Commit graph

1788 commits

Author SHA1 Message Date
Shakeel Butt
fcc0669c5a memcg: skip cgroup_file_notify if spinning is not allowed
Generally memcg charging is allowed from all the contexts including NMI
where even spinning on spinlock can cause locking issues.  However one
call chain was missed during the addition of memcg charging from any
context support.  That is try_charge_memcg() -> memcg_memory_event() ->
cgroup_file_notify().

The possible function call tree under cgroup_file_notify() can acquire
many different spin locks in spinning mode.  Some of them are
cgroup_file_kn_lock, kernfs_notify_lock, pool_workqeue's lock.  So, let's
just skip cgroup_file_notify() from memcg charging if the context does not
allow spinning.

Alternative approach was also explored where instead of skipping
cgroup_file_notify(), we defer the memcg event processing to irq_work [1].
However it adds complexity and it was decided to keep things simple until
we need more memcg events with !allow_spinning requirement.

Link: https://lore.kernel.org/all/5qi2llyzf7gklncflo6gxoozljbm4h3tpnuv4u4ej4ztysvi6f@x44v7nz2wdzd/ [1]
Link: https://lkml.kernel.org/r/20250922220203.261714-1-shakeel.butt@linux.dev
Fixes: 3ac4638a73 ("memcg: make memcg_rstat_updated nmi safe")
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Closes: https://lore.kernel.org/all/20250905061919.439648-1-yepeilin@google.com/
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peilin Ye <yepeilin@google.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-10-07 14:01:11 -07:00
Linus Torvalds
8804d970fa Summary of significant series in this pull request:
- The 3 patch series "mm, swap: improve cluster scan strategy" from
   Kairui Song improves performance and reduces the failure rate of swap
   cluster allocation.
 
 - The 4 patch series "support large align and nid in Rust allocators"
   from Vitaly Wool permits Rust allocators to set NUMA node and large
   alignment when perforning slub and vmalloc reallocs.
 
 - The 2 patch series "mm/damon/vaddr: support stat-purpose DAMOS" from
   Yueyang Pan extend DAMOS_STAT's handling of the DAMON operations sets
   for virtual address spaces for ops-level DAMOS filters.
 
 - The 3 patch series "execute PROCMAP_QUERY ioctl under per-vma lock"
   from Suren Baghdasaryan reduces mmap_lock contention during reads of
   /proc/pid/maps.
 
 - The 2 patch series "mm/mincore: minor clean up for swap cache
   checking" from Kairui Song performs some cleanup in the swap code.
 
 - The 11 patch series "mm: vm_normal_page*() improvements" from David
   Hildenbrand provides code cleanup in the pagemap code.
 
 - The 5 patch series "add persistent huge zero folio support" from
   Pankaj Raghav provides a block layer speedup by optionalls making the
   huge_zero_pagepersistent, instead of releasing it when its refcount
   falls to zero.
 
 - The 3 patch series "kho: fixes and cleanups" from Mike Rapoport adds a
   few touchups to the recently added Kexec Handover feature.
 
 - The 10 patch series "mm: make mm->flags a bitmap and 64-bit on all
   arches" from Lorenzo Stoakes turns mm_struct.flags into a bitmap.  To
   end the constant struggle with space shortage on 32-bit conflicting with
   64-bit's needs.
 
 - The 2 patch series "mm/swapfile.c and swap.h cleanup" from Chris Li
   cleans up some swap code.
 
 - The 7 patch series "selftests/mm: Fix false positives and skip
   unsupported tests" from Donet Tom fixes a few things in our selftests
   code.
 
 - The 7 patch series "prctl: extend PR_SET_THP_DISABLE to only provide
   THPs when advised" from David Hildenbrand "allows individual processes
   to opt-out of THP=always into THP=madvise, without affecting other
   workloads on the system".
 
   It's a long story - the [1/N] changelog spells out the considerations.
 
 - The 11 patch series "Add and use memdesc_flags_t" from Matthew Wilcox
   gets us started on the memdesc project.  Please see
   https://kernelnewbies.org/MatthewWilcox/Memdescs and
   https://blogs.oracle.com/linux/post/introducing-memdesc.
 
 - The 3 patch series "Tiny optimization for large read operations" from
   Chi Zhiling improves the efficiency of the pagecache read path.
 
 - The 5 patch series "Better split_huge_page_test result check" from Zi
   Yan improves our folio splitting selftest code.
 
 - The 2 patch series "test that rmap behaves as expected" from Wei Yang
   adds some rmap selftests.
 
 - The 3 patch series "remove write_cache_pages()" from Christoph Hellwig
   removes that function and converts its two remaining callers.
 
 - The 2 patch series "selftests/mm: uffd-stress fixes" from Dev Jain
   fixes some UFFD selftests issues.
 
 - The 3 patch series "introduce kernel file mapped folios" from Boris
   Burkov introduces the concept of "kernel file pages".  Using these
   permits btrfs to account its metadata pages to the root cgroup, rather
   than to the cgroups of random inappropriate tasks.
 
 - The 2 patch series "mm/pageblock: improve readability of some
   pageblock handling" from Wei Yang provides some readability improvements
   to the page allocator code.
 
 - The 11 patch series "mm/damon: support ARM32 with LPAE" from SeongJae
   Park teaches DAMON to understand arm32 highmem.
 
 - The 4 patch series "tools: testing: Use existing atomic.h for
   vma/maple tests" from Brendan Jackman performs some code cleanups and
   deduplication under tools/testing/.
 
 - The 2 patch series "maple_tree: Fix testing for 32bit compiles" from
   Liam Howlett fixes a couple of 32-bit issues in
   tools/testing/radix-tree.c.
 
 - The 2 patch series "kasan: unify kasan_enabled() and remove
   arch-specific implementations" from Sabyrzhan Tasbolatov moves KASAN
   arch-specific initialization code into a common arch-neutral
   implementation.
 
 - The 3 patch series "mm: remove zpool" from Johannes Weiner removes
   zspool - an indirection layer which now only redirects to a single thing
   (zsmalloc).
 
 - The 2 patch series "mm: task_stack: Stack handling cleanups" from
   Pasha Tatashin makes a couple of cleanups in the fork code.
 
 - The 37 patch series "mm: remove nth_page()" from David Hildenbrand
   makes rather a lot of adjustments at various nth_page() callsites,
   eventually permitting the removal of that undesirable helper function.
 
 - The 2 patch series "introduce kasan.write_only option in hw-tags" from
   Yeoreum Yun creates a KASAN read-only mode for ARM, using that
   architecture's memory tagging feature.  It is felt that a read-only mode
   KASAN is suitable for use in production systems rather than debug-only.
 
 - The 3 patch series "mm: hugetlb: cleanup hugetlb folio allocation"
   from Kefeng Wang does some tidying in the hugetlb folio allocation code.
 
 - The 12 patch series "mm: establish const-correctness for pointer
   parameters" from Max Kellermann makes quite a number of the MM API
   functions more accurate about the constness of their arguments.  This
   was getting in the way of subsystems (in this case CEPH) when they
   attempt to improving their own const/non-const accuracy.
 
 - The 7 patch series "Cleanup free_pages() misuse" from Vishal Moola
   fixes a number of code sites which were confused over when to use
   free_pages() vs __free_pages().
 
 - The 3 patch series "Add Rust abstraction for Maple Trees" from Alice
   Ryhl makes the mapletree code accessible to Rust.  Required by nouveau
   and by its forthcoming successor: the new Rust Nova driver.
 
 - The 2 patch series "selftests/mm: split_huge_page_test:
   split_pte_mapped_thp improvements" from David Hildenbrand adds a fix and
   some cleanups to the thp selftesting code.
 
 - The 14 patch series "mm, swap: introduce swap table as swap cache
   (phase I)" from Chris Li and Kairui Song is the first step along the
   path to implementing "swap tables" - a new approach to swap allocation
   and state tracking which is expected to yield speed and space
   improvements.  This patchset itself yields a 5-20% performance benefit
   in some situations.
 
 - The 3 patch series "Some ptdesc cleanups" from Matthew Wilcox utilizes
   the new memdesc layer to clean up the ptdesc code a little.
 
 - The 3 patch series "Fix va_high_addr_switch.sh test failure" from
   Chunyu Hu fixes some issues in our 5-level pagetable selftesting code.
 
 - The 2 patch series "Minor fixes for memory allocation profiling" from
   Suren Baghdasaryan addresses a couple of minor issues in relatively new
   memory allocation profiling feature.
 
 - The 3 patch series "Small cleanups" from Matthew Wilcox has a few
   cleanups in preparation for more memdesc work.
 
 - The 2 patch series "mm/damon: add addr_unit for DAMON_LRU_SORT and
   DAMON_RECLAIM" from Quanmin Yan makes some changes to DAMON in
   furtherance of supporting arm highmem.
 
 - The 2 patch series "selftests/mm: Add -Wunreachable-code and fix
   warnings" from Muhammad Anjum adds that compiler check to selftests code
   and fixes the fallout, by removing dead code.
 
 - The 10 patch series "Improvements to Victim Process Thawing and OOM
   Reaper Traversal Order" from zhongjinji makes a number of improvements
   in the OOM killer: mainly thawing a more appropriate group of victim
   threads so they can release resources.
 
 - The 5 patch series "mm/damon: misc fixups and improvements for 6.18"
   from SeongJae Park is a bunch of small and unrelated fixups for DAMON.
 
 - The 7 patch series "mm/damon: define and use DAMON initialization
   check function" from SeongJae Park implement reliability and
   maintainability improvements to a recently-added bug fix.
 
 - The 2 patch series "mm/damon/stat: expose auto-tuned intervals and
   non-idle ages" from SeongJae Park provides additional transparency to
   userspace clients of the DAMON_STAT information.
 
 - The 2 patch series "Expand scope of khugepaged anonymous collapse"
   from Dev Jain removes some constraints on khubepaged's collapsing of
   anon VMAs.  It also increases the success rate of MADV_COLLAPSE against
   an anon vma.
 
 - The 2 patch series "mm: do not assume file == vma->vm_file in
   compat_vma_mmap_prepare()" from Lorenzo Stoakes moves us further towards
   removal of file_operations.mmap().  This patchset concentrates upon
   clearing up the treatment of stacked filesystems.
 
 - The 6 patch series "mm: Improve mlock tracking for large folios" from
   Kiryl Shutsemau provides some fixes and improvements to mlock's tracking
   of large folios.  /proc/meminfo's "Mlocked" field became more accurate.
 
 - The 2 patch series "mm/ksm: Fix incorrect accounting of KSM counters
   during fork" from Donet Tom fixes several user-visible KSM stats
   inaccuracies across forks and adds selftest code to verify these
   counters.
 
 - The 2 patch series "mm_slot: fix the usage of mm_slot_entry" from Wei
   Yang addresses some potential but presently benign issues in KSM's
   mm_slot handling.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaN3cywAKCRDdBJ7gKXxA
 jtaPAQDmIuIu7+XnVUK5V11hsQ/5QtsUeLHV3OsAn4yW5/3dEQD/UddRU08ePN+1
 2VRB0EwkLAdfMWW7TfiNZ+yhuoiL/AA=
 =4mhY
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2025-10-01-19-00' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - "mm, swap: improve cluster scan strategy" from Kairui Song improves
   performance and reduces the failure rate of swap cluster allocation

 - "support large align and nid in Rust allocators" from Vitaly Wool
   permits Rust allocators to set NUMA node and large alignment when
   perforning slub and vmalloc reallocs

 - "mm/damon/vaddr: support stat-purpose DAMOS" from Yueyang Pan extend
   DAMOS_STAT's handling of the DAMON operations sets for virtual
   address spaces for ops-level DAMOS filters

 - "execute PROCMAP_QUERY ioctl under per-vma lock" from Suren
   Baghdasaryan reduces mmap_lock contention during reads of
   /proc/pid/maps

 - "mm/mincore: minor clean up for swap cache checking" from Kairui Song
   performs some cleanup in the swap code

 - "mm: vm_normal_page*() improvements" from David Hildenbrand provides
   code cleanup in the pagemap code

 - "add persistent huge zero folio support" from Pankaj Raghav provides
   a block layer speedup by optionalls making the
   huge_zero_pagepersistent, instead of releasing it when its refcount
   falls to zero

 - "kho: fixes and cleanups" from Mike Rapoport adds a few touchups to
   the recently added Kexec Handover feature

 - "mm: make mm->flags a bitmap and 64-bit on all arches" from Lorenzo
   Stoakes turns mm_struct.flags into a bitmap. To end the constant
   struggle with space shortage on 32-bit conflicting with 64-bit's
   needs

 - "mm/swapfile.c and swap.h cleanup" from Chris Li cleans up some swap
   code

 - "selftests/mm: Fix false positives and skip unsupported tests" from
   Donet Tom fixes a few things in our selftests code

 - "prctl: extend PR_SET_THP_DISABLE to only provide THPs when advised"
   from David Hildenbrand "allows individual processes to opt-out of
   THP=always into THP=madvise, without affecting other workloads on the
   system".

   It's a long story - the [1/N] changelog spells out the considerations

 - "Add and use memdesc_flags_t" from Matthew Wilcox gets us started on
   the memdesc project. Please see

      https://kernelnewbies.org/MatthewWilcox/Memdescs and
      https://blogs.oracle.com/linux/post/introducing-memdesc

 - "Tiny optimization for large read operations" from Chi Zhiling
   improves the efficiency of the pagecache read path

 - "Better split_huge_page_test result check" from Zi Yan improves our
   folio splitting selftest code

 - "test that rmap behaves as expected" from Wei Yang adds some rmap
   selftests

 - "remove write_cache_pages()" from Christoph Hellwig removes that
   function and converts its two remaining callers

 - "selftests/mm: uffd-stress fixes" from Dev Jain fixes some UFFD
   selftests issues

 - "introduce kernel file mapped folios" from Boris Burkov introduces
   the concept of "kernel file pages". Using these permits btrfs to
   account its metadata pages to the root cgroup, rather than to the
   cgroups of random inappropriate tasks

 - "mm/pageblock: improve readability of some pageblock handling" from
   Wei Yang provides some readability improvements to the page allocator
   code

 - "mm/damon: support ARM32 with LPAE" from SeongJae Park teaches DAMON
   to understand arm32 highmem

 - "tools: testing: Use existing atomic.h for vma/maple tests" from
   Brendan Jackman performs some code cleanups and deduplication under
   tools/testing/

 - "maple_tree: Fix testing for 32bit compiles" from Liam Howlett fixes
   a couple of 32-bit issues in tools/testing/radix-tree.c

 - "kasan: unify kasan_enabled() and remove arch-specific
   implementations" from Sabyrzhan Tasbolatov moves KASAN arch-specific
   initialization code into a common arch-neutral implementation

 - "mm: remove zpool" from Johannes Weiner removes zspool - an
   indirection layer which now only redirects to a single thing
   (zsmalloc)

 - "mm: task_stack: Stack handling cleanups" from Pasha Tatashin makes a
   couple of cleanups in the fork code

 - "mm: remove nth_page()" from David Hildenbrand makes rather a lot of
   adjustments at various nth_page() callsites, eventually permitting
   the removal of that undesirable helper function

 - "introduce kasan.write_only option in hw-tags" from Yeoreum Yun
   creates a KASAN read-only mode for ARM, using that architecture's
   memory tagging feature. It is felt that a read-only mode KASAN is
   suitable for use in production systems rather than debug-only

 - "mm: hugetlb: cleanup hugetlb folio allocation" from Kefeng Wang does
   some tidying in the hugetlb folio allocation code

 - "mm: establish const-correctness for pointer parameters" from Max
   Kellermann makes quite a number of the MM API functions more accurate
   about the constness of their arguments. This was getting in the way
   of subsystems (in this case CEPH) when they attempt to improving
   their own const/non-const accuracy

 - "Cleanup free_pages() misuse" from Vishal Moola fixes a number of
   code sites which were confused over when to use free_pages() vs
   __free_pages()

 - "Add Rust abstraction for Maple Trees" from Alice Ryhl makes the
   mapletree code accessible to Rust. Required by nouveau and by its
   forthcoming successor: the new Rust Nova driver

 - "selftests/mm: split_huge_page_test: split_pte_mapped_thp
   improvements" from David Hildenbrand adds a fix and some cleanups to
   the thp selftesting code

 - "mm, swap: introduce swap table as swap cache (phase I)" from Chris
   Li and Kairui Song is the first step along the path to implementing
   "swap tables" - a new approach to swap allocation and state tracking
   which is expected to yield speed and space improvements. This
   patchset itself yields a 5-20% performance benefit in some situations

 - "Some ptdesc cleanups" from Matthew Wilcox utilizes the new memdesc
   layer to clean up the ptdesc code a little

 - "Fix va_high_addr_switch.sh test failure" from Chunyu Hu fixes some
   issues in our 5-level pagetable selftesting code

 - "Minor fixes for memory allocation profiling" from Suren Baghdasaryan
   addresses a couple of minor issues in relatively new memory
   allocation profiling feature

 - "Small cleanups" from Matthew Wilcox has a few cleanups in
   preparation for more memdesc work

 - "mm/damon: add addr_unit for DAMON_LRU_SORT and DAMON_RECLAIM" from
   Quanmin Yan makes some changes to DAMON in furtherance of supporting
   arm highmem

 - "selftests/mm: Add -Wunreachable-code and fix warnings" from Muhammad
   Anjum adds that compiler check to selftests code and fixes the
   fallout, by removing dead code

 - "Improvements to Victim Process Thawing and OOM Reaper Traversal
   Order" from zhongjinji makes a number of improvements in the OOM
   killer: mainly thawing a more appropriate group of victim threads so
   they can release resources

 - "mm/damon: misc fixups and improvements for 6.18" from SeongJae Park
   is a bunch of small and unrelated fixups for DAMON

 - "mm/damon: define and use DAMON initialization check function" from
   SeongJae Park implement reliability and maintainability improvements
   to a recently-added bug fix

 - "mm/damon/stat: expose auto-tuned intervals and non-idle ages" from
   SeongJae Park provides additional transparency to userspace clients
   of the DAMON_STAT information

 - "Expand scope of khugepaged anonymous collapse" from Dev Jain removes
   some constraints on khubepaged's collapsing of anon VMAs. It also
   increases the success rate of MADV_COLLAPSE against an anon vma

 - "mm: do not assume file == vma->vm_file in compat_vma_mmap_prepare()"
   from Lorenzo Stoakes moves us further towards removal of
   file_operations.mmap(). This patchset concentrates upon clearing up
   the treatment of stacked filesystems

 - "mm: Improve mlock tracking for large folios" from Kiryl Shutsemau
   provides some fixes and improvements to mlock's tracking of large
   folios. /proc/meminfo's "Mlocked" field became more accurate

 - "mm/ksm: Fix incorrect accounting of KSM counters during fork" from
   Donet Tom fixes several user-visible KSM stats inaccuracies across
   forks and adds selftest code to verify these counters

 - "mm_slot: fix the usage of mm_slot_entry" from Wei Yang addresses
   some potential but presently benign issues in KSM's mm_slot handling

* tag 'mm-stable-2025-10-01-19-00' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (372 commits)
  mm: swap: check for stable address space before operating on the VMA
  mm: convert folio_page() back to a macro
  mm/khugepaged: use start_addr/addr for improved readability
  hugetlbfs: skip VMAs without shareable locks in hugetlb_vmdelete_list
  alloc_tag: fix boot failure due to NULL pointer dereference
  mm: silence data-race in update_hiwater_rss
  mm/memory-failure: don't select MEMORY_ISOLATION
  mm/khugepaged: remove definition of struct khugepaged_mm_slot
  mm/ksm: get mm_slot by mm_slot_entry() when slot is !NULL
  hugetlb: increase number of reserving hugepages via cmdline
  selftests/mm: add fork inheritance test for ksm_merging_pages counter
  mm/ksm: fix incorrect KSM counter handling in mm_struct during fork
  drivers/base/node: fix double free in register_one_node()
  mm: remove PMD alignment constraint in execmem_vmalloc()
  mm/memory_hotplug: fix typo 'esecially' -> 'especially'
  mm/rmap: improve mlock tracking for large folios
  mm/filemap: map entire large folio faultaround
  mm/fault: try to map the entire file folio in finish_fault()
  mm/rmap: mlock large folios in try_to_unmap_one()
  mm/rmap: fix a mlock race condition in folio_referenced_one()
  ...
2025-10-02 18:18:33 -07:00
Miaohe Lin
5ce1dbfdd8 mm/hwpoison: decouple hwpoison_filter from mm/memory-failure.c
mm/memory-failure.c defines and uses hwpoison_filter_* parameters but the
values of those parameters can only be modified via mm/hwpoison-inject.c
from userspace.  They have a potentially different life time.  Decouple
those parameters from mm/memory-failure.c to fix this broken layering.

Link: https://lkml.kernel.org/r/20250904062258.3336092-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-09-21 14:22:21 -07:00
Thomas Gleixner
ec45783fce memcg: optimize exit to user space
memcg uses TIF_NOTIFY_RESUME to handle reclaiming on exit to user space. 
TIF_NOTIFY_RESUME is a multiplexing TIF bit, which is utilized by other
entities as well.

This results in a unconditional mem_cgroup_handle_over_high() call for
every invocation of resume_user_mode_work(), which is a pointless exercise
as most of the time there is no reclaim work to do.

Especially since RSEQ is used by glibc, TIF_NOTIFY_RESUME is raised quite
frequently and the empty calls show up in exit path profiling.

Optimize this by doing a quick check of the reclaim condition before
invoking it.

[akpm@linux-foundation.org: remove now-unneeded test of memcg_nr_pages_over_high==0, per Shakeel]
Link: https://lkml.kernel.org/r/87tt2b6zgs.ffs@tglx
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-09-13 16:55:01 -07:00
Kuniyuki Iwashima
bb178c6bc0 net-memcg: Pass struct sock to mem_cgroup_sk_(un)?charge().
We will store a flag in the lowest bit of sk->sk_memcg.

Then, we cannot pass the raw pointer to mem_cgroup_charge_skmem()
and mem_cgroup_uncharge_skmem().

Let's pass struct sock to the functions.

While at it, they are renamed to match other functions starting
with mem_cgroup_sk_.

Signed-off-by: Kuniyuki Iwashima <kuniyu@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Link: https://patch.msgid.link/20250815201712.1745332-9-kuniyu@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-08-19 19:20:59 -07:00
Kuniyuki Iwashima
f7161b234f net-memcg: Introduce mem_cgroup_from_sk().
We will store a flag in the lowest bit of sk->sk_memcg.

Then, directly dereferencing sk->sk_memcg will be illegal, and we
do not want to allow touching the raw sk->sk_memcg in many places.

Let's introduce mem_cgroup_from_sk().

Other places accessing the raw sk->sk_memcg will be converted later.

Note that we cannot define the helper as an inline function in
memcontrol.h as we cannot access any fields of struct sock there
due to circular dependency, so it is placed in sock.h.

Signed-off-by: Kuniyuki Iwashima <kuniyu@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Link: https://patch.msgid.link/20250815201712.1745332-7-kuniyu@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-08-19 19:20:59 -07:00
Kuniyuki Iwashima
68889dfd54 mptcp: Fix up subflow's memcg when CONFIG_SOCK_CGROUP_DATA=n.
When sk_alloc() allocates a socket, mem_cgroup_sk_alloc() sets
sk->sk_memcg based on the current task.

MPTCP subflow socket creation is triggered from userspace or
an in-kernel worker.

In the latter case, sk->sk_memcg is not what we want.  So, we fix
it up from the parent socket's sk->sk_memcg in mptcp_attach_cgroup().

Although the code is placed under #ifdef CONFIG_MEMCG, it is buried
under #ifdef CONFIG_SOCK_CGROUP_DATA.

The two configs are orthogonal.  If CONFIG_MEMCG is enabled without
CONFIG_SOCK_CGROUP_DATA, the subflow's memory usage is not charged
correctly.

Let's move the code out of the wrong ifdef guard.

Note that sk->sk_memcg is freed in sk_prot_free() and the parent
sk holds the refcnt of memcg->css here, so we don't need to use
css_tryget().

Fixes: 3764b0c565 ("mptcp: attach subflow socket to parent cgroup")
Signed-off-by: Kuniyuki Iwashima <kuniyu@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Link: https://patch.msgid.link/20250815201712.1745332-2-kuniyu@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-08-19 19:20:58 -07:00
Linus Torvalds
6aee5aed2e cgroup: Changes for v6.17
- Allow css_rstat_updated() in NMI context to enable memory accounting for
   allocations in NMI context.
 
 - /proc/cgroups doesn't contain useful information for cgroup2 and was
   updated to only show v1 controllers. This unfortunately broke something in
   the wild. Add an option to bring back the old behavior to ease transition.
 
 - selftest updates and other cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCaIqlxQ4cdGpAa2VybmVs
 Lm9yZwAKCRCxYfJx3gVYGcTMAQDUlGf50ATWB9hDU7zUG4lVn8s8n8/+x8QFGHn4
 e4NERQD9FpU/jLN+cwGgspKo+L9qpu/1g+t36cJLcOuEKKoaQwI=
 =FLwx
 -----END PGP SIGNATURE-----

Merge tag 'cgroup-for-6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup

Pull cgroup updates from Tejun Heo:

 - Allow css_rstat_updated() in NMI context to enable memory accounting
   for allocations in NMI context.

 - /proc/cgroups doesn't contain useful information for cgroup2 and was
   updated to only show v1 controllers. This unfortunately broke
   something in the wild. Add an option to bring back the old behavior
   to ease transition.

 - selftest updates and other cleanups.

