linux/drivers/gpu/drm/drm_pagemap.c
Francois Dugast ddeda61360 drm/pagemap: Allocate folios when possible
If the order is greater than zero, allocate a folio when populating the
RAM PFNs instead of allocating individual pages one after the other. For
example if 2MB folios are used instead of 4KB pages, this reduces the
number of calls to the allocation API by 512.

v2:
- Use page order instead of extra argument (Matthew Brost)
- Allocate with folio_alloc() (Matthew Brost)
- Loop for mpages and free_pages based on order (Matthew Brost)

v3:
- Fix loops in drm_pagemap_migrate_populate_ram_pfn() (Matthew Brost)

v4:
- Use folio_trylock(), set local variable to NULL (Matthew Brost)

Cc: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Matthew Brost <matthew.brost@intel.com>
Acked-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Acked-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://lore.kernel.org/r/20250805140028.599361-5-francois.dugast@intel.com
Signed-off-by: Francois Dugast <francois.dugast@intel.com>
2025-08-06 13:34:58 +02:00

882 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
* Copyright © 2024-2025 Intel Corporation
*/
#include <linux/dma-mapping.h>
#include <linux/migrate.h>
#include <linux/pagemap.h>
#include <drm/drm_drv.h>
#include <drm/drm_pagemap.h>
/**
* DOC: Overview
*
* The DRM pagemap layer is intended to augment the dev_pagemap functionality by
* providing a way to populate a struct mm_struct virtual range with device
* private pages and to provide helpers to abstract device memory allocations,
* to migrate memory back and forth between device memory and system RAM and
* to handle access (and in the future migration) between devices implementing
* a fast interconnect that is not necessarily visible to the rest of the
* system.
*
* Typically the DRM pagemap receives requests from one or more DRM GPU SVM
* instances to populate struct mm_struct virtual ranges with memory, and the
* migration is best effort only and may thus fail. The implementation should
* also handle device unbinding by blocking (return an -ENODEV) error for new
* population requests and after that migrate all device pages to system ram.
*/
/**
* DOC: Migration
*
* Migration granularity typically follows the GPU SVM range requests, but
* if there are clashes, due to races or due to the fact that multiple GPU
* SVM instances have different views of the ranges used, and because of that
* parts of a requested range is already present in the requested device memory,
* the implementation has a variety of options. It can fail and it can choose
* to populate only the part of the range that isn't already in device memory,
* and it can evict the range to system before trying to migrate. Ideally an
* implementation would just try to migrate the missing part of the range and
* allocate just enough memory to do so.
*
* When migrating to system memory as a response to a cpu fault or a device
* memory eviction request, currently a full device memory allocation is
* migrated back to system. Moving forward this might need improvement for
* situations where a single page needs bouncing between system memory and
* device memory due to, for example, atomic operations.
*
* Key DRM pagemap components:
*
* - Device Memory Allocations:
* Embedded structure containing enough information for the drm_pagemap to
* migrate to / from device memory.
*
* - Device Memory Operations:
* Define the interface for driver-specific device memory operations
* release memory, populate pfns, and copy to / from device memory.
*/
/**
* struct drm_pagemap_zdd - GPU SVM zone device data
*
* @refcount: Reference count for the zdd
* @devmem_allocation: device memory allocation
* @device_private_page_owner: Device private pages owner
*
* This structure serves as a generic wrapper installed in
* page->zone_device_data. It provides infrastructure for looking up a device
* memory allocation upon CPU page fault and asynchronously releasing device
* memory once the CPU has no page references. Asynchronous release is useful
* because CPU page references can be dropped in IRQ contexts, while releasing
* device memory likely requires sleeping locks.
*/
struct drm_pagemap_zdd {
struct kref refcount;
struct drm_pagemap_devmem *devmem_allocation;
void *device_private_page_owner;
};
/**
* drm_pagemap_zdd_alloc() - Allocate a zdd structure.
* @device_private_page_owner: Device private pages owner
*
* This function allocates and initializes a new zdd structure. It sets up the
* reference count and initializes the destroy work.
*
* Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
*/
static struct drm_pagemap_zdd *
drm_pagemap_zdd_alloc(void *device_private_page_owner)
{
struct drm_pagemap_zdd *zdd;
zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
if (!zdd)
return NULL;
kref_init(&zdd->refcount);
zdd->devmem_allocation = NULL;
zdd->device_private_page_owner = device_private_page_owner;
return zdd;
}
/**
* drm_pagemap_zdd_get() - Get a reference to a zdd structure.
