This includes the following preparation for bs > ps cases:
- Always alloc/free the folio directly if bs > ps
This adds a new @fs_info parameter for btrfs_alloc_compr_folio(), thus
affecting all compression algorithms.
For btrfs_free_compr_folio() it needs no parameter for now, as we can
use the folio size to skip the caching part.
For now the change is just to passing a @fs_info into the function,
all the folio size assumption is still based on page size.
- Properly zero the last folio in compress_file_range()
Since the compressed folios can be larger than a page, we need to
properly zero the whole folio.
- Use correct folio size for btrfs_add_compressed_bio_folios()
Instead of page size, use the correct folio size.
- Use correct folio size/shift for btrfs_compress_filemap_get_folio()
As we are not only using simple page sized folios anymore.
- Use correct folio size for btrfs_decompress()
There is an ASSERT() making sure the decompressed range is no larger
than a page, which will be triggered for bs > ps cases.
- Skip readahead for compressed pages
Similar to subpage cases.
- Make btrfs_alloc_folio_array() to accept a new @order parameter
- Add a helper to calculate the minimal folio size
All those changes should not affect the existing bs <= ps handling.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Annual typo fixing pass. Strangely codespell found only about 30% of
what is in this patch, the rest was done manually using text
spellchecker with a custom dictionary of acceptable terms.
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: David Sterba <dsterba@suse.com>
Since all workspace managers are per-fs, there is no need nor no way to
store them inside btrfs_compress_op::wsm anymore.
With that said, we can do the following modifications:
- Remove zstd_workspace_mananger::ops
Zstd always grab the global btrfs_compress_op[].
- Remove btrfs_compress_op::wsm member
- Rename btrfs_compress_op to btrfs_compress_levels
This should make it more clear that btrfs_compress_levels structures are
only to indicate the levels of each compress algorithm.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since all workspaces are handled by the per-fs workspace managers, we
can safely remove the old per-module managers.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several interfaces involved for each algorithm:
- alloc workspace
All algorithms allocate a workspace without the need for workspace
manager.
So no change needs to be done.
- get workspace
This involves checking the workspace manager to find a free one, and
if not, allocate a new one.
For none and lzo, they share the same generic btrfs_get_workspace()
helper, only needs to update that function to use the per-fs manager.
For zlib it uses a wrapper around btrfs_get_workspace(), so no special
work needed.
For zstd, update zstd_find_workspace() and zstd_get_workspace() to
utilize the per-fs manager.
- put workspace
For none/zlib/lzo they share the same btrfs_put_workspace(), update
that function to use the per-fs manager.
For zstd, it's zstd_put_workspace(), the same update.
- zstd specific timer
This is the timer to reclaim workspace, change it to grab the per-fs
workspace manager instead.
Now all workspace are managed by the per-fs manager.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This involves:
- Add (alloc|free)_workspace_manager helpers.
These are the helper to alloc/free workspace_manager structure.
The allocator will allocate a workspace_manager structure, initialize
it, and pre-allocate one workspace for it.
The freer will do the cleanup and set the manager pointer to NULL.
- Call alloc_workspace_manager() inside btrfs_alloc_compress_wsm()
- Call alloc_workspace_manager() inside btrfs_free_compress_wsm()
For none, zlib and lzo compression algorithms.
For now the generic per-fs workspace managers won't really have any effect,
and all compression is still going through the global workspace manager.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This involves:
- Add zstd_alloc_workspace_manager() and zstd_free_workspace_manager()
Those two functions will accept an fs_info pointer, and alloc/free
fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] pointer.
- Add btrfs_alloc_compress_wsm() and btrfs_free_compress_wsm()
Those are helpers allocating the workspace managers for all
algorithms.
For now only zstd is supported, and the timing is a little unusual,
the btrfs_alloc_compress_wsm() should only be called after the
sectorsize being initialized.
Meanwhile btrfs_free_fs_info_compress() is called in
btrfs_free_fs_info().
- Move the definition of btrfs_compression_type to "fs.h"
The reason is that "compression.h" has already included "fs.h", thus
we can not just include "compression.h" to get the definition of
BTRFS_NR_COMPRESS_TYPES to define fs_info::compr_wsm[].
For now the per-fs zstd workspace manager won't really have any effect,
and all compression is still going through the global workspace manager.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BACKGROUND]
Currently btrfs shares workspaces and their managers for all filesystems,
this is mostly fine as all those workspaces are using page size based
buffers, and btrfs only support block size (bs) <= page size (ps).
This means even if bs < ps, we at most waste some buffer space in the
workspace, but everything will still work fine.
The problem here is that is limiting our support for bs > ps cases.
As now a workspace now may need larger buffer to handle bs > ps cases,
but since the pool has no way to distinguish different workspaces, a
regular workspace (which is still using buffer size based on ps) can be
passed to a btrfs whose bs > ps.
In that case the buffer is not large enough, and will cause various
problems.
[ENHANCEMENT]
To prepare for the per-fs workspace migration, add an fs_info parameter
to all workspace related functions.
For now this new fs_info parameter is not yet utilized.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For the 3 supported compression algorithms, two of them (zstd and zlib)
are already grabbing the btrfs inode for error messages.
It's more common to pass btrfs_inode and grab the address space from it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If you run a workload with:
- a cgroup that does tons of parallel data reading, with a working set
much larger than its memory limit
- a second cgroup that writes relatively fewer files, with overwrites,
with no memory limit
(see full code listing at the bottom for a reproducer)
Then what quickly occurs is:
- we have a large number of threads trying to read the csum tree
- we have a decent number of threads deleting csums running delayed refs
- we have a large number of threads in direct reclaim and thus high
memory pressure
The result of this is that we writeback the csum tree repeatedly mid
transaction, to get back the extent_buffer folios for reclaim. As a
result, we repeatedly COW the csum tree for the delayed refs that are
deleting csums. This means repeatedly write locking the higher levels of
the tree.
As a result of this, we achieve an unpleasant priority inversion. We
have:
- a high degree of contention on the csum root node (and other upper
nodes) eb rwsem
- a memory starved cgroup doing tons of reclaim on CPU.
- many reader threads in the memory starved cgroup "holding" the sem
as readers, but not scheduling promptly. i.e., task __state == 0, but
not running on a cpu.
- btrfs_commit_transaction stuck trying to acquire the sem as a writer.
(running delayed_refs, deleting csums for unreferenced data extents)
This results in arbitrarily long transactions. This then results in
seriously degraded performance for any cgroup using the filesystem (the
victim cgroup in the script).
It isn't an academic problem, as we see this exact problem in production
at Meta with one cgroup over its memory limit ruining btrfs performance
for the whole system, stalling critical system services that depend on
btrfs syncs.
The underlying scheduling "problem" with global rwsems is sort of thorny
and apparently well known and was discussed at LPC 2024, for example.
As a result, our main lever in the short term is just trying to reduce
contention on our various rwsems with an eye to reducing the frequency
of write locking, to avoid disabling the read lock fast acquisition path.
Luckily, it seems likely that many reads are for old extents written
many transactions ago, and that for those we *can* in fact search the
commit root. The commit_root_sem only gets taken write once, near the
end of transaction commit, no matter how much memory pressure there is,
so we have much less contention between readers and writers.
This change detects when we are trying to read an old extent (according
to extent map generation) and then wires that through bio_ctrl to the
btrfs_bio, which unfortunately isn't allocated yet when we have this
information. When we go to lookup the csums in lookup_bio_sums we can
check this condition on the btrfs_bio and do the commit root lookup
accordingly.
Note that a single bio_ctrl might collect a few extent_maps into a single
bio, so it is important to track a maximum generation across all the
extent_maps used for each bio to make an accurate decision on whether it
is valid to look in the commit root. If any extent_map is updated in the
current generation, we can't use the commit root.
To test and reproduce this issue, I used the following script and
accompanying C program (to avoid bottlenecks in constantly forking
thousands of dd processes):
====== big-read.c ======
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#define BUF_SZ (128 * (1 << 10UL))
int read_once(int fd, size_t sz) {
char buf[BUF_SZ];
size_t rd = 0;
int ret = 0;
while (rd < sz) {
ret = read(fd, buf, BUF_SZ);
if (ret < 0) {
if (errno == EINTR)
continue;
fprintf(stderr, "read failed: %d\n", errno);
return -errno;
} else if (ret == 0) {
break;
} else {
rd += ret;
}
}
return rd;
}
int read_loop(char *fname) {
int fd;
struct stat st;
size_t sz = 0;
int ret;
while (1) {
fd = open(fname, O_RDONLY);
if (fd == -1) {
perror("open");
return 1;
}
if (!sz) {
if (!fstat(fd, &st)) {
sz = st.st_size;
} else {
perror("stat");
return 1;
}
}
ret = read_once(fd, sz);
close(fd);
}
}
int main(int argc, char *argv[]) {
int fd;
struct stat st;
off_t sz;
char *buf;
int ret;
if (argc != 2) {
fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
return 1;
}
return read_loop(argv[1]);
}
====== repro.sh ======
#!/usr/bin/env bash
SCRIPT=$(readlink -f "$0")
DIR=$(dirname "$SCRIPT")
dev=$1
mnt=$2
shift
shift
CG_ROOT=/sys/fs/cgroup
BAD_CG=$CG_ROOT/bad-nbr
GOOD_CG=$CG_ROOT/good-nbr
NR_BIGGOS=1
NR_LITTLE=10
NR_VICTIMS=32
NR_VILLAINS=512
START_SEC=$(date +%s)
_elapsed() {
echo "elapsed: $(($(date +%s) - $START_SEC))"
}
_stats() {
local sysfs=/sys/fs/btrfs/$(findmnt -no UUID $dev)
echo "================"
date
_elapsed
cat $sysfs/commit_stats
cat $BAD_CG/memory.pressure
}
_setup_cgs() {
echo "+memory +cpuset" > $CG_ROOT/cgroup.subtree_control
mkdir -p $GOOD_CG
mkdir -p $BAD_CG
echo max > $BAD_CG/memory.max
# memory.high much less than the working set will cause heavy reclaim
echo $((1 << 30)) > $BAD_CG/memory.high
# victims get a subset of villain CPUs
echo 0 > $GOOD_CG/cpuset.cpus
echo 0,1,2,3 > $BAD_CG/cpuset.cpus
}
_kill_cg() {
local cg=$1
local attempts=0
echo "kill cgroup $cg"
[ -f $cg/cgroup.procs ] || return
while true; do
attempts=$((attempts + 1))
echo 1 > $cg/cgroup.kill
sleep 1
procs=$(wc -l $cg/cgroup.procs | cut -d' ' -f1)
[ $procs -eq 0 ] && break
done
rmdir $cg
echo "killed cgroup $cg in $attempts attempts"
}
_biggo_vol() {
echo $mnt/biggo_vol.$1
}
_biggo_file() {
echo $(_biggo_vol $1)/biggo
}
_subvoled_biggos() {
total_sz=$((10 << 30))
per_sz=$((total_sz / $NR_VILLAINS))
dd_count=$((per_sz >> 20))
echo "create $NR_VILLAINS subvols with a file of size $per_sz bytes for a total of $total_sz bytes."
for i in $(seq $NR_VILLAINS)
do
btrfs subvol create $(_biggo_vol $i) &>/dev/null
dd if=/dev/zero of=$(_biggo_file $i) bs=1M count=$dd_count &>/dev/null
done
echo "done creating subvols."
}
_setup() {
[ -f .done ] && rm .done
findmnt -n $dev && exit 1
if [ -f .re-mkfs ]; then
mkfs.btrfs -f -m single -d single $dev >/dev/null || exit 2
else
echo "touch .re-mkfs to populate the test fs"
fi
mount -o noatime $dev $mnt || exit 3
[ -f .re-mkfs ] && _subvoled_biggos
_setup_cgs
}
_my_cleanup() {
echo "CLEANUP!"
_kill_cg $BAD_CG
_kill_cg $GOOD_CG
sleep 1
umount $mnt
}
_bad_exit() {
_err "Unexpected Exit! $?"
_stats
exit $?
}
trap _my_cleanup EXIT
trap _bad_exit INT TERM
_setup
# Use a lot of page cache reading the big file
_villain() {
local i=$1
echo $BASHPID > $BAD_CG/cgroup.procs
$DIR/big-read $(_biggo_file $i)
}
# Hit del_csum a lot by overwriting lots of small new files
_victim() {
echo $BASHPID > $GOOD_CG/cgroup.procs
i=0;
while (true)
do
local tmp=$mnt/tmp.$i
dd if=/dev/zero of=$tmp bs=4k count=2 >/dev/null 2>&1
i=$((i+1))
[ $i -eq $NR_LITTLE ] && i=0
done
}
_one_sync() {
echo "sync..."
before=$(date +%s)
sync
after=$(date +%s)
echo "sync done in $((after - before))s"
_stats
}
# sync in a loop
_sync() {
echo "start sync loop"
syncs=0
echo $BASHPID > $GOOD_CG/cgroup.procs
while true
do
[ -f .done ] && break
_one_sync
syncs=$((syncs + 1))
[ -f .done ] && break
sleep 10
done
if [ $syncs -eq 0 ]; then
echo "do at least one sync!"
