Commit graph

97 commits

Author SHA1 Message Date
David Sterba
cc53bd2085 btrfs: add unlikely annotations to branches leading to EIO
The unlikely() annotation is a static prediction hint that compiler may
use to reorder code out of hot path. We use it elsewhere (namely
tree-checker.c) for error branches that almost never happen, where
EIO is one of them.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:26 +02:00
Qu Wenruo
e9bed72e88 btrfs: add extra ASSERT()s to catch unaligned bios
Btrfs uses btrfs_bio to handle read/write of logical address, for the
incoming bs > ps support, btrfs has extra requirements:

- One folio must contain at least one fs block
- No fs block can cross folio boundaries

This requirement is not hard to maintain, thanks to the address space's
minimal folio order.

But not all btrfs bios are generated through address space, e.g.
compression and scrub.

To catch possible unaligned bios, introduce a helper,
assert_bbio_alginment(), for each btrfs_bio in btrfs_submit_bbio().

This will check the following things:

- bv_offset is aligned to block size
- bv_len is aligned to block size

With a btrfs bio passing above checks, unless it's empty it will ensure
the requirements for bs > ps support.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:25 +02:00
Qu Wenruo
9afc617265 btrfs: introduce btrfs_bio_for_each_block() helper
Currently if we want to iterate a bio in block unit, we do something
like this:

	while (iter->bi_size) {
		struct bio_vec bv = bio_iter_iovec();

		/* Do something with using the bv */

		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
	}

That's fine for now, but it will not handle future bs > ps, as
bio_iter_iovec() returns a single-page bvec, meaning the bv_len will not
exceed page size.

This means the code using that bv can only handle a block if bs <= ps.

To address this problem and handle future bs > ps cases better:

- Introduce a helper btrfs_bio_for_each_block()
  Instead of bio_vec, which has single and multiple page version and
  multiple page version has quite some limits, use my favorite way to
  represent a block, phys_addr_t.

  For bs <= ps cases, nothing is changed, except we will do a very
  small overhead to convert phys_addr_t to a folio, then use the proper
  folio helpers to handle the possible highmem cases.

  For bs > ps cases, all blocks will be backed by large folios, meaning
  every folio will cover at least one block. And still use proper folio
  helpers to handle highmem cases.

  With phys_addr_t, we will handle both large folio and highmem
  properly. So there is no better single variable to present a btrfs
  block than phys_addr_t.

- Extract the data block csum calculation into a helper
  The new helper, btrfs_calculate_block_csum() will be utilized by
  btrfs_csum_one_bio().

- Use btrfs_bio_for_each_block() to replace existing call sites
  Including:

  * index_one_bio() from raid56.c
    Very straight-forward.

  * btrfs_check_read_bio()
    Also update repair_one_sector() to grab the folio using phys_addr_t,
    and do extra checks to make sure the folio covers at least one
    block.
    We do not need to bother bv_len at all now.

  * btrfs_csum_one_bio()
    Now we can move the highmem handling into a dedicated helper,
    calculate_block_csum(), and use btrfs_bio_for_each_block() helper.

There is one exception in btrfs_decompress_buf2page(), which is copying
decompressed data into the original bio, which is not iterating using
block size thus we don't need to bother.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:17 +02:00
Qu Wenruo
35aff706dc btrfs: concentrate highmem handling for data verification
Currently for btrfs checksum verification, we do it in the following
pattern:

	kaddr = kmap_local_*();
	ret = btrfs_check_csum_csum(kaddr);
	kunmap_local(kaddr);

It's OK for now, but it's still not following the patterns of helpers
inside linux/highmem.h, which never requires a virt memory address.

In those highmem helpers, they mostly accept a folio, some offset/length
inside the folio, and in the implementation they check if the folio
needs partial kmap, and do the handling.

Inspired by those formal highmem helpers, enhance the highmem handling
of data checksum verification by:

- Rename btrfs_check_sector_csum() to btrfs_check_block_csum()
  To follow the more common term "block" used in all other major
  filesystems.

- Pass a physical address into btrfs_check_block_csum() and
  btrfs_data_csum_ok()
  The physical address is always available even for a highmem page.
  Since it's page frame number << PAGE_SHIFT + offset in page.

  And with that physical address, we can grab the folio covering the
  page, and do extra checks to ensure it covers at least one block.

  This also allows us to do the kmap inside btrfs_check_block_csum().
  This means all the extra HIGHMEM handling will be concentrated into
  btrfs_check_block_csum(), and no callers will need to bother highmem
  by themselves.

- Properly zero out the block if csum mismatch
  Since btrfs_data_csum_ok() only got a paddr, we can not and should not
  use memzero_bvec(), which only accepts single page bvec.
  Instead use paddr to grab the folio and call folio_zero_range()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-23 08:49:16 +02:00
Boris Burkov
f07b855c56 btrfs: try to search for data csums in commit root
If you run a workload with:

- a cgroup that does tons of parallel data reading, with a working set
  much larger than its memory limit
- a second cgroup that writes relatively fewer files, with overwrites,
  with no memory limit
(see full code listing at the bottom for a reproducer)

Then what quickly occurs is:

- we have a large number of threads trying to read the csum tree
- we have a decent number of threads deleting csums running delayed refs
- we have a large number of threads in direct reclaim and thus high
  memory pressure

The result of this is that we writeback the csum tree repeatedly mid
transaction, to get back the extent_buffer folios for reclaim. As a
result, we repeatedly COW the csum tree for the delayed refs that are
deleting csums. This means repeatedly write locking the higher levels of
the tree.

As a result of this, we achieve an unpleasant priority inversion. We
have:

- a high degree of contention on the csum root node (and other upper
  nodes) eb rwsem
- a memory starved cgroup doing tons of reclaim on CPU.
- many reader threads in the memory starved cgroup "holding" the sem
  as readers, but not scheduling promptly. i.e., task __state == 0, but
  not running on a cpu.
- btrfs_commit_transaction stuck trying to acquire the sem as a writer.
  (running delayed_refs, deleting csums for unreferenced data extents)

This results in arbitrarily long transactions. This then results in
seriously degraded performance for any cgroup using the filesystem (the
victim cgroup in the script).

It isn't an academic problem, as we see this exact problem in production
at Meta with one cgroup over its memory limit ruining btrfs performance
for the whole system, stalling critical system services that depend on
btrfs syncs.

The underlying scheduling "problem" with global rwsems is sort of thorny
and apparently well known and was discussed at LPC 2024, for example.

As a result, our main lever in the short term is just trying to reduce
contention on our various rwsems with an eye to reducing the frequency
of write locking, to avoid disabling the read lock fast acquisition path.

Luckily, it seems likely that many reads are for old extents written
many transactions ago, and that for those we *can* in fact search the
commit root. The commit_root_sem only gets taken write once, near the
end of transaction commit, no matter how much memory pressure there is,
so we have much less contention between readers and writers.

This change detects when we are trying to read an old extent (according
to extent map generation) and then wires that through bio_ctrl to the
btrfs_bio, which unfortunately isn't allocated yet when we have this
information. When we go to lookup the csums in lookup_bio_sums we can
check this condition on the btrfs_bio and do the commit root lookup
accordingly.

Note that a single bio_ctrl might collect a few extent_maps into a single
bio, so it is important to track a maximum generation across all the
extent_maps used for each bio to make an accurate decision on whether it
is valid to look in the commit root. If any extent_map is updated in the
current generation, we can't use the commit root.