* @zdd: Pointer to the zdd structure.
*
* This function increments the reference count of the provided zdd structure.
*
* Return: Pointer to the zdd structure.
*/
static struct drm_pagemap_zdd *drm_pagemap_zdd_get(struct drm_pagemap_zdd *zdd)
{
kref_get(&zdd->refcount);
return zdd;
}
/**
* drm_pagemap_zdd_destroy() - Destroy a zdd structure.
* @ref: Pointer to the reference count structure.
*
* This function queues the destroy_work of the zdd for asynchronous destruction.
*/
static void drm_pagemap_zdd_destroy(struct kref *ref)
{
struct drm_pagemap_zdd *zdd =
container_of(ref, struct drm_pagemap_zdd, refcount);
struct drm_pagemap_devmem *devmem = zdd->devmem_allocation;
if (devmem) {
complete_all(&devmem->detached);
if (devmem->ops->devmem_release)
devmem->ops->devmem_release(devmem);
}
kfree(zdd);
}
/**
* drm_pagemap_zdd_put() - Put a zdd reference.
* @zdd: Pointer to the zdd structure.
*
* This function decrements the reference count of the provided zdd structure
* and schedules its destruction if the count drops to zero.
*/
static void drm_pagemap_zdd_put(struct drm_pagemap_zdd *zdd)
{
kref_put(&zdd->refcount, drm_pagemap_zdd_destroy);
}
/**
* drm_pagemap_migration_unlock_put_page() - Put a migration page
* @page: Pointer to the page to put
*
* This function unlocks and puts a page.
*/
static void drm_pagemap_migration_unlock_put_page(struct page *page)
{
unlock_page(page);
put_page(page);
}
/**
* drm_pagemap_migration_unlock_put_pages() - Put migration pages
* @npages: Number of pages
* @migrate_pfn: Array of migrate page frame numbers
*
* This function unlocks and puts an array of pages.
*/
static void drm_pagemap_migration_unlock_put_pages(unsigned long npages,
unsigned long *migrate_pfn)
{
unsigned long i;
for (i = 0; i < npages; ++i) {
struct page *page;
if (!migrate_pfn[i])
continue;
page = migrate_pfn_to_page(migrate_pfn[i]);
drm_pagemap_migration_unlock_put_page(page);
migrate_pfn[i] = 0;
}
}
/**
* drm_pagemap_get_devmem_page() - Get a reference to a device memory page
* @page: Pointer to the page
* @zdd: Pointer to the GPU SVM zone device data
*
* This function associates the given page with the specified GPU SVM zone
* device data and initializes it for zone device usage.
*/
static void drm_pagemap_get_devmem_page(struct page *page,
struct drm_pagemap_zdd *zdd)
{
page->zone_device_data = drm_pagemap_zdd_get(zdd);
zone_device_page_init(page);
}
/**
* drm_pagemap_migrate_map_pages() - Map migration pages for GPU SVM migration
* @dev: The device for which the pages are being mapped
* @pagemap_addr: Array to store DMA information corresponding to mapped pages
* @migrate_pfn: Array of migrate page frame numbers to map
* @npages: Number of pages to map
* @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
*
* This function maps pages of memory for migration usage in GPU SVM. It
* iterates over each page frame number provided in @migrate_pfn, maps the
* corresponding page, and stores the DMA address in the provided @dma_addr
* array.
*
* Returns: 0 on success, -EFAULT if an error occurs during mapping.
*/
static int drm_pagemap_migrate_map_pages(struct device *dev,
struct drm_pagemap_addr *pagemap_addr,
unsigned long *migrate_pfn,
unsigned long npages,
enum dma_data_direction dir)
{
unsigned long i;
for (i = 0; i < npages;) {
struct page *page = migrate_pfn_to_page(migrate_pfn[i]);
dma_addr_t dma_addr;
struct folio *folio;
unsigned int order = 0;
if (!page)
goto next;
if (WARN_ON_ONCE(is_zone_device_page(page)))
return -EFAULT;
folio = page_folio(page);
order = folio_order(folio);
dma_addr = dma_map_page(dev, page, 0, page_size(page), dir);
if (dma_mapping_error(dev, dma_addr))
return -EFAULT;
pagemap_addr[i] =
drm_pagemap_addr_encode(dma_addr,
DRM_INTERCONNECT_SYSTEM,
order, dir);
next:
i += NR_PAGES(order);
}
return 0;
}
/**
* drm_pagemap_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
* @dev: The device for which the pages were mapped
* @pagemap_addr: Array of DMA information corresponding to mapped pages
* @npages: Number of pages to unmap
* @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
*
* This function unmaps previously mapped pages of memory for GPU Shared Virtual
* Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
* if it's valid and not already unmapped, and unmaps the corresponding page.
