mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	rust: add dma coherent allocator abstraction
Add a simple dma coherent allocator rust abstraction. Based on Andreas Hindborg's dma abstractions from the rnvme driver, which was also based on earlier work by Wedson Almeida Filho. Reviewed-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: Abdiel Janulgue <abdiel.janulgue@gmail.com> Acked-by: Danilo Krummrich <dakr@kernel.org> Link: https://lore.kernel.org/r/20250317185345.2608976-3-abdiel.janulgue@gmail.com Nacked-by: Christoph Hellwig <hch@lst.de> [ Removed period. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This commit is contained in:
		
							parent
							
								
									e385e94a8b
								
							
						
					
					
						commit
						ad2907b4e3
					
				
					 3 changed files with 389 additions and 0 deletions
				
			
		|  | @ -12,6 +12,7 @@ | ||||||
| #include <linux/blkdev.h> | #include <linux/blkdev.h> | ||||||
| #include <linux/cred.h> | #include <linux/cred.h> | ||||||
| #include <linux/device/faux.h> | #include <linux/device/faux.h> | ||||||
|  | #include <linux/dma-mapping.h> | ||||||
| #include <linux/errname.h> | #include <linux/errname.h> | ||||||
| #include <linux/ethtool.h> | #include <linux/ethtool.h> | ||||||
| #include <linux/file.h> | #include <linux/file.h> | ||||||
|  |  | ||||||
							
								
								
									
										387
									
								
								rust/kernel/dma.rs
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										387
									