To test and reproduce this issue, I used the following script and
accompanying C program (to avoid bottlenecks in constantly forking
thousands of dd processes):

====== big-read.c ======
  #include <fcntl.h>
  #include <stdio.h>
  #include <stdlib.h>
  #include <sys/mman.h>
  #include <sys/stat.h>
  #include <unistd.h>
  #include <errno.h>

  #define BUF_SZ (128 * (1 << 10UL))

  int read_once(int fd, size_t sz) {
  	char buf[BUF_SZ];
  	size_t rd = 0;
  	int ret = 0;

  	while (rd < sz) {
  		ret = read(fd, buf, BUF_SZ);
  		if (ret < 0) {
  			if (errno == EINTR)
  				continue;
  			fprintf(stderr, "read failed: %d\n", errno);
  			return -errno;
  		} else if (ret == 0) {
  			break;
  		} else {
  			rd += ret;
  		}
  	}
  	return rd;
  }

  int read_loop(char *fname) {
  	int fd;
  	struct stat st;
  	size_t sz = 0;
  	int ret;

  	while (1) {
  		fd = open(fname, O_RDONLY);
  		if (fd == -1) {
  			perror("open");
  			return 1;
  		}
  		if (!sz) {
  			if (!fstat(fd, &st)) {
  				sz = st.st_size;
  			} else {
  				perror("stat");
  				return 1;
  			}
  		}

                  ret = read_once(fd, sz);
  		close(fd);
  	}
  }

  int main(int argc, char *argv[]) {
  	int fd;
  	struct stat st;
  	off_t sz;
  	char *buf;
  	int ret;

  	if (argc != 2) {
  		fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
  		return 1;
  	}

  	return read_loop(argv[1]);
  }

====== repro.sh ======
  #!/usr/bin/env bash

  SCRIPT=$(readlink -f "$0")
  DIR=$(dirname "$SCRIPT")

  dev=$1
  mnt=$2
  shift
  shift

  CG_ROOT=/sys/fs/cgroup
  BAD_CG=$CG_ROOT/bad-nbr
  GOOD_CG=$CG_ROOT/good-nbr
  NR_BIGGOS=1
  NR_LITTLE=10
  NR_VICTIMS=32
  NR_VILLAINS=512

  START_SEC=$(date +%s)

  _elapsed() {
  	echo "elapsed: $(($(date +%s) - $START_SEC))"
  }

  _stats() {
  	local sysfs=/sys/fs/btrfs/$(findmnt -no UUID $dev)

  	echo "================"
  	date
  	_elapsed
  	cat $sysfs/commit_stats
  	cat $BAD_CG/memory.pressure
  }

  _setup_cgs() {
  	echo "+memory +cpuset" > $CG_ROOT/cgroup.subtree_control
  	mkdir -p $GOOD_CG
  	mkdir -p $BAD_CG
  	echo max > $BAD_CG/memory.max
  	# memory.high much less than the working set will cause heavy reclaim
  	echo $((1 << 30)) > $BAD_CG/memory.high

  	# victims get a subset of villain CPUs
  	echo 0 > $GOOD_CG/cpuset.cpus
  	echo 0,1,2,3 > $BAD_CG/cpuset.cpus
  }

  _kill_cg() {
  	local cg=$1
  	local attempts=0
  	echo "kill cgroup $cg"
  	[ -f $cg/cgroup.procs ] || return
  	while true; do
  		attempts=$((attempts + 1))
  		echo 1 > $cg/cgroup.kill
  		sleep 1
  		procs=$(wc -l $cg/cgroup.procs | cut -d' ' -f1)
  		[ $procs -eq 0 ] && break
  	done
  	rmdir $cg
  	echo "killed cgroup $cg in $attempts attempts"
  }

  _biggo_vol() {
  	echo $mnt/biggo_vol.$1
  }

  _biggo_file() {
  	echo $(_biggo_vol $1)/biggo
  }

  _subvoled_biggos() {
  	total_sz=$((10 << 30))
  	per_sz=$((total_sz / $NR_VILLAINS))
  	dd_count=$((per_sz >> 20))
  	echo "create $NR_VILLAINS subvols with a file of size $per_sz bytes for a total of $total_sz bytes."
  	for i in $(seq $NR_VILLAINS)
  	do
  		btrfs subvol create $(_biggo_vol $i) &>/dev/null
  		dd if=/dev/zero of=$(_biggo_file $i) bs=1M count=$dd_count &>/dev/null
  	done
  	echo "done creating subvols."
  }

  _setup() {
  	[ -f .done ] && rm .done
  	findmnt -n $dev && exit 1
        if [ -f .re-mkfs ]; then
		mkfs.btrfs -f -m single -d single $dev >/dev/null || exit 2
	else
		echo "touch .re-mkfs to populate the test fs"
	fi

  	mount -o noatime $dev $mnt || exit 3
  	[ -f .re-mkfs ] && _subvoled_biggos
  	_setup_cgs
  }

  _my_cleanup() {
  	echo "CLEANUP!"
  	_kill_cg $BAD_CG
  	_kill_cg $GOOD_CG
  	sleep 1
  	umount $mnt
  }

  _bad_exit() {
  	_err "Unexpected Exit! $?"
  	_stats
  	exit $?
  }

  trap _my_cleanup EXIT
  trap _bad_exit INT TERM

  _setup

  # Use a lot of page cache reading the big file
  _villain() {
  	local i=$1
  	echo $BASHPID > $BAD_CG/cgroup.procs
  	$DIR/big-read $(_biggo_file $i)
  }

  # Hit del_csum a lot by overwriting lots of small new files
  _victim() {
  	echo $BASHPID > $GOOD_CG/cgroup.procs
  	i=0;
  	while (true)
  	do
  		local tmp=$mnt/tmp.$i

  		dd if=/dev/zero of=$tmp bs=4k count=2 >/dev/null 2>&1
  		i=$((i+1))
  		[ $i -eq $NR_LITTLE ] && i=0
  	done
  }

  _one_sync() {
  	echo "sync..."
  	before=$(date +%s)
  	sync
  	after=$(date +%s)
  	echo "sync done in $((after - before))s"
  	_stats
  }

  # sync in a loop
  _sync() {
  	echo "start sync loop"
  	syncs=0
  	echo $BASHPID > $GOOD_CG/cgroup.procs
  	while true
  	do
  		[ -f .done ] && break
  		_one_sync
  		syncs=$((syncs + 1))
  		[ -f .done ] && break
  		sleep 10
  	done
  	if [ $syncs -eq 0 ]; then
  		echo "do at least one sync!"
  		_one_sync
  	fi
  	echo "sync loop done."
  }

  _sleep() {
  	local time=${1-60}
  	local now=$(date +%s)
  	local end=$((now + time))
  	while [ $now -lt $end ];
  	do
  		echo "SLEEP: $((end - now))s left. Sleep 10."
  		sleep 10
  		now=$(date +%s)
  	done
  }

  echo "start $NR_VILLAINS villains"
  for i in $(seq $NR_VILLAINS)
  do
  	_villain $i &
  	disown # get rid of annoying log on kill (done via cgroup anyway)
  done

  echo "start $NR_VICTIMS victims"
  for i in $(seq $NR_VICTIMS)
  do
  	_victim &
  	disown
  done

  _sync &
  SYNC_PID=$!

  _sleep $1
  _elapsed
  touch .done
  wait $SYNC_PID

  echo "OK"
  exit 0

Without this patch, that reproducer:

- Ran for 6+ minutes instead of 60s
- Hung hundreds of threads in D state on the csum reader lock
- Got a commit stuck for 3 minutes

sync done in 388s
================
Wed Jul  9 09:52:31 PM UTC 2025
elapsed: 420
commits 2
cur_commit_ms 0
last_commit_ms 159446
max_commit_ms 159446
total_commit_ms 160058
some avg10=99.03 avg60=98.97 avg300=75.43 total=418033386
full avg10=82.79 avg60=80.52 avg300=59.45 total=324995274

419 hits state R, D comms big-read
                 btrfs_tree_read_lock_nested
                 btrfs_read_lock_root_node
                 btrfs_search_slot
                 btrfs_lookup_csum
                 btrfs_lookup_bio_sums
                 btrfs_submit_bbio

1 hits state D comms btrfs-transacti
                 btrfs_tree_lock_nested
                 btrfs_lock_root_node
                 btrfs_search_slot
                 btrfs_del_csums
                 __btrfs_run_delayed_refs
                 btrfs_run_delayed_refs

With the patch, the reproducer exits naturally, in 65s, completing a
pretty decent 4 commits, despite heavy memory pressure. Occasionally you
can still trigger a rather long commit (couple seconds) but never one
that is minutes long.

sync done in 3s
================
elapsed: 65
commits 4
cur_commit_ms 0
last_commit_ms 485
max_commit_ms 689
total_commit_ms 2453
some avg10=98.28 avg60=64.54 avg300=19.39 total=64849893
full avg10=74.43 avg60=48.50 avg300=14.53 total=48665168

some random rwalker samples showed the most common stack in reclaim,
rather than the csum tree:
145 hits state R comms bash, sleep, dd, shuf
                 shrink_folio_list
                 shrink_lruvec
                 shrink_node
                 do_try_to_free_pages
                 try_to_free_mem_cgroup_pages
                 reclaim_high

Link: https://lpc.events/event/18/contributions/1883/
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-09-22 10:54:31 +02:00
David Sterba
80f4fab544 btrfs: switch RCU helper versions to btrfs_debug()
The RCU protection is now done in the plain helpers, we can remove the
"_in_rcu" and "_rl_in_rcu".

Reviewed-by: Daniel Vacek <neelx@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-07-21 23:56:38 +02:00
David Sterba
2eac2ae8b2 btrfs: switch RCU helper versions to btrfs_info()
The RCU protection is now done in the plain helpers, we can remove the
"_in_rcu" and "_rl_in_rcu".

Reviewed-by: Daniel Vacek <neelx@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-07-21 23:56:38 +02:00
Qu Wenruo
cc38d178ff btrfs: enable large data folio support under CONFIG_BTRFS_EXPERIMENTAL
With all the preparation patches already merged, it's pretty easy to
enable large data folios:

- Remove the ASSERT() on folio size in btrfs_end_repair_bio()

- Add a helper to properly set the max folio order
  Currently due to several call sites that are fetching the bitmap
  content directly into an unsigned long, we can only support
  BITS_PER_LONG blocks for each bitmap.

- Call the helper when reading/creating an inode

The support has the following limitations:

- No large folios for data reloc inode
  The relocation code still requires page sized folio.
  But it's not that hot nor common compared to regular buffered ios.

  Will be improved in the future.

- Requires CONFIG_BTRFS_EXPERIMENTAL

- Will require all folio related operations to check if it needs the
  extra btrfs_subpage structure
  Now any folio larger than block size will need btrfs_subpage structure
  handling.

Unfortunately I do not have a physical machine for performance test, but
if everything goes like XFS/EXT4, it should mostly bring single digits
percentage performance improvement in the real world.

Although I believe there are still quite some optimizations to be done,
let's focus on testing the current large data folio support first.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-07-21 23:53:30 +02:00
David Sterba
ccb42a6eed btrfs: constify more pointer parameters
Another batch of pointer parameter constifications. This is for clarity
and minor addition to type safety. There are no observable effects in the
assembly code and .ko measured on release config.

Signed-off-by: David Sterba <dsterba@suse.com>
2025-07-21 23:53:26 +02:00
David Sterba
853b5727c9 btrfs: change return type of btrfs_alloc_dummy_sum() to int
The type blk_status_t is from block layer and not related to checksums
in our context. Use int internally and do the conversions to blk_status_t
as needed in btrfs_submit_chunk().

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:49 +02:00
David Sterba
9c0b0807ec btrfs: rename error to ret in btrfs_submit_chunk()
We can now rename 'error' to 'ret' and use it for generic errors.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:48 +02:00
David Sterba
beaa7cdb6a btrfs: rename ret to status in btrfs_submit_chunk()
We're using 'status' for the blk_status_t variables, rename 'ret' so we
can use it for proper return type.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:48 +02:00
David Sterba
64c13195dd btrfs: change return type of btrfs_bio_csum() to int
The type blk_status_t is from block layer and not related to checksums
in our context. Use int internally and do the conversions to blk_status_t
as needed.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:48 +02:00
David Sterba
a24d185c36 btrfs: change return type of btree_csum_one_bio() to int
The type blk_status_t is from block layer and not related to checksums
in our context. Use int internally and do the conversions to blk_status_t
as needed in btrfs_bio_csum().

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:48 +02:00
David Sterba
9b20d242af btrfs: change return type of btrfs_csum_one_bio() to int
The type blk_status_t is from block layer and not related to checksums
in our context. Use int internally and do the conversions to blk_status_t
as needed in btrfs_bio_csum().

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:48 +02:00
David Sterba
6f6e7e98b0 btrfs: change return type of btrfs_lookup_bio_sums() to int
The type blk_status_t is from block layer and not related to checksums
in our context. Use int internally and do the conversions to blk_status_t
as needed in btrfs_submit_chunk().

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:48 +02:00
Christoph Hellwig
3240b2c97b btrfs: pass a physical address to btrfs_repair_io_failure()
Using physical address has the following advantages:

- All involved callers only need a single pointer
  Instead of the old @folio + @offset pair.

- No complex poking into the bio_vec structure
  As a bio_vec can be single or multiple paged, grabbing the real page
  can be quite complex if the bio_vec is a multi-page one.

  Instead bvec_phys() will always give a single physical address, and it
  cab be easily converted to a page.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:46 +02:00
Yangtao Li
c900f415be btrfs: reuse exit helper for cleanup in btrfs_bioset_init()
Do not duplicate the cleanup after failed initialization
in btrfs_bioset_init() and reuse the exit function btrfs_bioset_exit().

Signed-off-by: Yangtao Li <frank.li@vivo.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15 14:30:46 +02:00
Filipe Manana
9024b744e7 btrfs: avoid unnecessary bio dereference at run_one_async_done()
We have dereferenced the async_submit_bio structure and extracted the bio
pointer into a local variable, so there's no need to dereference it again
when calling btrfs_bio_end_io(). Just use "bio->bi_status" instead of the
longer expression "async->bbio->bio.bi_status".

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18 20:35:50 +01:00
Filipe Manana
477a7a9c1f btrfs: move btrfs_cleanup_bio() code into its single caller
The btrfs_cleanup_bio() helper is trivial and has a single caller, there's
no point in having a dedicated helper function. So get rid of it and move
its code into the caller (btrfs_bio_end_io()).

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18 20:35:49 +01:00
Filipe Manana
530b601b91 btrfs: move __btrfs_bio_end_io() code into its single caller
The __btrfs_bio_end_io() helper is trivial and has a single caller, so
there's no point in having a dedicated helper function. Further the double
underscore prefix in the name is discouraged. So get rid of it and move
its code into the caller (btrfs_bio_end_io()).

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18 20:35:49 +01:00
Anand Jain
22fb0d99c9 btrfs: add tracking of read blocks for read policy
Track number of read blocks in the whole filesystem. The counter is
initialized when devices are opened. The counter is increased at
btrfs_submit_dev_bio() if the stats tracking is enabled (depends on the
read policy).  Stats tracking is disabled by default and is enabled
through fs_devices::collect_fs_stats when required.

The code is not under the EXPERIMENTAL define, as stats can be expanded
to include write counts and other performance counters, with the user
interface independent of its internal use.

This is an in-memory-only feature, not related to the dev error stats.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:21 +01:00
Johannes Thumshirn
9c48bcec47 btrfs: cache RAID stripe tree decision in btrfs_io_context
Cache the decision if a particular I/O needs to update RAID stripe tree
entries in struct btrfs_io_context.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:16 +01:00
Linus Torvalds
eabcdba3ad for-6.13-rc3-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmdhyQAACgkQxWXV+ddt
 WDuveg//bJSuXHrA7jkijst8rdoAFrceiUXuQPZ6bqb9QrSqlDZlP5/XQpdXZ3yU
 qJh/aE13cy0zWTQ2+fMcc770WSvU1cRW/f5BZ+fdXgvO8lS516suXGYd2Q06Cl9/
 DriAKGKtRfJn1BrEEv8+fjKS/chxZg6IR/W4kN6AinW31myY9jE5mEDAn+vyTDgQ
 8USZ/ar/3KuWo+wO5h5JzrvGnhzK0W0HRs/A0NZ3gG8J5T4yj+8zG0VJR4Gf93AL
 iBlsnAR8VzAYJOZCi36SD3j3/eDxJio5GhDYsdt28tk1bL8FqSuI4Yxt+LuiZ2Fg
 Cq/31lELEkyEH8AoVFm9pX3HNyRmV6JhpvDXiyofHaOUZ3VeivVE59gOShLUUMkn
 f9Pl/uh5/t/ioWWHBnCMyRpI9GZUGCvW24k7HjT7QZhsDGFLTm07diCiRgZ7eaOu
 LZRKMOL5jifAnfxNSvIJV19H4lQLTZfbdjmJyb6Il39tIU/1U9pXicgih3iyidW2
 N5n4pHf3OQFwG8kNw1mR1g1CPBALP62ja8kMv//IgH4YXXnm1Mo7B3CcJogAAmo4
 HB9f/gFqZ8kWaiuIUJKfPZkkLFt5x0TNZQyyOhVUd7V4mFdtEzVtZRWo3juYuLGk
 7Shp/MTlYokwnEropiWHU5ab3Bb9vLxlh8daGK/OmwBz01DaApI=
 =AAmb
 -----END PGP SIGNATURE-----

Merge tag 'for-6.13-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:

 - tree-checker catches invalid number of inline extent references

 - zoned mode fixes:
    - enhance zone append IO command so it also detects emulated writes
    - handle bio splitting at sectorsize boundary

 - when deleting a snapshot, fix a condition for visiting nodes in reloc
   trees

* tag 'for-6.13-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: tree-checker: reject inline extent items with 0 ref count
  btrfs: split bios to the fs sector size boundary
  btrfs: use bio_is_zone_append() in the completion handler
  btrfs: fix improper generation check in snapshot delete
2024-12-18 14:17:21 -08:00
Christoph Hellwig
be691b5e59 btrfs: split bios to the fs sector size boundary
Btrfs like other file systems can't really deal with I/O not aligned to
it's internal block size (which strangely is called sector size in
btrfs, for historical reasons), but the block layer split helper doesn't
even know about that.

Round down the split boundary so that all I/Os are aligned.

Fixes: d5e4377d50 ("btrfs: split zone append bios in btrfs_submit_bio")
CC: stable@vger.kernel.org # 6.12
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-12-17 19:54:32 +01:00
Christoph Hellwig
6c3864e055 btrfs: use bio_is_zone_append() in the completion handler
Otherwise it won't catch bios turned into regular writes by the block
level zone write plugging. The additional test it adds is for emulated
zone append.

Fixes: 9b1ce7f0c6 ("block: Implement zone append emulation")
CC: stable@vger.kernel.org # 6.12
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-12-17 19:54:32 +01:00
Johannes Thumshirn
c7c97ceff9 btrfs: handle bio_split() errors
Commit e546fe1da9 ("block: Rework bio_split() return value") changed
bio_split() so that it can return errors.

Add error handling for it in btrfs_split_bio() and ultimately
btrfs_submit_chunk(). As the bio is not submitted, the bio counter must
be decremented to pair btrfs_bio_counter_inc_blocked().

Reviewed-by: John Garry <john.g.garry@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-12-06 15:04:13 +01:00
Qu Wenruo
67cd3f2217 btrfs: split out CONFIG_BTRFS_EXPERIMENTAL from CONFIG_BTRFS_DEBUG
Currently CONFIG_BTRFS_EXPERIMENTAL is not only for the extra debugging
output, but also for experimental features.

This is not ideal to distinguish planned but not yet stable features
from those purely designed for debugging.

This patch splits the following features into CONFIG_BTRFS_EXPERIMENTAL:

- Extent map shrinker
  This seems to be the first one to exit experimental.

- Extent tree v2
  This seems to be the last one to graduate from experimental.

- Raid stripe tree
- Csum offload mode
- Send protocol v3

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11 14:34:12 +01:00
Linus Torvalds
6b4926494e for-6.12-rc5-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmck8eQACgkQxWXV+ddt
 WDu05g/6AwrnvPkivC4iVOv4Wkzrpk4gm76smx91Y9B8tSDLI1pHaS27CvJz9iWl
 vBKXPN3PQVQHwo6SPn+NjsFOSMkXlbBOVKpPU+MlZwH9Tuw66qcC+EnUCK2wEuAy
 3TN7cUGIA4r/j+SkhgIz+Irlr5pjdb1KkPIMBEVGcVFqDIuvDaTEGBqTn2i/V5aa
 dMn+gK+9rfngTOJ68t/pEFaX7SEWCvgMIcBpBB4/vs1gHm3ve2bcc1sBAdMxb1Se
 SrxgZfq+Rc5tkMn540JaWGwkb0rLzwXlurK6ygTKDKCpH0IMX+pBvDkexh9Zj0ux
 jejlRxiuDzTx3z2a7FjHDyp2sdZWMpq3sPsowpJ1Dsgi5EtSxTy4irmQuSAZY1Uj
 /uo6YwV9aTGeiNDwZeKqKc/wOuAttaMZLr14s37pro9KxndFJ/XZBxeyB+euUCOw
 B8AvAQVVIJAYQLyWINWruNKppqlgiO2RaN15RvvT2pX01d0TOx1KX1XFQku7YFxb
 M/8ZNXzJ96XtkeyHL3euo3zj7N5jWtnCvPINugUG1ADQa+bc8aX336gld1neD6fs
 QqIFIgzZG0l4N95viJilACrI6tW9zFnBqMyNFRhucKiX9aP9glOvhSfxfjcpDuQ/
 i/LIyxVLwp8M3hPNvv8tC345+1C2ug9AD0OyhWjjIYPuiOxtTWs=
 =alpB
 -----END PGP SIGNATURE-----

Merge tag 'for-6.12-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A few more stability fixes. There's one patch adding export of MIPS
  cmpxchg helper, used in the error propagation fix.

   - fix error propagation from split bios to the original btrfs bio

   - fix merging of adjacent extents (normal operation, defragmentation)

   - fix potential use after free after freeing btrfs device structures"

* tag 'for-6.12-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: fix defrag not merging contiguous extents due to merged extent maps
  btrfs: fix extent map merging not happening for adjacent extents
  btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids()
  btrfs: fix error propagation of split bios
  MIPS: export __cmpxchg_small()
2024-11-01 07:31:47 -10:00
Naohiro Aota
d48e1dea39 btrfs: fix error propagation of split bios
The purpose of btrfs_bbio_propagate_error() shall be propagating an error
of split bio to its original btrfs_bio, and tell the error to the upper
layer. However, it's not working well on some cases.

* Case 1. Immediate (or quick) end_bio with an error

When btrfs sends btrfs_bio to mirrored devices, btrfs calls
btrfs_bio_end_io() when all the mirroring bios are completed. If that
btrfs_bio was split, it is from btrfs_clone_bioset and its end_io function
is btrfs_orig_write_end_io. For this case, btrfs_bbio_propagate_error()
accesses the orig_bbio's bio context to increase the error count.

That works well in most cases. However, if the end_io is called enough
fast, orig_bbio's (remaining part after split) bio context may not be
properly set at that time. Since the bio context is set when the orig_bbio
(the last btrfs_bio) is sent to devices, that might be too late for earlier
split btrfs_bio's completion.  That will result in NULL pointer
dereference.

That bug is easily reproducible by running btrfs/146 on zoned devices [1]
and it shows the following trace.

[1] You need raid-stripe-tree feature as it create "-d raid0 -m raid1" FS.

  BUG: kernel NULL pointer dereference, address: 0000000000000020
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: Oops: 0000 [#1] PREEMPT SMP PTI
  CPU: 1 UID: 0 PID: 13 Comm: kworker/u32:1 Not tainted 6.11.0-rc7-BTRFS-ZNS+ #474
  Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
  Workqueue: writeback wb_workfn (flush-btrfs-5)
  RIP: 0010:btrfs_bio_end_io+0xae/0xc0 [btrfs]
  BTRFS error (device dm-0): bdev /dev/mapper/error-test errs: wr 2, rd 0, flush 0, corrupt 0, gen 0
  RSP: 0018:ffffc9000006f248 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: ffff888005a7f080 RCX: ffffc9000006f1dc
  RDX: 0000000000000000 RSI: 000000000000000a RDI: ffff888005a7f080
  RBP: ffff888011dfc540 R08: 0000000000000000 R09: 0000000000000001
  R10: ffffffff82e508e0 R11: 0000000000000005 R12: ffff88800ddfbe58
  R13: ffff888005a7f080 R14: ffff888005a7f158 R15: ffff888005a7f158
  FS:  0000000000000000(0000) GS:ffff88803ea80000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000020 CR3: 0000000002e22006 CR4: 0000000000370ef0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   <TASK>
   ? __die_body.cold+0x19/0x26
   ? page_fault_oops+0x13e/0x2b0
   ? _printk+0x58/0x73
   ? do_user_addr_fault+0x5f/0x750
   ? exc_page_fault+0x76/0x240
   ? asm_exc_page_fault+0x22/0x30
   ? btrfs_bio_end_io+0xae/0xc0 [btrfs]
   ? btrfs_log_dev_io_error+0x7f/0x90 [btrfs]
   btrfs_orig_write_end_io+0x51/0x90 [btrfs]
   dm_submit_bio+0x5c2/0xa50 [dm_mod]
   ? find_held_lock+0x2b/0x80
   ? blk_try_enter_queue+0x90/0x1e0
   __submit_bio+0xe0/0x130
   ? ktime_get+0x10a/0x160
   ? lockdep_hardirqs_on+0x74/0x100
   submit_bio_noacct_nocheck+0x199/0x410
   btrfs_submit_bio+0x7d/0x150 [btrfs]
   btrfs_submit_chunk+0x1a1/0x6d0 [btrfs]
   ? lockdep_hardirqs_on+0x74/0x100
   ? __folio_start_writeback+0x10/0x2c0
   btrfs_submit_bbio+0x1c/0x40 [btrfs]
   submit_one_bio+0x44/0x60 [btrfs]
   submit_extent_folio+0x13f/0x330 [btrfs]
   ? btrfs_set_range_writeback+0xa3/0xd0 [btrfs]
   extent_writepage_io+0x18b/0x360 [btrfs]
   extent_write_locked_range+0x17c/0x340 [btrfs]
   ? __pfx_end_bbio_data_write+0x10/0x10 [btrfs]
   run_delalloc_cow+0x71/0xd0 [btrfs]
   btrfs_run_delalloc_range+0x176/0x500 [btrfs]
   ? find_lock_delalloc_range+0x119/0x260 [btrfs]
   writepage_delalloc+0x2ab/0x480 [btrfs]
   extent_write_cache_pages+0x236/0x7d0 [btrfs]
   btrfs_writepages+0x72/0x130 [btrfs]
   do_writepages+0xd4/0x240
   ? find_held_lock+0x2b/0x80
   ? wbc_attach_and_unlock_inode+0x12c/0x290
   ? wbc_attach_and_unlock_inode+0x12c/0x290
   __writeback_single_inode+0x5c/0x4c0
   ? do_raw_spin_unlock+0x49/0xb0
   writeback_sb_inodes+0x22c/0x560
   __writeback_inodes_wb+0x4c/0xe0
   wb_writeback+0x1d6/0x3f0
   wb_workfn+0x334/0x520
   process_one_work+0x1ee/0x570
   ? lock_is_held_type+0xc6/0x130
   worker_thread+0x1d1/0x3b0
   ? __pfx_worker_thread+0x10/0x10
   kthread+0xee/0x120
   ? __pfx_kthread+0x10/0x10
   ret_from_fork+0x30/0x50
   ? __pfx_kthread+0x10/0x10
   ret_from_fork_asm+0x1a/0x30
   </TASK>
  Modules linked in: dm_mod btrfs blake2b_generic xor raid6_pq rapl
  CR2: 0000000000000020

* Case 2. Earlier completion of orig_bbio for mirrored btrfs_bios

btrfs_bbio_propagate_error() assumes the end_io function for orig_bbio is
called last among split bios. In that case, btrfs_orig_write_end_io() sets
the bio->bi_status to BLK_STS_IOERR by seeing the bioc->error [2].
Otherwise, the increased orig_bio's bioc->error is not checked by anyone
and return BLK_STS_OK to the upper layer.

[2] Actually, this is not true. Because we only increases orig_bioc->errors
by max_errors, the condition "atomic_read(&bioc->error) > bioc->max_errors"
is still not met if only one split btrfs_bio fails.

* Case 3. Later completion of orig_bbio for un-mirrored btrfs_bios

In contrast to the above case, btrfs_bbio_propagate_error() is not working
well if un-mirrored orig_bbio is completed last. It sets
orig_bbio->bio.bi_status to the btrfs_bio's error. But, that is easily
over-written by orig_bbio's completion status. If the status is BLK_STS_OK,
the upper layer would not know the failure.

* Solution

Considering the above cases, we can only save the error status in the
orig_bbio (remaining part after split) itself as it is always
available. Also, the saved error status should be propagated when all the
split btrfs_bios are finished (i.e, bbio->pending_ios == 0).

This commit introduces "status" to btrfs_bbio and saves the first error of
split bios to original btrfs_bio's "status" variable. When all the split
bios are finished, the saved status is loaded into original btrfs_bio's
status.

With this commit, btrfs/146 on zoned devices does not hit the NULL pointer
dereference anymore.

Fixes: 852eee62d3 ("btrfs: allow btrfs_submit_bio to split bios")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-23 18:17:43 +02:00
Linus Torvalds
26bb0d3f38 for-6.12/block-20240913
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmbkZhQQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpjOKD/0fzd4yOcqxSI9W3OLGd04VrOTJIQa4CRbV
 GmoTq39pOeIDVGug5ekkTpqqHHnuGk+nQhCzD9vsN/eTmC7yZOIr847O2aWzvYEn
 PzFRgmJpoo2E9sr/IsTR5LnJjbaIZhQVkqLH6ZOj9tpKlVwN2SK0nIRVNrAi5zgT
 MaDrto/2OUld+vmA99Rgb23jxM6UBdCPIjuiVa+11Vg9Z3D1tWbBmrsG7OMysyIf
 FbASBeKHqFSO61/ipFCZv6VV1X8zoWEVyT8n4A1yUbbN5rLzPgoQJVbfSqQRXIdr
 cdrKeCbKxl+joSgKS6LKpvnfwRgGF+hgAfpZg4c0vrbZGTQcRhhLFECyh/aVI08F
 p5TOMArhVaX59664gHgSPq4KnGTXOO29dot9N3Jya/ZQnxinjY9r+GVOfLuduPPy
 1B04vab8oAsk4zK7fZbkDxgYUyifwzK/vQ6OqYq2mYdpdIS/AE7T2ou61Bz5mI7I
 /BuucNV0Z96OKlyLEXwXXZjZgNu1TFcq6ARIBJ8L08PY64Fesj5BXabRyXkeNH26
 0exyz9heeJs6OwRGfngXmS24tDSS0k74CeZX3KoePNj69u6KCn346KiU1qgntwwD
 E5F7AEHqCl5FjUEIWB4M1EPlfA8U0MzOL+tkx2xKJAjsU60wAy7jRSyOIcqodpMs
 6UlPcJzgYg==
 =uuLl
 -----END PGP SIGNATURE-----

Merge tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux

Pull block updates from Jens Axboe:

 - MD changes via Song:
      - md-bitmap refactoring (Yu Kuai)
      - raid5 performance optimization (Artur Paszkiewicz)
      - Other small fixes (Yu Kuai, Chen Ni)
      - Add a sysfs entry 'new_level' (Xiao Ni)
      - Improve information reported in /proc/mdstat (Mateusz Kusiak)

 - NVMe changes via Keith:
      - Asynchronous namespace scanning (Stuart)
      - TCP TLS updates (Hannes)
      - RDMA queue controller validation (Niklas)
      - Align field names to the spec (Anuj)
      - Metadata support validation (Puranjay)
      - A syntax cleanup (Shen)
      - Fix a Kconfig linking error (Arnd)
      - New queue-depth quirk (Keith)

 - Add missing unplug trace event (Keith)

 - blk-iocost fixes (Colin, Konstantin)

 - t10-pi modular removal and fixes (Alexey)

 - Fix for potential BLKSECDISCARD overflow (Alexey)

 - bio splitting cleanups and fixes (Christoph)

 - Deal with folios rather than rather than pages, speeding up how the
   block layer handles bigger IOs (Kundan)

 - Use spinlocks rather than bit spinlocks in zram (Sebastian, Mike)

 - Reduce zoned device overhead in ublk (Ming)

 - Add and use sendpages_ok() for drbd and nvme-tcp (Ofir)

 - Fix regression in partition error pointer checking (Riyan)

 - Add support for write zeroes and rotational status in nbd (Wouter)

 - Add Yu Kuai as new BFQ maintainer. The scheduler has been
   unmaintained for quite a while.

 - Various sets of fixes for BFQ (Yu Kuai)

 - Misc fixes and cleanups (Alvaro, Christophe, Li, Md Haris, Mikhail,
   Yang)

* tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux: (120 commits)
  nvme-pci: qdepth 1 quirk
  block: fix potential invalid pointer dereference in blk_add_partition
  blk_iocost: make read-only static array vrate_adj_pct const
  block: unpin user pages belonging to a folio at once
  mm: release number of pages of a folio
  block: introduce folio awareness and add a bigger size from folio
  block: Added folio-ized version of bio_add_hw_page()
  block, bfq: factor out a helper to split bfqq in bfq_init_rq()
  block, bfq: remove local variable 'bfqq_already_existing' in bfq_init_rq()
  block, bfq: remove local variable 'split' in bfq_init_rq()
  block, bfq: remove bfq_log_bfqg()
  block, bfq: merge bfq_release_process_ref() into bfq_put_cooperator()
  block, bfq: fix procress reference leakage for bfqq in merge chain
  block, bfq: fix uaf for accessing waker_bfqq after splitting
  blk-throttle: support prioritized processing of metadata
  blk-throttle: remove last_low_overflow_time
  drbd: Add NULL check for net_conf to prevent dereference in state validation
  nvme-tcp: fix link failure for TCP auth
  blk-mq: add missing unplug trace event
  mtip32xx: Remove redundant null pointer checks in mtip_hw_debugfs_init()
  ...
2024-09-16 13:33:06 +02:00
Qu Wenruo
9ca0e58cb7 btrfs: merge btrfs_orig_bbio_end_io() into btrfs_bio_end_io()
There are only two differences between the two functions:

- btrfs_orig_bbio_end_io() does extra error propagation
  This is mostly to allow tolerance for write errors.

- btrfs_orig_bbio_end_io() does extra pending_ios check
  This check can handle both the original bio, or the cloned one.
  (All accounting happens in the original one).

This makes btrfs_orig_bbio_end_io() a much safer call.
In fact we already had a double freeing error due to usage of
btrfs_bio_end_io() in the error path of btrfs_submit_chunk().

So just move the whole content of btrfs_orig_bbio_end_io() into
btrfs_bio_end_io().

For normal paths this brings no change, because they are already calling
btrfs_orig_bbio_end_io() in the first place.

For error paths (not only inside bio.c but also external callers), this
change will introduce extra checks, especially for external callers, as
they will error out without submitting the btrfs bio.

But considering it's already in the error path, such slower but much
safer checks are still an overall win.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:20 +02:00
David Sterba
22b4ef50dc btrfs: rename __btrfs_submit_bio() and drop double underscores
Previous patch freed the function name btrfs_submit_bio() so we can use
it for a helper that submits struct bio.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:19 +02:00
David Sterba
792e86ef31 btrfs: rename btrfs_submit_bio() to btrfs_submit_bbio()
The function name is a bit misleading as it submits the btrfs_bio
(bbio), rename it so we can use btrfs_submit_bio() when an actual bio is
submitted.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:19 +02:00
Johannes Thumshirn
f4d39cf1ce btrfs: set search_commit_root on stripe io in case of relocation
Set rst_search_commit_root in the btrfs_io_stripe we're passing to
btrfs_map_block() in case we're doing data relocation.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:17 +02:00
Johannes Thumshirn
d6106f0dc5 btrfs: rename btrfs_io_stripe::is_scrub to rst_search_commit_root
Rename 'btrfs_io_stripe::is_scrub' to 'rst_search_commit_root'. While
'is_scrub' describes the state of the io_stripe (it is a stripe submitted
by scrub) it does not describe the purpose, namely looking at the commit
root when searching RAID stripe-tree entries.

Renaming the stripe to rst_search_commit_root describes this purpose.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:17 +02:00
Christoph Hellwig
b35243a447 block: rework bio splitting
The current setup with bio_may_exceed_limit and __bio_split_to_limits
is a bit of a mess.

Change it so that __bio_split_to_limits does all the work and is just
a variant of bio_split_to_limits that returns nr_segs.  This is done
by inlining it and instead have the various bio_split_* helpers directly
submit the potentially split bios.

To support btrfs, the rw version has a lower level helper split out
that just returns the offset to split.  This turns out to nicely clean
up the btrfs flow as well.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Tested-by: Hans Holmberg <hans.holmberg@wdc.com>
Reviewed-by: Hans Holmberg <hans.holmberg@wdc.com>
Link: https://lore.kernel.org/r/20240826173820.1690925-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-08-29 04:32:32 -06:00
Qu Wenruo
10d9d8c351 btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk()
[BUG]
There is an internal report that KASAN is reporting use-after-free, with
the following backtrace:

  BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs]
  Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45
  CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
  Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
  Call Trace:
   dump_stack_lvl+0x61/0x80
   print_address_description.constprop.0+0x5e/0x2f0
   print_report+0x118/0x216
   kasan_report+0x11d/0x1f0
   btrfs_check_read_bio+0xa68/0xb70 [btrfs]
   process_one_work+0xce0/0x12a0
   worker_thread+0x717/0x1250
   kthread+0x2e3/0x3c0
   ret_from_fork+0x2d/0x70
   ret_from_fork_asm+0x11/0x20

  Allocated by task 20917:
   kasan_save_stack+0x37/0x60
   kasan_save_track+0x10/0x30
   __kasan_slab_alloc+0x7d/0x80
   kmem_cache_alloc_noprof+0x16e/0x3e0
   mempool_alloc_noprof+0x12e/0x310
   bio_alloc_bioset+0x3f0/0x7a0
   btrfs_bio_alloc+0x2e/0x50 [btrfs]
   submit_extent_page+0x4d1/0xdb0 [btrfs]
   btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
   btrfs_readahead+0x29a/0x430 [btrfs]
   read_pages+0x1a7/0xc60
   page_cache_ra_unbounded+0x2ad/0x560
   filemap_get_pages+0x629/0xa20
   filemap_read+0x335/0xbf0
   vfs_read+0x790/0xcb0
   ksys_read+0xfd/0x1d0
   do_syscall_64+0x6d/0x140
   entry_SYSCALL_64_after_hwframe+0x4b/0x53

  Freed by task 20917:
   kasan_save_stack+0x37/0x60
   kasan_save_track+0x10/0x30
   kasan_save_free_info+0x37/0x50
   __kasan_slab_free+0x4b/0x60
   kmem_cache_free+0x214/0x5d0
   bio_free+0xed/0x180
   end_bbio_data_read+0x1cc/0x580 [btrfs]
   btrfs_submit_chunk+0x98d/0x1880 [btrfs]
   btrfs_submit_bio+0x33/0x70 [btrfs]
   submit_one_bio+0xd4/0x130 [btrfs]
   submit_extent_page+0x3ea/0xdb0 [btrfs]
   btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
   btrfs_readahead+0x29a/0x430 [btrfs]
   read_pages+0x1a7/0xc60
   page_cache_ra_unbounded+0x2ad/0x560
   filemap_get_pages+0x629/0xa20
   filemap_read+0x335/0xbf0
   vfs_read+0x790/0xcb0
   ksys_read+0xfd/0x1d0
   do_syscall_64+0x6d/0x140
   entry_SYSCALL_64_after_hwframe+0x4b/0x53

[CAUSE]
Although I cannot reproduce the error, the report itself is good enough
to pin down the cause.

The call trace is the regular endio workqueue context, but the
free-by-task trace is showing that during btrfs_submit_chunk() we
already hit a critical error, and is calling btrfs_bio_end_io() to error
out.  And the original endio function called bio_put() to free the whole
bio.

This means a double freeing thus causing use-after-free, e.g.:

1. Enter btrfs_submit_bio() with a read bio
   The read bio length is 128K, crossing two 64K stripes.

2. The first run of btrfs_submit_chunk()

2.1 Call btrfs_map_block(), which returns 64K
2.2 Call btrfs_split_bio()
    Now there are two bios, one referring to the first 64K, the other
    referring to the second 64K.
2.3 The first half is submitted.

3. The second run of btrfs_submit_chunk()

3.1 Call btrfs_map_block(), which by somehow failed
    Now we call btrfs_bio_end_io() to handle the error

3.2 btrfs_bio_end_io() calls the original endio function
    Which is end_bbio_data_read(), and it calls bio_put() for the
    original bio.

    Now the original bio is freed.

4. The submitted first 64K bio finished
   Now we call into btrfs_check_read_bio() and tries to advance the bio
   iter.
   But since the original bio (thus its iter) is already freed, we
   trigger the above use-after free.

   And even if the memory is not poisoned/corrupted, we will later call
   the original endio function, causing a double freeing.

[FIX]
Instead of calling btrfs_bio_end_io(), call btrfs_orig_bbio_end_io(),
which has the extra check on split bios and do the proper refcounting
for cloned bios.

Furthermore there is already one extra btrfs_cleanup_bio() call, but
that is duplicated to btrfs_orig_bbio_end_io() call, so remove that
label completely.

Reported-by: David Sterba <dsterba@suse.com>
Fixes: 852eee62d3 ("btrfs: allow btrfs_submit_bio to split bios")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-27 01:34:08 +02:00
Qu Wenruo
169aaaf2e0 btrfs: introduce new "rescue=ignoremetacsums" mount option
Introduce "rescue=ignoremetacsums" to ignore metadata csums, all the
other metadata sanity checks are still kept as is.

This new mount option is mostly to allow the kernel to mount an
interrupted checksum conversion (at the metadata csum overwrite stage).

And since the main part of metadata sanity checks is inside
tree-checker, we shouldn't lose much safety, and the new mount option is
rescue mount option it requires full read-only mount.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:29 +02:00
David Sterba
8610ba7eab btrfs: pass a btrfs_inode to is_data_inode()
Pass a struct btrfs_inode to is_data_inode() as it's an
internal interface, allowing to remove some use of BTRFS_I.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:28 +02:00
Johannes Thumshirn
cebae292e0 btrfs: zoned: allocate dummy checksums for zoned NODATASUM writes
Shin'ichiro reported that when he's running fstests' test-case
btrfs/167 on emulated zoned devices, he's seeing the following NULL
pointer dereference in 'btrfs_zone_finish_endio()':

  Oops: general protection fault, probably for non-canonical address 0xdffffc0000000011: 0000 [#1] PREEMPT SMP KASAN NOPTI
  KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f]
  CPU: 4 PID: 2332440 Comm: kworker/u80:15 Tainted: G        W          6.10.0-rc2-kts+ #4
  Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020
  Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
  RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]

  RSP: 0018:ffff88867f107a90 EFLAGS: 00010206
  RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff893e5534
  RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088
  RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed1081696028
  R10: ffff88840b4b0143 R11: ffff88834dfff600 R12: ffff88840b4b0000
  R13: 0000000000020000 R14: 0000000000000000 R15: ffff888530ad5210
  FS:  0000000000000000(0000) GS:ffff888e3f800000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f87223fff38 CR3: 00000007a7c6a002 CR4: 00000000007706f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
   <TASK>
   ? __die_body.cold+0x19/0x27
   ? die_addr+0x46/0x70
   ? exc_general_protection+0x14f/0x250
   ? asm_exc_general_protection+0x26/0x30
   ? do_raw_read_unlock+0x44/0x70
   ? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]
   btrfs_finish_one_ordered+0x5d9/0x19a0 [btrfs]
   ? __pfx_lock_release+0x10/0x10
   ? do_raw_write_lock+0x90/0x260
   ? __pfx_do_raw_write_lock+0x10/0x10
   ? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs]
   ? _raw_write_unlock+0x23/0x40
   ? btrfs_finish_ordered_zoned+0x5a9/0x850 [btrfs]
   ? lock_acquire+0x435/0x500
   btrfs_work_helper+0x1b1/0xa70 [btrfs]
   ? __schedule+0x10a8/0x60b0
   ? __pfx___might_resched+0x10/0x10
   process_one_work+0x862/0x1410
   ? __pfx_lock_acquire+0x10/0x10
   ? __pfx_process_one_work+0x10/0x10
   ? assign_work+0x16c/0x240
   worker_thread+0x5e6/0x1010
   ? __pfx_worker_thread+0x10/0x10
   kthread+0x2c3/0x3a0
   ? trace_irq_enable.constprop.0+0xce/0x110
   ? __pfx_kthread+0x10/0x10
   ret_from_fork+0x31/0x70
   ? __pfx_kthread+0x10/0x10
   ret_from_fork_asm+0x1a/0x30
   </TASK>

Enabling CONFIG_BTRFS_ASSERT revealed the following assertion to
trigger:

  assertion failed: !list_empty(&ordered->list), in fs/btrfs/zoned.c:1815

This indicates, that we're missing the checksums list on the
ordered_extent. As btrfs/167 is doing a NOCOW write this is to be
expected.

Further analysis with drgn confirmed the assumption:

  >>> inode = prog.crashed_thread().stack_trace()[11]['ordered'].inode
  >>> btrfs_inode = drgn.container_of(inode, "struct btrfs_inode", \
         				"vfs_inode")
  >>> print(btrfs_inode.flags)
  (u32)1

As zoned emulation mode simulates conventional zones on regular devices,
we cannot use zone-append for writing. But we're only attaching dummy
checksums if we're doing a zone-append write.

So for NOCOW zoned data writes on conventional zones, also attach a
dummy checksum.

Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Fixes: cbfce4c7fb ("btrfs: optimize the logical to physical mapping for zoned writes")
CC: Naohiro Aota <Naohiro.Aota@wdc.com> # 6.6+
Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-13 20:43:55 +02:00
Naohiro Aota
2761ece893 btrfs: introduce offload_csum_mode to tweak checksum offloading behavior
We disable offloading checksum to workqueues and do it synchronously when
the checksum algorithm is fast. However, as reported in the link below,
RAID0 with multiple devices may suffer from the sync checksum, because
"fast checksum" is still not fast enough to catch up with RAID0 writing.

We don't have an effective way to determine whether to offload or not,
for now add a sysfs knob so this can be debugged. This is intentionally
under CONFIG_BTRFS_DEBUG so ti's not exposed to users as it may be
removed in the future agin.

Introduce fs_devices->offload_csum_mode, so that a btrfs developer can
change the behavior by writing to /sys/fs/btrfs/<uuid>/offload_csum. The
default is "auto" which is the same as the previous behavior. Or, you
can set "on" or "off" (or "y" or "n" whatever kstrtobool() accepts) to
always/never offload checksum.

More benchmark need to be collected with this knob to implement a proper
criteria to enable/disable checksum offloading.

Link: https://lore.kernel.org/linux-btrfs/20230731152223.4EFB.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/p3vo3g7pqn664mhmdhlotu5dzcna6vjtcoc2hb2lsgo2fwct7k@xzaxclba5tae/
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:52 +01:00
David Sterba
2b712e3bb2 btrfs: remove unused included headers
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:46 +01:00
Johannes Thumshirn
c4e5b7470a btrfs: remove duplicate recording of physical address
Remove the duplicate physical recording of the original write physical
address in case of a single device write.

This duplicated code is most likely present due to a rebase error.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:45 +01:00
Qu Wenruo
96c36eaa77 btrfs: migrate btrfs_repair_io_failure() to folio interfaces
[BUG]
Test case btrfs/124 failed if larger metadata folio is enabled, the
dying message looks like this:

 BTRFS error (device dm-2): bad tree block start, mirror 2 want 31686656 have 0
 BTRFS info (device dm-2): read error corrected: ino 0 off 31686656 (dev /dev/mapper/test-scratch2 sector 20928)
 BUG: kernel NULL pointer dereference, address: 0000000000000020
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 CPU: 6 PID: 350881 Comm: btrfs Tainted: G           OE      6.7.0-rc3-custom+ #128
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022
 RIP: 0010:btrfs_read_extent_buffer+0x106/0x180 [btrfs]
 PKRU: 55555554
 Call Trace:
  <TASK>
  read_tree_block+0x33/0xb0 [btrfs]
  read_block_for_search+0x23e/0x340 [btrfs]
  btrfs_search_slot+0x2f9/0xe60 [btrfs]
  btrfs_lookup_csum+0x75/0x160 [btrfs]
  btrfs_lookup_bio_sums+0x21a/0x560 [btrfs]
  btrfs_submit_chunk+0x152/0x680 [btrfs]
  btrfs_submit_bio+0x1c/0x50 [btrfs]
  submit_one_bio+0x40/0x80 [btrfs]
  submit_extent_page+0x158/0x390 [btrfs]
  btrfs_do_readpage+0x330/0x740 [btrfs]
  extent_readahead+0x38d/0x6c0 [btrfs]
  read_pages+0x94/0x2c0
  page_cache_ra_unbounded+0x12d/0x190
  relocate_file_extent_cluster+0x7c1/0x9d0 [btrfs]
  relocate_block_group+0x2d3/0x560 [btrfs]
  btrfs_relocate_block_group+0x2c7/0x4b0 [btrfs]
  btrfs_relocate_chunk+0x4c/0x1a0 [btrfs]
  btrfs_balance+0x925/0x13c0 [btrfs]
  btrfs_ioctl+0x19f1/0x25d0 [btrfs]
  __x64_sys_ioctl+0x90/0xd0
  do_syscall_64+0x3f/0xf0
  entry_SYSCALL_64_after_hwframe+0x6e/0x76

[CAUSE]
The dying line is at btrfs_repair_io_failure() call inside
btrfs_repair_eb_io_failure().

The function is still relying on the extent buffer using page sized
folios.
When the extent buffer is using larger folio, we go into the 2nd slot of
folios[], and triggered the NULL pointer dereference.

[FIX]
Migrate btrfs_repair_io_failure() to folio interfaces.

So that when we hit a larger folio, we just submit the whole folio in
one go.

This also affects data repair path through btrfs_end_repair_bio(),
thankfully data is still fully page based, we can just add an
ASSERT(), and use page_folio() to convert the page to folio.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 23:03:58 +01:00
David Sterba
eefaf0a1a6 btrfs: fix typos found by codespell
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 23:00:04 +01:00
David Sterba
078b8b90b8 btrfs: merge ordered work callbacks in btrfs_work into one
There are two callbacks defined in btrfs_work but only two actually make
use of them, otherwise there are NULLs. We can get rid of the freeing
callback making it a special case of the normal work. This reduces the
size of btrfs_work by 8 bytes, final layout:

struct btrfs_work {
        btrfs_func_t               func;                 /*     0     8 */
        btrfs_ordered_func_t       ordered_func;         /*     8     8 */
        struct work_struct         normal_work;          /*    16    32 */
        struct list_head           ordered_list;         /*    48    16 */
        /* --- cacheline 1 boundary (64 bytes) --- */
        struct btrfs_workqueue *   wq;                   /*    64     8 */
        long unsigned int          flags;                /*    72     8 */

        /* size: 80, cachelines: 2, members: 6 */
        /* last cacheline: 16 bytes */
};

This in turn reduces size of other structures (on a release config):

- async_chunk			 160 ->  152
- async_submit_bio		 152 ->  144
- btrfs_async_delayed_work	 104 ->   96
- btrfs_caching_control		 176 ->  168
- btrfs_delalloc_work		 144 ->  136
- btrfs_fs_info			3608 -> 3600
- btrfs_ordered_extent		 440 ->  424
- btrfs_writepage_fixup		 104 ->   96

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
9acaa64187 btrfs: scrub: implement raid stripe tree support
A filesystem that uses the raid stripe tree for logical to physical
address translation can't use the regular scrub path, that reads all
stripes and then checks if a sector is unused afterwards.

When using the raid stripe tree, this will result in lookup errors, as
the stripe tree doesn't know the requested logical addresses.

In case we're scrubbing a filesystem which uses the RAID stripe tree for
multi-device logical to physical address translation, perform an extra
block mapping step to get the real on-disk stripe length from the stripe
tree when scrubbing the sectors.

This prevents a double completion of the btrfs_bio caused by splitting the
underlying bio and ultimately a use-after-free.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
02c372e1f0 btrfs: add support for inserting raid stripe extents
Add support for inserting stripe extents into the raid stripe tree on
completion of every write that needs an extra logical-to-physical
translation when using RAID.

Inserting the stripe extents happens after the data I/O has completed,
this is done to

  a) support zone-append and
  b) rule out the possibility of a RAID-write-hole.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Qu Wenruo
9fb2acc2fe btrfs: remove the need_raid_map parameter from btrfs_map_block()
The parameter @need_raid_map is mostly a legacy from the old days where
we don't yet have a solid definition on the @mirror_num, and only
check-integrity was using that parameter, while all other call sites
just pass 1 for that parameter.

Now since we have removed check-integrity functionality, we can also
remove the @need_raid_map parameter.

This change will also remove the ability to read P/Q stripe directly
when passing 0 as @need_raid_map.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00