* tag 'cgroup-for-6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: Add compatibility option for content of /proc/cgroups
  selftests/cgroup: fix cpu.max tests
  cgroup: llist: avoid memory tears for llist_node
  selftests: cgroup: Fix missing newline in test_zswap_writeback_one
  selftests: cgroup: Allow longer timeout for kmem_dead_cgroups cleanup
  memcg: cgroup: call css_rstat_updated irrespective of in_nmi()
  cgroup: remove per-cpu per-subsystem locks
  cgroup: make css_rstat_updated nmi safe
  cgroup: support to enable nmi-safe css_rstat_updated
  selftests: cgroup: Fix compilation on pre-cgroupns kernels
  selftests: cgroup: Optionally set up v1 environment
  selftests: cgroup: Add support for named v1 hierarchies in test_core
  selftests: cgroup_util: Add helpers for testing named v1 hierarchies
  Documentation: cgroup: add section explaining controller availability
  cgroup: Drop sock_cgroup_classid() dummy implementation
2025-07-31 16:04:19 -07:00
Kuniyuki Iwashima
378bdb9740 memcg: convert memcg->socket_pressure to u64
memcg->socket_pressure is initialised with jiffies when the memcg is
created.

Once vmpressure detects that the cgroup is under memory pressure, the
field is updated with jiffies + HZ to signal the fact to the socket layer
and suppress memory allocation for one second.

Otherwise, the field is not updated.

mem_cgroup_under_socket_pressure() uses time_before() to check if jiffies
is less than memcg->socket_pressure, and this has a bug on 32-bit kernel.

  if (time_before(jiffies, memcg->socket_pressure))
          return true;

As time_before() casts the final result to long, the acceptable delta
between two timestamps is 2 ^ (BITS_PER_LONG - 1).

On 32-bit kernel with CONFIG_HZ=1000, this is about 24 days.

  >>> (2 ** 31) / 1000 / 60 / 60 / 24
  24.855134814814818

Once 24 days have passed since the last update of socket_pressure,
mem_cgroup_under_socket_pressure() starts to lie until the next 24 days
pass.

We don't need to worry about this on 64-bit machines unless they serve for
300 million years.

  >>> (2 ** 63) / 1000 / 60 / 60 / 24 / 365
  292471208.6775361

Let's convert memcg->socket_pressure to u64.

Performance teting:

I don't have a real 32-bit machine so this is a result on QEMU, but
with/without the u64 jiffie patch, the time spent in
mem_cgroup_under_socket_pressure() was 1~5us and I didn't see any
measurable delta.

no patch applied:
iperf3   273 [000]   137.296248:
probe:mem_cgroup_under_socket_pressure: (c13660d0)
                c13660d1 mem_cgroup_under_socket_pressure+0x1
([kernel.kallsyms])
iperf3   273 [000]   137.296249:
probe:mem_cgroup_under_socket_pressure__return: (c13660d0 <- c1d8fd7f)
iperf3   273 [000]   137.296251:
probe:mem_cgroup_under_socket_pressure: (c13660d0)
                c13660d1 mem_cgroup_under_socket_pressure+0x1
([kernel.kallsyms])
iperf3   273 [000]   137.296253:
probe:mem_cgroup_under_socket_pressure__return: (c13660d0 <- c1d8fd7f)


u64 jiffies patch applied:
iperf3   308 [001]   330.669370:
probe:mem_cgroup_under_socket_pressure: (c12ddba0)
                c12ddba1 mem_cgroup_under_socket_pressure+0x1
([kernel.kallsyms])
iperf3   308 [001]   330.669371:
probe:mem_cgroup_under_socket_pressure__return: (c12ddba0 <- c1ce98bf)
iperf3   308 [001]   330.669382:
probe:mem_cgroup_under_socket_pressure: (c12ddba0)
                c12ddba1 mem_cgroup_under_socket_pressure+0x1
([kernel.kallsyms])
iperf3   308 [001]   330.669384:
probe:mem_cgroup_under_socket_pressure__return: (c12ddba0 <- c1ce98bf)

So the u64 approach is good enough.

Link: https://lkml.kernel.org/r/20250717194645.1096500-1-kuniyu@google.com
Fixes: 8e8ae64524 ("mm: memcontrol: hook up vmpressure to socket pressure")
Signed-off-by: Kuniyuki Iwashima <kuniyu@google.com>
Reported-by: Neal Cardwell <ncardwell@google.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric Dumazet <ncardwell@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-24 19:12:32 -07:00
Davidlohr Bueso
2b7226af73 mm/memcg: make memory.reclaim interface generic
This adds a general call for both parsing as well as the common reclaim
semantics.  memcg is still the only user and no change in semantics.

[akpm@linux-foundation.org: fix CONFIG_NUMA=n build]
Link: https://lkml.kernel.org/r/20250623185851.830632-3-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19 18:59:52 -07:00
Chen Yu
db6cc3f4ac Revert "sched/numa: add statistics of numa balance task"
This reverts commit ad6b26b6a0.

This commit introduces per-memcg/task NUMA balance statistics, but
unfortunately it introduced a NULL pointer exception due to the following
race condition: After a swap task candidate was chosen, its mm_struct
pointer was set to NULL due to task exit.  Later, when performing the
actual task swapping, the p->mm caused the problem.

CPU0                                   CPU1
:
...
task_numa_migrate
     task_numa_find_cpu
      task_numa_compare
        # a normal task p is chosen
        env->best_task = p

                                          # p exit:
                                          exit_signals(p);
                                             p->flags |= PF_EXITING
                                          exit_mm
                                             p->mm = NULL;

      migrate_swap_stop
        __migrate_swap_task((arg->src_task, arg->dst_cpu)
         count_memcg_event_mm(p->mm, NUMA_TASK_SWAP)# p->mm is NULL

task_lock() should be held and the PF_EXITING flag needs to be checked to
prevent this from happening.  After discussion, the conclusion was that
adding a lock is not worthwhile for some statistics calculations.  Revert
the change and rely on the tracepoint for this purpose.

Link: https://lkml.kernel.org/r/20250704135620.685752-1-yu.c.chen@intel.com
Link: https://lkml.kernel.org/r/20250708064917.BBD13C4CEED@smtp.kernel.org
Fixes: ad6b26b6a0 ("sched/numa: add statistics of numa balance task")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Reported-by: Jirka Hladky <jhladky@redhat.com>
Closes: https://lore.kernel.org/all/CAE4VaGBLJxpd=NeRJXpSCuw=REhC5LWJpC29kDy-Zh2ZDyzQZA@mail.gmail.com/
Reported-by: Srikanth Aithal <Srikanth.Aithal@amd.com>
Reported-by: Suneeth D <Suneeth.D@amd.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Hladky <jhladky@redhat.com>
Cc: Libo Chen <libo.chen@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-09 21:07:56 -07:00
Shakeel Butt
8dcb0ed834 memcg: cgroup: call css_rstat_updated irrespective of in_nmi()
css_rstat_updated() is nmi safe, so there is no need to avoid it in
in_nmi(), so remove the check.

Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Tested-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2025-06-17 10:01:47 -10:00
Linus Torvalds
fd1f847350 - The 2 patch series "zram: support algorithm-specific parameters" from
Sergey Senozhatsky adds infrastructure for passing algorithm-specific
   parameters into zram.  A single parameter `winbits' is implemented at
   this time.
 
 - The 5 patch series "memcg: nmi-safe kmem charging" from Shakeel Butt
   makes memcg charging nmi-safe, which is required by BFP, which can
   operate in NMI context.
 
 - The 5 patch series "Some random fixes and cleanup to shmem" from
   Kemeng Shi implements small fixes and cleanups in the shmem code.
 
 - The 2 patch series "Skip mm selftests instead when kernel features are
   not present" from Zi Yan fixes some issues in the MM selftest code.
 
 - The 2 patch series "mm/damon: build-enable essential DAMON components
   by default" from SeongJae Park reworks DAMON Kconfig to make it easier
   to enable CONFIG_DAMON.
 
 - The 2 patch series "sched/numa: add statistics of numa balance task
   migration" from Libo Chen adds more info into sysfs and procfs files to
   improve visibility into the NUMA balancer's task migration activity.
 
 - The 4 patch series "selftests/mm: cow and gup_longterm cleanups" from
   Mark Brown provides various updates to some of the MM selftests to make
   them play better with the overall containing framework.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaDzA9wAKCRDdBJ7gKXxA
 js8sAP9V3COg+vzTmimzP3ocTkkbbIJzDfM6nXpE2EQ4BR3ejwD+NsIT2ZLtTF6O
 LqAZpgO7ju6wMjR/lM30ebCq5qFbZAw=
 =oruw
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2025-06-01-14-06' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull more MM updates from Andrew Morton:

 - "zram: support algorithm-specific parameters" from Sergey Senozhatsky
   adds infrastructure for passing algorithm-specific parameters into
   zram. A single parameter `winbits' is implemented at this time.

 - "memcg: nmi-safe kmem charging" from Shakeel Butt makes memcg
   charging nmi-safe, which is required by BFP, which can operate in NMI
   context.

 - "Some random fixes and cleanup to shmem" from Kemeng Shi implements
   small fixes and cleanups in the shmem code.

 - "Skip mm selftests instead when kernel features are not present" from
   Zi Yan fixes some issues in the MM selftest code.

 - "mm/damon: build-enable essential DAMON components by default" from
   SeongJae Park reworks DAMON Kconfig to make it easier to enable
   CONFIG_DAMON.

 - "sched/numa: add statistics of numa balance task migration" from Libo
   Chen adds more info into sysfs and procfs files to improve visibility
   into the NUMA balancer's task migration activity.

 - "selftests/mm: cow and gup_longterm cleanups" from Mark Brown
   provides various updates to some of the MM selftests to make them
   play better with the overall containing framework.

* tag 'mm-stable-2025-06-01-14-06' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (43 commits)
  mm/khugepaged: clean up refcount check using folio_expected_ref_count()
  selftests/mm: fix test result reporting in gup_longterm
  selftests/mm: report unique test names for each cow test
  selftests/mm: add helper for logging test start and results
  selftests/mm: use standard ksft_finished() in cow and gup_longterm
  selftests/damon/_damon_sysfs: skip testcases if CONFIG_DAMON_SYSFS is disabled
  sched/numa: add statistics of numa balance task
  sched/numa: fix task swap by skipping kernel threads
  tools/testing: check correct variable in open_procmap()
  tools/testing/vma: add missing function stub
  mm/gup: update comment explaining why gup_fast() disables IRQs
  selftests/mm: two fixes for the pfnmap test
  mm/khugepaged: fix race with folio split/free using temporary reference
  mm: add CONFIG_PAGE_BLOCK_ORDER to select page block order
  mmu_notifiers: remove leftover stub macros
  selftests/mm: deduplicate test names in madv_populate
  kcov: rust: add flags for KCOV with Rust
  mm: rust: make CONFIG_MMU ifdefs more narrow
  mmu_gather: move tlb flush for VM_PFNMAP/VM_MIXEDMAP vmas into free_pgtables()
  mm/damon/Kconfig: enable CONFIG_DAMON by default
  ...
2025-06-02 16:00:26 -07:00
Chen Yu
ad6b26b6a0 sched/numa: add statistics of numa balance task
On systems with NUMA balancing enabled, it has been found that tracking
task activities resulting from NUMA balancing is beneficial.  NUMA
balancing employs two mechanisms for task migration: one is to migrate
a task to an idle CPU within its preferred node, and the other is to
swap tasks located on different nodes when they are on each other's
preferred nodes.

The kernel already provides NUMA page migration statistics in
/sys/fs/cgroup/mytest/memory.stat and /proc/{PID}/sched.  However, it
lacks statistics regarding task migration and swapping.  Therefore,
relevant counts for task migration and swapping should be added.

The following two new fields:

numa_task_migrated
numa_task_swapped

will be shown in /sys/fs/cgroup/{GROUP}/memory.stat, /proc/{PID}/sched
and /proc/vmstat.

Introducing both per-task and per-memory cgroup (memcg) NUMA balancing
statistics facilitates a rapid evaluation of the performance and
resource utilization of the target workload.  For instance, users can
first identify the container with high NUMA balancing activity and then
further pinpoint a specific task within that group, and subsequently
adjust the memory policy for that task.  In short, although it is
possible to iterate through /proc/$pid/sched to locate the problematic
task, the introduction of aggregated NUMA balancing activity for tasks
within each memcg can assist users in identifying the task more
efficiently through a divide-and-conquer approach.

As Libo Chen pointed out, the memcg event relies on the text names in
vmstat_text, and /proc/vmstat generates corresponding items based on
vmstat_text.  Thus, the relevant task migration and swapping events
introduced in vmstat_text also need to be populated by
count_vm_numa_event(), otherwise these values are zero in /proc/vmstat.

In theory, task migration and swap events are part of the scheduler's
activities.  The reason for exposing them through the
memory.stat/vmstat interface is that we already have NUMA balancing
statistics in memory.stat/vmstat, and these events are closely related
to each other.  Following Shakeel's suggestion, we describe the
end-to-end flow/story of all these events occurring on a timeline for
future reference:

The goal of NUMA balancing is to co-locate a task and its memory pages
on the same NUMA node.  There are two strategies: migrate the pages to
the task's node, or migrate the task to the node where its pages
reside.

Suppose a task p1 is running on Node 0, but its pages are located on
Node 1.  NUMA page fault statistics for p1 reveal its "page footprint"
across nodes.  If NUMA balancing detects that most of p1's pages are on
Node 1:

1.Page Migration Attempt:
The Numa balance first tries to migrate p1's pages to Node 0.
The numa_page_migrate counter increments.

2.Task Migration Strategies:
After the page migration finishes, Numa balance checks every
1 second to see if p1 can be migrated to Node 1.

Case 2.1: Idle CPU Available

  If Node 1 has an idle CPU, p1 is directly scheduled there.  This
  event is logged as numa_task_migrated.

Case 2.2: No Idle CPU (Task Swap)

  If all CPUs on Node1 are busy, direct migration could cause CPU
  contention or load imbalance.  Instead: The Numa balance selects a
  candidate task p2 on Node 1 that prefers Node 0 (e.g., due to its own
  page footprint).  p1 and p2 are swapped.  This cross-node swap is
  recorded as numa_task_swapped.

Link: https://lkml.kernel.org/r/d00edb12ba0f0de3c5222f61487e65f2ac58f5b1.1748493462.git.yu.c.chen@intel.com
Link: https://lkml.kernel.org/r/7ef90a88602ed536be46eba7152ed0d33bad5790.1748002400.git.yu.c.chen@intel.com
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Madadi Vineeth Reddy <vineethr@linux.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Venkat Rao Bagalkote <venkat88@linux.ibm.com>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Ayush Jain <Ayush.jain3@amd.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Libo Chen <libo.chen@oracle.com>
Cc: Mel Gorman <mgorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-31 22:46:15 -07:00
Shakeel Butt
3ac4638a73 memcg: make memcg_rstat_updated nmi safe
Currently kernel maintains memory related stats updates per-cgroup to
optimize stats flushing.  The stats_updates is defined as atomic64_t which
is not nmi-safe on some archs.  Actually we don't really need 64bit atomic
as the max value stats_updates can get should be less than nr_cpus *
MEMCG_CHARGE_BATCH.  A normal atomic_t should suffice.

Also the function cgroup_rstat_updated() is still not nmi-safe but there
is parallel effort to make it nmi-safe, so until then let's ignore it in
the nmi context.

Link: https://lkml.kernel.org/r/20250519063142.111219-6-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-31 22:46:09 -07:00
Shakeel Butt
15ca4fa904 memcg: nmi-safe slab stats updates
The objcg based kmem [un]charging can be called in nmi context and it may
need to update NR_SLAB_[UN]RECLAIMABLE_B stats.  So, let's correctly
handle the updates of these stats in the nmi context.

Link: https://lkml.kernel.org/r/20250519063142.111219-5-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-31 22:46:09 -07:00
Shakeel Butt
9d3edf96ce memcg: add nmi-safe update for MEMCG_KMEM
The objcg based kmem charging and uncharging code path needs to update
MEMCG_KMEM appropriately.  Let's add support to update MEMCG_KMEM in
nmi-safe way for those code paths.

Link: https://lkml.kernel.org/r/20250519063142.111219-4-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-31 22:46:09 -07:00
Shakeel Butt
940b01fc8d memcg: nmi safe memcg stats for specific archs
There are archs which have NMI but does not support this_cpu_* ops safely
in the nmi context but they support safe atomic ops in nmi context.  For
such archs, let's add infra to use atomic ops for the memcg stats which
can be updated in nmi.

At the moment, the memcg stats which get updated in the objcg charging
path are MEMCG_KMEM, NR_SLAB_RECLAIMABLE_B & NR_SLAB_UNRECLAIMABLE_B. 
Rather than adding support for all memcg stats to be nmi safe, let's just
add infra to make these three stats nmi safe which this patch is doing.

Link: https://lkml.kernel.org/r/20250519063142.111219-3-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-31 22:46:08 -07:00
Shakeel Butt
25352d2f2d memcg: disable kmem charging in nmi for unsupported arch
Patch series "memcg: nmi-safe kmem charging", v4.

Users can attached their BPF programs at arbitrary execution points in the
kernel and such BPF programs may run in nmi context.  In addition, these
programs can trigger memcg charged kernel allocations in the nmi context. 
However memcg charging infra for kernel memory is not equipped to handle
nmi context for all architectures.

This series removes the hurdles to enable kmem charging in the nmi context
for most of the archs.  For archs without CONFIG_HAVE_NMI, this series is
a noop.  For archs with NMI support and have
CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS, the previous work to make memcg
stats re-entrant is sufficient for allowing kmem charging in nmi context. 
For archs with NMI support but without
CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS and with ARCH_HAVE_NMI_SAFE_CMPXCHG,
this series added infra to support kmem charging in nmi context.  Lastly
those archs with NMI support but without
CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS and ARCH_HAVE_NMI_SAFE_CMPXCHG, kmem
charging in nmi context is not supported at all.

Mostly used archs have support for CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
and this series should be almost a noop (other than making
memcg_rstat_updated nmi safe) for such archs.  


This patch (of 5):

The memcg accounting and stats uses this_cpu* and atomic* ops.  There are
archs which define CONFIG_HAVE_NMI but does not define
CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS and ARCH_HAVE_NMI_SAFE_CMPXCHG, so
memcg accounting for such archs in nmi context is not possible to support.
Let's just disable memcg accounting in nmi context for such archs.

Link: https://lkml.kernel.org/r/20250519063142.111219-1-shakeel.butt@linux.dev
Link: https://lkml.kernel.org/r/20250519063142.111219-2-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-31 22:46:08 -07:00
Linus Torvalds
00c010e130 - The 11 patch series "Add folio_mk_pte()" from Matthew Wilcox
simplifies the act of creating a pte which addresses the first page in a
   folio and reduces the amount of plumbing which architecture must
   implement to provide this.
 
 - The 8 patch series "Misc folio patches for 6.16" from Matthew Wilcox
   is a shower of largely unrelated folio infrastructure changes which
   clean things up and better prepare us for future work.
 
 - The 3 patch series "memory,x86,acpi: hotplug memory alignment
   advisement" from Gregory Price adds early-init code to prevent x86 from
   leaving physical memory unused when physical address regions are not
   aligned to memory block size.
 
 - The 2 patch series "mm/compaction: allow more aggressive proactive
   compaction" from Michal Clapinski provides some tuning of the (sadly,
   hard-coded (more sadly, not auto-tuned)) thresholds for our invokation
   of proactive compaction.  In a simple test case, the reduction of a guest
   VM's memory consumption was dramatic.
 
 - The 8 patch series "Minor cleanups and improvements to swap freeing
   code" from Kemeng Shi provides some code cleaups and a small efficiency
   improvement to this part of our swap handling code.
 
 - The 6 patch series "ptrace: introduce PTRACE_SET_SYSCALL_INFO API"
   from Dmitry Levin adds the ability for a ptracer to modify syscalls
   arguments.  At this time we can alter only "system call information that
   are used by strace system call tampering, namely, syscall number,
   syscall arguments, and syscall return value.
 
   This series should have been incorporated into mm.git's "non-MM"
   branch, but I goofed.
 
 - The 3 patch series "fs/proc: extend the PAGEMAP_SCAN ioctl to report
   guard regions" from Andrei Vagin extends the info returned by the
   PAGEMAP_SCAN ioctl against /proc/pid/pagemap.  This permits CRIU to more
   efficiently get at the info about guard regions.
 
 - The 2 patch series "Fix parameter passed to page_mapcount_is_type()"
   from Gavin Shan implements that fix.  No runtime effect is expected
   because validate_page_before_insert() happens to fix up this error.
 
 - The 3 patch series "kernel/events/uprobes: uprobe_write_opcode()
   rewrite" from David Hildenbrand basically brings uprobe text poking into
   the current decade.  Remove a bunch of hand-rolled implementation in
   favor of using more current facilities.
 
 - The 3 patch series "mm/ptdump: Drop assumption that pxd_val() is u64"
   from Anshuman Khandual provides enhancements and generalizations to the
   pte dumping code.  This might be needed when 128-bit Page Table
   Descriptors are enabled for ARM.
 
 - The 12 patch series "Always call constructor for kernel page tables"
   from Kevin Brodsky "ensures that the ctor/dtor is always called for
   kernel pgtables, as it already is for user pgtables".  This permits the
   addition of more functionality such as "insert hooks to protect page
   tables".  This change does result in various architectures performing
   unnecesary work, but this is fixed up where it is anticipated to occur.
 
 - The 9 patch series "Rust support for mm_struct, vm_area_struct, and
   mmap" from Alice Ryhl adds plumbing to permit Rust access to core MM
   structures.
 
 - The 3 patch series "fix incorrectly disallowed anonymous VMA merges"
   from Lorenzo Stoakes takes advantage of some VMA merging opportunities
   which we've been missing for 15 years.
 
 - The 4 patch series "mm/madvise: batch tlb flushes for MADV_DONTNEED
   and MADV_FREE" from SeongJae Park optimizes process_madvise()'s TLB
   flushing.  Instead of flushing each address range in the provided iovec,
   we batch the flushing across all the iovec entries.  The syscall's cost
   was approximately halved with a microbenchmark which was designed to
   load this particular operation.
 
 - The 6 patch series "Track node vacancy to reduce worst case allocation
   counts" from Sidhartha Kumar makes the maple tree smarter about its node
   preallocation.  stress-ng mmap performance increased by single-digit
   percentages and the amount of unnecessarily preallocated memory was
   dramaticelly reduced.
 
 - The 3 patch series "mm/gup: Minor fix, cleanup and improvements" from
   Baoquan He removes a few unnecessary things which Baoquan noted when
   reading the code.
 
 - The 3 patch series ""Enhance sysfs handling for memory hotplug in
   weighted interleave" from Rakie Kim "enhances the weighted interleave
   policy in the memory management subsystem by improving sysfs handling,
   fixing memory leaks, and introducing dynamic sysfs updates for memory
   hotplug support".  Fixes things on error paths which we are unlikely to
   hit.
 
 - The 7 patch series "mm/damon: auto-tune DAMOS for NUMA setups
   including tiered memory" from SeongJae Park introduces new DAMOS quota
   goal metrics which eliminate the manual tuning which is required when
   utilizing DAMON for memory tiering.
 
 - The 5 patch series "mm/vmalloc.c: code cleanup and improvements" from
   Baoquan He provides cleanups and small efficiency improvements which
   Baoquan found via code inspection.
 
 - The 2 patch series "vmscan: enforce mems_effective during demotion"
   from Gregory Price "changes reclaim to respect cpuset.mems_effective
   during demotion when possible".  because "presently, reclaim explicitly
   ignores cpuset.mems_effective when demoting, which may cause the cpuset
   settings to violated." "This is useful for isolating workloads on a
   multi-tenant system from certain classes of memory more consistently."
 
 - The 2 patch series ""Clean up split_huge_pmd_locked() and remove
   unnecessary folio pointers" from Gavin Guo provides minor cleanups and
   efficiency gains in in the huge page splitting and migrating code.
 
 - The 3 patch series "Use kmem_cache for memcg alloc" from Huan Yang
   creates a slab cache for `struct mem_cgroup', yielding improved memory
   utilization.
 
 - The 4 patch series "add max arg to swappiness in memory.reclaim and
   lru_gen" from Zhongkun He adds a new "max" argument to the "swappiness="
   argument for memory.reclaim MGLRU's lru_gen.  This directs proactive
   reclaim to reclaim from only anon folios rather than file-backed folios.
 
 - The 17 patch series "kexec: introduce Kexec HandOver (KHO)" from Mike
   Rapoport is the first step on the path to permitting the kernel to
   maintain existing VMs while replacing the host kernel via file-based
   kexec.  At this time only memblock's reserve_mem is preserved.
 
 - The 7 patch series "mm: Introduce for_each_valid_pfn()" from David
   Woodhouse provides and uses a smarter way of looping over a pfn range.
   By skipping ranges of invalid pfns.
 
 - The 2 patch series "sched/numa: Skip VMA scanning on memory pinned to
   one NUMA node via cpuset.mems" from Libo Chen removes a lot of pointless
   VMA scanning when a task is pinned a single NUMA mode.  Dramatic
   performance benefits were seen in some real world cases.
 
 - The 2 patch series "JFS: Implement migrate_folio for
   jfs_metapage_aops" from Shivank Garg addresses a warning which occurs
   during memory compaction when using JFS.
 
 - The 4 patch series "move all VMA allocation, freeing and duplication
   logic to mm" from Lorenzo Stoakes moves some VMA code from kernel/fork.c
   into the more appropriate mm/vma.c.
 
 - The 6 patch series "mm, swap: clean up swap cache mapping helper" from
   Kairui Song provides code consolidation and cleanups related to the
   folio_index() function.
 
 - The 2 patch series "mm/gup: Cleanup memfd_pin_folios()" from Vishal
   Moola does that.
 
 - The 8 patch series "memcg: Fix test_memcg_min/low test failures" from
   Waiman Long addresses some bogus failures which are being reported by
   the test_memcontrol selftest.
 
 - The 3 patch series "eliminate mmap() retry merge, add .mmap_prepare
   hook" from Lorenzo Stoakes commences the deprecation of
   file_operations.mmap() in favor of the new
   file_operations.mmap_prepare().  The latter is more restrictive and
   prevents drivers from messing with things in ways which, amongst other
   problems, may defeat VMA merging.
 
 - The 4 patch series "memcg: decouple memcg and objcg stocks"" from
   Shakeel Butt decouples the per-cpu memcg charge cache from the objcg's
   one.  This is a step along the way to making memcg and objcg charging
   NMI-safe, which is a BPF requirement.
 
 - The 6 patch series "mm/damon: minor fixups and improvements for code,
   tests, and documents" from SeongJae Park is "yet another batch of
   miscellaneous DAMON changes.  Fix and improve minor problems in code,
   tests and documents."
 
 - The 7 patch series "memcg: make memcg stats irq safe" from Shakeel
   Butt converts memcg stats to be irq safe.  Another step along the way to
   making memcg charging and stats updates NMI-safe, a BPF requirement.
 
 - The 4 patch series "Let unmap_hugepage_range() and several related
   functions take folio instead of page" from Fan Ni provides folio
   conversions in the hugetlb code.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaDt5qgAKCRDdBJ7gKXxA
 ju6XAP9nTiSfRz8Cz1n5LJZpFKEGzLpSihCYyR6P3o1L9oe3mwEAlZ5+XAwk2I5x
 Qqb/UGMEpilyre1PayQqOnct3aSL9Ao=
 =tYYm
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - "Add folio_mk_pte()" from Matthew Wilcox simplifies the act of
   creating a pte which addresses the first page in a folio and reduces
   the amount of plumbing which architecture must implement to provide
   this.

 - "Misc folio patches for 6.16" from Matthew Wilcox is a shower of
   largely unrelated folio infrastructure changes which clean things up
   and better prepare us for future work.

 - "memory,x86,acpi: hotplug memory alignment advisement" from Gregory
   Price adds early-init code to prevent x86 from leaving physical
   memory unused when physical address regions are not aligned to memory
   block size.

 - "mm/compaction: allow more aggressive proactive compaction" from
   Michal Clapinski provides some tuning of the (sadly, hard-coded (more
   sadly, not auto-tuned)) thresholds for our invokation of proactive
   compaction. In a simple test case, the reduction of a guest VM's
   memory consumption was dramatic.

 - "Minor cleanups and improvements to swap freeing code" from Kemeng
   Shi provides some code cleaups and a small efficiency improvement to
   this part of our swap handling code.

 - "ptrace: introduce PTRACE_SET_SYSCALL_INFO API" from Dmitry Levin
   adds the ability for a ptracer to modify syscalls arguments. At this
   time we can alter only "system call information that are used by
   strace system call tampering, namely, syscall number, syscall
   arguments, and syscall return value.

   This series should have been incorporated into mm.git's "non-MM"
   branch, but I goofed.

 - "fs/proc: extend the PAGEMAP_SCAN ioctl to report guard regions" from
   Andrei Vagin extends the info returned by the PAGEMAP_SCAN ioctl
   against /proc/pid/pagemap. This permits CRIU to more efficiently get
   at the info about guard regions.

 - "Fix parameter passed to page_mapcount_is_type()" from Gavin Shan
   implements that fix. No runtime effect is expected because
   validate_page_before_insert() happens to fix up this error.

 - "kernel/events/uprobes: uprobe_write_opcode() rewrite" from David
   Hildenbrand basically brings uprobe text poking into the current
   decade. Remove a bunch of hand-rolled implementation in favor of
   using more current facilities.

 - "mm/ptdump: Drop assumption that pxd_val() is u64" from Anshuman
   Khandual provides enhancements and generalizations to the pte dumping
   code. This might be needed when 128-bit Page Table Descriptors are
   enabled for ARM.

 - "Always call constructor for kernel page tables" from Kevin Brodsky
   ensures that the ctor/dtor is always called for kernel pgtables, as
   it already is for user pgtables.

   This permits the addition of more functionality such as "insert hooks
   to protect page tables". This change does result in various
   architectures performing unnecesary work, but this is fixed up where
   it is anticipated to occur.

 - "Rust support for mm_struct, vm_area_struct, and mmap" from Alice
   Ryhl adds plumbing to permit Rust access to core MM structures.

 - "fix incorrectly disallowed anonymous VMA merges" from Lorenzo
   Stoakes takes advantage of some VMA merging opportunities which we've
   been missing for 15 years.

 - "mm/madvise: batch tlb flushes for MADV_DONTNEED and MADV_FREE" from
   SeongJae Park optimizes process_madvise()'s TLB flushing.

   Instead of flushing each address range in the provided iovec, we
   batch the flushing across all the iovec entries. The syscall's cost
   was approximately halved with a microbenchmark which was designed to
   load this particular operation.

 - "Track node vacancy to reduce worst case allocation counts" from
   Sidhartha Kumar makes the maple tree smarter about its node
   preallocation.

   stress-ng mmap performance increased by single-digit percentages and
   the amount of unnecessarily preallocated memory was dramaticelly
   reduced.

 - "mm/gup: Minor fix, cleanup and improvements" from Baoquan He removes
   a few unnecessary things which Baoquan noted when reading the code.

 - ""Enhance sysfs handling for memory hotplug in weighted interleave"
   from Rakie Kim "enhances the weighted interleave policy in the memory
   management subsystem by improving sysfs handling, fixing memory
   leaks, and introducing dynamic sysfs updates for memory hotplug
   support". Fixes things on error paths which we are unlikely to hit.

 - "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory"
   from SeongJae Park introduces new DAMOS quota goal metrics which
   eliminate the manual tuning which is required when utilizing DAMON
   for memory tiering.

 - "mm/vmalloc.c: code cleanup and improvements" from Baoquan He
   provides cleanups and small efficiency improvements which Baoquan
   found via code inspection.

 - "vmscan: enforce mems_effective during demotion" from Gregory Price
   changes reclaim to respect cpuset.mems_effective during demotion when
   possible. because presently, reclaim explicitly ignores
   cpuset.mems_effective when demoting, which may cause the cpuset
   settings to violated.

   This is useful for isolating workloads on a multi-tenant system from
   certain classes of memory more consistently.

 - "Clean up split_huge_pmd_locked() and remove unnecessary folio
   pointers" from Gavin Guo provides minor cleanups and efficiency gains
   in in the huge page splitting and migrating code.

 - "Use kmem_cache for memcg alloc" from Huan Yang creates a slab cache
   for `struct mem_cgroup', yielding improved memory utilization.

 - "add max arg to swappiness in memory.reclaim and lru_gen" from
   Zhongkun He adds a new "max" argument to the "swappiness=" argument
   for memory.reclaim MGLRU's lru_gen.

   This directs proactive reclaim to reclaim from only anon folios
   rather than file-backed folios.

 - "kexec: introduce Kexec HandOver (KHO)" from Mike Rapoport is the
   first step on the path to permitting the kernel to maintain existing
   VMs while replacing the host kernel via file-based kexec. At this
   time only memblock's reserve_mem is preserved.

 - "mm: Introduce for_each_valid_pfn()" from David Woodhouse provides
   and uses a smarter way of looping over a pfn range. By skipping
   ranges of invalid pfns.

 - "sched/numa: Skip VMA scanning on memory pinned to one NUMA node via
   cpuset.mems" from Libo Chen removes a lot of pointless VMA scanning
   when a task is pinned a single NUMA mode.

   Dramatic performance benefits were seen in some real world cases.

 - "JFS: Implement migrate_folio for jfs_metapage_aops" from Shivank
   Garg addresses a warning which occurs during memory compaction when
   using JFS.

 - "move all VMA allocation, freeing and duplication logic to mm" from
   Lorenzo Stoakes moves some VMA code from kernel/fork.c into the more
   appropriate mm/vma.c.

 - "mm, swap: clean up swap cache mapping helper" from Kairui Song
   provides code consolidation and cleanups related to the folio_index()
   function.

 - "mm/gup: Cleanup memfd_pin_folios()" from Vishal Moola does that.

 - "memcg: Fix test_memcg_min/low test failures" from Waiman Long
   addresses some bogus failures which are being reported by the
   test_memcontrol selftest.

 - "eliminate mmap() retry merge, add .mmap_prepare hook" from Lorenzo
   Stoakes commences the deprecation of file_operations.mmap() in favor
   of the new file_operations.mmap_prepare().

   The latter is more restrictive and prevents drivers from messing with
   things in ways which, amongst other problems, may defeat VMA merging.

 - "memcg: decouple memcg and objcg stocks"" from Shakeel Butt decouples
   the per-cpu memcg charge cache from the objcg's one.

   This is a step along the way to making memcg and objcg charging
   NMI-safe, which is a BPF requirement.

 - "mm/damon: minor fixups and improvements for code, tests, and
   documents" from SeongJae Park is yet another batch of miscellaneous
   DAMON changes. Fix and improve minor problems in code, tests and
   documents.

 - "memcg: make memcg stats irq safe" from Shakeel Butt converts memcg
   stats to be irq safe. Another step along the way to making memcg
   charging and stats updates NMI-safe, a BPF requirement.

 - "Let unmap_hugepage_range() and several related functions take folio
   instead of page" from Fan Ni provides folio conversions in the
   hugetlb code.

* tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (285 commits)
  mm: pcp: increase pcp->free_count threshold to trigger free_high
  mm/hugetlb: convert use of struct page to folio in __unmap_hugepage_range()
  mm/hugetlb: refactor __unmap_hugepage_range() to take folio instead of page
  mm/hugetlb: refactor unmap_hugepage_range() to take folio instead of page
  mm/hugetlb: pass folio instead of page to unmap_ref_private()
  memcg: objcg stock trylock without irq disabling
  memcg: no stock lock for cpu hot-unplug
  memcg: make __mod_memcg_lruvec_state re-entrant safe against irqs
  memcg: make count_memcg_events re-entrant safe against irqs
  memcg: make mod_memcg_state re-entrant safe against irqs
  memcg: move preempt disable to callers of memcg_rstat_updated
  memcg: memcg_rstat_updated re-entrant safe against irqs
  mm: khugepaged: decouple SHMEM and file folios' collapse
  selftests/eventfd: correct test name and improve messages
  alloc_tag: check mem_profiling_support in alloc_tag_init
  Docs/damon: update titles and brief introductions to explain DAMOS
  selftests/damon/_damon_sysfs: read tried regions directories in order
  mm/damon/tests/core-kunit: add a test for damos_set_filters_default_reject()
  mm/damon/paddr: remove unused variable, folio_list, in damon_pa_stat()
  mm/damon/sysfs-schemes: fix wrong comment on damons_sysfs_quota_goal_metric_strs
  ...
2025-05-31 15:44:16 -07:00
Linus Torvalds
3b66e6b3c0 cgroup: Changes for v6.16
- cgroup rstat shared the tracking tree across all controlers with the
   rationale being that a cgroup which is using one resource is likely to be
   using other resources at the same time (ie. if something is allocating
   memory, it's probably consuming CPU cycles). However, this turned out to
   not scale very well especially with memcg using rstat for internal
   operations which made memcg stat read and flush patterns substantially
   different from other controllers. JP Kobryn split the rstat tree per
   controller.
 
 - cgroup BPF support was hooking into cgroup init/exit paths directly.
   Convert them to use a notifier chain instead so that other usages can be
   added easily. The two of the patches which implement this are mislabeled
   as belonging to sched_ext instead of cgroup. Sorry.
 
 - Relatively minor cpuset updates.
 
 - Documentation updates.
 -----BEGIN PGP SIGNATURE-----
 
 iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCaDYUmA4cdGpAa2VybmVs
 Lm9yZwAKCRCxYfJx3gVYGRhbAP90v8QwUkWEKGQSam8JY3by7PvrW6pV5ot+BGuM
 4xu3BAEAjsJ9FdiwYLwKYqG7y59xhhBFOo6GpcP52kPp3znl+QQ=
 =6MIT
 -----END PGP SIGNATURE-----

Merge tag 'cgroup-for-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup

Pull cgroup updates from Tejun Heo:

 - cgroup rstat shared the tracking tree across all controllers with the
   rationale being that a cgroup which is using one resource is likely
   to be using other resources at the same time (ie. if something is
   allocating memory, it's probably consuming CPU cycles).

   However, this turned out to not scale very well especially with memcg
   using rstat for internal operations which made memcg stat read and
   flush patterns substantially different from other controllers. JP
   Kobryn split the rstat tree per controller.

 - cgroup BPF support was hooking into cgroup init/exit paths directly.

   Convert them to use a notifier chain instead so that other usages can
   be added easily. The two of the patches which implement this are
   mislabeled as belonging to sched_ext instead of cgroup. Sorry.

 - Relatively minor cpuset updates

 - Documentation updates

* tag 'cgroup-for-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (23 commits)
  sched_ext: Convert cgroup BPF support to use cgroup_lifetime_notifier
  sched_ext: Introduce cgroup_lifetime_notifier
  cgroup: Minor reorganization of cgroup_create()
  cgroup, docs: cpu controller's interaction with various scheduling policies
  cgroup, docs: convert space indentation to tab indentation
  cgroup: avoid per-cpu allocation of size zero rstat cpu locks
  cgroup, docs: be specific about bandwidth control of rt processes
  cgroup: document the rstat per-cpu initialization
  cgroup: helper for checking rstat participation of css
  cgroup: use subsystem-specific rstat locks to avoid contention
  cgroup: use separate rstat trees for each subsystem
  cgroup: compare css to cgroup::self in helper for distingushing css
  cgroup: warn on rstat usage by early init subsystems
  cgroup/cpuset: drop useless cpumask_empty() in compute_effective_exclusive_cpumask()
  cgroup/rstat: Improve cgroup_rstat_push_children() documentation
  cgroup: fix goto ordering in cgroup_init()
  cgroup: fix pointer check in css_rstat_init()
  cgroup/cpuset: Add warnings to catch inconsistency in exclusive CPUs
  cgroup/cpuset: Fix obsolete comment in cpuset_css_offline()
  cgroup/cpuset: Always use cpu_active_mask
  ...
2025-05-27 20:59:53 -07:00
Breno Leitao
06717a7b6c memcg: always call cond_resched() after fn()
I am seeing soft lockup on certain machine types when a cgroup OOMs.  This
is happening because killing the process in certain machine might be very
slow, which causes the soft lockup and RCU stalls.  This happens usually
when the cgroup has MANY processes and memory.oom.group is set.

Example I am seeing in real production:

       [462012.244552] Memory cgroup out of memory: Killed process 3370438 (crosvm) ....
       ....
       [462037.318059] Memory cgroup out of memory: Killed process 4171372 (adb) ....
       [462037.348314] watchdog: BUG: soft lockup - CPU#64 stuck for 26s! [stat_manager-ag:1618982]
       ....

Quick look at why this is so slow, it seems to be related to serial flush
for certain machine types.  For all the crashes I saw, the target CPU was
at console_flush_all().

In the case above, there are thousands of processes in the cgroup, and it
is soft locking up before it reaches the 1024 limit in the code (which
would call the cond_resched()).  So, cond_resched() in 1024 blocks is not
sufficient.

Remove the counter-based conditional rescheduling logic and call
cond_resched() unconditionally after each task iteration, after fn() is
called.  This avoids the lockup independently of how slow fn() is.

Link: https://lkml.kernel.org/r/20250523-memcg_fix-v1-1-ad3eafb60477@debian.org
Fixes: ade81479c7 ("memcg: fix soft lockup in the OOM process")
Signed-off-by: Breno Leitao <leitao@debian.org>
Suggested-by: Rik van Riel <riel@surriel.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Michael van der Westhuizen <rmikey@meta.com>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Chen Ridong <chenridong@huawei.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-25 00:53:49 -07:00
Shakeel Butt
200577f69f memcg: objcg stock trylock without irq disabling
There is no need to disable irqs to use objcg per-cpu stock, so let's just
not do that but consume_obj_stock() and refill_obj_stock() will need to
use trylock instead to avoid deadlock against irq.  One consequence of
this change is that the charge request from irq context may take slowpath
more often but it should be rare.

Link: https://lkml.kernel.org/r/20250514184158.3471331-8-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-22 14:55:39 -07:00
Shakeel Butt
0ccf1806d4 memcg: no stock lock for cpu hot-unplug
Previously on the cpu hot-unplug, the kernel would call drain_obj_stock()
with objcg local lock.  However local lock was not needed as the stock
which was accessed belongs to a dead cpu but we kept it there to disable
irqs as drain_obj_stock() may call mod_objcg_mlstate() which required irqs
disabled.  However there is no need to disable irqs now for
mod_objcg_mlstate(), so we can remove the local lock altogether from cpu
hot-unplug path.

Link: https://lkml.kernel.org/r/20250514184158.3471331-7-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-22 14:55:38 -07:00
Shakeel Butt
eee8a1778c memcg: make __mod_memcg_lruvec_state re-entrant safe against irqs
Let's make __mod_memcg_lruvec_state re-entrant safe and name it
mod_memcg_lruvec_state().  The only thing needed is to convert the usage
of __this_cpu_add() to this_cpu_add().  There are two callers of
mod_memcg_lruvec_state() and one of them i.e.  __mod_objcg_mlstate() will
be re-entrant safe as well, so, rename it mod_objcg_mlstate().  The last
caller __mod_lruvec_state() still calls __mod_node_page_state() which is
not re-entrant safe yet, so keep it as is.

Link: https://lkml.kernel.org/r/20250514184158.3471331-6-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-22 14:55:38 -07:00
Shakeel Butt
e52401e724 memcg: make count_memcg_events re-entrant safe against irqs
Let's make count_memcg_events re-entrant safe against irqs.  The only
thing needed is to convert the usage of __this_cpu_add() to
this_cpu_add().  In addition, with re-entrant safety, there is no need to
disable irqs.  Also add warnings for in_nmi() as it is not safe against
nmi context.

Link: https://lkml.kernel.org/r/20250514184158.3471331-5-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-22 14:55:38 -07:00
Shakeel Butt
8814e3b869 memcg: make mod_memcg_state re-entrant safe against irqs
Let's make mod_memcg_state re-entrant safe against irqs.  The only thing
needed is to convert the usage of __this_cpu_add() to this_cpu_add().  In
addition, with re-entrant safety, there is no need to disable irqs.

mod_memcg_state() is not safe against nmi, so let's add warning if someone
tries to call it in nmi context.

Link: https://lkml.kernel.org/r/20250514184158.3471331-4-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-22 14:55:38 -07:00
Shakeel Butt
c7163535cd memcg: move preempt disable to callers of memcg_rstat_updated
Let's move the explicit preempt disable code to the callers of
memcg_rstat_updated and also remove the memcg_stats_lock and related
functions which ensures the callers of stats update functions have
disabled preemption because now the stats update functions are explicitly
disabling preemption.

Link: https://lkml.kernel.org/r/20250514184158.3471331-3-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-22 14:55:38 -07:00
Shakeel Butt
8a4b42b955 memcg: memcg_rstat_updated re-entrant safe against irqs
Patch series "memcg: make memcg stats irq safe", v2.

This series converts memcg stats to be irq safe i.e.  memcg stats can be
updated in any context (task, softirq or hardirq) without disabling the
irqs.  This is still not nmi-safe on all architectures but after this
series converting memcg charging and stats nmi-safe will be easier.


This patch (of 7):

memcg_rstat_updated() is used to track the memcg stats updates for
optimizing the flushes.  At the moment, it is not re-entrant safe and the
callers disabled irqs before calling.  However to achieve the goal of
updating memcg stats without irqs, memcg_rstat_updated() needs to be
re-entrant safe against irqs.

This patch makes memcg_rstat_updated() re-entrant safe using this_cpu_*
ops.  On archs with CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS, this patch is
also making memcg_rstat_updated() nmi safe.

[lorenzo.stoakes@oracle.com: fix build]
  Link: https://lkml.kernel.org/r/22f69e6e-7908-4e92-96ca-5c70d535c439@lucifer.local
Link: https://lkml.kernel.org/r/20250514184158.3471331-1-shakeel.butt@linux.dev
Link: https://lkml.kernel.org/r/20250514184158.3471331-2-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-22 14:55:38 -07:00
Shakeel Butt
9e619cd4fe memcg: no irq disable for memcg stock lock
There is no need to disable irqs to use memcg per-cpu stock, so let's just
not do that.  One consequence of this change is if the kernel while in
task context has the memcg stock lock and that cpu got interrupted.  The
memcg charges on that cpu in the irq context will take the slow path of
memcg charging.  However that should be super rare and should be fine in
general.

Link: https://lkml.kernel.org/r/20250506225533.2580386-5-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumaze <edumazet@google.com>
Cc: Jakub Kacinski <kuba@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-13 16:28:08 -07:00
Shakeel Butt
c80509ef65 memcg: completely decouple memcg and obj stocks
Let's completely decouple the memcg and obj per-cpu stocks.  This will
enable us to make memcg per-cpu stocks to used without disabling irqs. 
Also it will enable us to make obj stocks nmi safe independently which is
required to make kmalloc/slab safe for allocations from nmi context.

Link: https://lkml.kernel.org/r/20250506225533.2580386-4-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumaze <edumazet@google.com>
Cc: Jakub Kacinski <kuba@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-13 16:28:08 -07:00
Shakeel Butt
3523dd7af4 memcg: separate local_trylock for memcg and obj
The per-cpu stock_lock protects cached memcg and cached objcg and their
respective fields.  However there is no dependency between these fields
and it is better to have fine grained separate locks for cached memcg and
cached objcg.  This decoupling of locks allows us to make the memcg charge
cache and objcg charge cache to be nmi safe independently.

At the moment, memcg charge cache is already nmi safe and this decoupling
will allow to make memcg charge cache work without disabling irqs.

Link: https://lkml.kernel.org/r/20250506225533.2580386-3-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumaze <edumazet@google.com>
Cc: Jakub Kacinski <kuba@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-13 16:28:08 -07:00
Shakeel Butt
2fba5961c6 memcg: simplify consume_stock
Patch series "memcg: decouple memcg and objcg stocks", v3.

The per-cpu memcg charge cache and objcg charge cache are coupled in a
single struct memcg_stock_pcp and a single local lock is used to protect
both of the caches.  This makes memcg charging and objcg charging nmi safe
challenging.  Decoupling memcg and objcg stocks would allow us to make
them nmi safe and even work without disabling irqs independently.  This
series completely decouples memcg and objcg stocks.

To evaluate the impact of this series with and without PREEMPT_RT config,
we ran varying number of netperf clients in different cgroups on a 72 CPU
machine.

 $ netserver -6
 $ netperf -6 -H ::1 -l 60 -t TCP_SENDFILE -- -m 10K

PREEMPT_RT config:
------------------
number of clients | Without series | With series
  6               | 38559.1 Mbps   | 38652.6 Mbps
  12              | 37388.8 Mbps   | 37560.1 Mbps
  18              | 30707.5 Mbps   | 31378.3 Mbps
  24              | 25908.4 Mbps   | 26423.9 Mbps
  30              | 22347.7 Mbps   | 22326.5 Mbps
  36              | 20235.1 Mbps   | 20165.0 Mbps

!PREEMPT_RT config:
-------------------
number of clients | Without series | With series
  6               | 50235.7 Mbps   | 51415.4 Mbps
  12              | 49336.5 Mbps   | 49901.4 Mbps
  18              | 46306.8 Mbps   | 46482.7 Mbps
  24              | 38145.7 Mbps   | 38729.4 Mbps
  30              | 30347.6 Mbps   | 31698.2 Mbps
  36              | 26976.6 Mbps   | 27364.4 Mbps

No performance regression was observed.


This patch (of 4):

consume_stock() does not need to check gfp_mask for spinning and can
simply trylock the local lock to decide to proceed or fail.  No need to
spin at all for local lock.

One of the concern raised was that on PREEMPT_RT kernels, this trylock can
fail more often due to tasks having lock_lock can be preempted.  This can
potentially cause the task which have preempted the task having the
local_lock to take the slow path of memcg charging.

However this behavior will only impact the performance if memcg charging
slowpath is worse than two context switches and possibly scheduling delay
behavior of current code.  From the network intensive workload experiment
it does not seem like the case.

We ran varying number of netperf clients in different cgroups on a 72 CPU
machine for PREEMPT_RT config.

 $ netserver -6
 $ netperf -6 -H ::1 -l 60 -t TCP_SENDFILE -- -m 10K

number of clients | Without series | With series
  6               | 38559.1 Mbps   | 38652.6 Mbps
  12              | 37388.8 Mbps   | 37560.1 Mbps
  18              | 30707.5 Mbps   | 31378.3 Mbps
  24              | 25908.4 Mbps   | 26423.9 Mbps
  30              | 22347.7 Mbps   | 22326.5 Mbps
  36              | 20235.1 Mbps   | 20165.0 Mbps

We don't see any significant performance difference for the network
intensive workload with this series.

Link: https://lkml.kernel.org/r/20250506225533.2580386-1-shakeel.butt@linux.dev
Link: https://lkml.kernel.org/r/20250506225533.2580386-2-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumaze <edumazet@google.com>
Cc: Jakub Kacinski <kuba@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-13 16:28:08 -07:00
Zhongkun He
68a1436bde mm: add swappiness=max arg to memory.reclaim for only anon reclaim
Patch series "add max arg to swappiness in memory.reclaim and lru_gen", v4.

This patchset adds max arg to swappiness in memory.reclaim and lru_gen for
anon only proactive memory reclaim.

With commit <68cd9050d871> ("mm: add swappiness= arg to memory.reclaim")
we can submit an additional swappiness=<val> argument to memory.reclaim. 
It is very useful because we can dynamically adjust the reclamation ratio
based on the anonymous folios and file folios of each cgroup.  For
example,when swappiness is set to 0, we only reclaim from file folios. 
But we can not relciam memory just from anon folios.

This patchset introduces a new macro, SWAPPINESS_ANON_ONLY, defined as
MAX_SWAPPINESS + 1, represent the max arg semantics.  It specifically
indicates that reclamation should occur only from anonymous pages.

Patch 1 adds swappiness=max arg to memory.reclaim suggested-by: Yosry
Ahmed

Patch 2 add more comments for cache_trim_mode from Johannes Weiner in [1].

Patch 3 add max arg to lru_gen for proactive memory reclaim in MGLRU.  The
MGLRU already supports reclaiming exclusively from anonymous pages.  This
patch formalizes that behavior by introducing a max parameter to represent
the corresponding semantics.

Patch 4 using SWAPPINESS_ANON_ONLY in MGLRU Using SWAPPINESS_ANON_ONLY
instead of MAX_SWAPPINESS + 1 to indicate reclaiming only from anonymous
pages makes the code more readable and explicit

Here is the previous discussion:
https://lore.kernel.org/all/20250314033350.1156370-1-hezhongkun.hzk@bytedance.com/
https://lore.kernel.org/all/20250312094337.2296278-1-hezhongkun.hzk@bytedance.com/
https://lore.kernel.org/all/20250318135330.3358345-1-hezhongkun.hzk@bytedance.com/


This patch (of 4):

With commit <68cd9050d871> ("mm: add swappiness= arg to memory.reclaim")
we can submit an additional swappiness=<val> argument to memory.reclaim. 
It is very useful because we can dynamically adjust the reclamation ratio
based on the anonymous folios and file folios of each cgroup.  For
example,when swappiness is set to 0, we only reclaim from file folios.

However,we have also encountered a new issue: when swappiness is set to
the MAX_SWAPPINESS, it may still only reclaim file folios.

So, we hope to add a new arg 'swappiness=max' in memory.reclaim where
proactive memory reclaim only reclaims from anonymous folios when
swappiness is set to max.  The swappiness semantics from a user
perspective remain unchanged.

For example, something like this:

echo "2M swappiness=max" > /sys/fs/cgroup/memory.reclaim

will perform reclaim on the rootcg with a swappiness setting of 'max' (a
new mode) regardless of the file folios.  Users have a more comprehensive
view of the application's memory distribution because there are many
metrics available.  For example, if we find that a certain cgroup has a
large number of inactive anon folios, we can reclaim only those and skip
file folios, because with the zram/zswap, the IO tradeoff that
cache_trim_mode or other file first logic is making doesn't hold - file
refaults will cause IO, whereas anon decompression will not.

With this patch, the swappiness argument of memory.reclaim has a new
mode 'max', means reclaiming just from anonymous folios both in traditional
LRU and MGLRU.

Link: https://lkml.kernel.org/r/cover.1745225696.git.hezhongkun.hzk@bytedance.com
Link: https://lore.kernel.org/all/20250314141833.GA1316033@cmpxchg.org/ [1]
Link: https://lkml.kernel.org/r/519e12b9b1f8c31a01e228c8b4b91a2419684f77.1745225696.git.hezhongkun.hzk@bytedance.com
Signed-off-by: Zhongkun He <hezhongkun.hzk@bytedance.com>
Suggested-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: Muchun Song <muchun.song@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12 23:50:35 -07:00
Shakeel Butt
c8e6002bd6 memcg: introduce non-blocking limit setting option
Setting the max and high limits can trigger synchronous reclaim and/or
oom-kill if the usage is higher than the given limit.  This behavior is
fine for newly created cgroups but it can cause issues for the node
controller while setting limits for existing cgroups.

In our production multi-tenant and overcommitted environment, we are
seeing priority inversion when the node controller dynamically adjusts the
limits of running jobs of different priorities.  Based on the system
situation, the node controller may reduce the limits of lower priority
jobs and increase the limits of higher priority jobs.  However we are
seeing node controller getting stuck for long period of time while
reclaiming from lower priority jobs while setting their limits and also
spends a lot of its own CPU.

One of the workaround we are trying is to fork a new process which sets
the limit of the lower priority job along with setting an alarm to get
itself killed if it get stuck in the reclaim for lower priority job. 
However we are finding it very unreliable and costly.  Either we need a
good enough time buffer for the alarm to be delivered after setting limit
and potentialy spend a lot of CPU in the reclaim or be unreliable in
setting the limit for much shorter but cheaper (less reclaim) alarms.

Let's introduce new limit setting option which does not trigger reclaim
and/or oom-kill and let the processes in the target cgroup to trigger
reclaim and/or throttling and/or oom-kill in their next charge request. 
This will make the node controller on multi-tenant overcommitted
environment much more reliable.

Explanation from Johannes on side-effects of O_NONBLOCK limit change:
  It's usually the allocating tasks inside the group bearing the cost of
  limit enforcement and reclaim. This allows a (privileged) updater from
  outside the group to keep that cost in there - instead of having to
  help, from a context that doesn't necessarily make sense.

  I suppose the tradeoff with that - and the reason why this was doing
  sync reclaim in the first place - is that, if the group is idle and
  not trying to allocate more, it can take indefinitely for the new
  limit to actually be met.

  It should be okay in most scenarios in practice. As the capacity is
  reallocated from group A to B, B will exert pressure on A once it
  tries to claim it and thereby shrink it down. If A is idle, that
  shouldn't be hard. If A is running, it's likely to fault/allocate
  soon-ish and then join the effort.

  It does leave a (malicious) corner case where A is just busy-hitting
  its memory to interfere with the clawback. This is comparable to
  reclaiming memory.low overage from the outside, though, which is an
  acceptable risk. Users of O_NONBLOCK just need to be aware.

Link: https://lkml.kernel.org/r/20250419183545.1982187-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12 23:50:35 -07:00
Huan Yang
1b6a58e205 mm/memcg: use kmem_cache when alloc memcg pernode info
When tracing mem_cgroup_per_node allocations with kmalloc ftrace:

kmalloc: call_site=mem_cgroup_css_alloc+0x1d8/0x5b4 ptr=00000000d798700c
    bytes_req=2896 bytes_alloc=4096 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0
    accounted=false

This reveals the slab allocator provides 4096B chunks for 2896B
mem_cgroup_per_node due to:

1. The slab allocator predefines bucket sizes from 64B to 8096B
2. The mem_cgroup allocation size (2312B) falls between the 2KB and 4KB
   slabs
3. The allocator rounds up to the nearest larger slab (4KB), resulting in
   ~1KB wasted memory per memcg alloc - per node.

This patch introduces a dedicated kmem_cache for mem_cgroup structs,
achieving precise memory allocation. Post-patch ftrace verification shows:

kmem_cache_alloc: call_site=mem_cgroup_css_alloc+0x1b8/0x5d4
    ptr=000000002989e63a bytes_req=2896 bytes_alloc=2944
    gfp_flags=GFP_KERNEL|__GFP_ZERO node=0 accounted=false

Each mem_cgroup_per_node alloc 2944bytes(include hw cacheline align),
compare to 4096, it avoid waste.

Link: https://lkml.kernel.org/r/20250425031935.76411-4-link@vivo.com
Signed-off-by: Huan Yang <link@vivo.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Francesco Valla <francesco@valla.it>
Cc: guoweikang <guoweikang.kernel@gmail.com>
Cc: Huang Shijie <shijie@os.amperecomputing.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Raul E Rangel <rrangel@chromium.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12 23:50:34 -07:00
Huan Yang
97e4fc4b35 mm/memcg: use kmem_cache when alloc memcg
When tracing mem_cgroup_alloc() with kmalloc ftrace, we observe:

kmalloc: call_site=mem_cgroup_css_alloc+0xd8/0x5b4 ptr=000000003e4c3799
    bytes_req=2312 bytes_alloc=4096 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1
    accounted=false

The output indicates that while allocating mem_cgroup struct (2312 bytes),
the slab allocator actually provides 4096-byte chunks. This occurs because:

1. The slab allocator predefines bucket sizes from 64B to 8096B
2. The mem_cgroup allocation size (2312B) falls between the 2KB and 4KB
   slabs
3. The allocator rounds up to the nearest larger slab (4KB), resulting in
   ~1KB wasted memory per allocation

This patch introduces a dedicated kmem_cache for mem_cgroup structs,
achieving precise memory allocation. Post-patch ftrace verification shows:

kmem_cache_alloc: call_site=mem_cgroup_css_alloc+0xbc/0x5d4
    ptr=00000000695c1806 bytes_req=2312 bytes_alloc=2368
    gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false

Each memcg alloc offer 2368bytes(include hw cacheline align), compare to
4096, avoid waste.

Link: https://lkml.kernel.org/r/20250425031935.76411-3-link@vivo.com
Signed-off-by: Huan Yang <link@vivo.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Francesco Valla <francesco@valla.it>
Cc: guoweikang <guoweikang.kernel@gmail.com>
Cc: Huang Shijie <shijie@os.amperecomputing.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Raul E Rangel <rrangel@chromium.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12 23:50:34 -07:00
Huan Yang
bc9817bb7a mm/memcg: move mem_cgroup_init() ahead of cgroup_init()
Patch series "Use kmem_cache for memcg alloc", v3.

(willy tldr: "you've gone from allocating 8 objects per 32KiB to
allocating 13 objects per 32KiB, a 62% improvement in memory consumption"
[1])


The mem_cgroup_alloc function creates mem_cgroup struct and it's
associated structures including mem_cgroup_per_node.  Through detailed
analysis on our test machine (Arm64, 16GB RAM, 6.6 kernel, 1 NUMA node,
memcgv2 with nokmem,nosocket,cgroup_disable=pressure), we can observe the
memory allocation for these structures using the following shell commands:

  # Enable tracing
  echo 1 > /sys/kernel/tracing/events/kmem/kmalloc/enable
  echo 1 > /sys/kernel/tracing/tracing_on
  cat /sys/kernel/tracing/trace_pipe | grep kmalloc | grep mem_cgroup

  # Trigger allocation if cgroup subtree do not enable memcg
  echo +memory > /sys/fs/cgroup/cgroup.subtree_control

Ftrace Output:

  # mem_cgroup struct allocation
  sh-6312    [000] ..... 58015.698365: kmalloc:
    call_site=mem_cgroup_css_alloc+0xd8/0x5b4
    ptr=000000003e4c3799 bytes_req=2312 bytes_alloc=4096
    gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false

  # mem_cgroup_per_node allocation
  sh-6312    [000] ..... 58015.698389: kmalloc:
    call_site=mem_cgroup_css_alloc+0x1d8/0x5b4
    ptr=00000000d798700c bytes_req=2896 bytes_alloc=4096
    gfp_flags=GFP_KERNEL|__GFP_ZERO node=0 accounted=false

Key Observations:

  1. Both structures use kmalloc with requested sizes between 2KB-4KB
  2. Allocation alignment forces 4KB slab usage due to pre-defined sizes
     (64B, 128B,..., 2KB, 4KB, 8KB)
  3. Memory waste per memcg instance:
      Base struct: 4096 - 2312 = 1784 bytes
      Per-node struct: 4096 - 2896 = 1200 bytes
      Total waste: 2984 bytes (1-node system)
      NUMA scaling: (1200 + 8) * nr_node_ids bytes

So, it's a little waste.

This patchset introduces dedicated kmem_cache:
  Patch2 - mem_cgroup kmem_cache - memcg_cachep
  Patch3 - mem_cgroup_per_node kmem_cache - memcg_pn_cachep

The benefits of this change can be observed with the following tracing
commands:

  # Enable tracing
  echo 1 > /sys/kernel/tracing/events/kmem/kmem_cache_alloc/enable
  echo 1 > /sys/kernel/tracing/tracing_on
  cat /sys/kernel/tracing/trace_pipe | grep kmem_cache_alloc | grep mem_cgroup
  # In another terminal:
  echo +memory > /sys/fs/cgroup/cgroup.subtree_control


The output might now look like this:

  # mem_cgroup struct allocation
  sh-9827     [000] .....   289.513598: kmem_cache_alloc:
    call_site=mem_cgroup_css_alloc+0xbc/0x5d4 ptr=00000000695c1806
    bytes_req=2312 bytes_alloc=2368 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1
    accounted=false
  # mem_cgroup_per_node allocation
  sh-9827     [000] .....   289.513602: kmem_cache_alloc:
    call_site=mem_cgroup_css_alloc+0x1b8/0x5d4 ptr=000000002989e63a
    bytes_req=2896 bytes_alloc=2944 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0
    accounted=false

This indicates that the `mem_cgroup` struct now requests 2312 bytes and is
allocated 2368 bytes, while `mem_cgroup_per_node` requests 2896 bytes and
is allocated 2944 bytes.  The slight increase in allocated size is due to
`SLAB_HWCACHE_ALIGN` in the `kmem_cache`.

Without `SLAB_HWCACHE_ALIGN`, the allocation might appear as:

  # mem_cgroup struct allocation
  sh-9269     [003] .....    80.396366: kmem_cache_alloc:
    call_site=mem_cgroup_css_alloc+0xbc/0x5d4 ptr=000000005b12b475
    bytes_req=2312 bytes_alloc=2312 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1
    accounted=false

  # mem_cgroup_per_node allocation
  sh-9269     [003] .....    80.396411: kmem_cache_alloc:
    call_site=mem_cgroup_css_alloc+0x1b8/0x5d4 ptr=00000000f347adc6
    bytes_req=2896 bytes_alloc=2896 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0
    accounted=false

While the `bytes_alloc` now matches the `bytes_req`, this patchset
defaults to using `SLAB_HWCACHE_ALIGN` as it is generally considered more
beneficial for performance.  Please let me know if there are any issues or
if I've misunderstood anything.

This patchset also move mem_cgroup_init ahead of cgroup_init() due to
cgroup_init() will allocate root_mem_cgroup, but each initcall invoke
after cgroup_init, so if each kmem_cache do not prepare, we need testing
NULL before use it.


This patch (of 3):

When cgroup_init() creates root_mem_cgroup through css_alloc callback,
some critical resources might not be fully initialized, forcing later
operations to perform conditional checks for resource availability.

This patch move mem_cgroup_init() to address the init order, it invoke
before cgroup_init, so, compare to subsys_initcall, it can use to prepare
some key resources before root_mem_cgroup alloc.

Link: https://lkml.kernel.org/r/aAsRCj-niMMTtmK8@casper.infradead.org [1]
Link: https://lkml.kernel.org/r/20250425031935.76411-1-link@vivo.com
Link: https://lkml.kernel.org/r/20250425031935.76411-2-link@vivo.com
Signed-off-by: Huan Yang <link@vivo.com>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Francesco Valla <francesco@valla.it>
Cc: guoweikang <guoweikang.kernel@gmail.com>
Cc: Huang Shijie <shijie@os.amperecomputing.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Raul E Rangel <rrangel@chromium.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12 23:50:34 -07:00
Gregory Price
7d709f49ba vmscan,cgroup: apply mems_effective to reclaim
It is possible for a reclaimer to cause demotions of an lruvec belonging
to a cgroup with cpuset.mems set to exclude some nodes.  Attempt to apply
this limitation based on the lruvec's memcg and prevent demotion.

Notably, this may still allow demotion of shared libraries or any memory
first instantiated in another cgroup.  This means cpusets still cannot
cannot guarantee complete isolation when demotion is enabled, and the docs
have been updated to reflect this.

This is useful for isolating workloads on a multi-tenant system from
certain classes of memory more consistently - with the noted exceptions.

Note on locking:

The cgroup_get_e_css reference protects the css->effective_mems, and calls
of this interface would be subject to the same race conditions associated
with a non-atomic access to cs->effective_mems.

So while this interface cannot make strong guarantees of correctness, it
can therefore avoid taking a global or rcu_read_lock for performance.

Link: https://lkml.kernel.org/r/20250424202806.52632-3-gourry@gourry.net
Signed-off-by: Gregory Price <gourry@gourry.net>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Suggested-by: Waiman Long <longman@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12 23:50:33 -07:00
Shakeel Butt
f735eebe55 memcg: multi-memcg percpu charge cache
Memory cgroup accounting is expensive and to reduce the cost, the kernel
maintains per-cpu charge cache for a single memcg.  So, if a charge
request comes for a different memcg, the kernel will flush the old memcg's
charge cache and then charge the newer memcg a fixed amount (64 pages),
subtracts the charge request amount and stores the remaining in the
per-cpu charge cache for the newer memcg.

This mechanism is based on the assumption that the kernel, for locality,
keep a process on a CPU for long period of time and most of the charge
requests from that process will be served by that CPU's local charge
cache.

However this assumption breaks down for incoming network traffic in a
multi-tenant machine.  We are in the process of running multiple workloads
on a single machine and if such workloads are network heavy, we are seeing
very high network memory accounting cost.  We have observed multiple CPUs
spending almost 100% of their time in net_rx_action and almost all of that
time is spent in memcg accounting of the network traffic.

More precisely, net_rx_action is serving packets from multiple workloads
and is observing/serving mix of packets of these workloads.  The memcg
switch of per-cpu cache is very expensive and we are observing a lot of
memcg switches on the machine.  Almost all the time is being spent on
charging new memcg and flushing older memcg cache.  So, definitely we need
per-cpu cache that support multiple memcgs for this scenario.

This patch implements a simple (and dumb) multiple memcg percpu charge
cache.  Actually we started with more sophisticated LRU based approach but
the dumb one was always better than the sophisticated one by 1% to 3%, so
going with the simple approach.

Some of the design choices are:

1. Fit all caches memcgs in a single cacheline.
2. The cache array can be mix of empty slots or memcg charged slots, so
   the kernel has to traverse the full array.
3. The cache drain from the reclaim will drain all cached memcgs to keep
   things simple.

To evaluate the impact of this optimization, on a 72 CPUs machine, we ran
the following workload where each netperf client runs in a different
cgroup.  The next-20250415 kernel is used as base.

 $ netserver -6
 $ netperf -6 -H ::1 -l 60 -t TCP_SENDFILE -- -m 10K

number of clients | Without patch | With patch
  6               | 42584.1 Mbps  | 48603.4 Mbps (14.13% improvement)
  12              | 30617.1 Mbps  | 47919.7 Mbps (56.51% improvement)
  18              | 25305.2 Mbps  | 45497.3 Mbps (79.79% improvement)
  24              | 20104.1 Mbps  | 37907.7 Mbps (88.55% improvement)
  30              | 14702.4 Mbps  | 30746.5 Mbps (109.12% improvement)
  36              | 10801.5 Mbps  | 26476.3 Mbps (145.11% improvement)

The results show drastic improvement for network intensive workloads.

[shakeel.butt@linux.dev: add BUILD_BUG_ON() for MEMCG_CHARGE_BATCH]
  Link: https://lkml.kernel.org/r/rlsgeosg3j7v5nihhbxxxbv3xfy4ejvigihj7lkkbt3n6imyne@2apxx2jm2e57
[shakeel.butt@linux.dev: simplify refill_stock]
  Link: https://lkml.kernel.org/r/as5cdsm4lraxupg3t6onep2ixql72za25hvd4x334dsoyo4apr@zyzl4vkuevuv
[hughd@google.com: it's better to stock nr_pages than the uninitialized stock_pages]
  Link: https://lkml.kernel.org/r/d542d18f-1caa-6fea-e2c3-3555c87bcf64@google.com
[shakeel.butt@linux.dev: add comment per Michal and use DEFINE_PER_CPU_ALIGNED instead of DEFINE_PER_CPU per Vlastimil]
  Link: https://lkml.kernel.org/r/dieeei3squ2gcnqxdjayvxbvzldr266rhnvtl3vjzsqevxkevf@ckui5vjzl2qg
Link: https://lkml.kernel.org/r/20250416180229.2902751-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Eric Dumaze <edumazet@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:32 -07:00
Shakeel Butt
60cada258d memcg: optimize memcg_rstat_updated
Currently the kernel maintains the stats updates per-memcg which is needed
to implement stats flushing threshold.  On the update side, the update is
added to the per-cpu per-memcg update of the given memcg and all of its
ancestors.  However when the given memcg has passed the flushing
threshold, all of its ancestors should have passed the threshold as well. 
There is no need to traverse up the memcg tree to maintain the stats
updates.

Perf profile collected from our fleet shows that memcg_rstat_updated is
one of the most expensive memcg function i.e.  a lot of cumulative CPU is
being spent on it.  So, even small micro optimizations matter a lot.  This
patch is microbenchmarked with multiple instances of netperf on a single
machine with locally running netserver and we see couple of percentage of
improvement.

Link: https://lkml.kernel.org/r/20250410025752.92159-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:29 -07:00
Shakeel Butt
ac26920d58 memcg: manually inline replace_stock_objcg
The replace_stock_objcg() is being called by only refill_obj_stock, so
manually inline it.

Link: https://lkml.kernel.org/r/20250404013913.1663035-10-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:12 -07:00
Vlastimil Babka
bc730030f9 memcg: combine slab obj stock charging and accounting
When handing slab objects, we use obj_cgroup_[un]charge() for (un)charging
and mod_objcg_state() to account NR_SLAB_[UN]RECLAIMABLE_B.  All these
operations use the percpu stock for performance.  However with the calls
being separate, the stock_lock is taken twice in each case.

By refactoring the code, we can turn mod_objcg_state() into
__account_obj_stock() which is called on a stock that's already locked and
validated.  On the charging side we can call this function from
consume_obj_stock() when it succeeds, and refill_obj_stock() in the
fallback.  We just expand parameters of these functions as necessary.  The
uncharge side from __memcg_slab_free_hook() is just the call to
refill_obj_stock().

Other callers of obj_cgroup_[un]charge() (i.e.  not slab) simply pass the
extra parameters as NULL/zeroes to skip the __account_obj_stock()
operation.

In __memcg_slab_post_alloc_hook() we now charge each object separately,
but that's not a problem as we did call mod_objcg_state() for each object
separately, and most allocations are non-bulk anyway.  This could be
improved by batching all operations until slab_pgdat(slab) changes.

Some preliminary benchmarking with a kfree(kmalloc()) loop of 10M
iterations with/without __GFP_ACCOUNT:

Before the patch:
kmalloc/kfree !memcg:    581390144 cycles
kmalloc/kfree memcg:     783689984 cycles

After the patch:
kmalloc/kfree memcg:     658723808 cycles

More than half of the overhead of __GFP_ACCOUNT relative to
non-accounted case seems eliminated.

Link: https://lkml.kernel.org/r/20250404013913.1663035-9-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:12 -07:00
Shakeel Butt
42a1910cfd memcg: use __mod_memcg_state in drain_obj_stock
For non-PREEMPT_RT kernels, drain_obj_stock() is always called with irq
disabled, so we can use __mod_memcg_state() instead of mod_memcg_state(). 
For PREEMPT_RT, we need to add memcg_stats_[un]lock in
__mod_memcg_state().

Link: https://lkml.kernel.org/r/20250404013913.1663035-8-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:11 -07:00
Shakeel Butt
ae51c775aa memcg: do obj_cgroup_put inside drain_obj_stock
Previously we could not call obj_cgroup_put() inside the local lock
because on the put on the last reference, the release function
obj_cgroup_release() may try to re-acquire the local lock.  However that
chain has been broken.  Now simply do obj_cgroup_put() inside
drain_obj_stock() instead of returning the old objcg.

Link: https://lkml.kernel.org/r/20250404013913.1663035-7-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:11 -07:00
Shakeel Butt
b6d0471117 memcg: no refilling stock from obj_cgroup_release
obj_cgroup_release is called when all the references to the objcg have
been released i.e.  no more memory objects are pointing to it.  Most
probably objcg->memcg will be pointing to some ancestor memcg.  In
obj_cgroup_release(), the kernel calls obj_cgroup_uncharge_pages() which
refills the local stock.

There is no need to refill the local stock with some ancestor memcg and
flush the local stock.  Let's decouple obj_cgroup_release() from the local
stock by uncharging instead of refilling.  One additional benefit of this
change is that it removes the requirement to only call obj_cgroup_put()
outside of local_lock.

Link: https://lkml.kernel.org/r/20250404013913.1663035-6-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:11 -07:00
Shakeel Butt
cbc091441d memcg: manually inline __refill_stock
There are no more multiple callers of __refill_stock(), so simply inline
it to refill_stock().

Link: https://lkml.kernel.org/r/20250404013913.1663035-5-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:11 -07:00
Shakeel Butt
89f342af66 memcg: introduce memcg_uncharge
At multiple places in memcontrol.c, the memory and memsw page counters are
being uncharged.  This is error-prone.  Let's move the functionality to a
newly introduced memcg_uncharge and call it from all those places.

Link: https://lkml.kernel.org/r/20250404013913.1663035-4-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:10 -07:00
Shakeel Butt
65d2d15f41 memcg: decouple drain_obj_stock from local stock
Currently drain_obj_stock() can potentially call __refill_stock which
accesses local cpu stock and thus requires memcg stock's local_lock. 
However if we look at the code paths leading to drain_obj_stock(), there
is never a good reason to refill the memcg stock at all from it.

At the moment, drain_obj_stock can be called from reclaim, hotplug cpu
teardown, mod_objcg_state() and refill_obj_stock().  For reclaim and
hotplug there is no need to refill.  For the other two paths, most
probably the newly switched objcg would be used in near future and thus no
need to refill stock with the older objcg.

In addition, __refill_stock() from drain_obj_stock() happens on rare
cases, so performance is not really an issue.  Let's just uncharge
directly instead of refill which will also decouple drain_obj_stock from
local cpu stock and local_lock requirements.

Link: https://lkml.kernel.org/r/20250404013913.1663035-3-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:10 -07:00
Shakeel Butt
e56fa8f5e1 memcg: remove root memcg check from refill_stock
refill_stock can not be called with root memcg, so there is no need to
check it.  Instead add a warning if root is ever passed to it.

Link: https://lkml.kernel.org/r/20250404013913.1663035-1-shakeel.butt@linux.dev
Link: https://lkml.kernel.org/r/20250404013913.1663035-2-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:48:10 -07:00