mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	net: dsa: bcm_sf2: Add support for IPv6 CFP rules
Inserting IPv6 CFP rules complicates the code a little bit in that we need to insert two rules side by side and chain them to match a full IPv6 tuple (src, dst IPv6 + port + protocol). Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
		
							parent
							
								
									4daa70cfb6
								
							
						
					
					
						commit
						ba0696c22e
					
				
					 4 changed files with 534 additions and 40 deletions
				
			
		| 
						 | 
				
			
			@ -1067,6 +1067,7 @@ static int bcm_sf2_sw_probe(struct platform_device *pdev)
 | 
			
		|||
	 * permanently used
 | 
			
		||||
	 */
 | 
			
		||||
	set_bit(0, priv->cfp.used);
 | 
			
		||||
	set_bit(0, priv->cfp.unique);
 | 
			
		||||
 | 
			
		||||
	bcm_sf2_identify_ports(priv, dn->child);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -54,6 +54,7 @@ struct bcm_sf2_cfp_priv {
 | 
			
		|||
	/* Mutex protecting concurrent accesses to the CFP registers */
 | 
			
		||||
	struct mutex lock;
 | 
			
		||||
	DECLARE_BITMAP(used, CFP_NUM_RULES);
 | 
			
		||||
	DECLARE_BITMAP(unique, CFP_NUM_RULES);
 | 
			
		||||
	unsigned int rules_cnt;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -57,6 +57,60 @@ static const struct cfp_udf_layout udf_tcpip4_layout = {
 | 
			
		|||
	},
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/* UDF slices layout for a TCPv6/UDPv6 specification */
 | 
			
