linux/drivers/gpu/drm/i915/display/intel_alpm.c
Jouni Högander d074a40b88 drm/i915/alpm: Use actual lfps cycle and silence periods in wake time
Currently we are using maximum lfps cycle and silence period times when
calculating AUXLess wake time. Use actual values instead.

Signed-off-by: Jouni Högander <jouni.hogander@intel.com>
Reviewed-by: Animesh Manna <animesh.manna@intel.com>
Link: https://lore.kernel.org/r/20250829053929.3585636-5-jouni.hogander@intel.com
2025-09-05 08:35:47 +03:00

613 lines
18 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright 2024, Intel Corporation.
*/
#include <linux/debugfs.h>
#include <drm/drm_print.h>
#include "intel_alpm.h"
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_aux.h"
#include "intel_psr.h"
#include "intel_psr_regs.h"
#define SILENCE_PERIOD_MIN_TIME 80
#define SILENCE_PERIOD_MAX_TIME 180
#define SILENCE_PERIOD_TIME (SILENCE_PERIOD_MIN_TIME + \
(SILENCE_PERIOD_MAX_TIME - \
SILENCE_PERIOD_MIN_TIME) / 2)
#define LFPS_CYCLE_COUNT 10
bool intel_alpm_aux_wake_supported(struct intel_dp *intel_dp)
{
return intel_dp->alpm_dpcd & DP_ALPM_CAP;
}
bool intel_alpm_aux_less_wake_supported(struct intel_dp *intel_dp)
{
return intel_dp->alpm_dpcd & DP_ALPM_AUX_LESS_CAP;
}
bool intel_alpm_is_alpm_aux_less(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
return intel_psr_needs_alpm_aux_less(intel_dp, crtc_state) ||
(crtc_state->has_lobf && intel_alpm_aux_less_wake_supported(intel_dp));
}
void intel_alpm_init(struct intel_dp *intel_dp)
{
u8 dpcd;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, &dpcd) < 0)
return;
intel_dp->alpm_dpcd = dpcd;
mutex_init(&intel_dp->alpm_parameters.lock);
}
static int get_silence_period_symbols(const struct intel_crtc_state *crtc_state)
{
return SILENCE_PERIOD_TIME * intel_dp_link_symbol_clock(crtc_state->port_clock) /
1000 / 1000;
}
static int get_lfps_cycle_min_max_time(const struct intel_crtc_state *crtc_state,
int *min, int *max)
{
if (crtc_state->port_clock < 540000) {
*min = 65 * LFPS_CYCLE_COUNT;
*max = 75 * LFPS_CYCLE_COUNT;
} else if (crtc_state->port_clock <= 810000) {
*min = 140;
*max = 800;
} else {
*min = *max = -1;
return -1;
}
return 0;
}
static int get_lfps_cycle_time(const struct intel_crtc_state *crtc_state)
{
int tlfps_cycle_min, tlfps_cycle_max, ret;
ret = get_lfps_cycle_min_max_time(crtc_state, &tlfps_cycle_min,
&tlfps_cycle_max);
if (ret)
return ret;
return tlfps_cycle_min + (tlfps_cycle_max - tlfps_cycle_min) / 2;
}
static int get_lfps_half_cycle_clocks(const struct intel_crtc_state *crtc_state)
{
int lfps_cycle_time = get_lfps_cycle_time(crtc_state);
if (lfps_cycle_time < 0)
return -1;
return lfps_cycle_time * crtc_state->port_clock / 1000 / 1000 / (2 * LFPS_CYCLE_COUNT);
}
/*
* AUX-Less Wake Time = CEILING( ((PHY P2 to P0) + tLFPS_Period, Max+
* tSilence, Max+ tPHY Establishment + tCDS) / tline)
* For the "PHY P2 to P0" latency see the PHY Power Control page
* (PHY P2 to P0) : https://gfxspecs.intel.com/Predator/Home/Index/68965
* : 12 us
* The tLFPS_Period, Max term is 800ns
* The tSilence, Max term is 180ns
* The tPHY Establishment (a.k.a. t1) term is 50us
* The tCDS term is 1 or 2 times t2
* t2 = Number ML_PHY_LOCK * tML_PHY_LOCK
* Number ML_PHY_LOCK = ( 7 + CEILING( 6.5us / tML_PHY_LOCK ) + 1)
* Rounding up the 6.5us padding to the next ML_PHY_LOCK boundary and
* adding the "+ 1" term ensures all ML_PHY_LOCK sequences that start
* within the CDS period complete within the CDS period regardless of
* entry into the period
* tML_PHY_LOCK = TPS4 Length * ( 10 / (Link Rate in MHz) )
* TPS4 Length = 252 Symbols
*/
static int _lnl_compute_aux_less_wake_time(const struct intel_crtc_state *crtc_state)
{
int tphy2_p2_to_p0 = 12 * 1000;
int t1 = 50 * 1000;
int tps4 = 252;
/* port_clock is link rate in 10kbit/s units */
int tml_phy_lock = 1000 * 1000 * tps4 / crtc_state->port_clock;
int num_ml_phy_lock = 7 + DIV_ROUND_UP(6500, tml_phy_lock) + 1;
int t2 = num_ml_phy_lock * tml_phy_lock;
int tcds = 1 * t2;
return DIV_ROUND_UP(tphy2_p2_to_p0 + get_lfps_cycle_time(crtc_state) +
SILENCE_PERIOD_TIME + t1 + tcds, 1000);
}
static int
_lnl_compute_aux_less_alpm_params(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
int aux_less_wake_time, aux_less_wake_lines, silence_period,
lfps_half_cycle;
aux_less_wake_time =
_lnl_compute_aux_less_wake_time(crtc_state);
aux_less_wake_lines = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode,
aux_less_wake_time);
silence_period = get_silence_period_symbols(crtc_state);
lfps_half_cycle = get_lfps_half_cycle_clocks(crtc_state);
if (lfps_half_cycle < 0)
return false;
if (aux_less_wake_lines > ALPM_CTL_AUX_LESS_WAKE_TIME_MASK ||
silence_period > PORT_ALPM_CTL_SILENCE_PERIOD_MASK ||
lfps_half_cycle > PORT_ALPM_LFPS_CTL_LAST_LFPS_HALF_CYCLE_DURATION_MASK)
return false;
if (display->params.psr_safest_params)
aux_less_wake_lines = ALPM_CTL_AUX_LESS_WAKE_TIME_MASK;
intel_dp->alpm_parameters.aux_less_wake_lines = aux_less_wake_lines;
intel_dp->alpm_parameters.silence_period_sym_clocks = silence_period;
intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms = lfps_half_cycle;
return true;
}
static bool _lnl_compute_alpm_params(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
int check_entry_lines;
if (DISPLAY_VER(display) < 20)
return true;
/* ALPM Entry Check = 2 + CEILING( 5us /tline ) */
check_entry_lines = 2 +
intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, 5);
if (check_entry_lines > 15)
return false;
if (!_lnl_compute_aux_less_alpm_params(intel_dp, crtc_state))
return false;
if (display->params.psr_safest_params)
check_entry_lines = 15;
intel_dp->alpm_parameters.check_entry_lines = check_entry_lines;
return true;
}
/*
* IO wake time for DISPLAY_VER < 12 is not directly mentioned in Bspec. There
* are 50 us io wake time and 32 us fast wake time. Clearly preharge pulses are
* not (improperly) included in 32 us fast wake time. 50 us - 32 us = 18 us.
*/
static int skl_io_buffer_wake_time(void)
{
return 18;
}
static int tgl_io_buffer_wake_time(void)
{
return 10;
}
static int io_buffer_wake_time(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 12)
return tgl_io_buffer_wake_time();
else
return skl_io_buffer_wake_time();
}
bool intel_alpm_compute_params(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
int io_wake_lines, io_wake_time, fast_wake_lines, fast_wake_time;
int tfw_exit_latency = 20; /* eDP spec */
int phy_wake = 4; /* eDP spec */
int preamble = 8; /* eDP spec */
int precharge = intel_dp_aux_fw_sync_len(intel_dp) - preamble;
u8 max_wake_lines;
io_wake_time = max(precharge, io_buffer_wake_time(crtc_state)) +
preamble + phy_wake + tfw_exit_latency;
fast_wake_time = precharge + preamble + phy_wake +
tfw_exit_latency;
if (DISPLAY_VER(display) >= 20)
max_wake_lines = 68;
else if (DISPLAY_VER(display) >= 12)
max_wake_lines = 12;
else
max_wake_lines = 8;
io_wake_lines = intel_usecs_to_scanlines(
&crtc_state->hw.adjusted_mode, io_wake_time);
fast_wake_lines = intel_usecs_to_scanlines(
&crtc_state->hw.adjusted_mode, fast_wake_time);
if (io_wake_lines > max_wake_lines ||
fast_wake_lines > max_wake_lines)
return false;
if (!_lnl_compute_alpm_params(intel_dp, crtc_state))
return false;
if (display->params.psr_safest_params)
io_wake_lines = fast_wake_lines = max_wake_lines;
/* According to Bspec lower limit should be set as 7 lines. */
intel_dp->alpm_parameters.io_wake_lines = max(io_wake_lines, 7);
intel_dp->alpm_parameters.fast_wake_lines = max(fast_wake_lines, 7);
return true;
}
void intel_alpm_lobf_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
int waketime_in_lines, first_sdp_position;
int context_latency, guardband;
if (intel_dp->alpm_parameters.lobf_disable_debug) {
drm_dbg_kms(display->drm, "LOBF is disabled by debug flag\n");
return;
}
if (intel_dp->alpm_parameters.sink_alpm_error)
return;
if (!intel_dp_is_edp(intel_dp))
return;
if (DISPLAY_VER(display) < 20)
return;
if (!intel_dp->as_sdp_supported)
return;
if (crtc_state->has_psr)
return;
if (crtc_state->vrr.vmin != crtc_state->vrr.vmax ||
crtc_state->vrr.vmin != crtc_state->vrr.flipline)
return;
if (!(intel_alpm_aux_wake_supported(intel_dp) ||
intel_alpm_aux_less_wake_supported(intel_dp)))
return;
if (!intel_alpm_compute_params(intel_dp, crtc_state))
return;
context_latency = adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay;
guardband = adjusted_mode->crtc_vtotal -
adjusted_mode->crtc_vdisplay - context_latency;
first_sdp_position = adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vsync_start;
if (intel_alpm_aux_less_wake_supported(intel_dp))
waketime_in_lines = intel_dp->alpm_parameters.io_wake_lines;
else
waketime_in_lines = intel_dp->alpm_parameters.aux_less_wake_lines;
crtc_state->has_lobf = (context_latency + guardband) >
(first_sdp_position + waketime_in_lines);
}
static void lnl_alpm_configure(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 alpm_ctl;
if (DISPLAY_VER(display) < 20 || (!intel_psr_needs_alpm(intel_dp, crtc_state) &&
!crtc_state->has_lobf))
return;
mutex_lock(&intel_dp->alpm_parameters.lock);
/*
* Panel Replay on eDP is always using ALPM aux less. I.e. no need to
* check panel support at this point.
*/
if (intel_alpm_is_alpm_aux_less(intel_dp, crtc_state)) {
alpm_ctl = ALPM_CTL_ALPM_ENABLE |
ALPM_CTL_ALPM_AUX_LESS_ENABLE |
ALPM_CTL_AUX_LESS_SLEEP_HOLD_TIME_50_SYMBOLS |
ALPM_CTL_AUX_LESS_WAKE_TIME(intel_dp->alpm_parameters.aux_less_wake_lines);
if (intel_dp->as_sdp_supported) {
u32 pr_alpm_ctl = PR_ALPM_CTL_ADAPTIVE_SYNC_SDP_POSITION_T1;
if (intel_dp->pr_dpcd[INTEL_PR_DPCD_INDEX(DP_PANEL_REPLAY_CAP_CAPABILITY)] &
DP_PANEL_REPLAY_LINK_OFF_SUPPORTED_IN_PR_AFTER_ADAPTIVE_SYNC_SDP)
pr_alpm_ctl |= PR_ALPM_CTL_ALLOW_LINK_OFF_BETWEEN_AS_SDP_AND_SU;
if (!(intel_dp->pr_dpcd[INTEL_PR_DPCD_INDEX(DP_PANEL_REPLAY_CAP_CAPABILITY)] &
DP_PANEL_REPLAY_ASYNC_VIDEO_TIMING_NOT_SUPPORTED_IN_PR))
pr_alpm_ctl |= PR_ALPM_CTL_AS_SDP_TRANSMISSION_IN_ACTIVE_DISABLE;
intel_de_write(display, PR_ALPM_CTL(display, cpu_transcoder),
pr_alpm_ctl);
}
} else {
alpm_ctl = ALPM_CTL_EXTENDED_FAST_WAKE_ENABLE |
ALPM_CTL_EXTENDED_FAST_WAKE_TIME(intel_dp->alpm_parameters.fast_wake_lines);
}
if (crtc_state->has_lobf) {
alpm_ctl |= ALPM_CTL_LOBF_ENABLE;
drm_dbg_kms(display->drm, "Link off between frames (LOBF) enabled\n");
}
alpm_ctl |= ALPM_CTL_ALPM_ENTRY_CHECK(intel_dp->alpm_parameters.check_entry_lines);
intel_de_write(display, ALPM_CTL(display, cpu_transcoder), alpm_ctl);
mutex_unlock(&intel_dp->alpm_parameters.lock);
}
void intel_alpm_configure(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
lnl_alpm_configure(intel_dp, crtc_state);
intel_dp->alpm_parameters.transcoder = crtc_state->cpu_transcoder;
}
void intel_alpm_port_configure(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(intel_dp);
enum port port = dp_to_dig_port(intel_dp)->base.port;
u32 alpm_ctl_val = 0, lfps_ctl_val = 0;
if (DISPLAY_VER(display) < 20)
return;
if (intel_alpm_is_alpm_aux_less(intel_dp, crtc_state)) {
alpm_ctl_val = PORT_ALPM_CTL_ALPM_AUX_LESS_ENABLE |
PORT_ALPM_CTL_MAX_PHY_SWING_SETUP(15) |
PORT_ALPM_CTL_MAX_PHY_SWING_HOLD(0) |
PORT_ALPM_CTL_SILENCE_PERIOD(
intel_dp->alpm_parameters.silence_period_sym_clocks);
lfps_ctl_val = PORT_ALPM_LFPS_CTL_LFPS_CYCLE_COUNT(LFPS_CYCLE_COUNT) |
PORT_ALPM_LFPS_CTL_LFPS_HALF_CYCLE_DURATION(
intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms) |
PORT_ALPM_LFPS_CTL_FIRST_LFPS_HALF_CYCLE_DURATION(
intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms) |
PORT_ALPM_LFPS_CTL_LAST_LFPS_HALF_CYCLE_DURATION(
intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms);
}
intel_de_write(display, PORT_ALPM_CTL(port), alpm_ctl_val);
intel_de_write(display, PORT_ALPM_LFPS_CTL(port), lfps_ctl_val);
}
void intel_alpm_pre_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
struct intel_encoder *encoder;
if (DISPLAY_VER(display) < 20)
return;
if (crtc_state->has_lobf || crtc_state->has_lobf == old_crtc_state->has_lobf)
return;
for_each_intel_encoder_mask(display->drm, encoder,
crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp;
if (!intel_encoder_is_dp(encoder))
continue;
intel_dp = enc_to_intel_dp(encoder);
if (!intel_dp_is_edp(intel_dp))
continue;
if (old_crtc_state->has_lobf) {
mutex_lock(&intel_dp->alpm_parameters.lock);
intel_de_write(display, ALPM_CTL(display, cpu_transcoder), 0);
drm_dbg_kms(display->drm, "Link off between frames (LOBF) disabled\n");
mutex_unlock(&intel_dp->alpm_parameters.lock);
}
}
}
void intel_alpm_enable_sink(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 val;
if (!intel_psr_needs_alpm(intel_dp, crtc_state) && !crtc_state->has_lobf)
return;
val = DP_ALPM_ENABLE | DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE;
if (crtc_state->has_panel_replay || (crtc_state->has_lobf &&
intel_alpm_aux_less_wake_supported(intel_dp)))
val |= DP_ALPM_MODE_AUX_LESS;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, val);
}
void intel_alpm_post_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_encoder *encoder;
if (crtc_state->has_psr || !crtc_state->has_lobf ||
crtc_state->has_lobf == old_crtc_state->has_lobf)
return;
for_each_intel_encoder_mask(display->drm, encoder,
crtc_state->uapi.encoder_mask) {
struct intel_dp *intel_dp;
if (!intel_encoder_is_dp(encoder))
continue;
intel_dp = enc_to_intel_dp(encoder);
if (intel_dp_is_edp(intel_dp)) {
intel_alpm_enable_sink(intel_dp, crtc_state);
intel_alpm_configure(intel_dp, crtc_state);
}
}
}
static int i915_edp_lobf_info_show(struct seq_file *m, void *data)
{
struct intel_connector *connector = m->private;
struct intel_display *display = to_intel_display(connector);
struct drm_crtc *crtc;
struct intel_crtc_state *crtc_state;
enum transcoder cpu_transcoder;
u32 alpm_ctl;
int ret;
ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (ret)
return ret;
crtc = connector->base.state->crtc;
if (connector->base.status != connector_status_connected || !crtc) {
ret = -ENODEV;
goto out;
}
crtc_state = to_intel_crtc_state(crtc->state);
cpu_transcoder = crtc_state->cpu_transcoder;
alpm_ctl = intel_de_read(display, ALPM_CTL(display, cpu_transcoder));
seq_printf(m, "LOBF status: %s\n", str_enabled_disabled(alpm_ctl & ALPM_CTL_LOBF_ENABLE));
seq_printf(m, "Aux-wake alpm status: %s\n",
str_enabled_disabled(!(alpm_ctl & ALPM_CTL_ALPM_AUX_LESS_ENABLE)));
seq_printf(m, "Aux-less alpm status: %s\n",
str_enabled_disabled(alpm_ctl & ALPM_CTL_ALPM_AUX_LESS_ENABLE));
out:
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
return ret;
}
DEFINE_SHOW_ATTRIBUTE(i915_edp_lobf_info);
static int
i915_edp_lobf_debug_get(void *data, u64 *val)
{
struct intel_connector *connector = data;
struct intel_dp *intel_dp = enc_to_intel_dp(connector->encoder);
*val = intel_dp->alpm_parameters.lobf_disable_debug;
return 0;
}
static int
i915_edp_lobf_debug_set(void *data, u64 val)
{
struct intel_connector *connector = data;
struct intel_dp *intel_dp = enc_to_intel_dp(connector->encoder);
intel_dp->alpm_parameters.lobf_disable_debug = val;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_edp_lobf_debug_fops,
i915_edp_lobf_debug_get, i915_edp_lobf_debug_set,
"%llu\n");
void intel_alpm_lobf_debugfs_add(struct intel_connector *connector)
{
struct intel_display *display = to_intel_display(connector);
struct dentry *root = connector->base.debugfs_entry;
if (DISPLAY_VER(display) < 20 ||
connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
return;
debugfs_create_file("i915_edp_lobf_debug", 0644, root,
connector, &i915_edp_lobf_debug_fops);
debugfs_create_file("i915_edp_lobf_info", 0444, root,
connector, &i915_edp_lobf_info_fops);
}
void intel_alpm_disable(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
enum transcoder cpu_transcoder = intel_dp->alpm_parameters.transcoder;
if (DISPLAY_VER(display) < 20 || !intel_dp->alpm_dpcd)
return;
mutex_lock(&intel_dp->alpm_parameters.lock);
intel_de_rmw(display, ALPM_CTL(display, cpu_transcoder),
ALPM_CTL_ALPM_ENABLE | ALPM_CTL_LOBF_ENABLE |
ALPM_CTL_ALPM_AUX_LESS_ENABLE, 0);
intel_de_rmw(display,
PORT_ALPM_CTL(cpu_transcoder),
PORT_ALPM_CTL_ALPM_AUX_LESS_ENABLE, 0);
drm_dbg_kms(display->drm, "Disabling ALPM\n");
mutex_unlock(&intel_dp->alpm_parameters.lock);
}
bool intel_alpm_get_error(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_dp_aux *aux = &intel_dp->aux;
u8 val;
int r;
r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
if (r != 1) {
drm_err(display->drm, "Error reading ALPM status\n");
return true;
}
if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
drm_dbg_kms(display->drm, "ALPM lock timeout error\n");
/* Clearing error */
drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
return true;
}
return false;
}