*/
static void drm_pagemap_migrate_unmap_pages(struct device *dev,
struct drm_pagemap_addr *pagemap_addr,
unsigned long npages,
enum dma_data_direction dir)
{
unsigned long i;
for (i = 0; i < npages;) {
if (!pagemap_addr[i].addr || dma_mapping_error(dev, pagemap_addr[i].addr))
goto next;
dma_unmap_page(dev, pagemap_addr[i].addr, PAGE_SIZE << pagemap_addr[i].order, dir);
next:
i += NR_PAGES(pagemap_addr[i].order);
}
}
static unsigned long
npages_in_range(unsigned long start, unsigned long end)
{
return (end - start) >> PAGE_SHIFT;
}
/**
* drm_pagemap_migrate_to_devmem() - Migrate a struct mm_struct range to device memory
* @devmem_allocation: The device memory allocation to migrate to.
* The caller should hold a reference to the device memory allocation,
* and the reference is consumed by this function unless it returns with
* an error.
* @mm: Pointer to the struct mm_struct.
* @start: Start of the virtual address range to migrate.
* @end: End of the virtual address range to migrate.
* @timeslice_ms: The time requested for the migrated pagemap pages to
* be present in @mm before being allowed to be migrated back.
* @pgmap_owner: Not used currently, since only system memory is considered.
*
* This function migrates the specified virtual address range to device memory.
* It performs the necessary setup and invokes the driver-specific operations for
* migration to device memory. Expected to be called while holding the mmap lock in
* at least read mode.
*
* Note: The @timeslice_ms parameter can typically be used to force data to
* remain in pagemap pages long enough for a GPU to perform a task and to prevent
* a migration livelock. One alternative would be for the GPU driver to block
* in a mmu_notifier for the specified amount of time, but adding the
* functionality to the pagemap is likely nicer to the system as a whole.
*
* Return: %0 on success, negative error code on failure.
*/
int drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem *devmem_allocation,
struct mm_struct *mm,
unsigned long start, unsigned long end,
unsigned long timeslice_ms,
void *pgmap_owner)
{
const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
struct migrate_vma migrate = {
.start = start,
.end = end,
.pgmap_owner = pgmap_owner,
.flags = MIGRATE_VMA_SELECT_SYSTEM,
};
unsigned long i, npages = npages_in_range(start, end);
struct vm_area_struct *vas;
struct drm_pagemap_zdd *zdd = NULL;
struct page **pages;
struct drm_pagemap_addr *pagemap_addr;
void *buf;
int err;
mmap_assert_locked(mm);
if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
!ops->copy_to_ram)
return -EOPNOTSUPP;
vas = vma_lookup(mm, start);
if (!vas) {
err = -ENOENT;
goto err_out;
}
if (end > vas->vm_end || start < vas->vm_start) {
err = -EINVAL;
goto err_out;
}
if (!vma_is_anonymous(vas)) {
err = -EBUSY;
goto err_out;
}
buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
sizeof(*pages), GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
zdd = drm_pagemap_zdd_alloc(pgmap_owner);
if (!zdd) {
err = -ENOMEM;
goto err_free;
}
migrate.vma = vas;
migrate.src = buf;
migrate.dst = migrate.src + npages;
err = migrate_vma_setup(&migrate);
if (err)
goto err_free;
if (!migrate.cpages) {
err = -EFAULT;
goto err_free;
}
if (migrate.cpages != npages) {
err = -EBUSY;
goto err_finalize;
}
err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
if (err)
goto err_finalize;
err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
migrate.src, npages, DMA_TO_DEVICE);
if (err)
goto err_finalize;
for (i = 0; i < npages; ++i) {
struct page *page = pfn_to_page(migrate.dst[i]);
pages[i] = page;
migrate.dst[i] = migrate_pfn(migrate.dst[i]);
drm_pagemap_get_devmem_page(page, zdd);
}
err = ops->copy_to_devmem(pages, pagemap_addr, npages);
if (err)
goto err_finalize;
/* Upon success bind devmem allocation to range and zdd */
devmem_allocation->timeslice_expiration = get_jiffies_64() +
msecs_to_jiffies(timeslice_ms);
zdd->devmem_allocation = devmem_allocation; /* Owns ref */
err_finalize:
if (err)
drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
migrate_vma_pages(&migrate);
migrate_vma_finalize(&migrate);
drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
DMA_TO_DEVICE);
err_free:
if (zdd)
drm_pagemap_zdd_put(zdd);
kvfree(buf);
err_out:
return err;
}
EXPORT_SYMBOL_GPL(drm_pagemap_migrate_to_devmem);
/**
* drm_pagemap_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
* @vas: Pointer to the VM area structure, can be NULL
* @fault_page: Fault page
* @npages: Number of pages to populate
* @mpages: Number of pages to migrate
* @src_mpfn: Source array of migrate PFNs
* @mpfn: Array of migrate PFNs to populate
* @addr: Start address for PFN allocation
*
* This function populates the RAM migrate page frame numbers (PFNs) for the
* specified VM area structure. It allocates and locks pages in the VM area for
* RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
* alloc_page for allocation.