		||||
static const struct cfp_udf_layout udf_tcpip6_layout = {
 | 
			
		||||
	.udfs = {
 | 
			
		||||
		[0] = {
 | 
			
		||||
			.slices = {
 | 
			
		||||
				/* End of L2, byte offset 8, src IP[0:15] */
 | 
			
		||||
				CFG_UDF_EOL2 | 4,
 | 
			
		||||
				/* End of L2, byte offset 10, src IP[16:31] */
 | 
			
		||||
				CFG_UDF_EOL2 | 5,
 | 
			
		||||
				/* End of L2, byte offset 12, src IP[32:47] */
 | 
			
		||||
				CFG_UDF_EOL2 | 6,
 | 
			
		||||
				/* End of L2, byte offset 14, src IP[48:63] */
 | 
			
		||||
				CFG_UDF_EOL2 | 7,
 | 
			
		||||
				/* End of L2, byte offset 16, src IP[64:79] */
 | 
			
		||||
				CFG_UDF_EOL2 | 8,
 | 
			
		||||
				/* End of L2, byte offset 18, src IP[80:95] */
 | 
			
		||||
				CFG_UDF_EOL2 | 9,
 | 
			
		||||
				/* End of L2, byte offset 20, src IP[96:111] */
 | 
			
		||||
				CFG_UDF_EOL2 | 10,
 | 
			
		||||
				/* End of L2, byte offset 22, src IP[112:127] */
 | 
			
		||||
				CFG_UDF_EOL2 | 11,
 | 
			
		||||
				/* End of L3, byte offset 0, src port */
 | 
			
		||||
				CFG_UDF_EOL3 | 0,
 | 
			
		||||
			},
 | 
			
		||||
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 | 
			
		||||
			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
 | 
			
		||||
		},
 | 
			
		||||
		[3] = {
 | 
			
		||||
			.slices = {
 | 
			
		||||
				/* End of L2, byte offset 24, dst IP[0:15] */
 | 
			
		||||
				CFG_UDF_EOL2 | 12,
 | 
			
		||||
				/* End of L2, byte offset 26, dst IP[16:31] */
 | 
			
		||||
				CFG_UDF_EOL2 | 13,
 | 
			
		||||
				/* End of L2, byte offset 28, dst IP[32:47] */
 | 
			
		||||
				CFG_UDF_EOL2 | 14,
 | 
			
		||||
				/* End of L2, byte offset 30, dst IP[48:63] */
 | 
			
		||||
				CFG_UDF_EOL2 | 15,
 | 
			
		||||
				/* End of L2, byte offset 32, dst IP[64:79] */
 | 
			
		||||
				CFG_UDF_EOL2 | 16,
 | 
			
		||||
				/* End of L2, byte offset 34, dst IP[80:95] */
 | 
			
		||||
				CFG_UDF_EOL2 | 17,
 | 
			
		||||
				/* End of L2, byte offset 36, dst IP[96:111] */
 | 
			
		||||
				CFG_UDF_EOL2 | 18,
 | 
			
		||||
				/* End of L2, byte offset 38, dst IP[112:127] */
 | 
			
		||||
				CFG_UDF_EOL2 | 19,
 | 
			
		||||
				/* End of L3, byte offset 2, dst port */
 | 
			
		||||
				CFG_UDF_EOL3 | 1,
 | 
			
		||||
			},
 | 
			
		||||
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 | 
			
		||||
			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 | 
			
		||||
		},
 | 
			
		||||
	},
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i, count = 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -153,7 +207,8 @@ static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 | 
			
		|||
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 | 
			
		||||
				   unsigned int rule_index,
 | 
			
		||||
				   unsigned int port_num,
 | 
			
		||||
				   unsigned int queue_num)
 | 
			
		||||
				   unsigned int queue_num,
 | 
			
		||||
				   bool fwd_map_change)
 | 
			
		||||
{
 | 
			
		||||
	int ret;
 | 
			
		||||
	u32 reg;
 | 
			
		||||
| 
						 | 
				
			
			@ -161,14 +216,17 @@ static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 | 
			
		|||
	/* Replace ARL derived destination with DST_MAP derived, define
 | 
			
		||||
	 * which port and queue this should be forwarded to.
 | 
			
		||||
	 */
 | 
			
		||||
	reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) |
 | 
			
		||||
		CHANGE_TC | queue_num << NEW_TC_SHIFT;
 | 
			
		||||
	if (fwd_map_change)
 | 
			
		||||
		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 | 
			
		||||
		      BIT(port_num + DST_MAP_IB_SHIFT) |
 | 
			
		||||
		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 | 
			
		||||
	else
 | 
			
		||||
		reg = 0;
 | 
			
		||||
 | 
			
		||||
	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 | 
			
		||||
 | 
			
		||||
	/* Set classification ID that needs to be put in Broadcom tag */
 | 
			
		||||
	core_writel(priv, rule_index << CHAIN_ID_SHIFT,
 | 
			
		||||
		    CORE_ACT_POL_DATA1);
 | 
			
		||||
	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 | 
			
		||||
 | 
			
		||||
	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -337,7 +395,8 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 | 
			
		|||
	}
 | 
			
		||||
 | 
			
		||||
	/* Insert into Action and policer RAMs now */
 | 
			
		||||
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, queue_num);
 | 
			
		||||
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
 | 
			
		||||
				      queue_num, true);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -348,17 +407,280 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 | 
			
		|||
 | 
			
		||||
	/* Flag the rule as being used and return it */
 | 
			
		||||
	set_bit(rule_index, priv->cfp.used);
 | 
			
		||||
	set_bit(rule_index, priv->cfp.unique);
 | 
			
		||||
	fs->location = rule_index;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 | 
			
		||||
				   const __be32 *ip6_addr, const __be16 port,
 | 
			
		||||
				   unsigned int slice_num)
 | 
			
		||||
{
 | 
			
		||||
	u32 reg, tmp, val;
 | 
			
		||||
 | 
			
		||||
	/* C-Tag		[31:24]
 | 
			
		||||
	 * UDF_n_B8		[23:8]	(port)
 | 
			
		||||
	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 | 
			
		||||
	 */
 | 
			
		||||
	reg = be32_to_cpu(ip6_addr[3]);
 | 
			
		||||
	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 | 
			
		||||
	core_writel(priv, val, CORE_CFP_DATA_PORT(4));
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 | 
			
		||||
	 * UDF_n_B6		[23:8] (addr[31:16])
 | 
			
		||||
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 | 
			
		||||
	 */
 | 
			
		||||
	tmp = be32_to_cpu(ip6_addr[2]);
 | 
			
		||||
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 | 
			
		||||
	      ((tmp >> 8) & 0xff);
 | 
			
		||||
	core_writel(priv, val, CORE_CFP_DATA_PORT(3));
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 | 
			
