mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	sched/fair: Commit to EEVDF
EEVDF is a better defined scheduling policy, as a result it has less heuristics/tunables. There is no compelling reason to keep CFS around. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.137187212@infradead.org
This commit is contained in:
		
							parent
							
								
									e8f331bcc2
								
							
						
					
					
						commit
						5e963f2bd4
					
				
					 4 changed files with 38 additions and 450 deletions
				
			
		|  | @ -347,10 +347,7 @@ static __init int sched_init_debug(void) | |||
| 	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); | ||||
| #endif | ||||
| 
 | ||||
| 	debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); | ||||
| 	debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); | ||||
| 	debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity); | ||||
| 	debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); | ||||
| 
 | ||||
| 	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); | ||||
| 	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); | ||||
|  | @ -866,10 +863,7 @@ static void sched_debug_header(struct seq_file *m) | |||
| 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x)) | ||||
| #define PN(x) \ | ||||
| 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) | ||||
| 	PN(sysctl_sched_latency); | ||||
| 	PN(sysctl_sched_min_granularity); | ||||
| 	PN(sysctl_sched_idle_min_granularity); | ||||
| 	PN(sysctl_sched_wakeup_granularity); | ||||
| 	P(sysctl_sched_child_runs_first); | ||||
| 	P(sysctl_sched_features); | ||||
| #undef PN | ||||
|  |  | |||
|  | @ -57,22 +57,6 @@ | |||
| #include "stats.h" | ||||
| #include "autogroup.h" | ||||
| 
 | ||||
| /*
 | ||||
|  * Targeted preemption latency for CPU-bound tasks: | ||||
|  * | ||||
|  * NOTE: this latency value is not the same as the concept of | ||||
|  * 'timeslice length' - timeslices in CFS are of variable length | ||||
|  * and have no persistent notion like in traditional, time-slice | ||||
|  * based scheduling concepts. | ||||
|  * | ||||
|  * (to see the precise effective timeslice length of your workload, | ||||
|  *  run vmstat and monitor the context-switches (cs) field) | ||||
|  * | ||||
|  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | ||||
|  */ | ||||
| unsigned int sysctl_sched_latency			= 6000000ULL; | ||||
| static unsigned int normalized_sysctl_sched_latency	= 6000000ULL; | ||||
| 
 | ||||
| /*
 | ||||
|  * The initial- and re-scaling of tunables is configurable | ||||
|  * | ||||
|  | @ -94,37 +78,12 @@ unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; | |||
| unsigned int sysctl_sched_min_granularity			= 750000ULL; | ||||
| static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL; | ||||
| 
 | ||||
| /*
 | ||||
|  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. | ||||
|  * Applies only when SCHED_IDLE tasks compete with normal tasks. | ||||
|  * | ||||
|  * (default: 0.75 msec) | ||||
|  */ | ||||
| unsigned int sysctl_sched_idle_min_granularity			= 750000ULL; | ||||
| 
 | ||||
| /*
 | ||||
|  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity | ||||
|  */ | ||||
| static unsigned int sched_nr_latency = 8; | ||||
| 
 | ||||
| /*
 | ||||
|  * After fork, child runs first. If set to 0 (default) then | ||||
|  * parent will (try to) run first. | ||||
|  */ | ||||
| unsigned int sysctl_sched_child_runs_first __read_mostly; | ||||
| 
 | ||||
| /*
 | ||||
|  * SCHED_OTHER wake-up granularity. | ||||
|  * | ||||
|  * This option delays the preemption effects of decoupled workloads | ||||
|  * and reduces their over-scheduling. Synchronous workloads will still | ||||
|  * have immediate wakeup/sleep latencies. | ||||
|  * | ||||
