mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	pwm: add microchip soft ip corePWM driver
Add a driver that supports the Microchip FPGA "soft" PWM IP core. Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
This commit is contained in:
		
							parent
							
								
									38ba835986
								
							
						
					
					
						commit
						2bf7ecf7b4
					
				
					 3 changed files with 518 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -405,6 +405,16 @@ config PWM_MEDIATEK
 | 
			
		|||
	  To compile this driver as a module, choose M here: the module
 | 
			
		||||
	  will be called pwm-mediatek.
 | 
			
		||||
 | 
			
		||||
config PWM_MICROCHIP_CORE
 | 
			
		||||
	tristate "Microchip corePWM PWM support"
 | 
			
		||||
	depends on SOC_MICROCHIP_POLARFIRE || COMPILE_TEST
 | 
			
		||||
	depends on HAS_IOMEM && OF
 | 
			
		||||
	help
 | 
			
		||||
	  PWM driver for Microchip FPGA soft IP core.
 | 
			
		||||
 | 
			
		||||
	  To compile this driver as a module, choose M here: the module
 | 
			
		||||
	  will be called pwm-microchip-core.
 | 
			
		||||
 | 
			
		||||
config PWM_MXS
 | 
			
		||||
	tristate "Freescale MXS PWM support"
 | 
			
		||||
	depends on ARCH_MXS || COMPILE_TEST
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -35,6 +35,7 @@ obj-$(CONFIG_PWM_LPSS_PCI)	+= pwm-lpss-pci.o
 | 
			
		|||
obj-$(CONFIG_PWM_LPSS_PLATFORM)	+= pwm-lpss-platform.o
 | 
			
		||||
obj-$(CONFIG_PWM_MESON)		+= pwm-meson.o
 | 
			
		||||
obj-$(CONFIG_PWM_MEDIATEK)	+= pwm-mediatek.o
 | 
			
		||||
obj-$(CONFIG_PWM_MICROCHIP_CORE)	+= pwm-microchip-core.o
 | 
			
		||||
obj-$(CONFIG_PWM_MTK_DISP)	+= pwm-mtk-disp.o
 | 
			
		||||
obj-$(CONFIG_PWM_MXS)		+= pwm-mxs.o
 | 
			
		||||
obj-$(CONFIG_PWM_NTXEC)		+= pwm-ntxec.o
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										507
									
								
								drivers/pwm/pwm-microchip-core.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										507
									
								
								drivers/pwm/pwm-microchip-core.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,507 @@
 | 
			
		|||
// SPDX-License-Identifier: GPL-2.0
 | 
			
		||||
/*
 | 
			
		||||
 * corePWM driver for Microchip "soft" FPGA IP cores.
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
 | 
			
		||||
 * Author: Conor Dooley <conor.dooley@microchip.com>
 | 
			
		||||
 * Documentation:
 | 
			
		||||
 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
 | 
			
		||||
 *
 | 
			
		||||
 * Limitations:
 | 
			
		||||
 * - If the IP block is configured without "shadow registers", all register
 | 
			
		||||
 *   writes will take effect immediately, causing glitches on the output.
 | 
			
		||||
 *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
 | 
			
		||||
 *   notifies the core that it needs to update the registers defining the
 | 
			
		||||
 *   waveform from the contents of the "shadow registers". Otherwise, changes
 | 
			
		||||
 *   will take effective immediately, even for those channels.
 | 
			
		||||
 *   As setting the period/duty cycle takes 4 register writes, there is a window
 | 
			
		||||
 *   in which this races against the start of a new period.
 | 
			
		||||
 * - The IP block has no concept of a duty cycle, only rising/falling edges of
 | 
			
		||||
 *   the waveform. Unfortunately, if the rising & falling edges registers have
 | 
			
		||||
 *   the same value written to them the IP block will do whichever of a rising
 | 
			
		||||
 *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
 | 
			
		||||
 *   period. Therefore to get a 0% waveform, the output is set the max high/low
 | 
			