		||||
	 * UDF_n_B4		[23:8] (addr[63:48])
 | 
			
		||||
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 | 
			
		||||
	 */
 | 
			
		||||
	reg = be32_to_cpu(ip6_addr[1]);
 | 
			
		||||
	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 | 
			
		||||
	      ((reg >> 8) & 0xff);
 | 
			
		||||
	core_writel(priv, val, CORE_CFP_DATA_PORT(2));
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 | 
			
		||||
	 * UDF_n_B2		[23:8] (addr[95:80])
 | 
			
		||||
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 | 
			
		||||
	 */
 | 
			
		||||
	tmp = be32_to_cpu(ip6_addr[0]);
 | 
			
		||||
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 | 
			
		||||
	      ((tmp >> 8) & 0xff);
 | 
			
		||||
	core_writel(priv, val, CORE_CFP_DATA_PORT(1));
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 | 
			
		||||
	 * UDF_n_B0		[23:8] (addr[127:112])
 | 
			
		||||
	 * Reserved		[7:4]
 | 
			
		||||
	 * Slice ID		[3:2]
 | 
			
		||||
	 * Slice valid		[1:0]
 | 
			
		||||
	 */
 | 
			
		||||
	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 | 
			
		||||
	       SLICE_NUM(slice_num) | SLICE_VALID;
 | 
			
		||||
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 | 
			
		||||
 | 
			
		||||
	/* All other UDFs should be matched with the filter */
 | 
			
		||||
	core_writel(priv, 0x00ffffff, CORE_CFP_MASK_PORT(4));
 | 
			
		||||
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(3));
 | 
			
		||||
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
 | 
			
		||||
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
 | 
			
		||||
	core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 | 
			
		||||
				     unsigned int port_num,
 | 
			
		||||
				     unsigned int queue_num,
 | 
			
		||||
				     struct ethtool_rx_flow_spec *fs)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int slice_num, rule_index[2];
 | 
			
		||||
	struct ethtool_tcpip6_spec *v6_spec;
 | 
			
		||||
	const struct cfp_udf_layout *layout;
 | 
			
		||||
	u8 ip_proto, ip_frag;
 | 
			
		||||
	int ret = 0;
 | 
			
		||||
	u8 num_udf;
 | 
			
		||||
	u32 reg;
 | 
			
		||||
 | 
			
		||||
	switch (fs->flow_type & ~FLOW_EXT) {
 | 
			
		||||
	case TCP_V6_FLOW:
 | 
			
		||||
		ip_proto = IPPROTO_TCP;
 | 
			
		||||
		v6_spec = &fs->h_u.tcp_ip6_spec;
 | 
			
		||||
		break;
 | 
			
		||||
	case UDP_V6_FLOW:
 | 
			
		||||
		ip_proto = IPPROTO_UDP;
 | 
			
		||||
		v6_spec = &fs->h_u.udp_ip6_spec;
 | 
			
		||||
		break;
 | 
			
		||||
	default:
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 | 
			
		||||
 | 
			
		||||
	layout = &udf_tcpip6_layout;
 | 
			
		||||
	slice_num = bcm_sf2_get_slice_number(layout, 0);
 | 
			
		||||
	if (slice_num == UDF_NUM_SLICES)
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
 | 
			
		||||
	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 | 
			
		||||
 | 
			
		||||
	/* Negotiate two indexes, one for the second half which we are chained
 | 
			
		||||
	 * from, which is what we will return to user-space, and a second one
 | 
			
		||||
	 * which is used to store its first half. That first half does not
 | 
			
		||||
	 * allow any choice of placement, so it just needs to find the next
 | 
			
		||||
	 * available bit. We return the second half as fs->location because
 | 
			
		||||
	 * that helps with the rule lookup later on since the second half is
 | 
			
		||||
	 * chained from its first half, we can easily identify IPv6 CFP rules
 | 
			
		||||
	 * by looking whether they carry a CHAIN_ID.
 | 
			
		||||
	 *
 | 
			
		||||
	 * We also want the second half to have a lower rule_index than its
 | 
			
		||||
	 * first half because the HW search is by incrementing addresses.
 | 
			
		||||
	 */
 | 
			
		||||
	if (fs->location == RX_CLS_LOC_ANY)
 | 
			
		||||
		rule_index[0] = find_first_zero_bit(priv->cfp.used,
 | 
			
		||||
						    bcm_sf2_cfp_rule_size(priv));
 | 
			
		||||
	else
 | 
			
		||||
		rule_index[0] = fs->location;
 | 
			
		||||
 | 
			
		||||
	/* Flag it as used (cleared on error path) such that we can immediately
 | 
			
		||||
	 * obtain a second one to chain from.
 | 
			
		||||
	 */
 | 
			
		||||
	set_bit(rule_index[0], priv->cfp.used);
 | 
			
		||||
 | 
			
		||||
	rule_index[1] = find_first_zero_bit(priv->cfp.used,
 | 
			
		||||
					    bcm_sf2_cfp_rule_size(priv));
 | 
			
		||||
	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
 | 
			
		||||
		ret = -ENOSPC;
 | 
			
		||||
		goto out_err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Apply the UDF layout for this filter */
 | 
			
		||||
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 | 
			
		||||
 | 
			
		||||
	/* Apply to all packets received through this port */
 | 
			
		||||
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 | 
			
		||||
 | 
			
		||||
	/* Source port map match */
 | 
			
		||||
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 | 
			
		||||
 | 
			
		||||
	/* S-Tag status		[31:30]
 | 
			
		||||
	 * C-Tag status		[29:28]
 | 
			
		||||
	 * L2 framing		[27:26]
 | 
			
		||||
	 * L3 framing		[25:24]
 | 
			
		||||
	 * IP ToS		[23:16]
 | 
			
		||||
	 * IP proto		[15:08]
 | 
			
		||||
	 * IP Fragm		[7]
 | 
			
		||||
	 * Non 1st frag		[6]
 | 
			
		||||
	 * IP Authen		[5]
 | 
			
		||||
	 * TTL range		[4:3]
 | 
			
		||||
	 * PPPoE session	[2]
 | 
			
		||||
	 * Reserved		[1]
 | 
			
		||||
	 * UDF_Valid[8]		[0]
 | 
			
		||||
	 */
 | 
			
		||||
	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 | 
			
		||||
		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 | 
			
		||||
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 | 
			
		||||
 | 
			
		||||
	/* Mask with the specific layout for IPv6 packets including
 | 
			
		||||
	 * UDF_Valid[8]
 | 
			
		||||
	 */
 | 
			
		||||
	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 | 
			
		||||
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 | 
			
		||||
 | 
			
		||||
	/* UDF_Valid[7:0]	[31:24]
 | 
			
		||||
	 * S-Tag		[23:8]
 | 
			
		||||
	 * C-Tag		[7:0]
 | 
			
		||||
	 */
 | 
			
		||||
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 | 
			
		||||
 | 
			
		||||
	/* Mask all but valid UDFs */
 | 
			
		||||
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 | 
			
		||||
 | 
			
		||||
	/* Slice the IPv6 source address and port */
 | 
			
		||||
	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, slice_num);
 | 
			
		||||
 | 
			
		||||
	/* Insert into TCAM now because we need to insert a second rule */
 | 
			
		||||
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 | 
			
		||||
 | 
			
		||||
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 | 
			
		||||
	if (ret) {
 | 
			
		||||
		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 | 
			
		||||
		goto out_err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Insert into Action and policer RAMs now */
 | 
			
		||||
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
 | 
			
		||||
				      queue_num, false);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		goto out_err;
 | 
			
		||||
 | 
			
		||||
	/* Now deal with the second slice to chain this rule */
 | 
			
		||||
	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 | 
			
		||||
	if (slice_num == UDF_NUM_SLICES) {
 | 
			
		||||
		ret = -EINVAL;
 | 
			
		||||
		goto out_err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 | 
			
		||||
 | 
			
		||||
	/* Apply the UDF layout for this filter */
 | 
			
		||||
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 | 
			
		||||
 | 
			
		||||
	/* Chained rule, source port match is coming from the rule we are
 | 
			
		||||
	 * chained from.
 | 
			
		||||
	 */
 | 
			
		||||
	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 | 
			
		||||
	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
	 * CHAIN ID		[31:24] chain to previous slice
 | 
			