|  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | ||||
|  */ | ||||
| unsigned int sysctl_sched_wakeup_granularity			= 1000000UL; | ||||
| static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL; | ||||
| 
 | ||||
| const_debug unsigned int sysctl_sched_migration_cost	= 500000UL; | ||||
| 
 | ||||
| int sched_thermal_decay_shift; | ||||
|  | @ -279,8 +238,6 @@ static void update_sysctl(void) | |||
| #define SET_SYSCTL(name) \ | ||||
| 	(sysctl_##name = (factor) * normalized_sysctl_##name) | ||||
| 	SET_SYSCTL(sched_min_granularity); | ||||
| 	SET_SYSCTL(sched_latency); | ||||
| 	SET_SYSCTL(sched_wakeup_granularity); | ||||
| #undef SET_SYSCTL | ||||
| } | ||||
| 
 | ||||
|  | @ -888,30 +845,6 @@ struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | |||
| 	return __node_2_se(left); | ||||
| } | ||||
| 
 | ||||
| static struct sched_entity *__pick_next_entity(struct sched_entity *se) | ||||
| { | ||||
| 	struct rb_node *next = rb_next(&se->run_node); | ||||
| 
 | ||||
| 	if (!next) | ||||
| 		return NULL; | ||||
| 
 | ||||
| 	return __node_2_se(next); | ||||
| } | ||||
| 
 | ||||
| static struct sched_entity *pick_cfs(struct cfs_rq *cfs_rq, struct sched_entity *curr) | ||||
| { | ||||
| 	struct sched_entity *left = __pick_first_entity(cfs_rq); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * If curr is set we have to see if its left of the leftmost entity | ||||
| 	 * still in the tree, provided there was anything in the tree at all. | ||||
| 	 */ | ||||
| 	if (!left || (curr && entity_before(curr, left))) | ||||
| 		left = curr; | ||||
| 
 | ||||
| 	return left; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Earliest Eligible Virtual Deadline First | ||||
|  * | ||||
|  | @ -1008,85 +941,15 @@ int sched_update_scaling(void) | |||
| { | ||||
| 	unsigned int factor = get_update_sysctl_factor(); | ||||
| 
 | ||||
| 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | ||||
| 					sysctl_sched_min_granularity); | ||||
| 
 | ||||
| #define WRT_SYSCTL(name) \ | ||||
| 	(normalized_sysctl_##name = sysctl_##name / (factor)) | ||||
| 	WRT_SYSCTL(sched_min_granularity); | ||||
| 	WRT_SYSCTL(sched_latency); | ||||
| 	WRT_SYSCTL(sched_wakeup_granularity); | ||||
| #undef WRT_SYSCTL | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|  * The idea is to set a period in which each task runs once. | ||||
|  * | ||||
|  * When there are too many tasks (sched_nr_latency) we have to stretch | ||||
|  * this period because otherwise the slices get too small. | ||||
|  * | ||||
|  * p = (nr <= nl) ? l : l*nr/nl | ||||
|  */ | ||||
| static u64 __sched_period(unsigned long nr_running) | ||||
| { | ||||
| 	if (unlikely(nr_running > sched_nr_latency)) | ||||
| 		return nr_running * sysctl_sched_min_granularity; | ||||
| 	else | ||||
| 		return sysctl_sched_latency; | ||||
| } | ||||
| 
 | ||||
| static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); | ||||
| 
 | ||||
| /*
 | ||||
|  * We calculate the wall-time slice from the period by taking a part | ||||
|  * proportional to the weight. | ||||
|  * | ||||
|  * s = p*P[w/rw] | ||||
|  */ | ||||
| static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||||
| { | ||||
| 	unsigned int nr_running = cfs_rq->nr_running; | ||||
| 	struct sched_entity *init_se = se; | ||||
| 	unsigned int min_gran; | ||||
| 	u64 slice; | ||||
| 
 | ||||
| 	if (sched_feat(ALT_PERIOD)) | ||||
| 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running; | ||||
| 
 | ||||
| 	slice = __sched_period(nr_running + !se->on_rq); | ||||
| 
 | ||||
| 	for_each_sched_entity(se) { | ||||
| 		struct load_weight *load; | ||||
| 		struct load_weight lw; | ||||
| 		struct cfs_rq *qcfs_rq; | ||||
| 
 | ||||
| 		qcfs_rq = cfs_rq_of(se); | ||||
| 		load = &qcfs_rq->load; | ||||
| 
 | ||||
| 		if (unlikely(!se->on_rq)) { | ||||
| 			lw = qcfs_rq->load; | ||||
| 
 | ||||
| 			update_load_add(&lw, se->load.weight); | ||||
| 			load = &lw; | ||||
| 		} | ||||
| 		slice = __calc_delta(slice, se->load.weight, load); | ||||
| 	} | ||||
| 
 | ||||
| 	if (sched_feat(BASE_SLICE)) { | ||||
| 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) | ||||
| 			min_gran = sysctl_sched_idle_min_granularity; | ||||
| 		else | ||||
| 			min_gran = sysctl_sched_min_granularity; | ||||
| 
 | ||||
| 		slice = max_t(u64, slice, min_gran); | ||||
| 	} | ||||
| 
 | ||||
| 	return slice; | ||||
| } | ||||
| 
 | ||||
| static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); | ||||
| 
 | ||||
| /*
 | ||||
|  | @ -1098,35 +961,25 @@ static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
| 	if ((s64)(se->vruntime - se->deadline) < 0) | ||||
| 		return; | ||||
| 
 | ||||
| 	if (sched_feat(EEVDF)) { | ||||
| 		/*
 | ||||
| 		 * For EEVDF the virtual time slope is determined by w_i (iow. | ||||
| 		 * nice) while the request time r_i is determined by | ||||
| 		 * sysctl_sched_min_granularity. | ||||
| 		 */ | ||||
| 		se->slice = sysctl_sched_min_granularity; | ||||
| 
 | ||||
| 		/*
 | ||||
| 		 * The task has consumed its request, reschedule. | ||||
| 		 */ | ||||
| 		if (cfs_rq->nr_running > 1) { | ||||
| 			resched_curr(rq_of(cfs_rq)); | ||||
| 			clear_buddies(cfs_rq, se); | ||||
| 		} | ||||
| 	} else { | ||||
| 		/*
 | ||||
| 		 * When many tasks blow up the sched_period; it is possible | ||||
| 		 * that sched_slice() reports unusually large results (when | ||||
| 		 * many tasks are very light for example). Therefore impose a | ||||
| 		 * maximum. | ||||
| 		 */ | ||||
| 		se->slice = min_t(u64, sched_slice(cfs_rq, se), sysctl_sched_latency); | ||||
| 	} | ||||
| 	/*
 | ||||
| 	 * For EEVDF the virtual time slope is determined by w_i (iow. | ||||
| 	 * nice) while the request time r_i is determined by | ||||
| 	 * sysctl_sched_min_granularity. | ||||
| 	 */ | ||||
| 	se->slice = sysctl_sched_min_granularity; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * EEVDF: vd_i = ve_i + r_i / w_i | ||||
| 	 */ | ||||
| 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * The task has consumed its request, reschedule. | ||||
| 	 */ | ||||
| 	if (cfs_rq->nr_running > 1) { | ||||
| 		resched_curr(rq_of(cfs_rq)); | ||||
| 		clear_buddies(cfs_rq, se); | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| #include "pelt.h" | ||||
|  | @ -5055,19 +4908,6 @@ static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} | |||
| 
 | ||||
| #endif /* CONFIG_SMP */ | ||||
| 
 | ||||
| static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||||
| { | ||||
| #ifdef CONFIG_SCHED_DEBUG | ||||
| 	s64 d = se->vruntime - cfs_rq->min_vruntime; | ||||
| 
 | ||||
| 	if (d < 0) | ||||
| 		d = -d; | ||||
| 
 | ||||
| 	if (d > 3*sysctl_sched_latency) | ||||
| 		schedstat_inc(cfs_rq->nr_spread_over); | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| static void | ||||
| place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | ||||
| { | ||||
|  | @ -5219,7 +5059,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |||
| 
 | ||||
| 	check_schedstat_required(); | ||||
| 	update_stats_enqueue_fair(cfs_rq, se, flags); | ||||
| 	check_spread(cfs_rq, se); | ||||
| 	if (!curr) | ||||
| 		__enqueue_entity(cfs_rq, se); | ||||
| 	se->on_rq = 1; | ||||
|  | @ -5241,17 +5080,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |||
| 	} | ||||
| } | ||||
| 
 | ||||
| static void __clear_buddies_last(struct sched_entity *se) | ||||
| { | ||||
| 	for_each_sched_entity(se) { | ||||
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||||
| 		if (cfs_rq->last != se) | ||||
| 			break; | ||||
| 
 | ||||
| 		cfs_rq->last = NULL; | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| static void __clear_buddies_next(struct sched_entity *se) | ||||
| { | ||||
| 	for_each_sched_entity(se) { | ||||
|  | @ -5263,27 +5091,10 @@ static void __clear_buddies_next(struct sched_entity *se) | |||
| 	} | ||||
| } | ||||
| 
 | ||||
| static void __clear_buddies_skip(struct sched_entity *se) | ||||
| { | ||||
| 	for_each_sched_entity(se) { | ||||
| 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | ||||
| 		if (cfs_rq->skip != se) | ||||
| 			break; | ||||
| 
 | ||||
| 		cfs_rq->skip = NULL; | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||||
| { | ||||
| 	if (cfs_rq->last == se) | ||||
| 		__clear_buddies_last(se); | ||||
| 
 | ||||
| 	if (cfs_rq->next == se) | ||||
| 		__clear_buddies_next(se); | ||||
| 
 | ||||
| 	if (cfs_rq->skip == se) | ||||
| 		__clear_buddies_skip(se); | ||||
| } | ||||
| 
 | ||||
| static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); | ||||
|  | @ -5341,45 +5152,6 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |||
| 		update_idle_cfs_rq_clock_pelt(cfs_rq); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Preempt the current task with a newly woken task if needed: | ||||
|  */ | ||||
| static void | ||||
| check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | ||||
| { | ||||
| 	unsigned long delta_exec; | ||||
| 	struct sched_entity *se; | ||||
| 	s64 delta; | ||||
| 
 | ||||
| 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||||
| 	if (delta_exec > curr->slice) { | ||||
| 		resched_curr(rq_of(cfs_rq)); | ||||
| 		/*
 | ||||
| 		 * The current task ran long enough, ensure it doesn't get | ||||
| 		 * re-elected due to buddy favours. | ||||
| 		 */ | ||||
| 		clear_buddies(cfs_rq, curr); | ||||
| 		return; | ||||
| 	} | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Ensure that a task that missed wakeup preemption by a | ||||
| 	 * narrow margin doesn't have to wait for a full slice. | ||||
| 	 * This also mitigates buddy induced latencies under load. | ||||
| 	 */ | ||||
| 	if (delta_exec < sysctl_sched_min_granularity) | ||||
| 		return; | ||||
| 
 | ||||
| 	se = __pick_first_entity(cfs_rq); | ||||
| 	delta = curr->vruntime - se->vruntime; | ||||
| 
 | ||||
| 	if (delta < 0) | ||||
| 		return; | ||||
| 
 | ||||
| 	if (delta > curr->slice) | ||||
| 		resched_curr(rq_of(cfs_rq)); | ||||
| } | ||||
| 
 | ||||
| static void | ||||
| set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||||
| { | ||||
|  | @ -5418,9 +5190,6 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
| 	se->prev_sum_exec_runtime = se->sum_exec_runtime; | ||||
| } | ||||
| 
 | ||||
| static int | ||||
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | ||||
| 
 | ||||
| /*
 | ||||
|  * Pick the next process, keeping these things in mind, in this order: | ||||
|  * 1) keep things fair between processes/task groups | ||||
|  | @ -5431,53 +5200,14 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | |||
| static struct sched_entity * | ||||
| pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) | ||||
| { | ||||
| 	struct sched_entity *left, *se; | ||||
| 
 | ||||
| 	if (sched_feat(EEVDF)) { | ||||
| 		/*
 | ||||
| 		 * Enabling NEXT_BUDDY will affect latency but not fairness. | ||||
| 		 */ | ||||
| 		if (sched_feat(NEXT_BUDDY) && | ||||
| 		    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) | ||||
| 			return cfs_rq->next; | ||||
| 
 | ||||
| 		return pick_eevdf(cfs_rq); | ||||
| 	} | ||||
| 
 | ||||
| 	se = left = pick_cfs(cfs_rq, curr); | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Avoid running the skip buddy, if running something else can | ||||
| 	 * be done without getting too unfair. | ||||
| 	 * Enabling NEXT_BUDDY will affect latency but not fairness. | ||||
| 	 */ | ||||
| 	if (cfs_rq->skip && cfs_rq->skip == se) { | ||||
| 		struct sched_entity *second; | ||||
| 	if (sched_feat(NEXT_BUDDY) && | ||||
| 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) | ||||
| 		return cfs_rq->next; | ||||
| 
 | ||||
| 		if (se == curr) { | ||||
| 			second = __pick_first_entity(cfs_rq); | ||||
| 		} else { | ||||
| 			second = __pick_next_entity(se); | ||||
| 			if (!second || (curr && entity_before(curr, second))) | ||||
| 				second = curr; | ||||
| 		} | ||||
| 
 | ||||
| 		if (second && wakeup_preempt_entity(second, left) < 1) | ||||
| 			se = second; | ||||
| 	} | ||||
| 
 | ||||
| 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { | ||||
| 		/*
 | ||||
| 		 * Someone really wants this to run. If it's not unfair, run it. | ||||
| 		 */ | ||||
| 		se = cfs_rq->next; | ||||
| 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { | ||||
| 		/*
 | ||||
| 		 * Prefer last buddy, try to return the CPU to a preempted task. | ||||
| 		 */ | ||||
| 		se = cfs_rq->last; | ||||
| 	} | ||||
| 
 | ||||
| 	return se; | ||||
| 	return pick_eevdf(cfs_rq); | ||||
| } | ||||
| 
 | ||||
| static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); | ||||
|  | @ -5494,8 +5224,6 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | |||
| 	/* throttle cfs_rqs exceeding runtime */ | ||||
| 	check_cfs_rq_runtime(cfs_rq); | ||||
| 
 | ||||
| 	check_spread(cfs_rq, prev); | ||||
| 
 | ||||
| 	if (prev->on_rq) { | ||||
| 		update_stats_wait_start_fair(cfs_rq, prev); | ||||
| 		/* Put 'current' back into the tree. */ | ||||
|  | @ -5536,9 +5264,6 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |||
| 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | ||||
| 		return; | ||||
| #endif | ||||
| 
 | ||||
| 	if (!sched_feat(EEVDF) && cfs_rq->nr_running > 1) | ||||
| 		check_preempt_tick(cfs_rq, curr); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
|  | @ -6610,8 +6335,7 @@ static void hrtick_update(struct rq *rq) | |||
| 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) | ||||
| 		return; | ||||
| 
 | ||||
| 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | ||||
| 		hrtick_start_fair(rq, curr); | ||||
| 	hrtick_start_fair(rq, curr); | ||||
| } | ||||
| #else /* !CONFIG_SCHED_HRTICK */ | ||||
| static inline void | ||||
|  | @ -6652,17 +6376,6 @@ static int sched_idle_rq(struct rq *rq) | |||
| 			rq->nr_running); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use | ||||
|  * of idle_nr_running, which does not consider idle descendants of normal | ||||
|  * entities. | ||||
|  */ | ||||
| static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) | ||||
| { | ||||
| 	return cfs_rq->nr_running && | ||||
| 		cfs_rq->nr_running == cfs_rq->idle_nr_running; | ||||
| } | ||||
| 
 | ||||
| #ifdef CONFIG_SMP | ||||
| static int sched_idle_cpu(int cpu) | ||||
| { | ||||
|  | @ -8205,66 +7918,6 @@ balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | |||
| } | ||||
| #endif /* CONFIG_SMP */ | ||||
| 
 | ||||
| static unsigned long wakeup_gran(struct sched_entity *se) | ||||
| { | ||||
| 	unsigned long gran = sysctl_sched_wakeup_granularity; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Since its curr running now, convert the gran from real-time | ||||
| 	 * to virtual-time in his units. | ||||
| 	 * | ||||
| 	 * By using 'se' instead of 'curr' we penalize light tasks, so | ||||
| 	 * they get preempted easier. That is, if 'se' < 'curr' then | ||||
| 	 * the resulting gran will be larger, therefore penalizing the | ||||
| 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||||
| 	 * be smaller, again penalizing the lighter task. | ||||
| 	 * | ||||
| 	 * This is especially important for buddies when the leftmost | ||||
| 	 * task is higher priority than the buddy. | ||||
| 	 */ | ||||