*
* Return: 0 on success, negative error code on failure.
*/
static int drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct *vas,
struct page *fault_page,
unsigned long npages,
unsigned long *mpages,
unsigned long *src_mpfn,
unsigned long *mpfn,
unsigned long addr)
{
unsigned long i;
for (i = 0; i < npages;) {
struct page *page = NULL, *src_page;
struct folio *folio;
unsigned int order = 0;
if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
goto next;
src_page = migrate_pfn_to_page(src_mpfn[i]);
if (!src_page)
goto next;
if (fault_page) {
if (src_page->zone_device_data !=
fault_page->zone_device_data)
goto next;
}
order = folio_order(page_folio(src_page));
/* TODO: Support fallback to single pages if THP allocation fails */
if (vas)
folio = vma_alloc_folio(GFP_HIGHUSER, order, vas, addr);
else
folio = folio_alloc(GFP_HIGHUSER, order);
if (!folio)
goto free_pages;
page = folio_page(folio, 0);
mpfn[i] = migrate_pfn(page_to_pfn(page));
next:
if (page)
addr += page_size(page);
else
addr += PAGE_SIZE;
i += NR_PAGES(order);
}
for (i = 0; i < npages;) {
struct page *page = migrate_pfn_to_page(mpfn[i]);
unsigned int order = 0;
if (!page)
goto next_lock;
WARN_ON_ONCE(!folio_trylock(page_folio(page)));
order = folio_order(page_folio(page));
*mpages += NR_PAGES(order);
next_lock:
i += NR_PAGES(order);
}
return 0;
free_pages:
for (i = 0; i < npages;) {
struct page *page = migrate_pfn_to_page(mpfn[i]);
unsigned int order = 0;
if (!page)
goto next_put;
put_page(page);
mpfn[i] = 0;
order = folio_order(page_folio(page));
next_put:
i += NR_PAGES(order);
}
return -ENOMEM;
}
/**
* drm_pagemap_evict_to_ram() - Evict GPU SVM range to RAM
* @devmem_allocation: Pointer to the device memory allocation
*
* Similar to __drm_pagemap_migrate_to_ram but does not require mmap lock and
* migration done via migrate_device_* functions.
*
* Return: 0 on success, negative error code on failure.
*/
int drm_pagemap_evict_to_ram(struct drm_pagemap_devmem *devmem_allocation)
{
const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
unsigned long npages, mpages = 0;
struct page **pages;
unsigned long *src, *dst;
struct drm_pagemap_addr *pagemap_addr;
void *buf;
int i, err = 0;
unsigned int retry_count = 2;
npages = devmem_allocation->size >> PAGE_SHIFT;
retry:
if (!mmget_not_zero(devmem_allocation->mm))
return -EFAULT;
buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*pagemap_addr) +
sizeof(*pages), GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
src = buf;
dst = buf + (sizeof(*src) * npages);
pagemap_addr = buf + (2 * sizeof(*src) * npages);
pages = buf + (2 * sizeof(*src) + sizeof(*pagemap_addr)) * npages;
err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
if (err)
goto err_free;
err = migrate_device_pfns(src, npages);
if (err)
goto err_free;
err = drm_pagemap_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
src, dst, 0);
if (err || !mpages)
goto err_finalize;
err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
dst, npages, DMA_FROM_DEVICE);
if (err)
goto err_finalize;
for (i = 0; i < npages; ++i)
pages[i] = migrate_pfn_to_page(src[i]);
err = ops->copy_to_ram(pages, pagemap_addr, npages);
if (err)
goto err_finalize;
err_finalize:
if (err)
drm_pagemap_migration_unlock_put_pages(npages, dst);
migrate_device_pages(src, dst, npages);
migrate_device_finalize(src, dst, npages);
drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
DMA_FROM_DEVICE);
err_free:
kvfree(buf);
err_out:
mmput_async(devmem_allocation->mm);
if (completion_done(&devmem_allocation->detached))
return 0;
if (retry_count--) {
cond_resched();
goto retry;
}
return err ?: -EBUSY;
}
EXPORT_SYMBOL_GPL(drm_pagemap_evict_to_ram);
/**
* __drm_pagemap_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
* @vas: Pointer to the VM area structure
* @device_private_page_owner: Device private pages owner
* @page: Pointer to the page for fault handling (can be NULL)
* @fault_addr: Fault address
* @size: Size of migration
*
* This internal function performs the migration of the specified GPU SVM range
* to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
* invokes the driver-specific operations for migration to RAM.
*
* Return: 0 on success, negative error code on failure.
*/
static int __drm_pagemap_migrate_to_ram(struct vm_area_struct *vas,
void *device_private_page_owner,
struct page *page,
unsigned long fault_addr,
unsigned long size)
{
struct migrate_vma migrate = {
.vma = vas,
.pgmap_owner = device_private_page_owner,
.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
MIGRATE_VMA_SELECT_DEVICE_COHERENT,
.fault_page = page,
};
struct drm_pagemap_zdd *zdd;
const struct drm_pagemap_devmem_ops *ops;
struct device *dev = NULL;
unsigned long npages, mpages = 0;
struct page **pages;
struct drm_pagemap_addr *pagemap_addr;
unsigned long start, end;
void *buf;
int i, err = 0;
if (page) {
zdd = page->zone_device_data;
if (time_before64(get_jiffies_64(),
zdd->devmem_allocation->timeslice_expiration))
return 0;
}
start = ALIGN_DOWN(fault_addr, size);
end = ALIGN(fault_addr + 1, size);
/* Corner where VMA area struct has been partially unmapped */
if (start < vas->vm_start)
start = vas->vm_start;
if (end > vas->vm_end)
end = vas->vm_end;
migrate.start = start;
migrate.end = end;
npages = npages_in_range(start, end);
buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
sizeof(*pages), GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
migrate.vma = vas;
migrate.src = buf;
migrate.dst = migrate.src + npages;
err = migrate_vma_setup(&migrate);
if (err)
goto err_free;
/* Raced with another CPU fault, nothing to do */
if (!migrate.cpages)
goto err_free;
if (!page) {
for (i = 0; i < npages; ++i) {
if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
continue;
page = migrate_pfn_to_page(migrate.src[i]);
break;
}
if (!page)
goto err_finalize;
}
zdd = page->zone_device_data;
ops = zdd->devmem_allocation->ops;
dev = zdd->devmem_allocation->dev;
err = drm_pagemap_migrate_populate_ram_pfn(vas, page, npages, &mpages,
migrate.src, migrate.dst,
start);
if (err)
goto err_finalize;
err = drm_pagemap_migrate_map_pages(dev, pagemap_addr, migrate.dst, npages,
DMA_FROM_DEVICE);
if (err)
goto err_finalize;
for (i = 0; i < npages; ++i)
pages[i] = migrate_pfn_to_page(migrate.src[i]);
err = ops->copy_to_ram(pages, pagemap_addr, npages);
if (err)
goto err_finalize;
err_finalize:
if (err)
drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
migrate_vma_pages(&migrate);
migrate_vma_finalize(&migrate);
if (dev)
drm_pagemap_migrate_unmap_pages(dev, pagemap_addr, npages,
DMA_FROM_DEVICE);
err_free:
kvfree(buf);
err_out:
return err;
}
/**
* drm_pagemap_page_free() - Put GPU SVM zone device data associated with a page
* @page: Pointer to the page
*
* This function is a callback used to put the GPU SVM zone device data
* associated with a page when it is being released.
*/
static void drm_pagemap_page_free(struct page *page)
{
drm_pagemap_zdd_put(page->zone_device_data);
}
/**
* drm_pagemap_migrate_to_ram() - Migrate a virtual range to RAM (page fault handler)
* @vmf: Pointer to the fault information structure
*
* This function is a page fault handler used to migrate a virtual range
* to ram. The device memory allocation in which the device page is found is
* migrated in its entirety.
*
* Returns:
* VM_FAULT_SIGBUS on failure, 0 on success.
*/
static vm_fault_t drm_pagemap_migrate_to_ram(struct vm_fault *vmf)
{
struct drm_pagemap_zdd *zdd = vmf->page->zone_device_data;
int err;
err = __drm_pagemap_migrate_to_ram(vmf->vma,
zdd->device_private_page_owner,
vmf->page, vmf->address,
zdd->devmem_allocation->size);
return err ? VM_FAULT_SIGBUS : 0;
}
static const struct dev_pagemap_ops drm_pagemap_pagemap_ops = {
.page_free = drm_pagemap_page_free,
.migrate_to_ram = drm_pagemap_migrate_to_ram,
};
/**
* drm_pagemap_pagemap_ops_get() - Retrieve GPU SVM device page map operations
*
* Returns:
* Pointer to the GPU SVM device page map operations structure.
*/
const struct dev_pagemap_ops *drm_pagemap_pagemap_ops_get(void)
{
return &drm_pagemap_pagemap_ops;
}
EXPORT_SYMBOL_GPL(drm_pagemap_pagemap_ops_get);
/**
* drm_pagemap_devmem_init() - Initialize a drm_pagemap device memory allocation
*
* @devmem_allocation: The struct drm_pagemap_devmem to initialize.
* @dev: Pointer to the device structure which device memory allocation belongs to
* @mm: Pointer to the mm_struct for the address space
* @ops: Pointer to the operations structure for GPU SVM device memory
* @dpagemap: The struct drm_pagemap we're allocating from.
* @size: Size of device memory allocation
*/
void drm_pagemap_devmem_init(struct drm_pagemap_devmem *devmem_allocation,
struct device *dev, struct mm_struct *mm,
const struct drm_pagemap_devmem_ops *ops,
struct drm_pagemap *dpagemap, size_t size)
{
init_completion(&devmem_allocation->detached);
devmem_allocation->dev = dev;
devmem_allocation->mm = mm;
devmem_allocation->ops = ops;
devmem_allocation->dpagemap = dpagemap;
devmem_allocation->size = size;
}
EXPORT_SYMBOL_GPL(drm_pagemap_devmem_init);
/**
* drm_pagemap_page_to_dpagemap() - Return a pointer the drm_pagemap of a page
* @page: The struct page.
*
* Return: A pointer to the struct drm_pagemap of a device private page that
* was populated from the struct drm_pagemap. If the page was *not* populated
* from a struct drm_pagemap, the result is undefined and the function call
* may result in dereferencing and invalid address.
*/
struct drm_pagemap *drm_pagemap_page_to_dpagemap(struct page *page)
{
struct drm_pagemap_zdd *zdd = page->zone_device_data;
return zdd->devmem_allocation->dpagemap;
}
EXPORT_SYMBOL_GPL(drm_pagemap_page_to_dpagemap);
/**
* drm_pagemap_populate_mm() - Populate a virtual range with device memory pages
* @dpagemap: Pointer to the drm_pagemap managing the device memory
* @start: Start of the virtual range to populate.
* @end: End of the virtual range to populate.
* @mm: Pointer to the virtual address space.
* @timeslice_ms: The time requested for the migrated pagemap pages to
* be present in @mm before being allowed to be migrated back.
*
* Attempt to populate a virtual range with device memory pages,
* clearing them or migrating data from the existing pages if necessary.
* The function is best effort only, and implementations may vary
* in how hard they try to satisfy the request.
*
* Return: %0 on success, negative error code on error. If the hardware
* device was removed / unbound the function will return %-ENODEV.
*/
int drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
unsigned long start, unsigned long end,
struct mm_struct *mm,
unsigned long timeslice_ms)
{
int err;
if (!mmget_not_zero(mm))
return -EFAULT;
mmap_read_lock(mm);
err = dpagemap->ops->populate_mm(dpagemap, start, end, mm,
timeslice_ms);
mmap_read_unlock(mm);
mmput(mm);
return err;
}
EXPORT_SYMBOL(drm_pagemap_populate_mm);