		||||
	 * Reserved		[23:20]
 | 
			
		||||
	 * UDF_Valid[11:8]	[19:16]
 | 
			
		||||
	 * UDF_Valid[7:0]	[15:8]
 | 
			
		||||
	 * UDF_n_D11		[7:0]
 | 
			
		||||
	 */
 | 
			
		||||
	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 | 
			
		||||
		udf_lower_bits(num_udf) << 8;
 | 
			
		||||
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 | 
			
		||||
 | 
			
		||||
	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 | 
			
		||||
	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 | 
			
		||||
		udf_lower_bits(num_udf) << 8;
 | 
			
		||||
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 | 
			
		||||
 | 
			
		||||
	/* Don't care */
 | 
			
		||||
	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
 | 
			
		||||
 | 
			
		||||
	/* Mask all */
 | 
			
		||||
	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
 | 
			
		||||
 | 
			
		||||
	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num);
 | 
			
		||||
 | 
			
		||||
	/* Insert into TCAM now */
 | 
			
		||||
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 | 
			
		||||
 | 
			
		||||
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 | 
			
		||||
	if (ret) {
 | 
			
		||||
		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 | 
			
		||||
		goto out_err;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Insert into Action and policer RAMs now, set chain ID to
 | 
			
		||||
	 * the one we are chained to
 | 
			
		||||
	 */
 | 
			
		||||
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
 | 
			
		||||
				      queue_num, true);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		goto out_err;
 | 
			
		||||
 | 
			
		||||
	/* Turn on CFP for this rule now */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_CTL_REG);
 | 
			
		||||
	reg |= BIT(port);
 | 
			
		||||
	core_writel(priv, reg, CORE_CFP_CTL_REG);
 | 
			
		||||
 | 
			
		||||
	/* Flag the second half rule as being used now, return it as the
 | 
			
		||||
	 * location, and flag it as unique while dumping rules
 | 
			
		||||
	 */
 | 
			
		||||
	set_bit(rule_index[1], priv->cfp.used);
 | 
			
		||||
	set_bit(rule_index[1], priv->cfp.unique);
 | 
			
		||||
	fs->location = rule_index[1];
 | 
			
		||||
 | 
			
		||||
	return ret;
 | 
			
		||||
 | 
			
		||||
out_err:
 | 
			
		||||
	clear_bit(rule_index[0], priv->cfp.used);
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 | 
			
		||||
				struct ethtool_rx_flow_spec *fs)
 | 
			
		||||
{
 | 
			
		||||
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 | 
			
		||||
	unsigned int queue_num, port_num;
 | 
			
		||||
	int ret;
 | 
			
		||||
	int ret = -EINVAL;
 | 
			
		||||
 | 
			
		||||
	/* Check for unsupported extensions */
 | 
			
		||||
	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
 | 
			
		||||
| 
						 | 
				
			
			@ -391,15 +713,26 @@ static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 | 
			
		|||
	if (port_num >= 7)
 | 
			
		||||
		port_num -= 1;
 | 
			
		||||
 | 
			
		||||
	ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
	switch (fs->flow_type & ~FLOW_EXT) {
 | 
			
		||||
	case TCP_V4_FLOW:
 | 
			
		||||
	case UDP_V4_FLOW:
 | 
			
		||||
		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 | 
			
		||||
						queue_num, fs);
 | 
			
		||||
		break;
 | 
			
		||||
	case TCP_V6_FLOW:
 | 
			
		||||
	case UDP_V6_FLOW:
 | 
			
		||||
		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 | 
			
		||||
						queue_num, fs);
 | 
			
		||||
		break;
 | 
			
		||||
	default:
 | 
			
		||||
		break;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
 | 
			
		||||
				u32 loc)
 | 
			
		||||
static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 | 
			
		||||
				    u32 loc, u32 *next_loc)
 | 
			
		||||
{
 | 
			
		||||
	int ret;
 | 
			
		||||
	u32 reg;
 | 
			
		||||
| 
						 | 
				
			
			@ -415,6 +748,14 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
 | 
			
		|||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
 | 
			
		||||
	/* Check if this is possibly an IPv6 rule that would
 | 
			
		||||
	 * indicate we need to delete its companion rule
 | 
			
		||||
	 * as well
 | 
			
		||||
	 */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
			
		||||
	if (next_loc)
 | 
			
		||||
		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 | 
			
		||||
 | 
			
		||||
	/* Clear its valid bits */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 | 
			