| 	return calc_delta_fair(gran, se); | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Should 'se' preempt 'curr'. | ||||
|  * | ||||
|  *             |s1 | ||||
|  *        |s2 | ||||
|  *   |s3 | ||||
|  *         g | ||||
|  *      |<--->|c | ||||
|  * | ||||
|  *  w(c, s1) = -1 | ||||
|  *  w(c, s2) =  0 | ||||
|  *  w(c, s3) =  1 | ||||
|  * | ||||
|  */ | ||||
| static int | ||||
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | ||||
| { | ||||
| 	s64 gran, vdiff = curr->vruntime - se->vruntime; | ||||
| 
 | ||||
| 	if (vdiff <= 0) | ||||
| 		return -1; | ||||
| 
 | ||||
| 	gran = wakeup_gran(se); | ||||
| 	if (vdiff > gran) | ||||
| 		return 1; | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| static void set_last_buddy(struct sched_entity *se) | ||||
| { | ||||
| 	for_each_sched_entity(se) { | ||||
| 		if (SCHED_WARN_ON(!se->on_rq)) | ||||
| 			return; | ||||
| 		if (se_is_idle(se)) | ||||
| 			return; | ||||
| 		cfs_rq_of(se)->last = se; | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| static void set_next_buddy(struct sched_entity *se) | ||||
| { | ||||
| 	for_each_sched_entity(se) { | ||||
|  | @ -8276,12 +7929,6 @@ static void set_next_buddy(struct sched_entity *se) | |||
| 	} | ||||
| } | ||||
| 
 | ||||
| static void set_skip_buddy(struct sched_entity *se) | ||||
| { | ||||
| 	for_each_sched_entity(se) | ||||
| 		cfs_rq_of(se)->skip = se; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Preempt the current task with a newly woken task if needed: | ||||
|  */ | ||||
|  | @ -8290,7 +7937,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ | |||
| 	struct task_struct *curr = rq->curr; | ||||
| 	struct sched_entity *se = &curr->se, *pse = &p->se; | ||||
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | ||||
| 	int scale = cfs_rq->nr_running >= sched_nr_latency; | ||||
| 	int next_buddy_marked = 0; | ||||
| 	int cse_is_idle, pse_is_idle; | ||||
| 
 | ||||
|  | @ -8306,7 +7952,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ | |||
| 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | ||||
| 		return; | ||||
| 
 | ||||
| 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { | ||||
| 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { | ||||
| 		set_next_buddy(pse); | ||||
| 		next_buddy_marked = 1; | ||||
| 	} | ||||
|  | @ -8354,44 +8000,16 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ | |||
| 	cfs_rq = cfs_rq_of(se); | ||||
| 	update_curr(cfs_rq); | ||||
| 
 | ||||
| 	if (sched_feat(EEVDF)) { | ||||
| 		/*
 | ||||
| 		 * XXX pick_eevdf(cfs_rq) != se ? | ||||
| 		 */ | ||||
| 		if (pick_eevdf(cfs_rq) == pse) | ||||
| 			goto preempt; | ||||
| 
 | ||||
| 		return; | ||||
| 	} | ||||
| 
 | ||||
| 	if (wakeup_preempt_entity(se, pse) == 1) { | ||||
| 		/*
 | ||||
| 		 * Bias pick_next to pick the sched entity that is | ||||
| 		 * triggering this preemption. | ||||
| 		 */ | ||||
| 		if (!next_buddy_marked) | ||||
| 			set_next_buddy(pse); | ||||
| 	/*
 | ||||
| 	 * XXX pick_eevdf(cfs_rq) != se ? | ||||
| 	 */ | ||||
| 	if (pick_eevdf(cfs_rq) == pse) | ||||
| 		goto preempt; | ||||
| 	} | ||||
| 
 | ||||
| 	return; | ||||
| 
 | ||||
| preempt: | ||||
| 	resched_curr(rq); | ||||
| 	/*
 | ||||
| 	 * Only set the backward buddy when the current task is still | ||||
| 	 * on the rq. This can happen when a wakeup gets interleaved | ||||
| 	 * with schedule on the ->pre_schedule() or idle_balance() | ||||
| 	 * point, either of which can * drop the rq lock. | ||||
| 	 * | ||||
| 	 * Also, during early boot the idle thread is in the fair class, | ||||
| 	 * for obvious reasons its a bad idea to schedule back to it. | ||||
| 	 */ | ||||
| 	if (unlikely(!se->on_rq || curr == rq->idle)) | ||||
| 		return; | ||||
| 
 | ||||
| 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | ||||
| 		set_last_buddy(se); | ||||
| } | ||||
| 
 | ||||
| #ifdef CONFIG_SMP | ||||
|  | @ -8592,8 +8210,6 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | |||
| 
 | ||||
| /*
 | ||||
|  * sched_yield() is very simple | ||||
|  * | ||||
|  * The magic of dealing with the ->skip buddy is in pick_next_entity. | ||||
|  */ | ||||
| static void yield_task_fair(struct rq *rq) | ||||
| { | ||||
|  | @ -8609,23 +8225,19 @@ static void yield_task_fair(struct rq *rq) | |||
| 
 | ||||
| 	clear_buddies(cfs_rq, se); | ||||
| 
 | ||||
| 	if (sched_feat(EEVDF) || curr->policy != SCHED_BATCH) { | ||||
| 		update_rq_clock(rq); | ||||
| 		/*
 | ||||
| 		 * Update run-time statistics of the 'current'. | ||||
| 		 */ | ||||
| 		update_curr(cfs_rq); | ||||
| 		/*
 | ||||
| 		 * Tell update_rq_clock() that we've just updated, | ||||
| 		 * so we don't do microscopic update in schedule() | ||||
| 		 * and double the fastpath cost. | ||||
| 		 */ | ||||
| 		rq_clock_skip_update(rq); | ||||
| 	} | ||||
| 	if (sched_feat(EEVDF)) | ||||
| 		se->deadline += calc_delta_fair(se->slice, se); | ||||
| 	update_rq_clock(rq); | ||||
| 	/*
 | ||||
| 	 * Update run-time statistics of the 'current'. | ||||
| 	 */ | ||||
| 	update_curr(cfs_rq); | ||||
| 	/*
 | ||||
| 	 * Tell update_rq_clock() that we've just updated, | ||||
| 	 * so we don't do microscopic update in schedule() | ||||
| 	 * and double the fastpath cost. | ||||
| 	 */ | ||||
| 	rq_clock_skip_update(rq); | ||||
| 
 | ||||
| 	set_skip_buddy(se); | ||||
| 	se->deadline += calc_delta_fair(se->slice, se); | ||||
| } | ||||
| 
 | ||||
| static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) | ||||
|  | @ -8873,8 +8485,7 @@ static int task_hot(struct task_struct *p, struct lb_env *env) | |||
| 	 * Buddy candidates are cache hot: | ||||
| 	 */ | ||||
| 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && | ||||
| 			(&p->se == cfs_rq_of(&p->se)->next || | ||||
| 			 &p->se == cfs_rq_of(&p->se)->last)) | ||||
| 	    (&p->se == cfs_rq_of(&p->se)->next)) | ||||
| 		return 1; | ||||
| 
 | ||||
| 	if (sysctl_sched_migration_cost == -1) | ||||
|  |  | |||
|  | @ -14,13 +14,6 @@ SCHED_FEAT(PLACE_DEADLINE_INITIAL, true) | |||
|  */ | ||||
| SCHED_FEAT(NEXT_BUDDY, false) | ||||
| 
 | ||||
| /*
 | ||||
|  * Prefer to schedule the task that ran last (when we did | ||||
|  * wake-preempt) as that likely will touch the same data, increases | ||||
|  * cache locality. | ||||
|  */ | ||||
| SCHED_FEAT(LAST_BUDDY, true) | ||||
| 
 | ||||
| /*
 | ||||
|  * Consider buddies to be cache hot, decreases the likeliness of a | ||||
|  * cache buddy being migrated away, increases cache locality. | ||||
|  | @ -93,8 +86,3 @@ SCHED_FEAT(UTIL_EST, true) | |||
| SCHED_FEAT(UTIL_EST_FASTUP, true) | ||||
| 
 | ||||
| SCHED_FEAT(LATENCY_WARN, false) | ||||
| 
 | ||||
| SCHED_FEAT(ALT_PERIOD, true) | ||||
| SCHED_FEAT(BASE_SLICE, true) | ||||
| 
 | ||||
| SCHED_FEAT(EEVDF, true) | ||||
|  |  | |||
|  | @ -570,8 +570,6 @@ struct cfs_rq { | |||
| 	 */ | ||||
| 	struct sched_entity	*curr; | ||||
| 	struct sched_entity	*next; | ||||
| 	struct sched_entity	*last; | ||||
| 	struct sched_entity	*skip; | ||||
| 
 | ||||
| #ifdef	CONFIG_SCHED_DEBUG | ||||
| 	unsigned int		nr_spread_over; | ||||
|  | @ -2508,9 +2506,6 @@ extern const_debug unsigned int sysctl_sched_migration_cost; | |||
| extern unsigned int sysctl_sched_min_granularity; | ||||
| 
 | ||||
| #ifdef CONFIG_SCHED_DEBUG | ||||
| extern unsigned int sysctl_sched_latency; | ||||
| extern unsigned int sysctl_sched_idle_min_granularity; | ||||
| extern unsigned int sysctl_sched_wakeup_granularity; | ||||
| extern int sysctl_resched_latency_warn_ms; | ||||
| extern int sysctl_resched_latency_warn_once; | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
		Reference in a new issue
	
	 Peter Zijlstra
						Peter Zijlstra