								
								rust/kernel/dma.rs
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,387 @@ | ||||||
|  | // SPDX-License-Identifier: GPL-2.0
 | ||||||
|  | 
 | ||||||
|  | //! Direct memory access (DMA).
 | ||||||
|  | //!
 | ||||||
|  | //! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
 | ||||||
|  | 
 | ||||||
|  | use crate::{ | ||||||
|  |     bindings, build_assert, | ||||||
|  |     device::Device, | ||||||
|  |     error::code::*, | ||||||
|  |     error::Result, | ||||||
|  |     transmute::{AsBytes, FromBytes}, | ||||||
|  |     types::ARef, | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | /// Possible attributes associated with a DMA mapping.
 | ||||||
|  | ///
 | ||||||
|  | /// They can be combined with the operators `|`, `&`, and `!`.
 | ||||||
|  | ///
 | ||||||
|  | /// Values can be used from the [`attrs`] module.
 | ||||||
|  | ///
 | ||||||
|  | /// # Examples
 | ||||||
|  | ///
 | ||||||
|  | /// ```
 | ||||||
|  | /// use kernel::device::Device;
 | ||||||
|  | /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||||
|  | ///
 | ||||||
|  | /// # fn test(dev: &Device) -> Result {
 | ||||||
|  | /// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
 | ||||||
|  | /// let c: CoherentAllocation<u64> =
 | ||||||
|  | ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
 | ||||||
|  | /// # Ok::<(), Error>(()) }
 | ||||||
|  | /// ```
 | ||||||
|  | #[derive(Clone, Copy, PartialEq)] | ||||||
|  | #[repr(transparent)] | ||||||
|  | pub struct Attrs(u32); | ||||||
|  | 
 | ||||||
|  | impl Attrs { | ||||||
|  |     /// Get the raw representation of this attribute.
 | ||||||
|  |     pub(crate) fn as_raw(self) -> crate::ffi::c_ulong { | ||||||
|  |         self.0 as _ | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Check whether `flags` is contained in `self`.
 | ||||||
|  |     pub fn contains(self, flags: Attrs) -> bool { | ||||||
|  |         (self & flags) == flags | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | impl core::ops::BitOr for Attrs { | ||||||
|  |     type Output = Self; | ||||||
|  |     fn bitor(self, rhs: Self) -> Self::Output { | ||||||
|  |         Self(self.0 | rhs.0) | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | impl core::ops::BitAnd for Attrs { | ||||||
|  |     type Output = Self; | ||||||
|  |     fn bitand(self, rhs: Self) -> Self::Output { | ||||||
|  |         Self(self.0 & rhs.0) | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | impl core::ops::Not for Attrs { | ||||||
|  |     type Output = Self; | ||||||
|  |     fn not(self) -> Self::Output { | ||||||
|  |         Self(!self.0) | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | /// DMA mapping attributes.
 | ||||||
|  | pub mod attrs { | ||||||
|  |     use super::Attrs; | ||||||
|  | 
 | ||||||
|  |     /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
 | ||||||
|  |     /// and writes may pass each other.
 | ||||||
|  |     pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING); | ||||||
|  | 
 | ||||||
|  |     /// Specifies that writes to the mapping may be buffered to improve performance.
 | ||||||
|  |     pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE); | ||||||
|  | 
 | ||||||
|  |     /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
 | ||||||
|  |     pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING); | ||||||
|  | 
 | ||||||
|  |     /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
 | ||||||
|  |     /// that it has been already transferred to 'device' domain.
 | ||||||
|  |     pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC); | ||||||
|  | 
 | ||||||
|  |     /// Forces contiguous allocation of the buffer in physical memory.
 | ||||||
|  |     pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS); | ||||||
|  | 
 | ||||||
|  |     /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
 | ||||||
|  |     /// to allocate memory to in a way that gives better TLB efficiency.
 | ||||||
|  |     pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES); | ||||||
|  | 
 | ||||||
|  |     /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
 | ||||||
|  |     /// __GFP_NOWARN).
 | ||||||
|  |     pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN); | ||||||
|  | 
 | ||||||
|  |     /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
 | ||||||
|  |     /// ideally inaccessible or at least read-only at lesser-privileged levels).
 | ||||||
|  |     pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED); | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | /// An abstraction of the `dma_alloc_coherent` API.
 | ||||||
|  | ///
 | ||||||
|  | /// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
 | ||||||
|  | /// large consistent DMA regions.
 | ||||||
|  | ///
 | ||||||
|  | /// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
 | ||||||
|  | /// processor's virtual address space) and the device address which can be given to the device
 | ||||||
|  | /// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
 | ||||||
|  | /// is dropped.
 | ||||||
|  | ///
 | ||||||
|  | /// # Invariants
 | ||||||
|  | ///
 | ||||||
|  | /// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
 | ||||||
|  | /// to an allocated region of consistent memory and `dma_handle` is the DMA address base of
 | ||||||
|  | /// the region.
 | ||||||
|  | // TODO
 | ||||||
|  | //
 | ||||||
|  | // DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
 | ||||||
|  | // reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
 | ||||||
|  | // that device resources can never survive device unbind.
 | ||||||
|  | //
 | ||||||
|  | // However, it is neither desirable nor necessary to protect the allocated memory of the DMA
 | ||||||
|  | // allocation from surviving device unbind; it would require RCU read side critical sections to
 | ||||||
|  | // access the memory, which may require subsequent unnecessary copies.
 | ||||||
|  | //
 | ||||||
|  | // Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
 | ||||||
|  | // entire `CoherentAllocation` including the allocated memory itself.
 | ||||||
|  | pub struct CoherentAllocation<T: AsBytes + FromBytes> { | ||||||
|  |     dev: ARef<Device>, | ||||||
|  |     dma_handle: bindings::dma_addr_t, | ||||||
|  |     count: usize, | ||||||
|  |     cpu_addr: *mut T, | ||||||
|  |     dma_attrs: Attrs, | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | impl<T: AsBytes + FromBytes> CoherentAllocation<T> { | ||||||
|  |     /// Allocates a region of `size_of::<T> * count` of consistent memory.
 | ||||||
|  |     ///
 | ||||||
|  |     /// # Examples
 | ||||||
|  |     ///
 | ||||||
|  |     /// ```
 | ||||||
|  |     /// use kernel::device::Device;
 | ||||||
|  |     /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||||
|  |     ///
 | ||||||
|  |     /// # fn test(dev: &Device) -> Result {
 | ||||||
|  |     /// let c: CoherentAllocation<u64> =
 | ||||||
|  |     ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
 | ||||||
|  |     /// # Ok::<(), Error>(()) }
 | ||||||
|  |     /// ```
 | ||||||
|  |     pub fn alloc_attrs( | ||||||
|  |         dev: &Device, | ||||||
|  |         count: usize, | ||||||
|  |         gfp_flags: kernel::alloc::Flags, | ||||||
|  |         dma_attrs: Attrs, | ||||||
|  |     ) -> Result<CoherentAllocation<T>> { | ||||||
|  |         build_assert!( | ||||||
|  |             core::mem::size_of::<T>() > 0, | ||||||
|  |             "It doesn't make sense for the allocated type to be a ZST" | ||||||
|  |         ); | ||||||
|  | 
 | ||||||
|  |         let size = count | ||||||
|  |             .checked_mul(core::mem::size_of::<T>()) | ||||||
|  |             .ok_or(EOVERFLOW)?; | ||||||
|  |         let mut dma_handle = 0; | ||||||
|  |         // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
 | ||||||
|  |         let ret = unsafe { | ||||||
|  |             bindings::dma_alloc_attrs( | ||||||
|  |                 dev.as_raw(), | ||||||
|  |                 size, | ||||||
|  |                 &mut dma_handle, | ||||||
|  |                 gfp_flags.as_raw(), | ||||||
|  |                 dma_attrs.as_raw(), | ||||||
|  |             ) | ||||||
|  |         }; | ||||||
|  |         if ret.is_null() { | ||||||
|  |             return Err(ENOMEM); | ||||||
|  |         } | ||||||
|  |         // INVARIANT: We just successfully allocated a coherent region which is accessible for
 | ||||||
|  |         // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
 | ||||||
|  |         // to the device.
 | ||||||
|  |         Ok(Self { | ||||||
|  |             dev: dev.into(), | ||||||
|  |             dma_handle, | ||||||
|  |             count, | ||||||
|  |             cpu_addr: ret as *mut T, | ||||||
|  |             dma_attrs, | ||||||
|  |         }) | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
 | ||||||
|  |     /// `dma_attrs` is 0 by default.
 | ||||||
|  |     pub fn alloc_coherent( | ||||||
|  |         dev: &Device, | ||||||
|  |         count: usize, | ||||||
|  |         gfp_flags: kernel::alloc::Flags, | ||||||
|  |     ) -> Result<CoherentAllocation<T>> { | ||||||
|  |         CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0)) | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Returns the base address to the allocated region in the CPU's virtual address space.
 | ||||||
|  |     pub fn start_ptr(&self) -> *const T { | ||||||
|  |         self.cpu_addr | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Returns the base address to the allocated region in the CPU's virtual address space as
 | ||||||
|  |     /// a mutable pointer.
 | ||||||
|  |     pub fn start_ptr_mut(&mut self) -> *mut T { | ||||||
|  |         self.cpu_addr | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Returns a DMA handle which may given to the device as the DMA address base of
 | ||||||
|  |     /// the region.
 | ||||||
|  |     pub fn dma_handle(&self) -> bindings::dma_addr_t { | ||||||
|  |         self.dma_handle | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Returns a pointer to an element from the region with bounds checking. `offset` is in
 | ||||||
|  |     /// units of `T`, not the number of bytes.
 | ||||||
|  |     ///
 | ||||||
|  |     /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
 | ||||||
|  |     #[doc(hidden)] | ||||||
|  |     pub fn item_from_index(&self, offset: usize) -> Result<*mut T> { | ||||||
|  |         if offset >= self.count { | ||||||
|  |             return Err(EINVAL); | ||||||
|  |         } | ||||||
|  |         // SAFETY:
 | ||||||
|  |         // - The pointer is valid due to type invariant on `CoherentAllocation`
 | ||||||
|  |         // and we've just checked that the range and index is within bounds.
 | ||||||
|  |         // - `offset` can't overflow since it is smaller than `self.count` and we've checked
 | ||||||
|  |         // that `self.count` won't overflow early in the constructor.
 | ||||||
|  |         Ok(unsafe { self.cpu_addr.add(offset) }) | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Reads the value of `field` and ensures that its type is [`FromBytes`].
 | ||||||
|  |     ///
 | ||||||
|  |     /// # Safety
 | ||||||
|  |     ///
 | ||||||
|  |     /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
 | ||||||
|  |     /// validated beforehand.
 | ||||||
|  |     ///
 | ||||||
|  |     /// Public but hidden since it should only be used from [`dma_read`] macro.
 | ||||||
|  |     #[doc(hidden)] | ||||||
|  |     pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F { | ||||||
|  |         // SAFETY:
 | ||||||
|  |         // - By the safety requirements field is valid.
 | ||||||
|  |         // - Using read_volatile() here is not sound as per the usual rules, the usage here is
 | ||||||
|  |         // a special exception with the following notes in place. When dealing with a potential
 | ||||||
|  |         // race from a hardware or code outside kernel (e.g. user-space program), we need that
 | ||||||
|  |         // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
 | ||||||
|  |         // rationale behind is that it should generate the same code as READ_ONCE() which the
 | ||||||
|  |         // kernel already relies on to avoid UB on data races. Note that the usage of
 | ||||||
|  |         // read_volatile() is limited to this particular case, it cannot be used to prevent
 | ||||||
|  |         // the UB caused by racing between two kernel functions nor do they provide atomicity.
 | ||||||
|  |         unsafe { field.read_volatile() } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     /// Writes a value to `field` and ensures that its type is [`AsBytes`].
 | ||||||
|  |     ///
 | ||||||
|  |     /// # Safety
 | ||||||
|  |     ///
 | ||||||
|  |     /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
 | ||||||
|  |     /// validated beforehand.
 | ||||||
|  |     ///
 | ||||||
|  |     /// Public but hidden since it should only be used from [`dma_write`] macro.
 | ||||||
|  |     #[doc(hidden)] | ||||||
|  |     pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) { | ||||||
|  |         // SAFETY:
 | ||||||
|  |         // - By the safety requirements field is valid.
 | ||||||
|  |         // - Using write_volatile() here is not sound as per the usual rules, the usage here is
 | ||||||
|  |         // a special exception with the following notes in place. When dealing with a potential
 | ||||||
|  |         // race from a hardware or code outside kernel (e.g. user-space program), we need that
 | ||||||
|  |         // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
 | ||||||
|  |         // rationale behind is that it should generate the same code as WRITE_ONCE() which the
 | ||||||
|  |         // kernel already relies on to avoid UB on data races. Note that the usage of
 | ||||||
|  |         // write_volatile() is limited to this particular case, it cannot be used to prevent
 | ||||||
|  |         // the UB caused by racing between two kernel functions nor do they provide atomicity.
 | ||||||
|  |         unsafe { field.write_volatile(val) } | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | /// Note that the device configured to do DMA must be halted before this object is dropped.
 | ||||||
|  | impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> { | ||||||
|  |     fn drop(&mut self) { | ||||||
|  |         let size = self.count * core::mem::size_of::<T>(); | ||||||
|  |         // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
 | ||||||
|  |         // The cpu address, and the dma handle are valid due to the type invariants on
 | ||||||
|  |         // `CoherentAllocation`.
 | ||||||
|  |         unsafe { | ||||||
|  |             bindings::dma_free_attrs( | ||||||
|  |                 self.dev.as_raw(), | ||||||
|  |                 size, | ||||||
|  |                 self.cpu_addr as _, | ||||||
|  |                 self.dma_handle, | ||||||
|  |                 self.dma_attrs.as_raw(), | ||||||
|  |             ) | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | /// Reads a field of an item from an allocated region of structs.
 | ||||||
|  | ///
 | ||||||
|  | /// # Examples
 | ||||||
|  | ///
 | ||||||
|  | /// ```
 | ||||||
|  | /// use kernel::device::Device;
 | ||||||
|  | /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||||
|  | ///
 | ||||||
|  | /// struct MyStruct { field: u32, }
 | ||||||
|  | ///
 | ||||||
|  | /// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
 | ||||||
|  | /// unsafe impl kernel::transmute::FromBytes for MyStruct{};
 | ||||||
|  | /// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
 | ||||||
|  | /// unsafe impl kernel::transmute::AsBytes for MyStruct{};
 | ||||||
|  | ///
 | ||||||
|  | /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
 | ||||||
|  | /// let whole = kernel::dma_read!(alloc[2]);
 | ||||||
|  | /// let field = kernel::dma_read!(alloc[1].field);
 | ||||||
|  | /// # Ok::<(), Error>(()) }
 | ||||||
|  | /// ```
 | ||||||
|  | #[macro_export] | ||||||
|  | macro_rules! dma_read { | ||||||
|  |     ($dma:expr, $idx: expr, $($field:tt)*) => {{ | ||||||
|  |         let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; | ||||||
|  |         // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
 | ||||||
|  |         // dereferenced. The compiler also further validates the expression on whether `field`
 | ||||||
|  |         // is a member of `item` when expanded by the macro.
 | ||||||
|  |         unsafe { | ||||||
|  |             let ptr_field = ::core::ptr::addr_of!((*item) $($field)*); | ||||||
|  |             $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field) | ||||||
|  |         } | ||||||
|  |     }}; | ||||||
|  |     ($dma:ident [ $idx:expr ] $($field:tt)* ) => { | ||||||
|  |         $crate::dma_read!($dma, $idx, $($field)*); | ||||||
|  |     }; | ||||||
|  |     ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => { | ||||||
|  |         $crate::dma_read!($($dma).*, $idx, $($field)*); | ||||||
|  |     }; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | /// Writes to a field of an item from an allocated region of structs.
 | ||||||
|  | ///
 | ||||||
|  | /// # Examples
 | ||||||
|  | ///
 | ||||||
|  | /// ```
 | ||||||
|  | /// use kernel::device::Device;
 | ||||||
|  | /// use kernel::dma::{attrs::*, CoherentAllocation};
 | ||||||
|  | ///
 | ||||||
|  | /// struct MyStruct { member: u32, }
 | ||||||
|  | ///
 | ||||||
|  | /// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
 | ||||||
|  | /// unsafe impl kernel::transmute::FromBytes for MyStruct{};
 | ||||||
|  | /// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
 | ||||||
|  | /// unsafe impl kernel::transmute::AsBytes for MyStruct{};
 | ||||||
|  | ///
 | ||||||
|  | /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
 | ||||||
|  | /// kernel::dma_write!(alloc[2].member = 0xf);
 | ||||||
|  | /// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
 | ||||||
|  | /// # Ok::<(), Error>(()) }
 | ||||||
|  | /// ```
 | ||||||
|  | #[macro_export] | ||||||
|  | macro_rules! dma_write { | ||||||
|  |     ($dma:ident [ $idx:expr ] $($field:tt)*) => {{ | ||||||
|  |         $crate::dma_write!($dma, $idx, $($field)*); | ||||||
|  |     }}; | ||||||
|  |     ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{ | ||||||
|  |         $crate::dma_write!($($dma).*, $idx, $($field)*); | ||||||
|  |     }}; | ||||||
|  |     ($dma:expr, $idx: expr, = $val:expr) => { | ||||||
|  |         let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; | ||||||
|  |         // SAFETY: `item_from_index` ensures that `item` is always a valid item.
 | ||||||
|  |         unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) } | ||||||
|  |     }; | ||||||
|  |     ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => { | ||||||
|  |         let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; | ||||||
|  |         // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
 | ||||||
|  |         // dereferenced. The compiler also further validates the expression on whether `field`
 | ||||||
|  |         // is a member of `item` when expanded by the macro.
 | ||||||
|  |         unsafe { | ||||||
|  |             let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*); | ||||||
|  |             $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val) | ||||||
|  |         } | ||||||
|  |     }; | ||||||
|  | } | ||||||
|  | @ -44,6 +44,7 @@ | ||||||
| pub mod device; | pub mod device; | ||||||
| pub mod device_id; | pub mod device_id; | ||||||
| pub mod devres; | pub mod devres; | ||||||
|  | pub mod dma; | ||||||
| pub mod driver; | pub mod driver; | ||||||
| pub mod error; | pub mod error; | ||||||
| pub mod faux; | pub mod faux; | ||||||
|  |  | ||||||
		Loading…
	
		Reference in a new issue
	
	 Abdiel Janulgue
						Abdiel Janulgue