mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	rust: add dma coherent allocator abstraction
Add a simple dma coherent allocator rust abstraction. Based on Andreas Hindborg's dma abstractions from the rnvme driver, which was also based on earlier work by Wedson Almeida Filho. Reviewed-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: Abdiel Janulgue <abdiel.janulgue@gmail.com> Acked-by: Danilo Krummrich <dakr@kernel.org> Link: https://lore.kernel.org/r/20250317185345.2608976-3-abdiel.janulgue@gmail.com Nacked-by: Christoph Hellwig <hch@lst.de> [ Removed period. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This commit is contained in:
		
							parent
							
								
									e385e94a8b
								
							
						
					
					
						commit
						ad2907b4e3
					
				
					 3 changed files with 389 additions and 0 deletions
				
			
		|  | @ -12,6 +12,7 @@ | |||
| #include <linux/blkdev.h> | ||||
| #include <linux/cred.h> | ||||
| #include <linux/device/faux.h> | ||||
| #include <linux/dma-mapping.h> | ||||
| #include <linux/errname.h> | ||||
| #include <linux/ethtool.h> | ||||
| #include <linux/file.h> | ||||
|  |  | |||
							
								
								
									
										387
									
								
								rust/kernel/dma.rs
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										387
									
								
								rust/kernel/dma.rs
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,387 @@ | |||
| // SPDX-License-Identifier: GPL-2.0
 | ||||
| 
 | ||||
| //! Direct memory access (DMA).
 | ||||
| //!
 | ||||
| //! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
 | ||||
| 
 | ||||
| use crate::{ | ||||
|     bindings, build_assert, | ||||
|     device::Device, | ||||
|     error::code::*, | ||||
|     error::Result, | ||||
|     transmute::{AsBytes, FromBytes}, | ||||
|     types::ARef, | ||||
| }; | ||||
| 
 | ||||
| /// Possible attributes associated with a DMA mapping.
 | ||||
| ///
 | ||||
| /// They can be combined with the operators `|`, `&`, and `!`.
 | ||||
| ///
 | ||||
| /// Values can be used from the [`attrs`] module.
 | ||||
| ///
 | ||||
| /// # Examples
 | ||||
| ///
 | ||||
| /// ```
 | ||||
| /// use kernel::device::Device;
 | ||||
| /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||
| ///
 | ||||
| /// # fn test(dev: &Device) -> Result {
 | ||||
| /// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
 | ||||
| /// let c: CoherentAllocation<u64> =
 | ||||
| ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
 | ||||
| /// # Ok::<(), Error>(()) }
 | ||||
| /// ```
 | ||||
| #[derive(Clone, Copy, PartialEq)] | ||||
| #[repr(transparent)] | ||||
| pub struct Attrs(u32); | ||||
| 
 | ||||
| impl Attrs { | ||||
|     /// Get the raw representation of this attribute.
 | ||||
|     pub(crate) fn as_raw(self) -> crate::ffi::c_ulong { | ||||
|         self.0 as _ | ||||
|     } | ||||
| 
 | ||||
|     /// Check whether `flags` is contained in `self`.
 | ||||
|     pub fn contains(self, flags: Attrs) -> bool { | ||||
|         (self & flags) == flags | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl core::ops::BitOr for Attrs { | ||||
|     type Output = Self; | ||||
|     fn bitor(self, rhs: Self) -> Self::Output { | ||||
|         Self(self.0 | rhs.0) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl core::ops::BitAnd for Attrs { | ||||
|     type Output = Self; | ||||
|     fn bitand(self, rhs: Self) -> Self::Output { | ||||
|         Self(self.0 & rhs.0) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| impl core::ops::Not for Attrs { | ||||
|     type Output = Self; | ||||
|     fn not(self) -> Self::Output { | ||||
|         Self(!self.0) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| /// DMA mapping attributes.
 | ||||
| pub mod attrs { | ||||
|     use super::Attrs; | ||||
| 
 | ||||
|     /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
 | ||||
|     /// and writes may pass each other.
 | ||||
|     pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING); | ||||
| 
 | ||||
|     /// Specifies that writes to the mapping may be buffered to improve performance.
 | ||||
|     pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE); | ||||
| 
 | ||||
|     /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
 | ||||
|     pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING); | ||||
| 
 | ||||
|     /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
 | ||||
|     /// that it has been already transferred to 'device' domain.
 | ||||
|     pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC); | ||||
| 
 | ||||
|     /// Forces contiguous allocation of the buffer in physical memory.
 | ||||
|     pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS); | ||||
| 
 | ||||
|     /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
 | ||||
|     /// to allocate memory to in a way that gives better TLB efficiency.
 | ||||
|     pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES); | ||||
| 
 | ||||
|     /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
 | ||||
|     /// __GFP_NOWARN).
 | ||||
|     pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN); | ||||
| 
 | ||||
|     /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
 | ||||
|     /// ideally inaccessible or at least read-only at lesser-privileged levels).
 | ||||
|     pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED); | ||||
| } | ||||
| 
 | ||||
| /// An abstraction of the `dma_alloc_coherent` API.
 | ||||
| ///
 | ||||
| /// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
 | ||||
| /// large consistent DMA regions.
 | ||||
| ///
 | ||||
| /// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
 | ||||
| /// processor's virtual address space) and the device address which can be given to the device
 | ||||
| /// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
 | ||||
| /// is dropped.
 | ||||
| ///
 | ||||
| /// # Invariants
 | ||||
| ///
 | ||||
| /// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
 | ||||
| /// to an allocated region of consistent memory and `dma_handle` is the DMA address base of
 | ||||
| /// the region.
 | ||||
| // TODO
 | ||||
| //
 | ||||
| // DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
 | ||||
| // reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
 | ||||
| // that device resources can never survive device unbind.
 | ||||
| //
 | ||||
| // However, it is neither desirable nor necessary to protect the allocated memory of the DMA
 | ||||
| // allocation from surviving device unbind; it would require RCU read side critical sections to
 | ||||
| // access the memory, which may require subsequent unnecessary copies.
 | ||||
| //
 | ||||
| // Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
 | ||||
| // entire `CoherentAllocation` including the allocated memory itself.
 | ||||
| pub struct CoherentAllocation<T: AsBytes + FromBytes> { | ||||
|     dev: ARef<Device>, | ||||
|     dma_handle: bindings::dma_addr_t, | ||||
|     count: usize, | ||||
|     cpu_addr: *mut T, | ||||
|     dma_attrs: Attrs, | ||||
| } | ||||
| 
 | ||||
| impl<T: AsBytes + FromBytes> CoherentAllocation<T> { | ||||
|     /// Allocates a region of `size_of::<T> * count` of consistent memory.
 | ||||
|     ///
 | ||||
|     /// # Examples
 | ||||
|     ///
 | ||||
|     /// ```
 | ||||
|     /// use kernel::device::Device;
 | ||||
|     /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||
|     ///
 | ||||
|     /// # fn test(dev: &Device) -> Result {
 | ||||
|     /// let c: CoherentAllocation<u64> =
 | ||||
|     ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
 | ||||
|     /// # Ok::<(), Error>(()) }
 | ||||
|     /// ```
 | ||||
|     pub fn alloc_attrs( | ||||
|         dev: &Device, | ||||
|         count: usize, | ||||
|         gfp_flags: kernel::alloc::Flags, | ||||
|         dma_attrs: Attrs, | ||||
|     ) -> Result<CoherentAllocation<T>> { | ||||
|         build_assert!( | ||||
|             core::mem::size_of::<T>() > 0, | ||||
|             "It doesn't make sense for the allocated type to be a ZST" | ||||
|         ); | ||||
| 
 | ||||
|         let size = count | ||||
|             .checked_mul(core::mem::size_of::<T>()) | ||||
|             .ok_or(EOVERFLOW)?; | ||||
|         let mut dma_handle = 0; | ||||
|         // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
 | ||||
|         let ret = unsafe { | ||||
|             bindings::dma_alloc_attrs( | ||||
|                 dev.as_raw(), | ||||
|                 size, | ||||
|                 &mut dma_handle, | ||||
|                 gfp_flags.as_raw(), | ||||
|                 dma_attrs.as_raw(), | ||||
|             ) | ||||
|         }; | ||||
|         if ret.is_null() { | ||||
|             return Err(ENOMEM); | ||||
|         } | ||||
|         // INVARIANT: We just successfully allocated a coherent region which is accessible for
 | ||||
|         // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
 | ||||
|         // to the device.
 | ||||
|         Ok(Self { | ||||
|             dev: dev.into(), | ||||
|             dma_handle, | ||||
|             count, | ||||
|             cpu_addr: ret as *mut T, | ||||
|             dma_attrs, | ||||
|         }) | ||||
|     } | ||||
| 
 | ||||
|     /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
 | ||||
|     /// `dma_attrs` is 0 by default.
 | ||||
|     pub fn alloc_coherent( | ||||
|         dev: &Device, | ||||
|         count: usize, | ||||
|         gfp_flags: kernel::alloc::Flags, | ||||
|     ) -> Result<CoherentAllocation<T>> { | ||||
|         CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0)) | ||||
|     } | ||||
| 
 | ||||
|     /// Returns the base address to the allocated region in the CPU's virtual address space.
 | ||||
|     pub fn start_ptr(&self) -> *const T { | ||||
|         self.cpu_addr | ||||
|     } | ||||
| 
 | ||||
|     /// Returns the base address to the allocated region in the CPU's virtual address space as
 | ||||
|     /// a mutable pointer.
 | ||||
|     pub fn start_ptr_mut(&mut self) -> *mut T { | ||||
|         self.cpu_addr | ||||
|     } | ||||
| 
 | ||||
|     /// Returns a DMA handle which may given to the device as the DMA address base of
 | ||||
|     /// the region.
 | ||||
|     pub fn dma_handle(&self) -> bindings::dma_addr_t { | ||||
|         self.dma_handle | ||||
|     } | ||||
| 
 | ||||
|     /// Returns a pointer to an element from the region with bounds checking. `offset` is in
 | ||||
|     /// units of `T`, not the number of bytes.
 | ||||
|     ///
 | ||||
|     /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
 | ||||
|     #[doc(hidden)] | ||||
|     pub fn item_from_index(&self, offset: usize) -> Result<*mut T> { | ||||
|         if offset >= self.count { | ||||
|             return Err(EINVAL); | ||||
|         } | ||||
|         // SAFETY:
 | ||||
|         // - The pointer is valid due to type invariant on `CoherentAllocation`
 | ||||
|         // and we've just checked that the range and index is within bounds.
 | ||||
|         // - `offset` can't overflow since it is smaller than `self.count` and we've checked
 | ||||
|         // that `self.count` won't overflow early in the constructor.
 | ||||
|         Ok(unsafe { self.cpu_addr.add(offset) }) | ||||
|     } | ||||
| 
 | ||||
|     /// Reads the value of `field` and ensures that its type is [`FromBytes`].
 | ||||
|     ///
 | ||||
|     /// # Safety
 | ||||
|     ///
 | ||||
|     /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
 | ||||
|     /// validated beforehand.
 | ||||
|     ///
 | ||||
|     /// Public but hidden since it should only be used from [`dma_read`] macro.
 | ||||
|     #[doc(hidden)] | ||||
|     pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F { | ||||
|         // SAFETY:
 | ||||
|         // - By the safety requirements field is valid.
 | ||||
|         // - Using read_volatile() here is not sound as per the usual rules, the usage here is
 | ||||
|         // a special exception with the following notes in place. When dealing with a potential
 | ||||
|         // race from a hardware or code outside kernel (e.g. user-space program), we need that
 | ||||
|         // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
 | ||||
|         // rationale behind is that it should generate the same code as READ_ONCE() which the
 | ||||
|         // kernel already relies on to avoid UB on data races. Note that the usage of
 | ||||
|         // read_volatile() is limited to this particular case, it cannot be used to prevent
 | ||||
|         // the UB caused by racing between two kernel functions nor do they provide atomicity.
 | ||||
|         unsafe { field.read_volatile() } | ||||
|     } | ||||
| 
 | ||||
|     /// Writes a value to `field` and ensures that its type is [`AsBytes`].
 | ||||
|     ///
 | ||||
|     /// # Safety
 | ||||
|     ///
 | ||||
|     /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
 | ||||
|     /// validated beforehand.
 | ||||
|     ///
 | ||||
|     /// Public but hidden since it should only be used from [`dma_write`] macro.
 | ||||
|     #[doc(hidden)] | ||||
|     pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) { | ||||
|         // SAFETY:
 | ||||
|         // - By the safety requirements field is valid.
 | ||||
|         // - Using write_volatile() here is not sound as per the usual rules, the usage here is
 | ||||
|         // a special exception with the following notes in place. When dealing with a potential
 | ||||
|         // race from a hardware or code outside kernel (e.g. user-space program), we need that
 | ||||
|         // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
 | ||||
|         // rationale behind is that it should generate the same code as WRITE_ONCE() which the
 | ||||
|         // kernel already relies on to avoid UB on data races. Note that the usage of
 | ||||
|         // write_volatile() is limited to this particular case, it cannot be used to prevent
 | ||||
|         // the UB caused by racing between two kernel functions nor do they provide atomicity.
 | ||||
|         unsafe { field.write_volatile(val) } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| /// Note that the device configured to do DMA must be halted before this object is dropped.
 | ||||
| impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> { | ||||
|     fn drop(&mut self) { | ||||
|         let size = self.count * core::mem::size_of::<T>(); | ||||