		||||
 *   time depending on polarity.
 | 
			
		||||
 *   If the duty cycle is 0%, and the requested period is less than the
 | 
			
		||||
 *   available period resolution, this will manifest as a ~100% waveform (with
 | 
			
		||||
 *   some output glitches) rather than 50%.
 | 
			
		||||
 * - The PWM period is set for the whole IP block not per channel. The driver
 | 
			
		||||
 *   will only change the period if no other PWM output is enabled.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <linux/clk.h>
 | 
			
		||||
#include <linux/delay.h>
 | 
			
		||||
#include <linux/err.h>
 | 
			
		||||
#include <linux/io.h>
 | 
			
		||||
#include <linux/ktime.h>
 | 
			
		||||
#include <linux/math.h>
 | 
			
		||||
#include <linux/module.h>
 | 
			
		||||
#include <linux/mutex.h>
 | 
			
		||||
#include <linux/of_device.h>
 | 
			
		||||
#include <linux/platform_device.h>
 | 
			
		||||
#include <linux/pwm.h>
 | 
			
		||||
 | 
			
		||||
#define MCHPCOREPWM_PRESCALE_MAX	0xff
 | 
			
		||||
#define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe
 | 
			
		||||
#define MCHPCOREPWM_PERIOD_MAX		0xff00
 | 
			
		||||
 | 
			
		||||
#define MCHPCOREPWM_PRESCALE	0x00
 | 
			
		||||
#define MCHPCOREPWM_PERIOD	0x04
 | 
			
		||||
#define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */
 | 
			
		||||
#define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
 | 
			
		||||
#define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
 | 
			
		||||
#define MCHPCOREPWM_SYNC_UPD	0xe4
 | 
			
		||||
#define MCHPCOREPWM_TIMEOUT_MS	100u
 | 
			
		||||
 | 
			
		||||
struct mchp_core_pwm_chip {
 | 
			
		||||
	struct pwm_chip chip;
 | 
			
		||||
	struct clk *clk;
 | 
			
		||||
	void __iomem *base;
 | 
			
		||||
	struct mutex lock; /* protects the shared period */
 | 
			
		||||
	ktime_t update_timestamp;
 | 
			
		||||
	u32 sync_update_mask;
 | 
			
		||||
	u16 channel_enabled;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
 | 
			
		||||
{
 | 
			
		||||
	return container_of(chip, struct mchp_core_pwm_chip, chip);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
 | 
			
		||||
				 bool enable, u64 period)
 | 
			
		||||
{
 | 
			
		||||
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
 | 
			
		||||
	u8 channel_enable, reg_offset, shift;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * There are two adjacent 8 bit control regs, the lower reg controls
 | 
			
		||||
	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
 | 
			
		||||
	 * and if so, offset by the bus width.
 | 
			
		||||
	 */
 | 
			
		||||
	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
 | 
			
		||||
	shift = pwm->hwpwm & 7;
 | 
			
		||||
 | 
			
		||||
	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
 | 
			
		||||
	channel_enable &= ~(1 << shift);
 | 
			
		||||
	channel_enable |= (enable << shift);
 | 
			
		||||
 | 
			
		||||
	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
 | 
			
		||||
	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
 | 
			
		||||
	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * The updated values will not appear on the bus until they have been
 | 
			
		||||
	 * applied to the waveform at the beginning of the next period.
 | 
			
		||||
	 * This is a NO-OP if the channel does not have shadow registers.
 | 
			
		||||
	 */
 | 
			
		||||
	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
 | 
			
		||||
		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
 | 
			
		||||
					       unsigned int channel)
 | 
			
		||||
{
 | 
			
		||||
	/*
 | 
			
		||||
	 * If a shadow register is used for this PWM channel, and iff there is
 | 
			
		||||
	 * a pending update to the waveform, we must wait for it to be applied
 | 
			
		||||
	 * before attempting to read its state. Reading the registers yields
 | 
			
		||||
	 * the currently implemented settings & the new ones are only readable
 | 
			
		||||
	 * once the current period has ended.
 | 
			
		||||
	 */
 | 
			
		||||
 | 
			
		||||
	if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
 | 
			
		||||
		ktime_t current_time = ktime_get();
 | 
			
		||||
		s64 remaining_ns;
 | 
			
		||||
		u32 delay_us;
 | 
			
		||||
 | 
			
		||||
		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
 | 
			
		||||
						     current_time));
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * If the update has gone through, don't bother waiting for
 | 
			
		||||
		 * obvious reasons. Otherwise wait around for an appropriate
 | 
			
		||||
		 * amount of time for the update to go through.
 | 
			
		||||
		 */
 | 
			
		||||
		if (remaining_ns <= 0)
 | 
			
		||||
			return;
 | 
			
		||||
 | 
			
		||||
		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
 | 
			
		||||
		fsleep(delay_us);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
 | 
			
		||||
				   u8 prescale, u8 period_steps)
 | 
			
		||||
{
 | 
			
		||||
	u64 duty_steps, tmp;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Calculate the duty cycle in multiples of the prescaled period:
 | 
			
		||||
	 * duty_steps = duty_in_ns / step_in_ns
 | 
			
		||||
	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
 | 
			
		||||
	 * The code below is rearranged slightly to only divide once.
 | 
			
		||||
	 */
 | 
			
		||||
	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
 | 
			
		||||
	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
 | 
			
		||||
 | 
			
		||||
	return duty_steps;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
 | 
			
		||||
				     const struct pwm_state *state, u64 duty_steps,
 | 
			
		||||
				     u16 period_steps)
 | 
			
		||||
{
 | 
			
		||||
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
 | 
			
		||||
	u8 posedge, negedge;
 | 
			
		||||
	u8 first_edge = 0, second_edge = duty_steps;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Setting posedge == negedge doesn't yield a constant output,
 | 
			
		||||
	 * so that's an unsuitable setting to model duty_steps = 0.
 | 
			
		||||
	 * In that case set the unwanted edge to a value that never
 | 
			
		||||
	 * triggers.
 | 
			
		||||
	 */
 | 
			
		||||
	if (duty_steps == 0)
 | 
			
		||||
		first_edge = period_steps + 1;
 | 
			
		||||
 | 
			
		||||
	if (state->polarity == PWM_POLARITY_INVERSED) {
 | 
			
		||||
		negedge = first_edge;
 | 
			
		||||
		posedge = second_edge;
 | 
			
		||||
	} else {
 | 
			
		||||
		posedge = first_edge;
 | 
			
		||||
		negedge = second_edge;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Set the sync bit which ensures that periods that already started are
 | 
			
		||||
	 * completed unaltered. At each counter reset event the values are
 | 
			
		||||
	 * updated from the shadow registers.
 | 
			
		||||
	 */
 | 
			
		||||
	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
 | 
			
		||||
	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
 | 
			
		||||
				     u16 *prescale, u16 *period_steps)
 | 
			
		||||
{
 | 
			
		||||
	u64 tmp;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Calculate the period cycles and prescale values.
 | 
			
		||||
	 * The registers are each 8 bits wide & multiplied to compute the period
 | 
			
		||||
	 * using the formula:
 | 
			
		||||
	 *           (prescale + 1) * (period_steps + 1)
 | 
			
		||||
	 * period = -------------------------------------
 | 
			
		||||
	 *                      clk_rate
 | 
			
		||||
	 * so the maximum period that can be generated is 0x10000 times the
 | 
			
		||||
	 * period of the input clock.
 | 
			
		||||
	 * However, due to the design of the "hardware", it is not possible to
 | 
			
		||||
	 * attain a 100% duty cycle if the full range of period_steps is used.
 | 
			
		||||
	 * Therefore period_steps is restricted to 0xfe and the maximum multiple
 | 
			
		||||
	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
 | 
			
		||||
	 *
 | 
			
		||||
	 * The prescale and period_steps registers operate similarly to
 | 
			
		||||
	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
 | 
			
		||||
	 * in the register plus one.
 | 
			
		||||
	 * It's therefore not possible to set a period lower than 1/clk_rate, so
 | 
			
		||||
	 * if tmp is 0, abort. Without aborting, we will set a period that is
 | 
			
		||||
	 * greater than that requested and, more importantly, will trigger the
 | 
			
		||||
	 * neg-/pos-edge issue described in the limitations.
 | 
			
		||||
	 */
 | 
			
		||||
	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
 | 
			
		||||
	if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
 | 
			
		||||
		*prescale = MCHPCOREPWM_PRESCALE_MAX;
 | 
			
		||||
		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
 | 
			
		||||
 | 
			
		||||
		return 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * There are multiple strategies that could be used to choose the
 | 
			
		||||
	 * prescale & period_steps values.
 | 
			
		||||
	 * Here the idea is to pick values so that the selection of duty cycles
 | 
			
		||||
	 * is as finegrain as possible, while also keeping the period less than
 | 
			
		||||
	 * that requested.
 | 
			
		||||
	 *
 | 
			
		||||
	 * A simple way to satisfy the first condition is to always set
 | 
			
		||||
	 * period_steps to its maximum value. This neatly also satisfies the
 | 
			
		||||
	 * second condition too, since using the maximum value of period_steps
 | 
			
		||||
	 * to calculate prescale actually calculates its upper bound.
 | 
			
		||||
	 * Integer division will ensure a round down, so the period will thereby
 | 
			
		||||
	 * always be less than that requested.
 | 
			
		||||
	 *
 | 
			
		||||
	 * The downside of this approach is a significant degree of inaccuracy,
 | 
			
		||||
	 * especially as tmp approaches integer multiples of
 | 
			
		||||
	 * MCHPCOREPWM_PERIOD_STEPS_MAX.
 | 
			
		||||
	 *
 | 
			
		||||
	 * As we must produce a period less than that requested, and for the
 | 
			
		||||
	 * sake of creating a simple algorithm, disallow small values of tmp
 | 
			
		||||
	 * that would need special handling.
 | 
			
		||||
	 */
 | 
			
		||||
	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * This "optimal" value for prescale is be calculated using the maximum
 | 
			
		||||
	 * permitted value of period_steps, 0xfe.
 | 
			
		||||
	 *
 | 
			
		||||
	 *                period * clk_rate
 | 
			
		||||
	 * prescale = ------------------------- - 1
 | 
			
		||||
	 *            NSEC_PER_SEC * (0xfe + 1)
 | 
			
		||||
	 *
 | 
			
		||||
	 *
 | 
			
		||||
	 *  period * clk_rate
 | 
			
		||||
	 * ------------------- was precomputed as `tmp`
 | 
			
		||||
	 *    NSEC_PER_SEC
 | 
			
		||||
	 */
 | 
			
		||||
	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * period_steps can be computed from prescale:
 | 
			
		||||
	 *                      period * clk_rate
 | 
			
		||||
	 * period_steps = ----------------------------- - 1
 | 
			
		||||
	 *                NSEC_PER_SEC * (prescale + 1)
 | 
			
		||||
	 *
 | 
			
		||||
	 * However, in this approximation, we simply use the maximum value that
 | 
			
		||||
	 * was used to compute prescale.
 | 
			
		||||
	 */
 | 
			
		||||
	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
 | 
			
		||||
				      const struct pwm_state *state)
 | 
			
		||||
{
 | 
			
		||||
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
 | 
			
		||||
	bool period_locked;
 | 
			
		||||
	unsigned long clk_rate;
 | 
			
		||||
	u64 duty_steps;
 | 
			
		||||
	u16 prescale, period_steps;
 | 
			
		||||
	int ret;
 | 
			
		||||
 | 
			
		||||
	if (!state->enabled) {
 | 
			
		||||
		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
 | 
			
		||||
		return 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * If clk_rate is too big, the following multiplication might overflow.
 | 
			
		||||
	 * However this is implausible, as the fabric of current FPGAs cannot
 | 
			
		||||
	 * provide clocks at a rate high enough.
 | 
			
		||||
	 */
 | 
			
		||||
	clk_rate = clk_get_rate(mchp_core_pwm->clk);
 | 
			
		||||
	if (clk_rate >= NSEC_PER_SEC)
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
 | 
			
		||||
	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * If the only thing that has changed is the duty cycle or the polarity,
 | 
			
		||||
	 * we can shortcut the calculations and just compute/apply the new duty
 | 
			
		||||
	 * cycle pos & neg edges
 | 
			
		||||
	 * As all the channels share the same period, do not allow it to be
 | 
			
		||||
	 * changed if any other channels are enabled.
 | 
			
		||||
	 * If the period is locked, it may not be possible to use a period
 | 
			
		||||
	 * less than that requested. In that case, we just abort.
 | 
			
		||||
	 */
 | 
			
		||||
	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
 | 
			
		||||
 | 
			
		||||
	if (period_locked) {
 | 
			
		||||
		u16 hw_prescale;
 | 
			
		||||
		u16 hw_period_steps;
 | 
			
		||||
 | 
			
		||||
		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
 | 
			
		||||
		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
 | 
			
		||||
 | 
			
		||||
		if ((period_steps + 1) * (prescale + 1) <
 | 
			
		||||
		    (hw_period_steps + 1) * (hw_prescale + 1))
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
 | 
			
		||||
		/*
 | 
			
		||||
		 * It is possible that something could have set the period_steps
 | 
			
		||||
		 * register to 0xff, which would prevent us from setting a 100%
 | 
			
		||||
		 * or 0% relative duty cycle, as explained above in
 | 
			
		||||
		 * mchp_core_pwm_calc_period().
 | 
			
		||||
		 * The period is locked and we cannot change this, so we abort.
 | 
			
		||||
		 */
 | 
			
		||||
		if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX)
 | 
			
		||||
			return -EINVAL;
 | 
			
		||||
 | 
			
		||||
		prescale = hw_prescale;
 | 
			
		||||
		period_steps = hw_period_steps;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Because the period is not per channel, it is possible that the
 | 
			
		||||
	 * requested duty cycle is longer than the period, in which case cap it
 | 
			
		||||
	 * to the period, IOW a 100% duty cycle.
 | 
			
		||||
	 */
 | 
			
		||||
	if (duty_steps > period_steps)
 | 
			
		||||
		duty_steps = period_steps + 1;
 | 
			
		||||
 | 
			
		||||
	if (!period_locked) {
 | 
			
		||||
		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
 | 
			
		||||
		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 | 
			
		||||
			       const struct pwm_state *state)
 | 
			
		||||
{
 | 
			
		||||
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
 | 
			
		||||
	int ret;
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&mchp_core_pwm->lock);
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
 | 
			
		||||
 | 
			
		||||
	ret = mchp_core_pwm_apply_locked(chip, pwm, state);
 | 
			
		||||
 | 
			
		||||
	mutex_unlock(&mchp_core_pwm->lock);
 | 
			
		||||
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 | 
			
		||||
				   struct pwm_state *state)
 | 
			
		||||
{
 | 
			
		||||
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
 | 
			
		||||
	u64 rate;
 | 
			
		||||
	u16 prescale, period_steps;
 | 
			
		||||
	u8 duty_steps, posedge, negedge;
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&mchp_core_pwm->lock);
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
 | 
			
		||||
 | 
			
		||||
	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
 | 
			
		||||
		state->enabled = true;
 | 
			
		||||
	else
 | 
			
		||||
		state->enabled = false;
 | 
			
		||||
 | 
			
		||||
	rate = clk_get_rate(mchp_core_pwm->clk);
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Calculating the period:
 | 
			
		||||
	 * The registers are each 8 bits wide & multiplied to compute the period
 | 
			
		||||
	 * using the formula:
 | 
			
		||||
	 *           (prescale + 1) * (period_steps + 1)
 | 
			
		||||
	 * period = -------------------------------------
 | 
			
		||||
	 *                      clk_rate
 | 
			
		||||
	 *
 | 
			
		||||
	 * Note:
 | 
			
		||||
	 * The prescale and period_steps registers operate similarly to
 | 
			
		||||
	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
 | 
			
		||||
	 * in the register plus one.
 | 
			
		||||
	 */
 | 
			
		||||
	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
 | 
			
		||||
	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
 | 
			
		||||
 | 
			
		||||
	state->period = (period_steps + 1) * (prescale + 1);
 | 
			
		||||
	state->period *= NSEC_PER_SEC;
 | 
			
		||||
	state->period = DIV64_U64_ROUND_UP(state->period, rate);
 | 
			
		||||
 | 
			
		||||
	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
 | 
			
		||||
	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
 | 
			
		||||
 | 
			
		||||
	mutex_unlock(&mchp_core_pwm->lock);
 | 
			
		||||
 | 
			
		||||
	if (negedge == posedge) {
 | 
			
		||||
		state->duty_cycle = state->period;
 | 
			
		||||
		state->period *= 2;
 | 
			
		||||
	} else {
 | 
			
		||||
		duty_steps = abs((s16)posedge - (s16)negedge);
 | 
			
		||||
		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
 | 
			
		||||
		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static const struct pwm_ops mchp_core_pwm_ops = {
 | 
			
		||||
	.apply = mchp_core_pwm_apply,
 | 
			
		||||
	.get_state = mchp_core_pwm_get_state,
 | 
			
		||||
	.owner = THIS_MODULE,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static const struct of_device_id mchp_core_of_match[] = {
 | 
			
		||||
	{
 | 
			
		||||
		.compatible = "microchip,corepwm-rtl-v4",
 | 
			
		||||
	},
 | 
			
		||||
	{ /* sentinel */ }
 | 
			
		||||
};
 | 
			
		||||
MODULE_DEVICE_TABLE(of, mchp_core_of_match);
 | 
			
		||||
 | 
			
		||||
static int mchp_core_pwm_probe(struct platform_device *pdev)
 | 
			
		||||
{
 | 
			
		||||
	struct mchp_core_pwm_chip *mchp_core_pwm;
 | 
			
		||||
	struct resource *regs;
 | 
			
		||||
	int ret;
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL);
 | 
			
		||||
	if (!mchp_core_pwm)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
 | 
			
		||||
	if (IS_ERR(mchp_core_pwm->base))
 | 
			
		||||
		return PTR_ERR(mchp_core_pwm->base);
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
 | 
			
		||||
	if (IS_ERR(mchp_core_pwm->clk))
 | 
			
		||||
		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
 | 
			
		||||
				     "failed to get PWM clock\n");
 | 
			
		||||
 | 
			
		||||
	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
 | 
			
		||||
				 &mchp_core_pwm->sync_update_mask))
 | 
			
		||||
		mchp_core_pwm->sync_update_mask = 0;
 | 
			
		||||
 | 
			
		||||
	mutex_init(&mchp_core_pwm->lock);
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm->chip.dev = &pdev->dev;
 | 
			
		||||
	mchp_core_pwm->chip.ops = &mchp_core_pwm_ops;
 | 
			
		||||
	mchp_core_pwm->chip.npwm = 16;
 | 
			
		||||
 | 
			
		||||
	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
 | 
			
		||||
	mchp_core_pwm->channel_enabled |=
 | 
			
		||||
		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Enable synchronous update mode for all channels for which shadow
 | 
			
		||||
	 * registers have been synthesised.
 | 
			
		||||
	 */
 | 
			
		||||
	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
 | 
			
		||||
	mchp_core_pwm->update_timestamp = ktime_get();
 | 
			
		||||
 | 
			
		||||
	ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static struct platform_driver mchp_core_pwm_driver = {
 | 
			
		||||
	.driver = {
 | 
			
		||||
		.name = "mchp-core-pwm",
 | 
			
		||||
		.of_match_table = mchp_core_of_match,
 | 
			
		||||
	},
 | 
			
		||||
	.probe = mchp_core_pwm_probe,
 | 
			
		||||
};
 | 
			
		||||
module_platform_driver(mchp_core_pwm_driver);
 | 
			
		||||
 | 
			
		||||
MODULE_LICENSE("GPL");
 | 
			
		||||
MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
 | 
			
		||||
MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
 | 
			
		||||
		Loading…
	
		Reference in a new issue