mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	sched/fair: Add lag based placement
With the introduction of avg_vruntime, it is possible to approximate lag (the entire purpose of introducing it in fact). Use this to do lag based placement over sleep+wake. Specifically, the FAIR_SLEEPERS thing places things too far to the left and messes up the deadline aspect of EEVDF. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
This commit is contained in:
		
							parent
							
								
									e0c2ff903c
								
							
						
					
					
						commit
						86bfbb7ce4
					
				
					 4 changed files with 143 additions and 41 deletions
				
			
		|  | @ -554,8 +554,9 @@ struct sched_entity { | |||
| 
 | ||||
| 	u64				exec_start; | ||||
| 	u64				sum_exec_runtime; | ||||
| 	u64				vruntime; | ||||
| 	u64				prev_sum_exec_runtime; | ||||
| 	u64				vruntime; | ||||
| 	s64				vlag; | ||||
| 
 | ||||
| 	u64				nr_migrations; | ||||
| 
 | ||||
|  |  | |||
|  | @ -4501,6 +4501,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) | |||
| 	p->se.prev_sum_exec_runtime	= 0; | ||||
| 	p->se.nr_migrations		= 0; | ||||
| 	p->se.vruntime			= 0; | ||||
| 	p->se.vlag			= 0; | ||||
| 	INIT_LIST_HEAD(&p->se.group_node); | ||||
| 
 | ||||
| #ifdef CONFIG_FAIR_GROUP_SCHED | ||||
|  |  | |||
|  | @ -715,6 +715,15 @@ u64 avg_vruntime(struct cfs_rq *cfs_rq) | |||
| 	return cfs_rq->min_vruntime + avg; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * lag_i = S - s_i = w_i * (V - v_i) | ||||
|  */ | ||||
| void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) | ||||
| { | ||||
| 	SCHED_WARN_ON(!se->on_rq); | ||||
| 	se->vlag = avg_vruntime(cfs_rq) - se->vruntime; | ||||
| } | ||||
| 
 | ||||
| static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) | ||||
| { | ||||
| 	u64 min_vruntime = cfs_rq->min_vruntime; | ||||
|  | @ -3492,6 +3501,8 @@ dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |||
| static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | ||||
| 			    unsigned long weight) | ||||
| { | ||||
| 	unsigned long old_weight = se->load.weight; | ||||
| 
 | ||||
| 	if (se->on_rq) { | ||||
| 		/* commit outstanding execution time */ | ||||
| 		if (cfs_rq->curr == se) | ||||
|  | @ -3504,6 +3515,14 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | |||
| 
 | ||||
| 	update_load_set(&se->load, weight); | ||||
| 
 | ||||
| 	if (!se->on_rq) { | ||||
| 		/*
 | ||||
| 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), | ||||
| 		 * we need to scale se->vlag when w_i changes. | ||||
| 		 */ | ||||
| 		se->vlag = div_s64(se->vlag * old_weight, weight); | ||||
| 	} | ||||
| 
 | ||||
| #ifdef CONFIG_SMP | ||||
| 	do { | ||||
| 		u32 divider = get_pelt_divider(&se->avg); | ||||
|  | @ -4853,49 +4872,119 @@ static void | |||
| place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | ||||
| { | ||||
| 	u64 vruntime = avg_vruntime(cfs_rq); | ||||
| 
 | ||||
| 	/* sleeps up to a single latency don't count. */ | ||||
| 	if (!initial) { | ||||
| 		unsigned long thresh; | ||||
| 
 | ||||
| 		if (se_is_idle(se)) | ||||
| 			thresh = sysctl_sched_min_granularity; | ||||
| 		else | ||||
| 			thresh = sysctl_sched_latency; | ||||
| 
 | ||||
| 		/*
 | ||||
| 		 * Halve their sleep time's effect, to allow | ||||
| 		 * for a gentler effect of sleepers: | ||||
| 		 */ | ||||
| 		if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||||
| 			thresh >>= 1; | ||||
| 
 | ||||
| 		vruntime -= thresh; | ||||