		||||
	reg &= ~SLICE_VALID;
 | 
			
		||||
| 
						 | 
				
			
			@ -426,10 +767,28 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
 | 
			
		|||
		return ret;
 | 
			
		||||
 | 
			
		||||
	clear_bit(loc, priv->cfp.used);
 | 
			
		||||
	clear_bit(loc, priv->cfp.unique);
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
 | 
			
		||||
				u32 loc)
 | 
			
		||||
{
 | 
			
		||||
	u32 next_loc = 0;
 | 
			
		||||
	int ret;
 | 
			
		||||
 | 
			
		||||
	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
 | 
			
		||||
	/* If this was an IPv6 rule, delete is companion rule too */
 | 
			
		||||
	if (next_loc)
 | 
			
		||||
		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
 | 
			
		||||
 | 
			
		||||
	return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i;
 | 
			
		||||
| 
						 | 
				
			
			@ -444,12 +803,32 @@ static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
			
		||||
				     struct ethtool_tcpip4_spec *v4_spec,
 | 
			
		||||
				     struct ethtool_tcpip4_spec *v4_m_spec)
 | 
			
		||||
				     struct ethtool_rx_flow_spec *fs)
 | 
			
		||||
{
 | 
			
		||||
	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
 | 
			
		||||
	u16 src_dst_port;
 | 
			
		||||
	u32 reg, ipv4;
 | 
			
		||||
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
			
		||||
 | 
			
		||||
	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
 | 
			
		||||
	case IPPROTO_TCP:
 | 
			
		||||
		fs->flow_type = TCP_V4_FLOW;
 | 
			
		||||
		v4_spec = &fs->h_u.tcp_ip4_spec;
 | 
			
		||||
		v4_m_spec = &fs->m_u.tcp_ip4_spec;
 | 
			
		||||
		break;
 | 
			
		||||
	case IPPROTO_UDP:
 | 
			
		||||
		fs->flow_type = UDP_V4_FLOW;
 | 
			
		||||
		v4_spec = &fs->h_u.udp_ip4_spec;
 | 
			
		||||
		v4_m_spec = &fs->m_u.udp_ip4_spec;
 | 
			
		||||
		break;
 | 
			
		||||
	default:
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
 | 
			
		||||
	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
 | 
			
		||||
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
 | 
			
		||||
	/* src port [15:8] */
 | 
			
		||||
	src_dst_port = reg << 8;
 | 
			
		||||
| 
						 | 
				
			
			@ -490,12 +869,128 @@ static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
			
		|||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
 | 
			
		||||
				     __be32 *ip6_addr, __be16 *port,
 | 
			
		||||
				     __be32 *ip6_mask, __be16 *port_mask)
 | 
			
		||||
{
 | 
			
		||||
	u32 reg, tmp;
 | 
			
		||||
 | 
			
		||||
	/* C-Tag		[31:24]
 | 
			
		||||
	 * UDF_n_B8		[23:8] (port)
 | 
			
		||||
	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
 | 
			
		||||
	 */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(4));
 | 
			
		||||
	*port = cpu_to_be32(reg) >> 8;
 | 
			
		||||
	*port_mask = cpu_to_be16(~0);
 | 
			
		||||
	tmp = (u32)(reg & 0xff) << 8;
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
 | 
			
		||||
	 * UDF_n_B6		[23:8] (addr[31:16])
 | 
			
		||||
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 | 
			
		||||
	 */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
 | 
			
		||||
	tmp |= (reg >> 24) & 0xff;
 | 
			
		||||
	tmp |= (u32)((reg >> 8) << 16);
 | 
			
		||||
	ip6_mask[3] = cpu_to_be32(~0);
 | 
			
		||||
	ip6_addr[3] = cpu_to_be32(tmp);
 | 
			
		||||
	tmp = (u32)(reg & 0xff) << 8;
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 | 
			
		||||
	 * UDF_n_B4		[23:8] (addr[63:48])
 | 
			
		||||
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 | 
			
		||||
	 */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
 | 
			
		||||
	tmp |= (reg >> 24) & 0xff;
 | 
			
		||||
	tmp |= (u32)((reg >> 8) << 16);
 | 
			
		||||
	ip6_mask[2] = cpu_to_be32(~0);
 | 
			
		||||
	ip6_addr[2] = cpu_to_be32(tmp);
 | 
			
		||||
	tmp = (u32)(reg & 0xff) << 8;
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 | 
			
		||||
	 * UDF_n_B2		[23:8] (addr[95:80])
 | 
			
		||||
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 | 
			
		||||
	 */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
 | 
			
		||||
	tmp |= (reg >> 24) & 0xff;
 | 
			
		||||
	tmp |= (u32)((reg >> 8) << 16);
 | 
			
		||||
	ip6_mask[1] = cpu_to_be32(~0);
 | 
			
		||||
	ip6_addr[1] = cpu_to_be32(tmp);
 | 
			
		||||
	tmp = (u32)(reg & 0xff) << 8;
 | 
			
		||||
 | 
			
		||||
	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 | 
			
		||||
	 * UDF_n_B0		[23:8] (addr[127:112])
 | 
			
		||||
	 * Reserved		[7:4]
 | 
			
		||||
	 * Slice ID		[3:2]
 | 
			
		||||
	 * Slice valid		[1:0]
 | 
			
		||||
	 */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 | 
			
		||||
	tmp |= (reg >> 24) & 0xff;
 | 
			
		||||
	tmp |= (u32)((reg >> 8) << 16);
 | 
			
		||||
	ip6_mask[0] = cpu_to_be32(~0);
 | 
			
		||||
	ip6_addr[0] = cpu_to_be32(tmp);
 | 
			
		||||
 | 
			
		||||
	if (!(reg & SLICE_VALID))
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
			
		||||
				     struct ethtool_rx_flow_spec *fs,
 | 
			
		||||
				     u32 next_loc)
 | 
			
		||||
{
 | 
			
		||||
	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
 | 
			
		||||
	u32 reg;
 | 
			
		||||
	int ret;
 | 
			
		||||
 | 
			
		||||
	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
 | 
			
		||||
	 * assuming tcp_ip6_spec here being an union.
 | 
			
		||||
	 */
 | 
			
		||||
	v6_spec = &fs->h_u.tcp_ip6_spec;
 | 
			
		||||
	v6_m_spec = &fs->m_u.tcp_ip6_spec;
 | 
			
		||||
 | 
			
		||||
	/* Read the second half first */
 | 
			
		||||
	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
 | 
			
		||||
				       v6_m_spec->ip6dst, &v6_m_spec->pdst);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
 | 
			
		||||
	/* Read last to avoid next entry clobbering the results during search
 | 
			
		||||
	 * operations. We would not have the port enabled for this rule, so
 | 
			
		||||
	 * don't bother checking it.
 | 
			
		||||
	 */
 | 
			
		||||
	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
 | 
			
		||||
 | 
			
		||||
	/* The slice number is valid, so read the rule we are chained from now
 | 
			
		||||
	 * which is our first half.
 | 
			
		||||
	 */
 | 
			
		||||
	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
 | 
			
		||||
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
			
		||||
 | 
			
		||||
	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
 | 
			
		||||
	case IPPROTO_TCP:
 | 
			
		||||
		fs->flow_type = TCP_V6_FLOW;
 | 
			
		||||
		break;
 | 
			
		||||
	case IPPROTO_UDP:
 | 
			
		||||
		fs->flow_type = UDP_V6_FLOW;
 | 
			
		||||
		break;
 | 
			
		||||
	default:
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
 | 
			
		||||
					v6_m_spec->ip6src, &v6_m_spec->psrc);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
			
		||||
				struct ethtool_rxnfc *nfc)
 | 
			
		||||
{
 | 
			
		||||
	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec;
 | 
			
		||||
	u32 reg, ipv4_or_chain_id;
 | 
			
		||||
	unsigned int queue_num;
 | 
			
		||||
	u32 reg;
 | 
			
		||||
	int ret;
 | 
			
		||||
 | 
			
		||||
	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
 | 
			
		||||
| 
						 | 
				
			
			@ -523,29 +1018,19 @@ static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
			