_one_sync
fi
echo "sync loop done."
}
_sleep() {
local time=${1-60}
local now=$(date +%s)
local end=$((now + time))
while [ $now -lt $end ];
do
echo "SLEEP: $((end - now))s left. Sleep 10."
sleep 10
now=$(date +%s)
done
}
echo "start $NR_VILLAINS villains"
for i in $(seq $NR_VILLAINS)
do
_villain $i &
disown # get rid of annoying log on kill (done via cgroup anyway)
done
echo "start $NR_VICTIMS victims"
for i in $(seq $NR_VICTIMS)
do
_victim &
disown
done
_sync &
SYNC_PID=$!
_sleep $1
_elapsed
touch .done
wait $SYNC_PID
echo "OK"
exit 0
Without this patch, that reproducer:
- Ran for 6+ minutes instead of 60s
- Hung hundreds of threads in D state on the csum reader lock
- Got a commit stuck for 3 minutes
sync done in 388s
================
Wed Jul 9 09:52:31 PM UTC 2025
elapsed: 420
commits 2
cur_commit_ms 0
last_commit_ms 159446
max_commit_ms 159446
total_commit_ms 160058
some avg10=99.03 avg60=98.97 avg300=75.43 total=418033386
full avg10=82.79 avg60=80.52 avg300=59.45 total=324995274
419 hits state R, D comms big-read
btrfs_tree_read_lock_nested
btrfs_read_lock_root_node
btrfs_search_slot
btrfs_lookup_csum
btrfs_lookup_bio_sums
btrfs_submit_bbio
1 hits state D comms btrfs-transacti
btrfs_tree_lock_nested
btrfs_lock_root_node
btrfs_search_slot
btrfs_del_csums
__btrfs_run_delayed_refs
btrfs_run_delayed_refs
With the patch, the reproducer exits naturally, in 65s, completing a
pretty decent 4 commits, despite heavy memory pressure. Occasionally you
can still trigger a rather long commit (couple seconds) but never one
that is minutes long.
sync done in 3s
================
elapsed: 65
commits 4
cur_commit_ms 0
last_commit_ms 485
max_commit_ms 689
total_commit_ms 2453
some avg10=98.28 avg60=64.54 avg300=19.39 total=64849893
full avg10=74.43 avg60=48.50 avg300=14.53 total=48665168
some random rwalker samples showed the most common stack in reclaim,
rather than the csum tree:
145 hits state R comms bash, sleep, dd, shuf
shrink_folio_list
shrink_lruvec
shrink_node
do_try_to_free_pages
try_to_free_mem_cgroup_pages
reclaim_high
Link: https://lpc.events/event/18/contributions/1883/
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Inspired by recent changes to compression level parsing in
6db1df415d ("btrfs: accept and ignore compression level for lzo")
it turns out that we do not do any extra validation for compression
level input string, thus allowing things like "compress=lzo:invalid" to
be accepted without warnings.
Although we accept levels that are beyond the supported algorithm
ranges, accepting completely invalid level specification is not correct.
Fix the too loose checks for compression level, by doing proper error
handling of kstrtoint(), so that we will reject not only too large
values (beyond int range) but also completely wrong levels like
"lzo:invalid".
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Any conversion of offsets in the logical or the physical mapping space
of the pages is done by a shift and the target type should be pgoff_t
(type of struct page::index). Fix the locations where it's still
unsigned long.
Signed-off-by: David Sterba <dsterba@suse.com>
Refactor the btrfs_compress_set_level() function by replacing the
nested usage of min() and max() macro with clamp() to simplify the
code and improve readability.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: George Hu <integral@archlinux.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Our message helpers accept NULL for the fs_info in the context that does
not provide and print the common header of the message. The use of pr_*
helpers is only for special reasons, like module loading, device
scanning or multi-line output (print-tree).
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're using 'status' for the blk_status_t variables, rename 'ret' so we can
use it for generic errors.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to have a separate variable to read the bio status, 'ret'
works for that just fine so remove 'error'.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This removes the last direct poke into bvec internals in btrfs.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename all the exported functions from extent_map.h that don't have a
'btrfs_' prefix in their names, so that they are consistent with all the
other functions, to make it clear they are btrfs specific functions and
to avoid potential name collisions in the future with functions defined
elsewhere in the kernel.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported and don't have a 'btrfs_' prefix in their
names, which goes against coding style conventions. Rename them to have
such prefix, making it clear they are from btrfs and avoiding potential
collisions in the future with functions defined elsewhere outside btrfs.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported and don't have a 'btrfs_' prefix in their
names, which goes against coding style conventions. Rename them to have
such prefix, making it clear they are from btrfs and avoiding potential
collisions in the future with functions defined elsewhere outside btrfs.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported and don't have a 'btrfs_' prefix in their
names, which goes against coding style conventions. Rename them to have
such prefix, making it clear they are from btrfs and avoiding potential
collisions in the future with functions defined elsewhere outside btrfs.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported so they should have a 'btrfs_' prefix by
convention, to make it clear they are btrfs specific and to avoid
collisions with functions from elsewhere in the kernel. So add a prefix to
their name.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use the following pattern to detect if the folio contains
the end of a file:
if (folio->index == end_index)
folio_zero_range();
But that only works if the folio is page sized.
For the following case, it will not work and leave the range beyond EOF
uninitialized:
The page size is 4K, and the fs block size is also 4K.
16K 20K 24K
| | | |
|
EOF at 22K
And we have a large folio sized 8K at file offset 16K.
In that case, the old "folio->index == end_index" will not work, thus
the range [22K, 24K) will not be zeroed out.
Fix the following call sites which use the above pattern:
- add_ra_bio_pages()
- extent_writepage()
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG WITH EXPERIMENTAL LARGE FOLIOS]
When testing the experimental large data folio support with compression,
there are several ASSERT()s triggered from btrfs_decompress_buf2page()
when running fsstress with compress=zstd mount option:
- ASSERT(copy_len) from btrfs_decompress_buf2page()
- VM_BUG_ON(offset + len > PAGE_SIZE) from memcpy_to_page()
[CAUSE]
Inside btrfs_decompress_buf2page(), we need to grab the file offset from
the current bvec.bv_page, to check if we even need to copy data into the
bio.
And since we're using single page bvec, and no large folio, every page
inside the folio should have its index properly setup.
But when large folios are involved, only the first page (aka, the head
page) of a large folio has its index properly initialized.
The other pages inside the large folio will not have their indexes
properly initialized.
Thus the page_offset() call inside btrfs_decompress_buf2page() will
result garbage, and completely screw up the @copy_len calculation.
[FIX]
Instead of using page->index directly, go with page_pgoff(), which can
handle non-head pages correctly.
So introduce a helper, file_offset_from_bvec(), to get the file offset
from a single page bio_vec, so the copy_len calculation can be done
correctly.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In preparation for making the kmalloc() family of allocators type aware,
we need to make sure that the returned type from the allocation matches
the type of the variable being assigned. (Before, the allocator would
always return "void *", which can be implicitly cast to any pointer type.)
The assigned type is "struct folio **" but the returned type will be
"struct page **". These are the same allocation size (pointer size), but
the types don't match. Adjust the allocation type to match the assignment.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Kees Cook <kees@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The zstd and zlib compression types support setting compression levels.
Enhance the defrag interface to specify the levels as well. For zstd the
negative (realtime) levels are also accepted.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Daniel Vacek <neelx@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When fgp_flags and gfp_flags are zero, use filemap_get_folio(A, B)
instead of __filemap_get_folio(A, B, 0, 0)—no need for the extra
arguments 0, 0.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since there is no user of reader locks, rename the writer locks into a
more generic name, by removing the "_writer" part from the name.
And also rename btrfs_subpage::writer into btrfs_subpage::locked.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit d7172f52e9 ("btrfs: use per-buffer locking for
extent_buffer reading"), metadata read no longer relies on the subpage
reader locking.
This means we do not need to maintain a different metadata/data split
for locking, so we can convert the existing reader lock users by:
- add_ra_bio_pages()
Convert to btrfs_folio_set_writer_lock()
- end_folio_read()
Convert to btrfs_folio_end_writer_lock()
- begin_folio_read()
Convert to btrfs_folio_set_writer_lock()
- folio_range_has_eb()
Remove the subpage->readers checks, since it is always 0.
- Remove btrfs_subpage_start_reader() and btrfs_subpage_end_reader()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The compression heuristic pass does not need a level, so we can drop the
parameter.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The LZO compression has only one level, we don't need to pass the
parameter.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are already two bugs (one in zlib, one in zstd) that involved
compression path is not handling sector size < page size cases well.
So it makes more sense to make sure that btrfs_compress_folios() returns
Since we already have two bugs (one in zlib, one in zstd) in the
compression path resulting the @total_in be to larger than the
to-be-compressed range length, there is enough reason to add an ASSERT()
to make sure the total read-in length doesn't exceed the input length.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Based on the previous patch, the compression path can be
directly used in folio without converting to page.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Historically we've held the extent lock throughout the entire read.
There's been a few reasons for this, but it's mostly just caused us
problems. For example, this prevents us from allowing page faults
during direct io reads, because we could deadlock. This has forced us
to only allow 4k reads at a time for io_uring NOWAIT requests because we
have no idea if we'll be forced to page fault and thus have to do a
whole lot of work.
On the buffered side we are protected by the page lock, as long as we're
reading things like buffered writes, punch hole, and even direct IO to a
certain degree will get hung up on the page lock while the page is in
flight.
On the direct side we have the dio extent lock, which acts much like the
way the extent lock worked previously to this patch, however just for
direct reads. This protects direct reads from concurrent direct writes,
while we're protected from buffered writes via the inode lock.
Now that we're protected in all cases, narrow the extent lock to the
part where we're getting the extent map to submit the reads, no longer
holding the extent lock for the entire read operation. Push the extent
lock down into do_readpage() so that we're only grabbing it when looking
up the extent map. This portion was contributed by Goldwyn.
Co-developed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function name is a bit misleading as it submits the btrfs_bio
(bbio), rename it so we can use btrfs_submit_bio() when an actual bio is
submitted.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Willy is going to get rid of page->index, and add_ra_bio_pages uses
page->index. Make his life easier by converting add_ra_bio_pages to use
folios so that we are no longer using page->index.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_alloc_folio_array() is only utilized in
btrfs_submit_compressed_read() and no other location, and the only
caller is not utilizing the @extra_gfp parameter.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct btrfs_inode to btrfs_compress_heuristic() as it's an
internal interface, allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The structure is internal so we should use struct btrfs_inode for that,
allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The member extent_map::block_start can be calculated from
extent_map::disk_bytenr + extent_map::offset for regular extents.
And otherwise just extent_map::disk_bytenr.
And this is already validated by the validate_extent_map(). Now we can
remove the member.
However there is a special case in btrfs_create_dio_extent() where we
for NOCOW/PREALLOC ordered extents cannot directly use the resulting
btrfs_file_extent, as btrfs_split_ordered_extent() cannot handle them
yet.
So for that call site, we pass file_extent->disk_bytenr +
file_extent->num_bytes as disk_bytenr for the ordered extent, and 0 for
offset.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_map::block_len is either extent_map::len (non-compressed
extent) or extent_map::disk_num_bytes (compressed extent).
Since we already have sanity checks to do the cross-checks between the
new and old members, we can drop the old extent_map::block_len now.
For most call sites, they can manually select extent_map::len or
extent_map::disk_num_bytes, since most if not all of them have checked
if the extent is compressed.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have extent_map::offset, the old extent_map::orig_start is just
extent_map::start - extent_map::offset for non-hole/inline extents.
And since the new extent_map::offset is already verified by
validate_extent_map() while the old orig_start is not, let's just remove
the old member from all call sites.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix typo in the end IO compression callbacks, from "comprssed" to
"compressed".
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A comment from Filipe on one of my previous cleanups brought my
attention to a new helper we have for getting the root id of a root,
which makes it easier to read in the code.
The changes where made with the following Coccinelle semantic patch:
// <smpl>
@@
expression E,E1;
@@
(
E->root_key.objectid = E1
|
- E->root_key.objectid
+ btrfs_root_id(E)
)
// </smpl>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>