mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	sched/fair: Fix negative energy delta in find_energy_efficient_cpu()
find_energy_efficient_cpu() (feec()) searches the best energy CPU to place a task on. To do so, compute_energy() estimates the energy impact of placing the task on a CPU, based on CPU and task utilization signals. Utilization signals can be concurrently updated while evaluating a performance domain (pd). In some cases, this leads to having a 'negative delta', i.e. placing the task in the pd is seen as an energy gain. Thus, any further energy comparison is biased. In case of a 'negative delta', return prev_cpu since: 1. a 'negative delta' happens in less than 0.5% of feec() calls, on a Juno with 6 CPUs (4 little, 2 big) 2. it is unlikely to have two consecutive 'negative delta' for a task, so if the first call fails, feec() will correctly place the task in the next feec() call 3. EAS current behavior tends to select prev_cpu if the task doesn't raise the OPP of its current pd. prev_cpu is EAS's generic decision 4. prev_cpu should be preferred to returning an error code. In the latter case, select_idle_sibling() would do the placement, selecting a big (and not energy efficient) CPU. As 3., the task would potentially reside on the big CPU for a long time Reported-by: Xuewen Yan <xuewen.yan@unisoc.com> Suggested-by: Xuewen Yan <xuewen.yan@unisoc.com> Signed-off-by: Pierre Gondois <Pierre.Gondois@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com> Link: https://lkml.kernel.org/r/20210504090743.9688-3-Pierre.Gondois@arm.com
This commit is contained in:
		
							parent
							
								
									8d4c97c105
								
							
						
					
					
						commit
						619e090c8e
					
				
					 1 changed files with 15 additions and 12 deletions
				
			
		| 
						 | 
				
			
			@ -6661,15 +6661,15 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 | 
			
		|||
{
 | 
			
		||||
	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
 | 
			
		||||
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
 | 
			
		||||
	int cpu, best_energy_cpu = prev_cpu, target = -1;
 | 
			
		||||
	unsigned long cpu_cap, util, base_energy = 0;
 | 
			
		||||
	int cpu, best_energy_cpu = prev_cpu;
 | 
			
		||||
	struct sched_domain *sd;
 | 
			
		||||
	struct perf_domain *pd;
 | 
			
		||||
 | 
			
		||||
	rcu_read_lock();
 | 
			
		||||
	pd = rcu_dereference(rd->pd);
 | 
			
		||||
	if (!pd || READ_ONCE(rd->overutilized))
 | 
			
		||||
		goto fail;
 | 
			
		||||
		goto unlock;
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Energy-aware wake-up happens on the lowest sched_domain starting
 | 
			
		||||
| 
						 | 
				
			
			@ -6679,7 +6679,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 | 
			
		|||
	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
 | 
			
		||||
		sd = sd->parent;
 | 
			
		||||
	if (!sd)
 | 
			
		||||
		goto fail;
 | 
			
		||||
		goto unlock;
 | 
			
		||||
 | 
			
		||||
	target = prev_cpu;
 | 
			
		||||
 | 
			
		||||
	sync_entity_load_avg(&p->se);
 | 
			
		||||
	if (!task_util_est(p))
 | 
			
		||||
| 
						 | 
				
			
			@ -6734,6 +6736,8 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 | 
			
		|||
		/* Evaluate the energy impact of using prev_cpu. */
 | 
			
		||||
		if (compute_prev_delta) {
 | 
			
		||||
			prev_delta = compute_energy(p, prev_cpu, pd);
 | 
			
		||||
			if (prev_delta < base_energy_pd)
 | 
			
		||||
				goto unlock;
 | 
			
		||||
			prev_delta -= base_energy_pd;
 | 
			
		||||
			best_delta = min(best_delta, prev_delta);
 | 
			
		||||
		}
 | 
			
		||||
| 
						 | 
				
			
			@ -6741,6 +6745,8 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 | 
			
		|||
		/* Evaluate the energy impact of using max_spare_cap_cpu. */
 | 
			
		||||
		if (max_spare_cap_cpu >= 0) {
 | 
			
		||||
			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
 | 
			
		||||
			if (cur_delta < base_energy_pd)
 | 
			
		||||
				goto unlock;
 | 
			
		||||
			cur_delta -= base_energy_pd;
 | 
			
		||||
			if (cur_delta < best_delta) {
 | 
			
		||||
				best_delta = cur_delta;
 | 
			
		||||
| 
						 | 
				
			
			@ -6748,25 +6754,22 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
 | 
			
		|||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
unlock:
 | 
			
		||||
	rcu_read_unlock();
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
 | 
			
		||||
	 * least 6% of the energy used by prev_cpu.
 | 
			
		||||
	 */
 | 
			
		||||
	if (prev_delta == ULONG_MAX)
 | 
			
		||||
		return best_energy_cpu;
 | 
			
		||||
	if ((prev_delta == ULONG_MAX) ||
 | 
			
		||||
	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
 | 
			
		||||
		target = best_energy_cpu;
 | 
			
		||||
 | 
			
		||||
	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
 | 
			
		||||
		return best_energy_cpu;
 | 
			
		||||
	return target;
 | 
			
		||||
 | 
			
		||||
	return prev_cpu;
 | 
			
		||||
 | 
			
		||||
fail:
 | 
			
		||||
unlock:
 | 
			
		||||
	rcu_read_unlock();
 | 
			
		||||
 | 
			
		||||
	return -1;
 | 
			
		||||
	return target;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue