mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	ext4 crypto: add ext4 encryption facilities
On encrypt, we will re-assign the buffer_heads to point to a bounce page rather than the control_page (which is the original page to write that contains the plaintext). The block I/O occurs against the bounce page. On write completion, we re-assign the buffer_heads to the original plaintext page. On decrypt, we will attach a read completion callback to the bio struct. This read completion will decrypt the read contents in-place prior to setting the page up-to-date. The current encryption mode, AES-256-XTS, lacks cryptographic integrity. AES-256-GCM is in-plan, but we will need to devise a mechanism for handling the integrity data. Signed-off-by: Michael Halcrow <mhalcrow@google.com> Signed-off-by: Ildar Muslukhov <ildarm@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This commit is contained in:
		
							parent
							
								
									9bd8212f98
								
							
						
					
					
						commit
						b30ab0e034
					
				
					 6 changed files with 682 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -12,4 +12,4 @@ ext4-y	:= balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o page-io.o \
 | 
			
		|||
 | 
			
		||||
ext4-$(CONFIG_EXT4_FS_POSIX_ACL)	+= acl.o
 | 
			
		||||
ext4-$(CONFIG_EXT4_FS_SECURITY)		+= xattr_security.o
 | 
			
		||||
ext4-$(CONFIG_EXT4_FS_ENCRYPTION)	+= crypto_policy.o
 | 
			
		||||
ext4-$(CONFIG_EXT4_FS_ENCRYPTION)	+= crypto_policy.o crypto.o
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										558
									
								
								fs/ext4/crypto.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										558
									
								
								fs/ext4/crypto.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,558 @@
 | 
			
		|||
/*
 | 
			
		||||
 * linux/fs/ext4/crypto.c
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2015, Google, Inc.
 | 
			
		||||
 *
 | 
			
		||||
 * This contains encryption functions for ext4
 | 
			
		||||
 *
 | 
			
		||||
 * Written by Michael Halcrow, 2014.
 | 
			
		||||
 *
 | 
			
		||||
 * Filename encryption additions
 | 
			
		||||
 *	Uday Savagaonkar, 2014
 | 
			
		||||
 * Encryption policy handling additions
 | 
			
		||||
 *	Ildar Muslukhov, 2014
 | 
			
		||||
 *
 | 
			
		||||
 * This has not yet undergone a rigorous security audit.
 | 
			
		||||
 *
 | 
			
		||||
 * The usage of AES-XTS should conform to recommendations in NIST
 | 
			
		||||
 * Special Publication 800-38E and IEEE P1619/D16.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <crypto/hash.h>
 | 
			
		||||
#include <crypto/sha.h>
 | 
			
		||||
#include <keys/user-type.h>
 | 
			
		||||
#include <keys/encrypted-type.h>
 | 
			
		||||
#include <linux/crypto.h>
 | 
			
		||||
#include <linux/ecryptfs.h>
 | 
			
		||||
#include <linux/gfp.h>
 | 
			
		||||
#include <linux/kernel.h>
 | 
			
		||||
#include <linux/key.h>
 | 
			
		||||
#include <linux/list.h>
 | 
			
		||||
#include <linux/mempool.h>
 | 
			
		||||
#include <linux/module.h>
 | 
			
		||||
#include <linux/mutex.h>
 | 
			
		||||
#include <linux/random.h>
 | 
			
		||||
#include <linux/scatterlist.h>
 | 
			
		||||
#include <linux/spinlock_types.h>
 | 
			
		||||
 | 
			
		||||
#include "ext4_extents.h"
 | 
			
		||||
#include "xattr.h"
 | 
			
		||||
 | 
			
		||||
/* Encryption added and removed here! (L: */
 | 
			
		||||
 | 
			
		||||
static unsigned int num_prealloc_crypto_pages = 32;
 | 
			
		||||
static unsigned int num_prealloc_crypto_ctxs = 128;
 | 
			
		||||
 | 
			
		||||
module_param(num_prealloc_crypto_pages, uint, 0444);
 | 
			
		||||
MODULE_PARM_DESC(num_prealloc_crypto_pages,
 | 
			
		||||
		 "Number of crypto pages to preallocate");
 | 
			
		||||
module_param(num_prealloc_crypto_ctxs, uint, 0444);
 | 
			
		||||
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 | 
			
		||||
		 "Number of crypto contexts to preallocate");
 | 
			
		||||
 | 
			
		||||
static mempool_t *ext4_bounce_page_pool;
 | 
			
		||||
 | 
			
		||||
static LIST_HEAD(ext4_free_crypto_ctxs);
 | 
			
		||||
static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_release_crypto_ctx() - Releases an encryption context
 | 
			
		||||
 * @ctx: The encryption context to release.
 | 
			
		||||
 *
 | 
			
		||||
 * If the encryption context was allocated from the pre-allocated pool, returns
 | 
			
