mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 58100c34f7
			
		
	
	
		58100c34f7
		
	
	
	
	
		
			
			In drivers/clocksource/, 3 drivers use "TIMER_CTRL_IE" with 3 different
values.  Two of them (mps2-timer.c and timer-sp804.c/timer-sp.h) are
localized and left unmodifed.
One of them uses a shared header file (<soc/arc/timers.h>), which is
what is causing the "redefined" warnings, so change the macro name in
that driver only. Also change the TIMER_CTRL_NH macro name.
Both macro names are prefixed with "ARC_" to reduce the likelihood
of future name collisions.
In file included from ../drivers/clocksource/timer-sp804.c:24:
../drivers/clocksource/timer-sp.h:25: error: "TIMER_CTRL_IE" redefined [-Werror]
   25 | #define TIMER_CTRL_IE           (1 << 5)        /*   VR */
../include/soc/arc/timers.h:20: note: this is the location of the previous definition
   20 | #define TIMER_CTRL_IE           (1 << 0) /* Interrupt when Count reaches limit */
Fixes: b26c2e3823 ("ARC: breakout timer include code into separate header")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: linux-snps-arc@lists.infradead.org
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Acked-by: Vineet Gupta <vgupta@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20210924020825.20317-1-rdunlap@infradead.org
		
	
			
		
			
				
	
	
		
			373 lines
		
	
	
	
		
			9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
	
		
			9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
 | |
|  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 | |
|  */
 | |
| 
 | |
| /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
 | |
|  * programmed to go from @count to @limit and optionally interrupt.
 | |
|  * We've designated TIMER0 for clockevents and TIMER1 for clocksource
 | |
|  *
 | |
|  * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
 | |
|  * which are suitable for UP and SMP based clocksources respectively
 | |
|  */
 | |
| 
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/bits.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/clk-provider.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/sched_clock.h>
 | |
| 
 | |
| #include <soc/arc/timers.h>
 | |
| #include <soc/arc/mcip.h>
 | |
| 
 | |
| 
 | |
| static unsigned long arc_timer_freq;
 | |
| 
 | |
| static int noinline arc_get_timer_clk(struct device_node *node)
 | |
| {
 | |
| 	struct clk *clk;
 | |
| 	int ret;
 | |
| 
 | |
| 	clk = of_clk_get(node, 0);
 | |
| 	if (IS_ERR(clk)) {
 | |
| 		pr_err("timer missing clk\n");
 | |
| 		return PTR_ERR(clk);
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_prepare_enable(clk);
 | |
| 	if (ret) {
 | |
| 		pr_err("Couldn't enable parent clk\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	arc_timer_freq = clk_get_rate(clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /********** Clock Source Device *********/
 | |
| 
 | |
| #ifdef CONFIG_ARC_TIMERS_64BIT
 | |
| 
 | |
| static u64 arc_read_gfrc(struct clocksource *cs)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 l, h;
 | |
| 
 | |
| 	/*
 | |
| 	 * From a programming model pov, there seems to be just one instance of
 | |
| 	 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
 | |
| 	 * an instance PER ARC CORE (not per cluster), and there are dedicated
 | |
| 	 * hardware decode logic (per core) inside ARConnect to handle
 | |
| 	 * simultaneous read/write accesses from cores via those two registers.
 | |
| 	 * So several concurrent commands to ARConnect are OK if they are
 | |
| 	 * trying to access two different sub-components (like GFRC,
 | |
| 	 * inter-core interrupt, etc...). HW also supports simultaneously
 | |
| 	 * accessing GFRC by multiple cores.
 | |
| 	 * That's why it is safe to disable hard interrupts on the local CPU
 | |
| 	 * before access to GFRC instead of taking global MCIP spinlock
 | |
| 	 * defined in arch/arc/kernel/mcip.c
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	__mcip_cmd(CMD_GFRC_READ_LO, 0);
 | |
| 	l = read_aux_reg(ARC_REG_MCIP_READBACK);
 | |
| 
 | |
| 	__mcip_cmd(CMD_GFRC_READ_HI, 0);
 | |
| 	h = read_aux_reg(ARC_REG_MCIP_READBACK);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return (((u64)h) << 32) | l;
 | |
| }
 | |
| 
 | |
| static notrace u64 arc_gfrc_clock_read(void)
 | |
| {
 | |
| 	return arc_read_gfrc(NULL);
 | |
| }
 | |
| 
 | |
| static struct clocksource arc_counter_gfrc = {
 | |
| 	.name   = "ARConnect GFRC",
 | |
| 	.rating = 400,
 | |
| 	.read   = arc_read_gfrc,
 | |
| 	.mask   = CLOCKSOURCE_MASK(64),
 | |
| 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| };
 | |
| 
 | |
| static int __init arc_cs_setup_gfrc(struct device_node *node)
 | |
| {
 | |
| 	struct mcip_bcr mp;
 | |
| 	int ret;
 | |
| 
 | |
| 	READ_BCR(ARC_REG_MCIP_BCR, mp);
 | |
| 	if (!mp.gfrc) {
 | |
| 		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	ret = arc_get_timer_clk(node);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
 | |
| 
 | |
| 	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
 | |
| }
 | |
| TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
 | |
| 
 | |
| #define AUX_RTC_CTRL	0x103
 | |
| #define AUX_RTC_LOW	0x104
 | |
| #define AUX_RTC_HIGH	0x105
 | |
| 
 | |
| static u64 arc_read_rtc(struct clocksource *cs)
 | |
| {
 | |
| 	unsigned long status;
 | |
| 	u32 l, h;
 | |
| 
 | |
| 	/*
 | |
| 	 * hardware has an internal state machine which tracks readout of
 | |
| 	 * low/high and updates the CTRL.status if
 | |
| 	 *  - interrupt/exception taken between the two reads
 | |
| 	 *  - high increments after low has been read
 | |
| 	 */
 | |
| 	do {
 | |
| 		l = read_aux_reg(AUX_RTC_LOW);
 | |
| 		h = read_aux_reg(AUX_RTC_HIGH);
 | |
| 		status = read_aux_reg(AUX_RTC_CTRL);
 | |
| 	} while (!(status & BIT(31)));
 | |
| 
 | |
| 	return (((u64)h) << 32) | l;
 | |
| }
 | |
| 
 | |
| static notrace u64 arc_rtc_clock_read(void)
 | |
| {
 | |
| 	return arc_read_rtc(NULL);
 | |
| }
 | |
| 
 | |
| static struct clocksource arc_counter_rtc = {
 | |
| 	.name   = "ARCv2 RTC",
 | |
| 	.rating = 350,
 | |
| 	.read   = arc_read_rtc,
 | |
| 	.mask   = CLOCKSOURCE_MASK(64),
 | |
| 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| };
 | |
| 
 | |
| static int __init arc_cs_setup_rtc(struct device_node *node)
 | |
| {
 | |
| 	struct bcr_timer timer;
 | |
| 	int ret;
 | |
| 
 | |
| 	READ_BCR(ARC_REG_TIMERS_BCR, timer);
 | |
| 	if (!timer.rtc) {
 | |
| 		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Local to CPU hence not usable in SMP */
 | |
| 	if (IS_ENABLED(CONFIG_SMP)) {
 | |
| 		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = arc_get_timer_clk(node);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	write_aux_reg(AUX_RTC_CTRL, 1);
 | |
| 
 | |
| 	sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
 | |
| 
 | |
| 	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
 | |
| }
 | |
| TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * 32bit TIMER1 to keep counting monotonically and wraparound
 | |
|  */
 | |
| 
 | |
| static u64 arc_read_timer1(struct clocksource *cs)
 | |
| {
 | |
| 	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
 | |
| }
 | |
| 
 | |
| static notrace u64 arc_timer1_clock_read(void)
 | |
| {
 | |
| 	return arc_read_timer1(NULL);
 | |
| }
 | |
| 
 | |
| static struct clocksource arc_counter_timer1 = {
 | |
| 	.name   = "ARC Timer1",
 | |
| 	.rating = 300,
 | |
| 	.read   = arc_read_timer1,
 | |
| 	.mask   = CLOCKSOURCE_MASK(32),
 | |
| 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| };
 | |
| 
 | |
| static int __init arc_cs_setup_timer1(struct device_node *node)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Local to CPU hence not usable in SMP */
 | |
| 	if (IS_ENABLED(CONFIG_SMP))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = arc_get_timer_clk(node);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
 | |
| 	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
 | |
| 	write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH);
 | |
| 
 | |
| 	sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
 | |
| 
 | |
| 	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
 | |
| }
 | |
| 
 | |
| /********** Clock Event Device *********/
 | |
| 
 | |
| static int arc_timer_irq;
 | |
| 
 | |
| /*
 | |
|  * Arm the timer to interrupt after @cycles
 | |
|  * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
 | |
|  */
 | |
| static void arc_timer_event_setup(unsigned int cycles)
 | |
| {
 | |
| 	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
 | |
| 	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int arc_clkevent_set_next_event(unsigned long delta,
 | |
| 				       struct clock_event_device *dev)
 | |
| {
 | |
| 	arc_timer_event_setup(delta);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int arc_clkevent_set_periodic(struct clock_event_device *dev)
 | |
| {
 | |
| 	/*
 | |
| 	 * At X Hz, 1 sec = 1000ms -> X cycles;
 | |
| 	 *		      10ms -> X / 100 cycles
 | |
| 	 */
 | |
| 	arc_timer_event_setup(arc_timer_freq / HZ);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
 | |
| 	.name			= "ARC Timer0",
 | |
| 	.features		= CLOCK_EVT_FEAT_ONESHOT |
 | |
| 				  CLOCK_EVT_FEAT_PERIODIC,
 | |
| 	.rating			= 300,
 | |
| 	.set_next_event		= arc_clkevent_set_next_event,
 | |
| 	.set_state_periodic	= arc_clkevent_set_periodic,
 | |
| };
 | |
| 
 | |
| static irqreturn_t timer_irq_handler(int irq, void *dev_id)
 | |
| {
 | |
| 	/*
 | |
| 	 * Note that generic IRQ core could have passed @evt for @dev_id if
 | |
| 	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
 | |
| 	 */
 | |
| 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
 | |
| 	int irq_reenable = clockevent_state_periodic(evt);
 | |
| 
 | |
| 	/*
 | |
| 	 * 1. ACK the interrupt
 | |
| 	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
 | |
| 	 *      Count when [N]ot [H]alted bit.
 | |
| 	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
 | |
| 	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
 | |
| 	 *      The write below can only update the other two bits, hence
 | |
| 	 *      explicitly clears IP bit
 | |
| 	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
 | |
| 	 */
 | |
| 	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH);
 | |
| 
 | |
| 	evt->event_handler(evt);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int arc_timer_starting_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
 | |
| 
 | |
| 	evt->cpumask = cpumask_of(smp_processor_id());
 | |
| 
 | |
| 	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
 | |
| 	enable_percpu_irq(arc_timer_irq, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int arc_timer_dying_cpu(unsigned int cpu)
 | |
| {
 | |
| 	disable_percpu_irq(arc_timer_irq);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * clockevent setup for boot CPU
 | |
|  */
 | |
| static int __init arc_clockevent_setup(struct device_node *node)
 | |
| {
 | |
| 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
 | |
| 	int ret;
 | |
| 
 | |
| 	arc_timer_irq = irq_of_parse_and_map(node, 0);
 | |
| 	if (arc_timer_irq <= 0) {
 | |
| 		pr_err("clockevent: missing irq\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = arc_get_timer_clk(node);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Needs apriori irq_set_percpu_devid() done in intc map function */
 | |
| 	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
 | |
| 				 "Timer0 (per-cpu-tick)", evt);
 | |
| 	if (ret) {
 | |
| 		pr_err("clockevent: unable to request irq\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
 | |
| 				"clockevents/arc/timer:starting",
 | |
| 				arc_timer_starting_cpu,
 | |
| 				arc_timer_dying_cpu);
 | |
| 	if (ret) {
 | |
| 		pr_err("Failed to setup hotplug state\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init arc_of_timer_init(struct device_node *np)
 | |
| {
 | |
| 	static int init_count = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!init_count) {
 | |
| 		init_count = 1;
 | |
| 		ret = arc_clockevent_setup(np);
 | |
| 	} else {
 | |
| 		ret = arc_cs_setup_timer1(np);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
 |