
|     /// v.push(1, GFP_KERNEL)?;
 | ||||
|     ///
 | ||||
|     /// v.reserve(10, GFP_KERNEL)?;
 | ||||
|     /// let cap = v.capacity();
 | ||||
|     /// assert!(cap >= 10);
 | ||||
|     ///
 | ||||
|     /// v.reserve(10, GFP_KERNEL)?;
 | ||||
|     /// let new_cap = v.capacity();
 | ||||
|     /// assert_eq!(new_cap, cap);
 | ||||
|     ///
 | ||||
|     /// # Ok::<(), Error>(())
 | ||||
|     /// ```
 | ||||
|     pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { | ||||
|         let len = self.len(); | ||||
|         let cap = self.capacity(); | ||||
| 
 | ||||
|         if cap - len >= additional { | ||||
|             return Ok(()); | ||||
|         } | ||||
| 
 | ||||
|         if Self::is_zst() { | ||||
|             // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
 | ||||
|             return Err(AllocError); | ||||
|         } | ||||
| 
 | ||||
|         // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
 | ||||
|         // multiplication by two won't overflow.
 | ||||
|         let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); | ||||
|         let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?; | ||||
| 
 | ||||
|         // SAFETY:
 | ||||
|         // - `ptr` is valid because it's either `None` or comes from a previous call to
 | ||||
|         //   `A::realloc`.
 | ||||
|         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
 | ||||
|         let ptr = unsafe { | ||||
|             A::realloc( | ||||
|                 Some(self.ptr.cast()), | ||||
|                 layout.into(), | ||||
|                 self.layout.into(), | ||||
|                 flags, | ||||
|             )? | ||||
|         }; | ||||
| 
 | ||||
|         // INVARIANT:
 | ||||
|         // - `layout` is some `ArrayLayout::<T>`,
 | ||||
|         // - `ptr` has been created by `A::realloc` from `layout`.
 | ||||
|         self.ptr = ptr.cast(); | ||||
|         self.layout = layout; | ||||
| 
 | ||||
|         Ok(()) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T: Clone, A: Allocator> Vec<T, A> { | ||||
|     /// Extend the vector by `n` clones of `value`.
 | ||||
|     pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { | ||||
|         if n == 0 { | ||||
|             return Ok(()); | ||||
|         } | ||||
| 
 | ||||
|         self.reserve(n, flags)?; | ||||
| 
 | ||||
|         let spare = self.spare_capacity_mut(); | ||||
| 
 | ||||
|         for item in spare.iter_mut().take(n - 1) { | ||||
|             item.write(value.clone()); | ||||
|         } | ||||
| 
 | ||||
|         // We can write the last element directly without cloning needlessly.
 | ||||
|         spare[n - 1].write(value); | ||||
| 
 | ||||
|         // SAFETY:
 | ||||
|         // - `self.len() + n < self.capacity()` due to the call to reserve above,
 | ||||
|         // - the loop and the line above initialized the next `n` elements.
 | ||||
|         unsafe { self.set_len(self.len() + n) }; | ||||
| 
 | ||||
|         Ok(()) | ||||
|     } | ||||
| 
 | ||||
|     /// Pushes clones of the elements of slice into the [`Vec`] instance.
 | ||||
|     ///
 | ||||
|     /// # Examples
 | ||||
|     ///
 | ||||
|     /// ```
 | ||||
|     /// let mut v = KVec::new();
 | ||||
|     /// v.push(1, GFP_KERNEL)?;
 | ||||
|     ///
 | ||||
|     /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
 | ||||
|     /// assert_eq!(&v, &[1, 20, 30, 40]);
 | ||||
|     ///
 | ||||
|     /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
 | ||||
|     /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
 | ||||
|     /// # Ok::<(), Error>(())
 | ||||
|     /// ```
 | ||||
|     pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> { | ||||
|         self.reserve(other.len(), flags)?; | ||||
|         for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { | ||||
|             slot.write(item.clone()); | ||||
|         } | ||||
| 
 | ||||
|         // SAFETY:
 | ||||
|         // - `other.len()` spare entries have just been initialized, so it is safe to increase
 | ||||
|         //   the length by the same number.
 | ||||
|         // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
 | ||||
|         //   call.
 | ||||
|         unsafe { self.set_len(self.len() + other.len()) }; | ||||
|         Ok(()) | ||||
|     } | ||||
| 
 | ||||
|     /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
 | ||||
|     pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { | ||||
|         let mut v = Self::with_capacity(n, flags)?; | ||||
| 
 | ||||
|         v.extend_with(n, value, flags)?; | ||||
| 
 | ||||
|         Ok(v) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T, A> Drop for Vec<T, A> | ||||
| where | ||||
|     A: Allocator, | ||||
| { | ||||
|     fn drop(&mut self) { | ||||
|         // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
 | ||||
|         unsafe { | ||||
|             ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( | ||||
|                 self.as_mut_ptr(), | ||||
|                 self.len, | ||||
|             )) | ||||
|         }; | ||||
| 
 | ||||
|         // SAFETY:
 | ||||
|         // - `self.ptr` was previously allocated with `A`.
 | ||||
|         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
 | ||||
|         unsafe { A::free(self.ptr.cast(), self.layout.into()) }; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A> | ||||
| where | ||||
|     A: Allocator, | ||||
| { | ||||
|     fn from(b: Box<[T; N], A>) -> Vec<T, A> { | ||||
|         let len = b.len(); | ||||
|         let ptr = Box::into_raw(b); | ||||
| 
 | ||||
|         // SAFETY:
 | ||||
|         // - `b` has been allocated with `A`,
 | ||||
|         // - `ptr` fulfills the alignment requirements for `T`,
 | ||||
|         // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
 | ||||
|         // - all elements within `b` are initialized values of `T`,
 | ||||
|         // - `len` does not exceed `isize::MAX`.
 | ||||
|         unsafe { Vec::from_raw_parts(ptr as _, len, len) } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T> Default for KVec<T> { | ||||
|     #[inline] | ||||
|     fn default() -> Self { | ||||
|         Self::new() | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { | ||||
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | ||||
|         fmt::Debug::fmt(&**self, f) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T, A> Deref for Vec<T, A> | ||||
| where | ||||
|     A: Allocator, | ||||
| { | ||||
|     type Target = [T]; | ||||
| 
 | ||||
|     #[inline] | ||||
|     fn deref(&self) -> &[T] { | ||||
|         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
 | ||||
|         // initialized elements of type `T`.
 | ||||
|         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T, A> DerefMut for Vec<T, A> | ||||
| where | ||||
|     A: Allocator, | ||||
| { | ||||
|     #[inline] | ||||
|     fn deref_mut(&mut self) -> &mut [T] { | ||||
|         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
 | ||||
|         // initialized elements of type `T`.
 | ||||
|         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} | ||||
| 
 | ||||
| impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> | ||||
| where | ||||
|     A: Allocator, | ||||
| { | ||||
|     type Output = I::Output; | ||||
| 
 | ||||
|     #[inline] | ||||
|     fn index(&self, index: I) -> &Self::Output { | ||||
|         Index::index(&**self, index) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> | ||||
| where | ||||
|     A: Allocator, | ||||
| { | ||||
|     #[inline] | ||||
|     fn index_mut(&mut self, index: I) -> &mut Self::Output { | ||||
|         IndexMut::index_mut(&mut **self, index) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| macro_rules! impl_slice_eq { | ||||
|     ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => { | ||||
|         $( | ||||
|             impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs | ||||
|             where | ||||
|                 T: PartialEq<U>, | ||||
|             { | ||||
|                 #[inline] | ||||
|                 fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } | ||||
|             } | ||||
|         )* | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl_slice_eq! { | ||||
|     [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>, | ||||
|     [A: Allocator] Vec<T, A>, &[U], | ||||
|     [A: Allocator] Vec<T, A>, &mut [U], | ||||
|     [A: Allocator] &[T], Vec<U, A>, | ||||
|     [A: Allocator] &mut [T], Vec<U, A>, | ||||
|     [A: Allocator] Vec<T, A>, [U], | ||||
|     [A: Allocator] [T], Vec<U, A>, | ||||
|     [A: Allocator, const N: usize] Vec<T, A>, [U; N], | ||||
|     [A: Allocator, const N: usize] Vec<T, A>, &[U; N], | ||||
| } | ||||
|  | @ -15,6 +15,7 @@ | |||
| #![feature(arbitrary_self_types)] | ||||
| #![feature(coerce_unsized)] | ||||
| #![feature(dispatch_from_dyn)] | ||||
| #![feature(inline_const)] | ||||
| #![feature(lint_reasons)] | ||||
| #![feature(unsize)] | ||||
| 
 | ||||
|  |  | |||
|  | @ -14,7 +14,7 @@ | |||
| #[doc(no_inline)] | ||||
| pub use core::pin::Pin; | ||||
| 
 | ||||
| pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; | ||||
| pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; | ||||
| 
 | ||||
| #[doc(no_inline)] | ||||
| pub use alloc::vec::Vec; | ||||
|  |  | |||
		Loading…
	
		Reference in a new issue
	
	 Danilo Krummrich
						Danilo Krummrich