		||||
 * it to that pool. Else, frees it.
 | 
			
		||||
 *
 | 
			
		||||
 * If there's a bounce page in the context, this frees that.
 | 
			
		||||
 */
 | 
			
		||||
void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
 | 
			
		||||
{
 | 
			
		||||
	unsigned long flags;
 | 
			
		||||
 | 
			
		||||
	if (ctx->bounce_page) {
 | 
			
		||||
		if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
 | 
			
		||||
			__free_page(ctx->bounce_page);
 | 
			
		||||
		else
 | 
			
		||||
			mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
 | 
			
		||||
		ctx->bounce_page = NULL;
 | 
			
		||||
	}
 | 
			
		||||
	ctx->control_page = NULL;
 | 
			
		||||
	if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 | 
			
		||||
		if (ctx->tfm)
 | 
			
		||||
			crypto_free_tfm(ctx->tfm);
 | 
			
		||||
		kfree(ctx);
 | 
			
		||||
	} else {
 | 
			
		||||
		spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
 | 
			
		||||
		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
 | 
			
		||||
		spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
 | 
			
		||||
 * @mask: The allocation mask.
 | 
			
		||||
 *
 | 
			
		||||
 * Return: An allocated and initialized encryption context on success. An error
 | 
			
		||||
 * value or NULL otherwise.
 | 
			
		||||
 */
 | 
			
		||||
static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask)
 | 
			
		||||
{
 | 
			
		||||
	struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
 | 
			
		||||
					      mask);
 | 
			
		||||
 | 
			
		||||
	if (!ctx)
 | 
			
		||||
		return ERR_PTR(-ENOMEM);
 | 
			
		||||
	return ctx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_get_crypto_ctx() - Gets an encryption context
 | 
			
		||||
 * @inode:       The inode for which we are doing the crypto
 | 
			
		||||
 *
 | 
			
		||||
 * Allocates and initializes an encryption context.
 | 
			
		||||
 *
 | 
			
		||||
 * Return: An allocated and initialized encryption context on success; error
 | 
			
		||||
 * value or NULL otherwise.
 | 
			
		||||
 */
 | 
			
		||||
struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
 | 
			
		||||
{
 | 
			
		||||
	struct ext4_crypto_ctx *ctx = NULL;
 | 
			
		||||
	int res = 0;
 | 
			
		||||
	unsigned long flags;
 | 
			
		||||
	struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key;
 | 
			
		||||
 | 
			
		||||
	if (!ext4_read_workqueue)
 | 
			
		||||
		ext4_init_crypto();
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * We first try getting the ctx from a free list because in
 | 
			
		||||
	 * the common case the ctx will have an allocated and
 | 
			
		||||
	 * initialized crypto tfm, so it's probably a worthwhile
 | 
			
		||||
	 * optimization. For the bounce page, we first try getting it
 | 
			
		||||
	 * from the kernel allocator because that's just about as fast
 | 
			
		||||
	 * as getting it from a list and because a cache of free pages
 | 
			
		||||
	 * should generally be a "last resort" option for a filesystem
 | 
			
		||||
	 * to be able to do its job.
 | 
			
		||||
	 */
 | 
			
		||||
	spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
 | 
			
		||||
	ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
 | 
			
		||||
				       struct ext4_crypto_ctx, free_list);
 | 
			
		||||
	if (ctx)
 | 
			
		||||
		list_del(&ctx->free_list);
 | 
			
		||||
	spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
 | 
			
		||||
	if (!ctx) {
 | 
			
		||||
		ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
 | 
			
		||||
		if (IS_ERR(ctx)) {
 | 
			
		||||
			res = PTR_ERR(ctx);
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
		ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
 | 
			
		||||
	} else {
 | 
			
		||||
		ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Allocate a new Crypto API context if we don't already have
 | 
			
		||||
	 * one or if it isn't the right mode. */
 | 
			
		||||
	BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID);
 | 
			
		||||
	if (ctx->tfm && (ctx->mode != key->mode)) {
 | 
			
		||||
		crypto_free_tfm(ctx->tfm);
 | 
			
		||||
		ctx->tfm = NULL;
 | 
			
		||||
		ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
 | 
			
		||||
	}
 | 
			
		||||
	if (!ctx->tfm) {
 | 
			
		||||
		switch (key->mode) {
 | 
			
		||||
		case EXT4_ENCRYPTION_MODE_AES_256_XTS:
 | 
			
		||||
			ctx->tfm = crypto_ablkcipher_tfm(
 | 
			
		||||
				crypto_alloc_ablkcipher("xts(aes)", 0, 0));
 | 
			
		||||
			break;
 | 
			
		||||
		case EXT4_ENCRYPTION_MODE_AES_256_GCM:
 | 
			
		||||
			/* TODO(mhalcrow): AEAD w/ gcm(aes);
 | 
			
		||||
			 * crypto_aead_setauthsize() */
 | 
			
		||||
			ctx->tfm = ERR_PTR(-ENOTSUPP);
 | 
			
		||||
			break;
 | 
			
		||||
		default:
 | 
			
		||||
			BUG();
 | 
			
		||||
		}
 | 
			
		||||
		if (IS_ERR_OR_NULL(ctx->tfm)) {
 | 
			
		||||
			res = PTR_ERR(ctx->tfm);
 | 
			
		||||
			ctx->tfm = NULL;
 | 
			
		||||
			goto out;
 | 
			
		||||
		}
 | 
			
		||||
		ctx->mode = key->mode;
 | 
			
		||||
	}
 | 
			
		||||
	BUG_ON(key->size != ext4_encryption_key_size(key->mode));
 | 
			
		||||
 | 
			
		||||
	/* There shouldn't be a bounce page attached to the crypto
 | 
			
		||||
	 * context at this point. */
 | 
			
		||||
	BUG_ON(ctx->bounce_page);
 | 
			
		||||
 | 
			
		||||
out:
 | 
			
		||||
	if (res) {
 | 
			
		||||
		if (!IS_ERR_OR_NULL(ctx))
 | 
			
		||||
			ext4_release_crypto_ctx(ctx);
 | 
			
		||||
		ctx = ERR_PTR(res);
 | 
			
		||||
	}
 | 
			
		||||
	return ctx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct workqueue_struct *ext4_read_workqueue;
 | 
			
		||||
static DEFINE_MUTEX(crypto_init);
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_exit_crypto() - Shutdown the ext4 encryption system
 | 
			
		||||
 */
 | 
			
		||||
void ext4_exit_crypto(void)
 | 
			
		||||
{
 | 
			
		||||
	struct ext4_crypto_ctx *pos, *n;
 | 
			
		||||
 | 
			
		||||
	list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
 | 
			
		||||
		if (pos->bounce_page) {
 | 
			
		||||
			if (pos->flags &
 | 
			
		||||
			    EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
 | 
			
		||||
				__free_page(pos->bounce_page);
 | 
			
		||||
			} else {
 | 
			
		||||
				mempool_free(pos->bounce_page,
 | 
			
		||||
					     ext4_bounce_page_pool);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		if (pos->tfm)
 | 
			
		||||
			crypto_free_tfm(pos->tfm);
 | 
			
		||||
		kfree(pos);
 | 
			
		||||
	}
 | 
			
		||||
	INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
 | 
			
		||||
	if (ext4_bounce_page_pool)
 | 
			
		||||
		mempool_destroy(ext4_bounce_page_pool);
 | 
			
		||||
	ext4_bounce_page_pool = NULL;
 | 
			
		||||
	if (ext4_read_workqueue)
 | 
			
		||||
		destroy_workqueue(ext4_read_workqueue);
 | 
			
		||||
	ext4_read_workqueue = NULL;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_init_crypto() - Set up for ext4 encryption.
 | 
			
		||||
 *
 | 
			
		||||
 * We only call this when we start accessing encrypted files, since it
 | 
			
		||||
 * results in memory getting allocated that wouldn't otherwise be used.
 | 
			
		||||
 *
 | 
			
		||||
 * Return: Zero on success, non-zero otherwise.
 | 
			
		||||
 */
 | 
			
		||||
int ext4_init_crypto(void)
 | 
			
		||||
{
 | 
			
		||||
	int i, res;
 | 
			
		||||
 | 
			
		||||
	mutex_lock(&crypto_init);
 | 
			
		||||
	if (ext4_read_workqueue)
 | 
			
		||||
		goto already_initialized;
 | 
			
		||||
	ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
 | 
			
		||||
	if (!ext4_read_workqueue) {
 | 
			
		||||
		res = -ENOMEM;
 | 
			
		||||
		goto fail;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
 | 
			
		||||
		struct ext4_crypto_ctx *ctx;
 | 
			
		||||
 | 
			
		||||
		ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
 | 
			
		||||
		if (IS_ERR(ctx)) {
 | 
			
		||||
			res = PTR_ERR(ctx);
 | 
			
		||||
			goto fail;
 | 
			
		||||
		}
 | 
			
		||||
		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ext4_bounce_page_pool =
 | 
			
		||||
		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
 | 
			
		||||
	if (!ext4_bounce_page_pool) {
 | 
			
		||||
		res = -ENOMEM;
 | 
			
		||||
		goto fail;
 | 
			
		||||
	}
 | 
			
		||||
already_initialized:
 | 
			
		||||
	mutex_unlock(&crypto_init);
 | 
			
		||||
	return 0;
 | 
			
		||||
fail:
 | 
			
		||||
	ext4_exit_crypto();
 | 
			
		||||
	mutex_unlock(&crypto_init);
 | 
			
		||||
	return res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ext4_restore_control_page(struct page *data_page)
 | 
			
		||||
{
 | 
			
		||||
	struct ext4_crypto_ctx *ctx =
 | 
			
		||||
		(struct ext4_crypto_ctx *)page_private(data_page);
 | 
			
		||||
 | 
			
		||||
	set_page_private(data_page, (unsigned long)NULL);
 | 
			
		||||
	ClearPagePrivate(data_page);
 | 
			
		||||
	unlock_page(data_page);
 | 
			
		||||
	ext4_release_crypto_ctx(ctx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_crypt_complete() - The completion callback for page encryption
 | 
			
		||||
 * @req: The asynchronous encryption request context
 | 
			
		||||
 * @res: The result of the encryption operation
 | 
			
		||||
 */
 | 
			
		||||
static void ext4_crypt_complete(struct crypto_async_request *req, int res)
 | 
			
		||||
{
 | 
			
		||||
	struct ext4_completion_result *ecr = req->data;
 | 
			
		||||
 | 
			
		||||
	if (res == -EINPROGRESS)
 | 
			
		||||
		return;
 | 
			
		||||
	ecr->res = res;
 | 
			
		||||
	complete(&ecr->completion);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
typedef enum {
 | 
			
		||||
	EXT4_DECRYPT = 0,
 | 
			
		||||
	EXT4_ENCRYPT,
 | 
			
		||||
} ext4_direction_t;
 | 
			
		||||
 | 
			
		||||
static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
 | 
			
		||||
			    struct inode *inode,
 | 
			
		||||
			    ext4_direction_t rw,
 | 
			
		||||
			    pgoff_t index,
 | 
			
		||||
			    struct page *src_page,
 | 
			
		||||
			    struct page *dest_page)
 | 
			
		||||
 | 
			
		||||
{
 | 
			
		||||
	u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
 | 
			
		||||
	struct ablkcipher_request *req = NULL;
 | 
			
		||||
	DECLARE_EXT4_COMPLETION_RESULT(ecr);
 | 
			
		||||
	struct scatterlist dst, src;
 | 
			
		||||
	struct ext4_inode_info *ei = EXT4_I(inode);
 | 
			
		||||
	struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
 | 
			
		||||
	int res = 0;
 | 
			
		||||
 | 
			
		||||
	BUG_ON(!ctx->tfm);
 | 
			
		||||
	BUG_ON(ctx->mode != ei->i_encryption_key.mode);
 | 
			
		||||
 | 
			
		||||
	if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
 | 
			
		||||
		printk_ratelimited(KERN_ERR
 | 
			
		||||
				   "%s: unsupported crypto algorithm: %d\n",
 | 
			
		||||
				   __func__, ctx->mode);
 | 
			
		||||
		return -ENOTSUPP;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	crypto_ablkcipher_clear_flags(atfm, ~0);
 | 
			
		||||
	crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 | 
			
		||||
 | 
			
		||||
	res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
 | 
			
		||||
				       ei->i_encryption_key.size);
 | 
			
		||||
	if (res) {
 | 
			
		||||
		printk_ratelimited(KERN_ERR
 | 
			
		||||
				   "%s: crypto_ablkcipher_setkey() failed\n",
 | 
			
		||||
				   __func__);
 | 
			
		||||
		return res;
 | 
			
		||||
	}
 | 
			
		||||
	req = ablkcipher_request_alloc(atfm, GFP_NOFS);
 | 
			
		||||
	if (!req) {
 | 
			
		||||
		printk_ratelimited(KERN_ERR
 | 
			
		||||
				   "%s: crypto_request_alloc() failed\n",
 | 
			
		||||
				   __func__);
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	}
 | 
			
		||||
	ablkcipher_request_set_callback(
 | 
			
		||||
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 | 
			
		||||
		ext4_crypt_complete, &ecr);
 | 
			
		||||
 | 
			
		||||
	BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
 | 
			
		||||
	memcpy(xts_tweak, &index, sizeof(index));
 | 
			
		||||
	memset(&xts_tweak[sizeof(index)], 0,
 | 
			
		||||
	       EXT4_XTS_TWEAK_SIZE - sizeof(index));
 | 
			
		||||
 | 
			
		||||
	sg_init_table(&dst, 1);
 | 
			
		||||
	sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
 | 
			
		||||
	sg_init_table(&src, 1);
 | 
			
		||||
	sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
 | 
			
		||||
	ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
 | 
			
		||||
				     xts_tweak);
 | 
			
		||||
	if (rw == EXT4_DECRYPT)
 | 
			
		||||
		res = crypto_ablkcipher_decrypt(req);
 | 
			
		||||
	else
 | 
			
		||||
		res = crypto_ablkcipher_encrypt(req);
 | 
			
		||||
	if (res == -EINPROGRESS || res == -EBUSY) {
 | 
			
		||||
		BUG_ON(req->base.data != &ecr);
 | 
			
		||||
		wait_for_completion(&ecr.completion);
 | 
			
		||||
		res = ecr.res;
 | 
			
		||||
	}
 | 
			
		||||
	ablkcipher_request_free(req);
 | 
			
		||||
	if (res) {
 | 
			
		||||
		printk_ratelimited(
 | 
			
		||||
			KERN_ERR
 | 
			
		||||
			"%s: crypto_ablkcipher_encrypt() returned %d\n",
 | 
			
		||||
			__func__, res);
 | 
			
		||||
		return res;
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_encrypt() - Encrypts a page
 | 
			
		||||
 * @inode:          The inode for which the encryption should take place
 | 
			
		||||
 * @plaintext_page: The page to encrypt. Must be locked.
 | 
			
		||||
 *
 | 
			
		||||
 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
 | 
			
		||||
 * encryption context.
 | 
			
		||||
 *
 | 
			
		||||
 * Called on the page write path.  The caller must call
 | 
			
		||||
 * ext4_restore_control_page() on the returned ciphertext page to
 | 
			
		||||
 * release the bounce buffer and the encryption context.
 | 
			
		||||
 *
 | 
			
		||||
 * Return: An allocated page with the encrypted content on success. Else, an
 | 
			
		||||
 * error value or NULL.
 | 
			
		||||
 */
 | 
			
		||||
struct page *ext4_encrypt(struct inode *inode,
 | 
			
		||||
			  struct page *plaintext_page)
 | 
			
		||||
{
 | 
			
		||||
	struct ext4_crypto_ctx *ctx;
 | 
			
		||||
	struct page *ciphertext_page = NULL;
 | 
			
		||||
	int err;
 | 
			
		||||
 | 
			
		||||
	BUG_ON(!PageLocked(plaintext_page));
 | 
			
		||||
 | 
			
		||||
	ctx = ext4_get_crypto_ctx(inode);
 | 
			
		||||
	if (IS_ERR(ctx))
 | 
			
		||||
		return (struct page *) ctx;
 | 
			
		||||
 | 
			
		||||
	/* The encryption operation will require a bounce page. */
 | 
			
		||||
	ciphertext_page = alloc_page(GFP_NOFS);
 | 
			
		||||
	if (!ciphertext_page) {
 | 
			
		||||
		/* This is a potential bottleneck, but at least we'll have
 | 
			
		||||
		 * forward progress. */
 | 
			
		||||
		ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
 | 
			
		||||
						 GFP_NOFS);
 | 
			
		||||
		if (WARN_ON_ONCE(!ciphertext_page)) {
 | 
			
		||||
			ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
 | 
			
		||||
							 GFP_NOFS | __GFP_WAIT);
 | 
			
		||||
		}
 | 
			
		||||
		ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
 | 
			
		||||
	} else {
 | 
			
		||||
		ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
 | 
			
		||||
	}
 | 
			
		||||
	ctx->bounce_page = ciphertext_page;
 | 
			
		||||
	ctx->control_page = plaintext_page;
 | 
			
		||||
	err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
 | 
			
		||||
			       plaintext_page, ciphertext_page);
 | 
			
		||||
	if (err) {
 | 
			
		||||
		ext4_release_crypto_ctx(ctx);
 | 
			
		||||
		return ERR_PTR(err);
 | 
			
		||||
	}
 | 
			
		||||
	SetPagePrivate(ciphertext_page);
 | 
			
		||||
	set_page_private(ciphertext_page, (unsigned long)ctx);
 | 
			
		||||
	lock_page(ciphertext_page);
 | 
			
		||||
	return ciphertext_page;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_decrypt() - Decrypts a page in-place
 | 
			
		||||
 * @ctx:  The encryption context.
 | 
			
		||||
 * @page: The page to decrypt. Must be locked.
 | 
			
		||||
 *
 | 
			
		||||
 * Decrypts page in-place using the ctx encryption context.
 | 
			
		||||
 *
 | 
			
		||||
 * Called from the read completion callback.
 | 
			
		||||
 *
 | 
			
		||||
 * Return: Zero on success, non-zero otherwise.
 | 
			
		||||
 */
 | 
			
		||||
int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
 | 
			
		||||
{
 | 
			
		||||
	BUG_ON(!PageLocked(page));
 | 
			
		||||
 | 
			
		||||
	return ext4_page_crypto(ctx, page->mapping->host,
 | 
			
		||||
				EXT4_DECRYPT, page->index, page, page);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Convenience function which takes care of allocating and
 | 
			
		||||
 * deallocating the encryption context
 | 
			
		||||
 */
 | 
			
		||||
int ext4_decrypt_one(struct inode *inode, struct page *page)
 | 
			
		||||
{
 | 
			
		||||
	int ret;
 | 
			
		||||
 | 
			
		||||
	struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
 | 
			
		||||
 | 
			
		||||
	if (!ctx)
 | 
			
		||||
		return -ENOMEM;
 | 
			
		||||
	ret = ext4_decrypt(ctx, page);
 | 
			
		||||
	ext4_release_crypto_ctx(ctx);
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
 | 
			
		||||
{
 | 
			
		||||
	struct ext4_crypto_ctx	*ctx;
 | 
			
		||||
	struct page		*ciphertext_page = NULL;
 | 
			
		||||
	struct bio		*bio;
 | 
			
		||||
	ext4_lblk_t		lblk = ex->ee_block;
 | 
			
		||||
	ext4_fsblk_t		pblk = ext4_ext_pblock(ex);
 | 
			
		||||
	unsigned int		len = ext4_ext_get_actual_len(ex);
 | 
			
		||||
	int			err = 0;
 | 
			
		||||
 | 
			
		||||
	BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
 | 
			
		||||
 | 
			
		||||
	ctx = ext4_get_crypto_ctx(inode);
 | 
			
		||||
	if (IS_ERR(ctx))
 | 
			
		||||
		return PTR_ERR(ctx);
 | 
			
		||||
 | 
			
		||||
	ciphertext_page = alloc_page(GFP_NOFS);
 | 
			
		||||
	if (!ciphertext_page) {
 | 
			
		||||
		/* This is a potential bottleneck, but at least we'll have
 | 
			
		||||
		 * forward progress. */
 | 
			
		||||
		ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
 | 
			
		||||
						 GFP_NOFS);
 | 
			
		||||
		if (WARN_ON_ONCE(!ciphertext_page)) {
 | 
			
		||||
			ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
 | 
			
		||||
							 GFP_NOFS | __GFP_WAIT);
 | 
			
		||||
		}
 | 
			
		||||
		ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
 | 
			
		||||
	} else {
 | 
			
		||||
		ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
 | 
			
		||||
	}
 | 
			
		||||
	ctx->bounce_page = ciphertext_page;
 | 
			
		||||
 | 
			
		||||
	while (len--) {
 | 
			
		||||
		err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
 | 
			
		||||
				       ZERO_PAGE(0), ciphertext_page);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto errout;
 | 
			
		||||
 | 
			
		||||
		bio = bio_alloc(GFP_KERNEL, 1);
 | 
			
		||||
		if (!bio) {
 | 
			
		||||
			err = -ENOMEM;
 | 
			
		||||
			goto errout;
 | 
			
		||||
		}
 | 
			
		||||
		bio->bi_bdev = inode->i_sb->s_bdev;
 | 
			
		||||
		bio->bi_iter.bi_sector = pblk;
 | 
			
		||||
		err = bio_add_page(bio, ciphertext_page,
 | 
			
		||||
				   inode->i_sb->s_blocksize, 0);
 | 
			
		||||
		if (err) {
 | 
			
		||||
			bio_put(bio);
 | 
			
		||||
			goto errout;
 | 
			
		||||
		}
 | 
			
		||||
		err = submit_bio_wait(WRITE, bio);
 | 
			
		||||
		if (err)
 | 
			
		||||
			goto errout;
 | 
			
		||||
	}
 | 
			
		||||
	err = 0;
 | 
			
		||||
errout:
 | 
			
		||||
	ext4_release_crypto_ctx(ctx);
 | 
			
		||||
	return err;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool ext4_valid_contents_enc_mode(uint32_t mode)
 | 
			
		||||
{
 | 
			
		||||
	return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * ext4_validate_encryption_key_size() - Validate the encryption key size
 | 
			
		||||
 * @mode: The key mode.
 | 
			
		||||
 * @size: The key size to validate.
 | 
			
		||||
 *
 | 
			
		||||
 * Return: The validated key size for @mode. Zero if invalid.
 | 
			
		||||
 */
 | 
			
		||||
uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
 | 
			
		||||
{
 | 
			
		||||
	if (size == ext4_encryption_key_size(mode))
 | 
			
		||||
		return size;
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -52,6 +52,13 @@ static int ext4_create_encryption_context_from_policy(
 | 
			
		|||
	ctx.format = EXT4_ENCRYPTION_CONTEXT_FORMAT_V1;
 | 
			
		||||
	memcpy(ctx.master_key_descriptor, policy->master_key_descriptor,
 | 
			
		||||
	       EXT4_KEY_DESCRIPTOR_SIZE);
 | 
			
		||||
	if (!ext4_valid_contents_enc_mode(policy->contents_encryption_mode)) {
 | 
			
		||||
		printk(KERN_WARNING
 | 
			
		||||
		       "%s: Invalid contents encryption mode %d\n", __func__,
 | 
			
		||||
			policy->contents_encryption_mode);
 | 
			
		||||
		res = -EINVAL;
 | 
			
		||||
		goto out;
 | 
			
		||||
	}
 | 
			
		||||
	ctx.contents_encryption_mode = policy->contents_encryption_mode;
 | 
			
		||||
	ctx.filenames_encryption_mode = policy->filenames_encryption_mode;
 | 
			
		||||
	BUILD_BUG_ON(sizeof(ctx.nonce) != EXT4_KEY_DERIVATION_NONCE_SIZE);
 | 
			
		||||
| 
						 | 
				
			
			@ -60,6 +67,7 @@ static int ext4_create_encryption_context_from_policy(
 | 
			
		|||
	res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
 | 
			
		||||
			     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx,
 | 
			
		||||
			     sizeof(ctx), 0);
 | 
			
		||||
out:
 | 
			
		||||
	if (!res)
 | 
			
		||||
		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
 | 
			
		||||
	return res;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -951,6 +951,11 @@ struct ext4_inode_info {
 | 
			
		|||
 | 
			
		||||
	/* Precomputed uuid+inum+igen checksum for seeding inode checksums */
 | 
			
		||||
	__u32 i_csum_seed;
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_EXT4_FS_ENCRYPTION
 | 
			
		||||
	/* Encryption params */
 | 
			
		||||
	struct ext4_encryption_key i_encryption_key;
 | 
			
		||||
#endif
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
| 
						 | 
				
			
			@ -1366,6 +1371,12 @@ struct ext4_sb_info {
 | 
			
		|||
	struct ratelimit_state s_err_ratelimit_state;
 | 
			
		||||
	struct ratelimit_state s_warning_ratelimit_state;
 | 
			
		||||
	struct ratelimit_state s_msg_ratelimit_state;
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_EXT4_FS_ENCRYPTION
 | 
			
		||||
	/* Encryption */
 | 
			
		||||
	uint32_t s_file_encryption_mode;
 | 
			
		||||
	uint32_t s_dir_encryption_mode;
 | 
			
		||||
#endif
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb)
 | 
			
		||||
| 
						 | 
				
			
			@ -1481,6 +1492,18 @@ static inline void ext4_clear_state_flags(struct ext4_inode_info *ei)
 | 
			
		|||
#define EXT4_SB(sb)	(sb)
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Returns true if the inode is inode is encrypted
 | 
			
		||||
 */
 | 
			
		||||
static inline int ext4_encrypted_inode(struct inode *inode)
 | 
			
		||||
{
 | 
			
		||||
#ifdef CONFIG_EXT4_FS_ENCRYPTION
 | 
			
		||||
	return ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT);
 | 
			
		||||
#else
 | 
			
		||||
	return 0;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define NEXT_ORPHAN(inode) EXT4_I(inode)->i_dtime
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
| 
						 | 
				
			
			@ -2026,6 +2049,35 @@ int ext4_process_policy(const struct ext4_encryption_policy *policy,
 | 
			
		|||
int ext4_get_policy(struct inode *inode,
 | 
			
		||||
		    struct ext4_encryption_policy *policy);
 | 
			
		||||
 | 
			
		||||
/* crypto.c */
 | 
			
		||||
bool ext4_valid_contents_enc_mode(uint32_t mode);
 | 
			
		||||
uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size);
 | 
			
		||||
extern struct workqueue_struct *ext4_read_workqueue;
 | 
			
		||||
struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode);
 | 
			
		||||
void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx);
 | 
			
		||||
void ext4_restore_control_page(struct page *data_page);
 | 
			
		||||
struct page *ext4_encrypt(struct inode *inode,
 | 
			
		||||
			  struct page *plaintext_page);
 | 
			
		||||
int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page);
 | 
			
		||||
int ext4_decrypt_one(struct inode *inode, struct page *page);
 | 
			
		||||
int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex);
 | 
			
		||||
 | 
			
		||||
#ifdef CONFIG_EXT4_FS_ENCRYPTION
 | 
			
		||||
int ext4_init_crypto(void);
 | 
			
		||||
void ext4_exit_crypto(void);
 | 
			
		||||
static inline int ext4_sb_has_crypto(struct super_block *sb)
 | 
			
		||||
{
 | 
			
		||||
	return EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
 | 
			
		||||
}
 | 
			
		||||
#else
 | 
			
		||||
static inline int ext4_init_crypto(void) { return 0; }
 | 
			
		||||
static inline void ext4_exit_crypto(void) { }
 | 
			
		||||
static inline int ext4_sb_has_crypto(struct super_block *sb)
 | 
			
		||||
{
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* dir.c */
 | 
			
		||||
extern int __ext4_check_dir_entry(const char *, unsigned int, struct inode *,
 | 
			
		||||
				  struct file *,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -46,4 +46,59 @@ struct ext4_encryption_context {
 | 
			
		|||
	char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE];
 | 
			
		||||
} __attribute__((__packed__));
 | 
			
		||||
 | 
			
		||||
/* Encryption parameters */
 | 
			
		||||
#define EXT4_XTS_TWEAK_SIZE 16
 | 
			
		||||
#define EXT4_AES_128_ECB_KEY_SIZE 16
 | 
			
		||||
#define EXT4_AES_256_GCM_KEY_SIZE 32
 | 
			
		||||
#define EXT4_AES_256_CBC_KEY_SIZE 32
 | 
			
		||||
#define EXT4_AES_256_CTS_KEY_SIZE 32
 | 
			
		||||
#define EXT4_AES_256_XTS_KEY_SIZE 64
 | 
			
		||||
#define EXT4_MAX_KEY_SIZE 64
 | 
			
		||||
 | 
			
		||||
struct ext4_encryption_key {
 | 
			
		||||
	uint32_t mode;
 | 
			
		||||
	char raw[EXT4_MAX_KEY_SIZE];
 | 
			
		||||
	uint32_t size;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL             0x00000001
 | 
			
		||||
#define EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL     0x00000002
 | 
			
		||||
 | 
			
		||||
struct ext4_crypto_ctx {
 | 
			
		||||
	struct crypto_tfm *tfm;         /* Crypto API context */
 | 
			
		||||
	struct page *bounce_page;       /* Ciphertext page on write path */
 | 
			
		||||
	struct page *control_page;      /* Original page on write path */
 | 
			
		||||
	struct bio *bio;                /* The bio for this context */
 | 
			
		||||
	struct work_struct work;        /* Work queue for read complete path */
 | 
			
		||||
	struct list_head free_list;     /* Free list */
 | 
			
		||||
	int flags;                      /* Flags */
 | 
			
		||||
	int mode;                       /* Encryption mode for tfm */
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct ext4_completion_result {
 | 
			
		||||
	struct completion completion;
 | 
			
		||||
	int res;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#define DECLARE_EXT4_COMPLETION_RESULT(ecr) \
 | 
			
		||||
	struct ext4_completion_result ecr = { \
 | 
			
		||||
		COMPLETION_INITIALIZER((ecr).completion), 0 }
 | 
			
		||||
 | 
			
		||||
static inline int ext4_encryption_key_size(int mode)
 | 
			
		||||
{
 | 
			
		||||
	switch (mode) {
 | 
			
		||||
	case EXT4_ENCRYPTION_MODE_AES_256_XTS:
 | 
			
		||||
		return EXT4_AES_256_XTS_KEY_SIZE;
 | 
			
		||||
	case EXT4_ENCRYPTION_MODE_AES_256_GCM:
 | 
			
		||||
		return EXT4_AES_256_GCM_KEY_SIZE;
 | 
			
		||||
	case EXT4_ENCRYPTION_MODE_AES_256_CBC:
 | 
			
		||||
		return EXT4_AES_256_CBC_KEY_SIZE;
 | 
			
		||||
	case EXT4_ENCRYPTION_MODE_AES_256_CTS:
 | 
			
		||||
		return EXT4_AES_256_CTS_KEY_SIZE;
 | 
			
		||||
	default:
 | 
			
		||||
		BUG();
 | 
			
		||||
	}
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif	/* _EXT4_CRYPTO_H */
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -876,6 +876,9 @@ static struct inode *ext4_alloc_inode(struct super_block *sb)
 | 
			
		|||
	atomic_set(&ei->i_ioend_count, 0);
 | 
			
		||||
	atomic_set(&ei->i_unwritten, 0);
 | 
			
		||||
	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
 | 
			
		||||
#ifdef CONFIG_EXT4_FS_ENCRYPTION
 | 
			
		||||
	ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	return &ei->vfs_inode;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -3431,6 +3434,11 @@ static int ext4_fill_super(struct super_block *sb, void *data, int silent)
 | 
			
		|||
	if (sb->s_bdev->bd_part)
 | 
			
		||||
		sbi->s_sectors_written_start =
 | 
			
		||||
			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
 | 
			
		||||
#ifdef CONFIG_EXT4_FS_ENCRYPTION
 | 
			
		||||
	/* Modes of operations for file and directory encryption. */
 | 
			
		||||
	sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
 | 
			
		||||
	sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	/* Cleanup superblock name */
 | 
			
		||||
	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue