linux/drivers/android/binder/deferred_close.rs
Alice Ryhl eafedbc7c0 rust_binder: add Rust Binder driver
We're generally not proponents of rewrites (nasty uncomfortable things
that make you late for dinner!). So why rewrite Binder?

Binder has been evolving over the past 15+ years to meet the evolving
needs of Android. Its responsibilities, expectations, and complexity
have grown considerably during that time. While we expect Binder to
continue to evolve along with Android, there are a number of factors
that currently constrain our ability to develop/maintain it. Briefly
those are:

1. Complexity: Binder is at the intersection of everything in Android and
   fulfills many responsibilities beyond IPC. It has become many things
   to many people, and due to its many features and their interactions
   with each other, its complexity is quite high. In just 6kLOC it must
   deliver transactions to the right threads. It must correctly parse
   and translate the contents of transactions, which can contain several
   objects of different types (e.g., pointers, fds) that can interact
   with each other. It controls the size of thread pools in userspace,
   and ensures that transactions are assigned to threads in ways that
   avoid deadlocks where the threadpool has run out of threads. It must
   track refcounts of objects that are shared by several processes by
   forwarding refcount changes between the processes correctly.  It must
   handle numerous error scenarios and it combines/nests 13 different
   locks, 7 reference counters, and atomic variables. Finally, It must
   do all of this as fast and efficiently as possible. Minor performance
   regressions can cause a noticeably degraded user experience.

2. Things to improve: Thousand-line functions [1], error-prone error
   handling [2], and confusing structure can occur as a code base grows
   organically. After more than a decade of development, this codebase
   could use an overhaul.

[1]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/android/binder.c?h=v6.5#n2896
[2]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/android/binder.c?h=v6.5#n3658

3. Security critical: Binder is a critical part of Android's sandboxing
   strategy. Even Android's most de-privileged sandboxes (e.g. the
   Chrome renderer, or SW Codec) have direct access to Binder. More than
   just about any other component, it's important that Binder provide
   robust security, and itself be robust against security
   vulnerabilities.

It's #1 (high complexity) that has made continuing to evolve Binder and
resolving #2 (tech debt) exceptionally difficult without causing #3
(security issues). For Binder to continue to meet Android's needs, we
need better ways to manage (and reduce!) complexity without increasing
the risk.

The biggest change is obviously the choice of programming language. We
decided to use Rust because it directly addresses a number of the
challenges within Binder that we have faced during the last years. It
prevents mistakes with ref counting, locking, bounds checking, and also
does a lot to reduce the complexity of error handling. Additionally,
we've been able to use the more expressive type system to encode the
ownership semantics of the various structs and pointers, which takes the
complexity of managing object lifetimes out of the hands of the
programmer, reducing the risk of use-after-frees and similar problems.

Rust has many different pointer types that it uses to encode ownership
semantics into the type system, and this is probably one of the most
important aspects of how it helps in Binder. The Binder driver has a lot
of different objects that have complex ownership semantics; some
pointers own a refcount, some pointers have exclusive ownership, and
some pointers just reference the object and it is kept alive in some
other manner. With Rust, we can use a different pointer type for each
kind of pointer, which enables the compiler to enforce that the
ownership semantics are implemented correctly.

Another useful feature is Rust's error handling. Rust allows for more
simplified error handling with features such as destructors, and you get
compilation failures if errors are not properly handled. This means that
even though Rust requires you to spend more lines of code than C on
things such as writing down invariants that are left implicit in C, the
Rust driver is still slightly smaller than C binder: Rust is 5.5kLOC and
C is 5.8kLOC. (These numbers are excluding blank lines, comments,
binderfs, and any debugging facilities in C that are not yet implemented
in the Rust driver. The numbers include abstractions in rust/kernel/
that are unlikely to be used by other drivers than Binder.)

Although this rewrite completely rethinks how the code is structured and
how assumptions are enforced, we do not fundamentally change *how* the
driver does the things it does. A lot of careful thought has gone into
the existing design. The rewrite is aimed rather at improving code
health, structure, readability, robustness, security, maintainability
and extensibility. We also include more inline documentation, and
improve how assumptions in the code are enforced. Furthermore, all
unsafe code is annotated with a SAFETY comment that explains why it is
correct.

We have left the binderfs filesystem component in C. Rewriting it in
Rust would be a large amount of work and requires a lot of bindings to
the file system interfaces. Binderfs has not historically had the same
challenges with security and complexity, so rewriting binderfs seems to
have lower value than the rest of Binder.

Correctness and feature parity
------------------------------

Rust binder passes all tests that validate the correctness of Binder in
the Android Open Source Project. We can boot a device, and run a variety
of apps and functionality without issues. We have performed this both on
the Cuttlefish Android emulator device, and on a Pixel 6 Pro.

As for feature parity, Rust binder currently implements all features
that C binder supports, with the exception of some debugging facilities.
The missing debugging facilities will be added before we submit the Rust
implementation upstream.

Tracepoints
-----------

I did not include all of the tracepoints as I felt that the mechansim
for making C access fields of Rust structs should be discussed on list
separately. I also did not include the support for building Rust Binder
as a module since that requires exporting a bunch of additional symbols
on the C side.

Original RFC Link with old benchmark numbers:
	https://lore.kernel.org/r/20231101-rust-binder-v1-0-08ba9197f637@google.com

Co-developed-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Co-developed-by: Matt Gilbride <mattgilbride@google.com>
Signed-off-by: Matt Gilbride <mattgilbride@google.com>
Acked-by: Carlos Llamas <cmllamas@google.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20250919-rust-binder-v2-1-a384b09f28dd@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-09-19 09:40:46 +02:00

204 lines
9.1 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
//! Logic for closing files in a deferred manner.
//!
//! This file could make sense to have in `kernel::fs`, but it was rejected for being too
//! Binder-specific.
use core::mem::MaybeUninit;
use kernel::{
alloc::{AllocError, Flags},
bindings,
prelude::*,
};
/// Helper used for closing file descriptors in a way that is safe even if the file is currently
/// held using `fdget`.
///
/// Additional motivation can be found in commit 80cd795630d6 ("binder: fix use-after-free due to
/// ksys_close() during fdget()") and in the comments on `binder_do_fd_close`.
pub(crate) struct DeferredFdCloser {
inner: KBox<DeferredFdCloserInner>,
}
/// SAFETY: This just holds an allocation with no real content, so there's no safety issue with
/// moving it across threads.
unsafe impl Send for DeferredFdCloser {}
/// SAFETY: This just holds an allocation with no real content, so there's no safety issue with
/// moving it across threads.
unsafe impl Sync for DeferredFdCloser {}
/// # Invariants
///
/// If the `file` pointer is non-null, then it points at a `struct file` and owns a refcount to
/// that file.
#[repr(C)]
struct DeferredFdCloserInner {
twork: MaybeUninit<bindings::callback_head>,
file: *mut bindings::file,
}
impl DeferredFdCloser {
/// Create a new [`DeferredFdCloser`].
pub(crate) fn new(flags: Flags) -> Result<Self, AllocError> {
Ok(Self {
// INVARIANT: The `file` pointer is null, so the type invariant does not apply.
inner: KBox::new(
DeferredFdCloserInner {
twork: MaybeUninit::uninit(),
file: core::ptr::null_mut(),
},
flags,
)?,
})
}
/// Schedule a task work that closes the file descriptor when this task returns to userspace.
///
/// Fails if this is called from a context where we cannot run work when returning to
/// userspace. (E.g., from a kthread.)
pub(crate) fn close_fd(self, fd: u32) -> Result<(), DeferredFdCloseError> {
use bindings::task_work_notify_mode_TWA_RESUME as TWA_RESUME;
// In this method, we schedule the task work before closing the file. This is because
// scheduling a task work is fallible, and we need to know whether it will fail before we
// attempt to close the file.
// Task works are not available on kthreads.
let current = kernel::current!();
// Check if this is a kthread.
// SAFETY: Reading `flags` from a task is always okay.
if unsafe { ((*current.as_ptr()).flags & bindings::PF_KTHREAD) != 0 } {
return Err(DeferredFdCloseError::TaskWorkUnavailable);
}
// Transfer ownership of the box's allocation to a raw pointer. This disables the
// destructor, so we must manually convert it back to a KBox to drop it.
//
// Until we convert it back to a `KBox`, there are no aliasing requirements on this
// pointer.
let inner = KBox::into_raw(self.inner);
// The `callback_head` field is first in the struct, so this cast correctly gives us a
// pointer to the field.
let callback_head = inner.cast::<bindings::callback_head>();
// SAFETY: This pointer offset operation does not go out-of-bounds.
let file_field = unsafe { core::ptr::addr_of_mut!((*inner).file) };
let current = current.as_ptr();
// SAFETY: This function currently has exclusive access to the `DeferredFdCloserInner`, so
// it is okay for us to perform unsynchronized writes to its `callback_head` field.
unsafe { bindings::init_task_work(callback_head, Some(Self::do_close_fd)) };
// SAFETY: This inserts the `DeferredFdCloserInner` into the task workqueue for the current
// task. If this operation is successful, then this transfers exclusive ownership of the
// `callback_head` field to the C side until it calls `do_close_fd`, and we don't touch or
// invalidate the field during that time.
//
// When the C side calls `do_close_fd`, the safety requirements of that method are
// satisfied because when a task work is executed, the callback is given ownership of the
// pointer.
//
// The file pointer is currently null. If it is changed to be non-null before `do_close_fd`
// is called, then that change happens due to the write at the end of this function, and
// that write has a safety comment that explains why the refcount can be dropped when
// `do_close_fd` runs.
let res = unsafe { bindings::task_work_add(current, callback_head, TWA_RESUME) };
if res != 0 {
// SAFETY: Scheduling the task work failed, so we still have ownership of the box, so
// we may destroy it.
unsafe { drop(KBox::from_raw(inner)) };
return Err(DeferredFdCloseError::TaskWorkUnavailable);
}
// This removes the fd from the fd table in `current`. The file is not fully closed until
// `filp_close` is called. We are given ownership of one refcount to the file.
//
// SAFETY: This is safe no matter what `fd` is. If the `fd` is valid (that is, if the
// pointer is non-null), then we call `filp_close` on the returned pointer as required by
// `file_close_fd`.
let file = unsafe { bindings::file_close_fd(fd) };
if file.is_null() {
// We don't clean up the task work since that might be expensive if the task work queue
// is long. Just let it execute and let it clean up for itself.
return Err(DeferredFdCloseError::BadFd);
}
// Acquire a second refcount to the file.
//
// SAFETY: The `file` pointer points at a file with a non-zero refcount.
unsafe { bindings::get_file(file) };
// This method closes the fd, consuming one of our two refcounts. There could be active
// light refcounts created from that fd, so we must ensure that the file has a positive
// refcount for the duration of those active light refcounts. We do that by holding on to
// the second refcount until the current task returns to userspace.
//
// SAFETY: The `file` pointer is valid. Passing `current->files` as the file table to close
// it in is correct, since we just got the `fd` from `file_close_fd` which also uses
// `current->files`.
//
// Note: fl_owner_t is currently a void pointer.
unsafe { bindings::filp_close(file, (*current).files as bindings::fl_owner_t) };
// We update the file pointer that the task work is supposed to fput. This transfers
// ownership of our last refcount.
//
// INVARIANT: This changes the `file` field of a `DeferredFdCloserInner` from null to
// non-null. This doesn't break the type invariant for `DeferredFdCloserInner` because we
// still own a refcount to the file, so we can pass ownership of that refcount to the
// `DeferredFdCloserInner`.
//
// When `do_close_fd` runs, it must be safe for it to `fput` the refcount. However, this is
// the case because all light refcounts that are associated with the fd we closed
// previously must be dropped when `do_close_fd`, since light refcounts must be dropped
// before returning to userspace.
//
// SAFETY: Task works are executed on the current thread right before we return to
// userspace, so this write is guaranteed to happen before `do_close_fd` is called, which
// means that a race is not possible here.
unsafe { *file_field = file };
Ok(())
}
/// # Safety
///
/// The provided pointer must point at the `twork` field of a `DeferredFdCloserInner` stored in
/// a `KBox`, and the caller must pass exclusive ownership of that `KBox`. Furthermore, if the
/// file pointer is non-null, then it must be okay to release the refcount by calling `fput`.
unsafe extern "C" fn do_close_fd(inner: *mut bindings::callback_head) {
// SAFETY: The caller just passed us ownership of this box.
let inner = unsafe { KBox::from_raw(inner.cast::<DeferredFdCloserInner>()) };
if !inner.file.is_null() {
// SAFETY: By the type invariants, we own a refcount to this file, and the caller
// guarantees that dropping the refcount now is okay.
unsafe { bindings::fput(inner.file) };
}
// The allocation is freed when `inner` goes out of scope.
}
}
/// Represents a failure to close an fd in a deferred manner.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(crate) enum DeferredFdCloseError {
/// Closing the fd failed because we were unable to schedule a task work.
TaskWorkUnavailable,
/// Closing the fd failed because the fd does not exist.
BadFd,
}
impl From<DeferredFdCloseError> for Error {
fn from(err: DeferredFdCloseError) -> Error {
match err {
DeferredFdCloseError::TaskWorkUnavailable => ESRCH,
DeferredFdCloseError::BadFd => EBADF,
}
}
}