|         // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
 | ||||
|         // The cpu address, and the dma handle are valid due to the type invariants on
 | ||||
|         // `CoherentAllocation`.
 | ||||
|         unsafe { | ||||
|             bindings::dma_free_attrs( | ||||
|                 self.dev.as_raw(), | ||||
|                 size, | ||||
|                 self.cpu_addr as _, | ||||
|                 self.dma_handle, | ||||
|                 self.dma_attrs.as_raw(), | ||||
|             ) | ||||
|         } | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| /// Reads a field of an item from an allocated region of structs.
 | ||||
| ///
 | ||||
| /// # Examples
 | ||||
| ///
 | ||||
| /// ```
 | ||||
| /// use kernel::device::Device;
 | ||||
| /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||
| ///
 | ||||
| /// struct MyStruct { field: u32, }
 | ||||
| ///
 | ||||
| /// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
 | ||||
| /// unsafe impl kernel::transmute::FromBytes for MyStruct{};
 | ||||
| /// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
 | ||||
| /// unsafe impl kernel::transmute::AsBytes for MyStruct{};
 | ||||
| ///
 | ||||
| /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
 | ||||
| /// let whole = kernel::dma_read!(alloc[2]);
 | ||||
| /// let field = kernel::dma_read!(alloc[1].field);
 | ||||
| /// # Ok::<(), Error>(()) }
 | ||||
| /// ```
 | ||||
| #[macro_export] | ||||
| macro_rules! dma_read { | ||||
|     ($dma:expr, $idx: expr, $($field:tt)*) => {{ | ||||
|         let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; | ||||
|         // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
 | ||||
|         // dereferenced. The compiler also further validates the expression on whether `field`
 | ||||
|         // is a member of `item` when expanded by the macro.
 | ||||
|         unsafe { | ||||
|             let ptr_field = ::core::ptr::addr_of!((*item) $($field)*); | ||||
|             $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field) | ||||
|         } | ||||
|     }}; | ||||
|     ($dma:ident [ $idx:expr ] $($field:tt)* ) => { | ||||
|         $crate::dma_read!($dma, $idx, $($field)*); | ||||
|     }; | ||||
|     ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => { | ||||
|         $crate::dma_read!($($dma).*, $idx, $($field)*); | ||||
|     }; | ||||
| } | ||||
| 
 | ||||
| /// Writes to a field of an item from an allocated region of structs.
 | ||||
| ///
 | ||||
| /// # Examples
 | ||||
| ///
 | ||||
| /// ```
 | ||||
| /// use kernel::device::Device;
 | ||||
| /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||
| ///
 | ||||
| /// struct MyStruct { member: u32, }
 | ||||
| ///
 | ||||
| /// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
 | ||||
| /// unsafe impl kernel::transmute::FromBytes for MyStruct{};
 | ||||
| /// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
 | ||||
| /// unsafe impl kernel::transmute::AsBytes for MyStruct{};
 | ||||
| ///
 | ||||
| /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
 | ||||
| /// kernel::dma_write!(alloc[2].member = 0xf);
 | ||||
| /// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
 | ||||
| /// # Ok::<(), Error>(()) }
 | ||||
| /// ```
 | ||||
| #[macro_export] | ||||
| macro_rules! dma_write { | ||||
|     ($dma:ident [ $idx:expr ] $($field:tt)*) => {{ | ||||
|         $crate::dma_write!($dma, $idx, $($field)*); | ||||
|     }}; | ||||
|     ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{ | ||||
|         $crate::dma_write!($($dma).*, $idx, $($field)*); | ||||
|     }}; | ||||
|     ($dma:expr, $idx: expr, = $val:expr) => { | ||||
|         let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; | ||||
|         // SAFETY: `item_from_index` ensures that `item` is always a valid item.
 | ||||
|         unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) } | ||||
|     }; | ||||
|     ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => { | ||||
|         let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; | ||||
|         // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
 | ||||
|         // dereferenced. The compiler also further validates the expression on whether `field`
 | ||||
|         // is a member of `item` when expanded by the macro.
 | ||||
|         unsafe { | ||||
|             let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*); | ||||
|             $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val) | ||||
|         } | ||||
|     }; | ||||
| } | ||||
|  | @ -44,6 +44,7 @@ | |||
| pub mod device; | ||||
| pub mod device_id; | ||||
| pub mod devres; | ||||
| pub mod dma; | ||||
| pub mod driver; | ||||
| pub mod error; | ||||
| pub mod faux; | ||||
|  |  | |||
		Loading…
	
		Reference in a new issue
	
	 Abdiel Janulgue
						Abdiel Janulgue