		|||
	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
 | 
			
		||||
	nfc->fs.ring_cookie += queue_num;
 | 
			
		||||
 | 
			
		||||
	/* Extract the IP protocol */
 | 
			
		||||
	/* Extract the L3_FRAMING or CHAIN_ID */
 | 
			
		||||
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
			
		||||
	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
 | 
			
		||||
	case IPPROTO_TCP:
 | 
			
		||||
		nfc->fs.flow_type = TCP_V4_FLOW;
 | 
			
		||||
		v4_spec = &nfc->fs.h_u.tcp_ip4_spec;
 | 
			
		||||
		v4_m_spec = &nfc->fs.m_u.tcp_ip4_spec;
 | 
			
		||||
		break;
 | 
			
		||||
	case IPPROTO_UDP:
 | 
			
		||||
		nfc->fs.flow_type = UDP_V4_FLOW;
 | 
			
		||||
		v4_spec = &nfc->fs.h_u.udp_ip4_spec;
 | 
			
		||||
		v4_m_spec = &nfc->fs.m_u.udp_ip4_spec;
 | 
			
		||||
		break;
 | 
			
		||||
	default:
 | 
			
		||||
		return -EINVAL;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
 | 
			
		||||
	if (v4_spec) {
 | 
			
		||||
		v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
 | 
			
		||||
		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, v4_spec, v4_m_spec);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* With IPv6 rules this would contain a non-zero chain ID since
 | 
			
		||||
	 * we reserve entry 0 and it cannot be used. So if we read 0 here
 | 
			
		||||
	 * this means an IPv4 rule.
 | 
			
		||||
	 */
 | 
			
		||||
	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
 | 
			
		||||
	if (ipv4_or_chain_id == 0)
 | 
			
		||||
		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
 | 
			
		||||
	else
 | 
			
		||||
		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
 | 
			
		||||
						ipv4_or_chain_id);
 | 
			
		||||
	if (ret)
 | 
			
		||||
		return ret;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -571,7 +1056,7 @@ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
 | 
			
		|||
{
 | 
			
		||||
	unsigned int index = 1, rules_cnt = 0;
 | 
			
		||||
 | 
			
		||||
	for_each_set_bit_from(index, priv->cfp.used, priv->num_cfp_rules) {
 | 
			
		||||
	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
 | 
			
		||||
		rule_locs[rules_cnt] = index;
 | 
			
		||||
		rules_cnt++;
 | 
			
		||||
	}
 | 
			
		||||
| 
						 | 
				
			
			@ -594,7 +1079,7 @@ int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
 | 
			
		|||
	switch (nfc->cmd) {
 | 
			
		||||
	case ETHTOOL_GRXCLSRLCNT:
 | 
			
		||||
		/* Subtract the default, unusable rule */
 | 
			
		||||
		nfc->rule_cnt = bitmap_weight(priv->cfp.used,
 | 
			
		||||
		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
 | 
			
		||||
					      priv->num_cfp_rules) - 1;
 | 
			
		||||
		/* We support specifying rule locations */
 | 
			
		||||
		nfc->data |= RX_CLS_LOC_SPECIAL;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -313,6 +313,7 @@ enum bcm_sf2_reg_offs {
 | 
			
		|||
#define  SLICE_VALID			3
 | 
			
		||||
#define  SLICE_NUM_SHIFT		2
 | 
			
		||||
#define  SLICE_NUM(x)			((x) << SLICE_NUM_SHIFT)
 | 
			
		||||
#define  SLICE_NUM_MASK			0xff
 | 
			
		||||
 | 
			
		||||
#define CORE_CFP_MASK_PORT_0		0x280c0
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -408,6 +409,12 @@ enum bcm_sf2_reg_offs {
 | 
			
		|||
#define  CFG_UDF_EOL2			(2 << CFG_UDF_OFFSET_BASE_SHIFT)
 | 
			
		||||
#define  CFG_UDF_EOL3			(3 << CFG_UDF_OFFSET_BASE_SHIFT)
 | 
			
		||||
 | 
			
		||||
/* IPv6 slices */
 | 
			
		||||
#define CORE_UDF_0_B_0_8_PORT_0		0x28500
 | 
			
		||||
 | 
			
		||||
/* IPv6 chained slices */
 | 
			
		||||
#define CORE_UDF_0_D_0_11_PORT_0	0x28680
 | 
			
		||||
 | 
			
		||||
/* Number of slices for IPv4, IPv6 and non-IP */
 | 
			
		||||
#define UDF_NUM_SLICES			4
 | 
			
		||||
#define UDFS_PER_SLICE			9
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue