mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-01 00:58:39 +02:00 
			
		
		
		
	 6d3bc4c02d
			
		
	
	
		6d3bc4c02d
		
	
	
	
	
		
			
			On SAM9 hardware two cascaded 16 bit timers are used to form a 32 bit high resolution timer that is used as scheduler clock when the kernel has been configured that way (CONFIG_ATMEL_CLOCKSOURCE_TCB). The driver initially triggers a reset-to-zero of the two timers but this reset is only performed on the next rising clock. For the first timer this is ok - it will be in the next 60ns (16MHz clock). For the chained second timer this will only happen after the first timer overflows, i.e. after 2^16 clocks (~4ms with a 16MHz clock). So with other words the scheduler clock resets to 0 after the first 2^16 clock cycles. It looks like that the scheduler does not like this and behaves wrongly over its lifetime, e.g. some tasks are scheduled with a long delay. Why that is and if there are additional requirements for this behaviour has not been further analysed. There is a simple fix for resetting the second timer as well when the first timer is reset and this is to set the ATMEL_TC_ASWTRG_SET bit in the Channel Mode register (CMR) of the first timer. This will also rise the TIOA line (clock input of the second timer) when a software trigger respective SYNC is issued. Signed-off-by: Ronald Wahl <ronald.wahl@raritan.com> Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Link: https://lore.kernel.org/r/20231007161803.31342-1-rwahl@gmx.de
		
			
				
	
	
		
			511 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			511 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #include <linux/init.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/sched_clock.h>
 | |
| #include <linux/syscore_ops.h>
 | |
| #include <soc/at91/atmel_tcb.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * We're configured to use a specific TC block, one that's not hooked
 | |
|  * up to external hardware, to provide a time solution:
 | |
|  *
 | |
|  *   - Two channels combine to create a free-running 32 bit counter
 | |
|  *     with a base rate of 5+ MHz, packaged as a clocksource (with
 | |
|  *     resolution better than 200 nsec).
 | |
|  *   - Some chips support 32 bit counter. A single channel is used for
 | |
|  *     this 32 bit free-running counter. the second channel is not used.
 | |
|  *
 | |
|  *   - The third channel may be used to provide a clockevent source, used in
 | |
|  *   either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
 | |
|  *   and can handle delays of up to two seconds. For 32-bit counters, it runs at
 | |
|  *   the same rate as the clocksource
 | |
|  *
 | |
|  * REVISIT behavior during system suspend states... we should disable
 | |
|  * all clocks and save the power.  Easily done for clockevent devices,
 | |
|  * but clocksources won't necessarily get the needed notifications.
 | |
|  * For deeper system sleep states, this will be mandatory...
 | |
|  */
 | |
| 
 | |
| static void __iomem *tcaddr;
 | |
| static struct
 | |
| {
 | |
| 	u32 cmr;
 | |
| 	u32 imr;
 | |
| 	u32 rc;
 | |
| 	bool clken;
 | |
| } tcb_cache[3];
 | |
| static u32 bmr_cache;
 | |
| 
 | |
| static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
 | |
| 
 | |
| static u64 tc_get_cycles(struct clocksource *cs)
 | |
| {
 | |
| 	unsigned long	flags;
 | |
| 	u32		lower, upper;
 | |
| 
 | |
| 	raw_local_irq_save(flags);
 | |
| 	do {
 | |
| 		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
 | |
| 		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 | |
| 	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
 | |
| 
 | |
| 	raw_local_irq_restore(flags);
 | |
| 	return (upper << 16) | lower;
 | |
| }
 | |
| 
 | |
| static u64 tc_get_cycles32(struct clocksource *cs)
 | |
| {
 | |
| 	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 | |
| }
 | |
| 
 | |
| static void tc_clksrc_suspend(struct clocksource *cs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 | |
| 		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
 | |
| 		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
 | |
| 		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
 | |
| 		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
 | |
| 					ATMEL_TC_CLKSTA);
 | |
| 	}
 | |
| 
 | |
| 	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
 | |
| }
 | |
| 
 | |
| static void tc_clksrc_resume(struct clocksource *cs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 | |
| 		/* Restore registers for the channel, RA and RB are not used  */
 | |
| 		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
 | |
| 		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
 | |
| 		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
 | |
| 		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
 | |
| 		/* Disable all the interrupts */
 | |
| 		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
 | |
| 		/* Reenable interrupts that were enabled before suspending */
 | |
| 		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
 | |
| 		/* Start the clock if it was used */
 | |
| 		if (tcb_cache[i].clken)
 | |
| 			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
 | |
| 	}
 | |
| 
 | |
| 	/* Dual channel, chain channels */
 | |
| 	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
 | |
| 	/* Finally, trigger all the channels*/
 | |
| 	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 | |
| }
 | |
| 
 | |
| static struct clocksource clksrc = {
 | |
| 	.rating         = 200,
 | |
| 	.read           = tc_get_cycles,
 | |
| 	.mask           = CLOCKSOURCE_MASK(32),
 | |
| 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.suspend	= tc_clksrc_suspend,
 | |
| 	.resume		= tc_clksrc_resume,
 | |
| };
 | |
| 
 | |
| static u64 notrace tc_sched_clock_read(void)
 | |
| {
 | |
| 	return tc_get_cycles(&clksrc);
 | |
| }
 | |
| 
 | |
| static u64 notrace tc_sched_clock_read32(void)
 | |
| {
 | |
| 	return tc_get_cycles32(&clksrc);
 | |
| }
 | |
| 
 | |
| static struct delay_timer tc_delay_timer;
 | |
| 
 | |
| static unsigned long tc_delay_timer_read(void)
 | |
| {
 | |
| 	return tc_get_cycles(&clksrc);
 | |
| }
 | |
| 
 | |
| static unsigned long notrace tc_delay_timer_read32(void)
 | |
| {
 | |
| 	return tc_get_cycles32(&clksrc);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS
 | |
| 
 | |
| struct tc_clkevt_device {
 | |
| 	struct clock_event_device	clkevt;
 | |
| 	struct clk			*clk;
 | |
| 	u32				rate;
 | |
| 	void __iomem			*regs;
 | |
| };
 | |
| 
 | |
| static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
 | |
| {
 | |
| 	return container_of(clkevt, struct tc_clkevt_device, clkevt);
 | |
| }
 | |
| 
 | |
| static u32 timer_clock;
 | |
| 
 | |
| static int tc_shutdown(struct clock_event_device *d)
 | |
| {
 | |
| 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 | |
| 	void __iomem		*regs = tcd->regs;
 | |
| 
 | |
| 	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
 | |
| 	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
 | |
| 	if (!clockevent_state_detached(d))
 | |
| 		clk_disable(tcd->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tc_set_oneshot(struct clock_event_device *d)
 | |
| {
 | |
| 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 | |
| 	void __iomem		*regs = tcd->regs;
 | |
| 
 | |
| 	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
 | |
| 		tc_shutdown(d);
 | |
| 
 | |
| 	clk_enable(tcd->clk);
 | |
| 
 | |
| 	/* count up to RC, then irq and stop */
 | |
| 	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
 | |
| 		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
 | |
| 	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 | |
| 
 | |
| 	/* set_next_event() configures and starts the timer */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tc_set_periodic(struct clock_event_device *d)
 | |
| {
 | |
| 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 | |
| 	void __iomem		*regs = tcd->regs;
 | |
| 
 | |
| 	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
 | |
| 		tc_shutdown(d);
 | |
| 
 | |
| 	/* By not making the gentime core emulate periodic mode on top
 | |
| 	 * of oneshot, we get lower overhead and improved accuracy.
 | |
| 	 */
 | |
| 	clk_enable(tcd->clk);
 | |
| 
 | |
| 	/* count up to RC, then irq and restart */
 | |
| 	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 | |
| 		     regs + ATMEL_TC_REG(2, CMR));
 | |
| 	writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
 | |
| 
 | |
| 	/* Enable clock and interrupts on RC compare */
 | |
| 	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 | |
| 
 | |
| 	/* go go gadget! */
 | |
| 	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
 | |
| 		     ATMEL_TC_REG(2, CCR));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tc_next_event(unsigned long delta, struct clock_event_device *d)
 | |
| {
 | |
| 	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
 | |
| 
 | |
| 	/* go go gadget! */
 | |
| 	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
 | |
| 			tcaddr + ATMEL_TC_REG(2, CCR));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct tc_clkevt_device clkevt = {
 | |
| 	.clkevt	= {
 | |
| 		.features		= CLOCK_EVT_FEAT_PERIODIC |
 | |
| 					  CLOCK_EVT_FEAT_ONESHOT,
 | |
| 		/* Should be lower than at91rm9200's system timer */
 | |
| 		.rating			= 125,
 | |
| 		.set_next_event		= tc_next_event,
 | |
| 		.set_state_shutdown	= tc_shutdown,
 | |
| 		.set_state_periodic	= tc_set_periodic,
 | |
| 		.set_state_oneshot	= tc_set_oneshot,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static irqreturn_t ch2_irq(int irq, void *handle)
 | |
| {
 | |
| 	struct tc_clkevt_device	*dev = handle;
 | |
| 	unsigned int		sr;
 | |
| 
 | |
| 	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
 | |
| 	if (sr & ATMEL_TC_CPCS) {
 | |
| 		dev->clkevt.event_handler(&dev->clkevt);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct clk *t2_clk = tc->clk[2];
 | |
| 	int irq = tc->irq[2];
 | |
| 	int bits = tc->tcb_config->counter_width;
 | |
| 
 | |
| 	/* try to enable t2 clk to avoid future errors in mode change */
 | |
| 	ret = clk_prepare_enable(t2_clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	clkevt.regs = tc->regs;
 | |
| 	clkevt.clk = t2_clk;
 | |
| 
 | |
| 	if (bits == 32) {
 | |
| 		timer_clock = divisor_idx;
 | |
| 		clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
 | |
| 	} else {
 | |
| 		ret = clk_prepare_enable(tc->slow_clk);
 | |
| 		if (ret) {
 | |
| 			clk_disable_unprepare(t2_clk);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		clkevt.rate = clk_get_rate(tc->slow_clk);
 | |
| 		timer_clock = ATMEL_TC_TIMER_CLOCK5;
 | |
| 	}
 | |
| 
 | |
| 	clk_disable(t2_clk);
 | |
| 
 | |
| 	clkevt.clkevt.cpumask = cpumask_of(0);
 | |
| 
 | |
| 	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
 | |
| 	if (ret) {
 | |
| 		clk_unprepare(t2_clk);
 | |
| 		if (bits != 32)
 | |
| 			clk_disable_unprepare(tc->slow_clk);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_GENERIC_CLOCKEVENTS */
 | |
| 
 | |
| static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
 | |
| {
 | |
| 	/* NOTHING */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
 | |
| {
 | |
| 	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
 | |
| 	writel(mck_divisor_idx			/* likely divide-by-8 */
 | |
| 			| ATMEL_TC_WAVE
 | |
| 			| ATMEL_TC_WAVESEL_UP		/* free-run */
 | |
| 			| ATMEL_TC_ASWTRG_SET		/* TIOA0 rises at software trigger */
 | |
| 			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
 | |
| 			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
 | |
| 			tcaddr + ATMEL_TC_REG(0, CMR));
 | |
| 	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
 | |
| 	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
 | |
| 	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
 | |
| 	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 | |
| 
 | |
| 	/* channel 1:  waveform mode, input TIOA0 */
 | |
| 	writel(ATMEL_TC_XC1			/* input: TIOA0 */
 | |
| 			| ATMEL_TC_WAVE
 | |
| 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
 | |
| 			tcaddr + ATMEL_TC_REG(1, CMR));
 | |
| 	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
 | |
| 	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
 | |
| 
 | |
| 	/* chain channel 0 to channel 1*/
 | |
| 	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
 | |
| 	/* then reset all the timers */
 | |
| 	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 | |
| }
 | |
| 
 | |
| static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
 | |
| {
 | |
| 	/* channel 0:  waveform mode, input mclk/8 */
 | |
| 	writel(mck_divisor_idx			/* likely divide-by-8 */
 | |
| 			| ATMEL_TC_WAVE
 | |
| 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
 | |
| 			tcaddr + ATMEL_TC_REG(0, CMR));
 | |
| 	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
 | |
| 	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 | |
| 
 | |
| 	/* then reset all the timers */
 | |
| 	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 | |
| }
 | |
| 
 | |
| static struct atmel_tcb_config tcb_rm9200_config = {
 | |
| 	.counter_width = 16,
 | |
| };
 | |
| 
 | |
| static struct atmel_tcb_config tcb_sam9x5_config = {
 | |
| 	.counter_width = 32,
 | |
| };
 | |
| 
 | |
| static struct atmel_tcb_config tcb_sama5d2_config = {
 | |
| 	.counter_width = 32,
 | |
| 	.has_gclk = 1,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id atmel_tcb_of_match[] = {
 | |
| 	{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
 | |
| 	{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
 | |
| 	{ .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
 | |
| 	{ /* sentinel */ }
 | |
| };
 | |
| 
 | |
| static int __init tcb_clksrc_init(struct device_node *node)
 | |
| {
 | |
| 	struct atmel_tc tc;
 | |
| 	struct clk *t0_clk;
 | |
| 	const struct of_device_id *match;
 | |
| 	u64 (*tc_sched_clock)(void);
 | |
| 	u32 rate, divided_rate = 0;
 | |
| 	int best_divisor_idx = -1;
 | |
| 	int bits;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Protect against multiple calls */
 | |
| 	if (tcaddr)
 | |
| 		return 0;
 | |
| 
 | |
| 	tc.regs = of_iomap(node->parent, 0);
 | |
| 	if (!tc.regs)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
 | |
| 	if (IS_ERR(t0_clk))
 | |
| 		return PTR_ERR(t0_clk);
 | |
| 
 | |
| 	tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
 | |
| 	if (IS_ERR(tc.slow_clk))
 | |
| 		return PTR_ERR(tc.slow_clk);
 | |
| 
 | |
| 	tc.clk[0] = t0_clk;
 | |
| 	tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
 | |
| 	if (IS_ERR(tc.clk[1]))
 | |
| 		tc.clk[1] = t0_clk;
 | |
| 	tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
 | |
| 	if (IS_ERR(tc.clk[2]))
 | |
| 		tc.clk[2] = t0_clk;
 | |
| 
 | |
| 	tc.irq[2] = of_irq_get(node->parent, 2);
 | |
| 	if (tc.irq[2] <= 0) {
 | |
| 		tc.irq[2] = of_irq_get(node->parent, 0);
 | |
| 		if (tc.irq[2] <= 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	match = of_match_node(atmel_tcb_of_match, node->parent);
 | |
| 	if (!match)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	tc.tcb_config = match->data;
 | |
| 	bits = tc.tcb_config->counter_width;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
 | |
| 		writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
 | |
| 
 | |
| 	ret = clk_prepare_enable(t0_clk);
 | |
| 	if (ret) {
 | |
| 		pr_debug("can't enable T0 clk\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* How fast will we be counting?  Pick something over 5 MHz.  */
 | |
| 	rate = (u32) clk_get_rate(t0_clk);
 | |
| 	i = 0;
 | |
| 	if (tc.tcb_config->has_gclk)
 | |
| 		i = 1;
 | |
| 	for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
 | |
| 		unsigned divisor = atmel_tcb_divisors[i];
 | |
| 		unsigned tmp;
 | |
| 
 | |
| 		tmp = rate / divisor;
 | |
| 		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
 | |
| 		if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000))
 | |
| 			break;
 | |
| 		divided_rate = tmp;
 | |
| 		best_divisor_idx = i;
 | |
| 	}
 | |
| 
 | |
| 	clksrc.name = kbasename(node->parent->full_name);
 | |
| 	clkevt.clkevt.name = kbasename(node->parent->full_name);
 | |
| 	pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
 | |
| 			((divided_rate % 1000000) + 500) / 1000);
 | |
| 
 | |
| 	tcaddr = tc.regs;
 | |
| 
 | |
| 	if (bits == 32) {
 | |
| 		/* use appropriate function to read 32 bit counter */
 | |
| 		clksrc.read = tc_get_cycles32;
 | |
| 		/* setup only channel 0 */
 | |
| 		tcb_setup_single_chan(&tc, best_divisor_idx);
 | |
| 		tc_sched_clock = tc_sched_clock_read32;
 | |
| 		tc_delay_timer.read_current_timer = tc_delay_timer_read32;
 | |
| 	} else {
 | |
| 		/* we have three clocks no matter what the
 | |
| 		 * underlying platform supports.
 | |
| 		 */
 | |
| 		ret = clk_prepare_enable(tc.clk[1]);
 | |
| 		if (ret) {
 | |
| 			pr_debug("can't enable T1 clk\n");
 | |
| 			goto err_disable_t0;
 | |
| 		}
 | |
| 		/* setup both channel 0 & 1 */
 | |
| 		tcb_setup_dual_chan(&tc, best_divisor_idx);
 | |
| 		tc_sched_clock = tc_sched_clock_read;
 | |
| 		tc_delay_timer.read_current_timer = tc_delay_timer_read;
 | |
| 	}
 | |
| 
 | |
| 	/* and away we go! */
 | |
| 	ret = clocksource_register_hz(&clksrc, divided_rate);
 | |
| 	if (ret)
 | |
| 		goto err_disable_t1;
 | |
| 
 | |
| 	/* channel 2:  periodic and oneshot timer support */
 | |
| 	ret = setup_clkevents(&tc, best_divisor_idx);
 | |
| 	if (ret)
 | |
| 		goto err_unregister_clksrc;
 | |
| 
 | |
| 	sched_clock_register(tc_sched_clock, 32, divided_rate);
 | |
| 
 | |
| 	tc_delay_timer.freq = divided_rate;
 | |
| 	register_current_timer_delay(&tc_delay_timer);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_unregister_clksrc:
 | |
| 	clocksource_unregister(&clksrc);
 | |
| 
 | |
| err_disable_t1:
 | |
| 	if (bits != 32)
 | |
| 		clk_disable_unprepare(tc.clk[1]);
 | |
| 
 | |
| err_disable_t0:
 | |
| 	clk_disable_unprepare(t0_clk);
 | |
| 
 | |
| 	tcaddr = NULL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);
 |