| 	} | ||||
| 	s64 lag = 0; | ||||
| 
 | ||||
| 	/*
 | ||||
| 	 * Pull vruntime of the entity being placed to the base level of | ||||
| 	 * cfs_rq, to prevent boosting it if placed backwards. | ||||
| 	 * However, min_vruntime can advance much faster than real time, with | ||||
| 	 * the extreme being when an entity with the minimal weight always runs | ||||
| 	 * on the cfs_rq. If the waking entity slept for a long time, its | ||||
| 	 * vruntime difference from min_vruntime may overflow s64 and their | ||||
| 	 * comparison may get inversed, so ignore the entity's original | ||||
| 	 * vruntime in that case. | ||||
| 	 * The maximal vruntime speedup is given by the ratio of normal to | ||||
| 	 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES. | ||||
| 	 * When placing a migrated waking entity, its exec_start has been set | ||||
| 	 * from a different rq. In order to take into account a possible | ||||
| 	 * divergence between new and prev rq's clocks task because of irq and | ||||
| 	 * stolen time, we take an additional margin. | ||||
| 	 * So, cutting off on the sleep time of | ||||
| 	 *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days | ||||
| 	 * should be safe. | ||||
| 	 * Due to how V is constructed as the weighted average of entities, | ||||
| 	 * adding tasks with positive lag, or removing tasks with negative lag | ||||
| 	 * will move 'time' backwards, this can screw around with the lag of | ||||
| 	 * other tasks. | ||||
| 	 * | ||||
| 	 * EEVDF: placement strategy #1 / #2 | ||||
| 	 */ | ||||
| 	if (entity_is_long_sleeper(se)) | ||||
| 		se->vruntime = vruntime; | ||||
| 	else | ||||
| 		se->vruntime = max_vruntime(se->vruntime, vruntime); | ||||
| 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running > 1) { | ||||
| 		struct sched_entity *curr = cfs_rq->curr; | ||||
| 		unsigned long load; | ||||
| 
 | ||||
| 		lag = se->vlag; | ||||
| 
 | ||||
| 		/*
 | ||||
| 		 * If we want to place a task and preserve lag, we have to | ||||
| 		 * consider the effect of the new entity on the weighted | ||||
| 		 * average and compensate for this, otherwise lag can quickly | ||||
| 		 * evaporate. | ||||
| 		 * | ||||
| 		 * Lag is defined as: | ||||
| 		 * | ||||
| 		 *   lag_i = S - s_i = w_i * (V - v_i) | ||||
| 		 * | ||||
| 		 * To avoid the 'w_i' term all over the place, we only track | ||||
| 		 * the virtual lag: | ||||
| 		 * | ||||
| 		 *   vl_i = V - v_i <=> v_i = V - vl_i | ||||
| 		 * | ||||
| 		 * And we take V to be the weighted average of all v: | ||||
| 		 * | ||||
| 		 *   V = (\Sum w_j*v_j) / W | ||||
| 		 * | ||||
| 		 * Where W is: \Sum w_j | ||||
| 		 * | ||||
| 		 * Then, the weighted average after adding an entity with lag | ||||
| 		 * vl_i is given by: | ||||
| 		 * | ||||
| 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) | ||||
| 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i) | ||||
| 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i) | ||||
| 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i) | ||||
| 		 *      = V - w_i*vl_i / (W + w_i) | ||||
| 		 * | ||||
| 		 * And the actual lag after adding an entity with vl_i is: | ||||
| 		 * | ||||
| 		 *   vl'_i = V' - v_i | ||||
| 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i) | ||||
| 		 *         = vl_i - w_i*vl_i / (W + w_i) | ||||
| 		 * | ||||
| 		 * Which is strictly less than vl_i. So in order to preserve lag | ||||
| 		 * we should inflate the lag before placement such that the | ||||
| 		 * effective lag after placement comes out right. | ||||
| 		 * | ||||
| 		 * As such, invert the above relation for vl'_i to get the vl_i | ||||
| 		 * we need to use such that the lag after placement is the lag | ||||
| 		 * we computed before dequeue. | ||||
| 		 * | ||||
| 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i) | ||||
| 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) | ||||
| 		 * | ||||
| 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i | ||||
| 		 *                   = W*vl_i | ||||
| 		 * | ||||
| 		 *   vl_i = (W + w_i)*vl'_i / W | ||||
| 		 */ | ||||
| 		load = cfs_rq->avg_load; | ||||
| 		if (curr && curr->on_rq) | ||||
| 			load += curr->load.weight; | ||||
| 
 | ||||
| 		lag *= load + se->load.weight; | ||||
| 		if (WARN_ON_ONCE(!load)) | ||||
| 			load = 1; | ||||
| 		lag = div_s64(lag, load); | ||||
| 
 | ||||
| 		vruntime -= lag; | ||||
| 	} | ||||
| 
 | ||||
| 	if (sched_feat(FAIR_SLEEPERS)) { | ||||
| 
 | ||||
| 		/* sleeps up to a single latency don't count. */ | ||||
| 		if (!initial) { | ||||
| 			unsigned long thresh; | ||||
| 
 | ||||
| 			if (se_is_idle(se)) | ||||
| 				thresh = sysctl_sched_min_granularity; | ||||
| 			else | ||||
| 				thresh = sysctl_sched_latency; | ||||
| 
 | ||||
| 			/*
 | ||||
| 			 * Halve their sleep time's effect, to allow | ||||
| 			 * for a gentler effect of sleepers: | ||||
| 			 */ | ||||
| 			if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||||
| 				thresh >>= 1; | ||||
| 
 | ||||
| 			vruntime -= thresh; | ||||
| 		} | ||||
| 
 | ||||
| 		/*
 | ||||
| 		 * Pull vruntime of the entity being placed to the base level of | ||||
| 		 * cfs_rq, to prevent boosting it if placed backwards.  If the entity | ||||
| 		 * slept for a long time, don't even try to compare its vruntime with | ||||
| 		 * the base as it may be too far off and the comparison may get | ||||
| 		 * inversed due to s64 overflow. | ||||
| 		 */ | ||||
| 		if (!entity_is_long_sleeper(se)) | ||||
| 			vruntime = max_vruntime(se->vruntime, vruntime); | ||||
| 	} | ||||
| 
 | ||||
| 	se->vruntime = vruntime; | ||||
| } | ||||
| 
 | ||||
| static void check_enqueue_throttle(struct cfs_rq *cfs_rq); | ||||
|  | @ -5077,6 +5166,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |||
| 
 | ||||
| 	clear_buddies(cfs_rq, se); | ||||
| 
 | ||||
| 	if (flags & DEQUEUE_SLEEP) | ||||
| 		update_entity_lag(cfs_rq, se); | ||||
| 
 | ||||
| 	if (se != cfs_rq->curr) | ||||
| 		__dequeue_entity(cfs_rq, se); | ||||
| 	se->on_rq = 0; | ||||
|  |  | |||
|  | @ -1,11 +1,19 @@ | |||
| /* SPDX-License-Identifier: GPL-2.0 */ | ||||
| 
 | ||||
| /*
 | ||||
|  * Only give sleepers 50% of their service deficit. This allows | ||||
|  * them to run sooner, but does not allow tons of sleepers to | ||||
|  * rip the spread apart. | ||||
|  */ | ||||
| SCHED_FEAT(FAIR_SLEEPERS, false) | ||||
| SCHED_FEAT(GENTLE_FAIR_SLEEPERS, true) | ||||
| 
 | ||||
| /*
 | ||||
|  * Using the avg_vruntime, do the right thing and preserve lag across | ||||
|  * sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled. | ||||
|  */ | ||||
| SCHED_FEAT(PLACE_LAG, true) | ||||
| 
 | ||||
| /*
 | ||||
|  * Prefer to schedule the task we woke last (assuming it failed | ||||
|  * wakeup-preemption), since its likely going to consume data we | ||||
|  |  | |||
		Loading…
	
		Reference in a new issue
	
	 Peter Zijlstra
						Peter Zijlstra