linux/drivers/pwm/pwm-mediatek.c
Uwe Kleine-König ed5902a246 pwm: mediatek: Lock and cache clock rate
This simplifies error handling and reduces the amount of clk_get_rate()
calls.

While touching the clk handling also allocate the clock array as part of
driver data and lock the clock rate to ensure that the output doesn't
change unexpectedly.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Link: https://lore.kernel.org/r/20250725154506.2610172-17-u.kleine-koenig@baylibre.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
2025-09-15 11:39:45 +02:00

557 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* MediaTek Pulse Width Modulator driver
*
* Copyright (C) 2015 John Crispin <blogic@openwrt.org>
* Copyright (C) 2017 Zhi Mao <zhi.mao@mediatek.com>
*
*/
#include <linux/bitfield.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/types.h>
/* PWM registers and bits definitions */
#define PWMCON 0x00
#define PWMCON_CLKDIV GENMASK(2, 0)
#define PWMHDUR 0x04
#define PWMLDUR 0x08
#define PWMGDUR 0x0c
#define PWMWAVENUM 0x28
#define PWMDWIDTH 0x2c
#define PWMDWIDTH_PERIOD GENMASK(12, 0)
#define PWM45DWIDTH_FIXUP 0x30
#define PWMTHRES 0x30
#define PWMTHRES_DUTY GENMASK(12, 0)
#define PWM45THRES_FIXUP 0x34
#define PWM_CK_26M_SEL_V3 0x74
#define PWM_CK_26M_SEL 0x210
struct pwm_mediatek_of_data {
unsigned int num_pwms;
bool pwm45_fixup;
u16 pwm_ck_26m_sel_reg;
unsigned int chanreg_base;
unsigned int chanreg_width;
};
/**
* struct pwm_mediatek_chip - struct representing PWM chip
* @regs: base address of PWM chip
* @clk_top: the top clock generator
* @clk_main: the clock used by PWM core
* @soc: pointer to chip's platform data
* @clk_pwms: the clock and clkrate used by each PWM channel
*/
struct pwm_mediatek_chip {
void __iomem *regs;
struct clk *clk_top;
struct clk *clk_main;
const struct pwm_mediatek_of_data *soc;
struct {
struct clk *clk;
unsigned long rate;
} clk_pwms[];
};
static inline struct pwm_mediatek_chip *
to_pwm_mediatek_chip(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static int pwm_mediatek_clk_enable(struct pwm_mediatek_chip *pc,
unsigned int hwpwm)
{
int ret;
ret = clk_prepare_enable(pc->clk_top);
if (ret < 0)
return ret;
ret = clk_prepare_enable(pc->clk_main);
if (ret < 0)
goto disable_clk_top;
ret = clk_prepare_enable(pc->clk_pwms[hwpwm].clk);
if (ret < 0)
goto disable_clk_main;
if (!pc->clk_pwms[hwpwm].rate) {
pc->clk_pwms[hwpwm].rate = clk_get_rate(pc->clk_pwms[hwpwm].clk);
/*
* With the clk running with not more than 1 GHz the
* calculations in .apply() won't overflow.
*/
if (!pc->clk_pwms[hwpwm].rate ||
pc->clk_pwms[hwpwm].rate > 1000000000) {
ret = -EINVAL;
goto disable_clk_hwpwm;
}
}
return 0;
disable_clk_hwpwm:
clk_disable_unprepare(pc->clk_pwms[hwpwm].clk);
disable_clk_main:
clk_disable_unprepare(pc->clk_main);
disable_clk_top:
clk_disable_unprepare(pc->clk_top);
return ret;
}
static void pwm_mediatek_clk_disable(struct pwm_mediatek_chip *pc,
unsigned int hwpwm)
{
clk_disable_unprepare(pc->clk_pwms[hwpwm].clk);
clk_disable_unprepare(pc->clk_main);
clk_disable_unprepare(pc->clk_top);
}
static inline void pwm_mediatek_writel(struct pwm_mediatek_chip *chip,
unsigned int num, unsigned int offset,
u32 value)
{
writel(value, chip->regs + chip->soc->chanreg_base +
num * chip->soc->chanreg_width + offset);
}
static inline u32 pwm_mediatek_readl(struct pwm_mediatek_chip *chip,
unsigned int num, unsigned int offset)
{
return readl(chip->regs + chip->soc->chanreg_base +
num * chip->soc->chanreg_width + offset);
}
static void pwm_mediatek_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct pwm_mediatek_chip *pc = to_pwm_mediatek_chip(chip);
u32 value;
value = readl(pc->regs);
value |= BIT(pwm->hwpwm);
writel(value, pc->regs);
}
static void pwm_mediatek_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct pwm_mediatek_chip *pc = to_pwm_mediatek_chip(chip);
u32 value;
value = readl(pc->regs);
value &= ~BIT(pwm->hwpwm);
writel(value, pc->regs);
}
static int pwm_mediatek_config(struct pwm_chip *chip, struct pwm_device *pwm,
u64 duty_ns, u64 period_ns)
{
struct pwm_mediatek_chip *pc = to_pwm_mediatek_chip(chip);
u32 clkdiv, enable;
u32 reg_width = PWMDWIDTH, reg_thres = PWMTHRES;
u64 cnt_period, cnt_duty;
unsigned long clk_rate;
int ret;
ret = pwm_mediatek_clk_enable(pc, pwm->hwpwm);
if (ret < 0)
return ret;
clk_rate = pc->clk_pwms[pwm->hwpwm].rate;
/* Make sure we use the bus clock and not the 26MHz clock */
if (pc->soc->pwm_ck_26m_sel_reg)
writel(0, pc->regs + pc->soc->pwm_ck_26m_sel_reg);
cnt_period = mul_u64_u64_div_u64(period_ns, clk_rate, NSEC_PER_SEC);
if (cnt_period == 0) {
ret = -ERANGE;
goto out;
}
if (cnt_period > FIELD_MAX(PWMDWIDTH_PERIOD) + 1) {
if (cnt_period >= ((FIELD_MAX(PWMDWIDTH_PERIOD) + 1) << FIELD_MAX(PWMCON_CLKDIV))) {
clkdiv = FIELD_MAX(PWMCON_CLKDIV);
cnt_period = FIELD_MAX(PWMDWIDTH_PERIOD) + 1;
} else {
clkdiv = ilog2(cnt_period) - ilog2(FIELD_MAX(PWMDWIDTH_PERIOD));
cnt_period >>= clkdiv;
}
} else {
clkdiv = 0;
}
cnt_duty = mul_u64_u64_div_u64(duty_ns, clk_rate, NSEC_PER_SEC) >> clkdiv;
if (cnt_duty > cnt_period)
cnt_duty = cnt_period;
if (cnt_duty) {
cnt_duty -= 1;
enable = BIT(pwm->hwpwm);
} else {
enable = 0;
}
cnt_period -= 1;
dev_dbg(&chip->dev, "pwm#%u: %lld/%lld @%lu -> CON: %x, PERIOD: %llx, DUTY: %llx\n",
pwm->hwpwm, duty_ns, period_ns, clk_rate, clkdiv, cnt_period, cnt_duty);
if (pc->soc->pwm45_fixup && pwm->hwpwm > 2) {
/*
* PWM[4,5] has distinct offset for PWMDWIDTH and PWMTHRES
* from the other PWMs on MT7623.
*/
reg_width = PWM45DWIDTH_FIXUP;
reg_thres = PWM45THRES_FIXUP;
}
pwm_mediatek_writel(pc, pwm->hwpwm, PWMCON, BIT(15) | clkdiv);
pwm_mediatek_writel(pc, pwm->hwpwm, reg_width, cnt_period);
if (enable) {
pwm_mediatek_writel(pc, pwm->hwpwm, reg_thres, cnt_duty);
pwm_mediatek_enable(chip, pwm);
} else {
pwm_mediatek_disable(chip, pwm);
}
out:
pwm_mediatek_clk_disable(pc, pwm->hwpwm);
return ret;
}
static int pwm_mediatek_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pwm_mediatek_chip *pc = to_pwm_mediatek_chip(chip);
int err;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
if (!state->enabled) {
if (pwm->state.enabled) {
pwm_mediatek_disable(chip, pwm);
pwm_mediatek_clk_disable(pc, pwm->hwpwm);
}
return 0;
}
err = pwm_mediatek_config(chip, pwm, state->duty_cycle, state->period);
if (err)
return err;
if (!pwm->state.enabled)
err = pwm_mediatek_clk_enable(pc, pwm->hwpwm);
return err;
}
static int pwm_mediatek_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct pwm_mediatek_chip *pc = to_pwm_mediatek_chip(chip);
int ret;
u32 enable;
u32 reg_width = PWMDWIDTH, reg_thres = PWMTHRES;
if (pc->soc->pwm45_fixup && pwm->hwpwm > 2) {
/*
* PWM[4,5] has distinct offset for PWMDWIDTH and PWMTHRES
* from the other PWMs on MT7623.
*/
reg_width = PWM45DWIDTH_FIXUP;
reg_thres = PWM45THRES_FIXUP;
}
ret = pwm_mediatek_clk_enable(pc, pwm->hwpwm);
if (ret < 0)
return ret;
enable = readl(pc->regs);
if (enable & BIT(pwm->hwpwm)) {
u32 clkdiv, cnt_period, cnt_duty;
unsigned long clk_rate;
clk_rate = pc->clk_pwms[pwm->hwpwm].rate;
state->enabled = true;
state->polarity = PWM_POLARITY_NORMAL;
clkdiv = FIELD_GET(PWMCON_CLKDIV,
pwm_mediatek_readl(pc, pwm->hwpwm, PWMCON));
cnt_period = FIELD_GET(PWMDWIDTH_PERIOD,
pwm_mediatek_readl(pc, pwm->hwpwm, reg_width));
cnt_duty = FIELD_GET(PWMTHRES_DUTY,
pwm_mediatek_readl(pc, pwm->hwpwm, reg_thres));
/*
* cnt_period is a 13 bit value, NSEC_PER_SEC is 30 bits wide
* and clkdiv is less than 8, so the multiplication doesn't
* overflow an u64.
*/
state->period =
DIV_ROUND_UP_ULL((u64)cnt_period * NSEC_PER_SEC << clkdiv, clk_rate);
state->duty_cycle =
DIV_ROUND_UP_ULL((u64)cnt_duty * NSEC_PER_SEC << clkdiv, clk_rate);
} else {
state->enabled = false;
}
pwm_mediatek_clk_disable(pc, pwm->hwpwm);
return ret;
}
static const struct pwm_ops pwm_mediatek_ops = {
.apply = pwm_mediatek_apply,
.get_state = pwm_mediatek_get_state,
};
static int pwm_mediatek_init_used_clks(struct pwm_mediatek_chip *pc)
{
const struct pwm_mediatek_of_data *soc = pc->soc;
unsigned int hwpwm;
u32 enabled, handled = 0;
int ret;
ret = clk_prepare_enable(pc->clk_top);
if (ret)
return ret;
ret = clk_prepare_enable(pc->clk_main);
if (ret)
goto err_enable_main;
enabled = readl(pc->regs) & GENMASK(soc->num_pwms - 1, 0);
while (enabled & ~handled) {
hwpwm = ilog2(enabled & ~handled);
ret = pwm_mediatek_clk_enable(pc, hwpwm);
if (ret) {
while (handled) {
hwpwm = ilog2(handled);
pwm_mediatek_clk_disable(pc, hwpwm);
handled &= ~BIT(hwpwm);
}
break;
}
handled |= BIT(hwpwm);
}
clk_disable_unprepare(pc->clk_main);
err_enable_main:
clk_disable_unprepare(pc->clk_top);
return ret;
}
static int pwm_mediatek_probe(struct platform_device *pdev)
{
struct pwm_chip *chip;
struct pwm_mediatek_chip *pc;
const struct pwm_mediatek_of_data *soc;
unsigned int i;
int ret;
soc = of_device_get_match_data(&pdev->dev);
chip = devm_pwmchip_alloc(&pdev->dev, soc->num_pwms,
sizeof(*pc) + soc->num_pwms * sizeof(*pc->clk_pwms));
if (IS_ERR(chip))
return PTR_ERR(chip);
pc = to_pwm_mediatek_chip(chip);
pc->soc = soc;
pc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(pc->regs))
return PTR_ERR(pc->regs);
pc->clk_top = devm_clk_get(&pdev->dev, "top");
if (IS_ERR(pc->clk_top))
return dev_err_probe(&pdev->dev, PTR_ERR(pc->clk_top),
"Failed to get top clock\n");
pc->clk_main = devm_clk_get(&pdev->dev, "main");
if (IS_ERR(pc->clk_main))
return dev_err_probe(&pdev->dev, PTR_ERR(pc->clk_main),
"Failed to get main clock\n");
for (i = 0; i < soc->num_pwms; i++) {
char name[8];
snprintf(name, sizeof(name), "pwm%d", i + 1);
pc->clk_pwms[i].clk = devm_clk_get(&pdev->dev, name);
if (IS_ERR(pc->clk_pwms[i].clk))
return dev_err_probe(&pdev->dev, PTR_ERR(pc->clk_pwms[i].clk),
"Failed to get %s clock\n", name);
ret = devm_clk_rate_exclusive_get(&pdev->dev, pc->clk_pwms[i].clk);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"Failed to lock clock rate for %s\n", name);
}
ret = pwm_mediatek_init_used_clks(pc);
if (ret)
return dev_err_probe(&pdev->dev, ret, "Failed to initialize used clocks\n");
chip->ops = &pwm_mediatek_ops;
ret = devm_pwmchip_add(&pdev->dev, chip);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "pwmchip_add() failed\n");
return 0;
}
static const struct pwm_mediatek_of_data mt2712_pwm_data = {
.num_pwms = 8,
.pwm45_fixup = false,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt6795_pwm_data = {
.num_pwms = 7,
.pwm45_fixup = false,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt7622_pwm_data = {
.num_pwms = 6,
.pwm45_fixup = false,
.pwm_ck_26m_sel_reg = PWM_CK_26M_SEL,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt7623_pwm_data = {
.num_pwms = 5,
.pwm45_fixup = true,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt7628_pwm_data = {
.num_pwms = 4,
.pwm45_fixup = true,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt7629_pwm_data = {
.num_pwms = 1,
.pwm45_fixup = false,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt7981_pwm_data = {
.num_pwms = 3,
.pwm45_fixup = false,
.pwm_ck_26m_sel_reg = PWM_CK_26M_SEL,
.chanreg_base = 0x80,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt7986_pwm_data = {
.num_pwms = 2,
.pwm45_fixup = false,
.pwm_ck_26m_sel_reg = PWM_CK_26M_SEL,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt7988_pwm_data = {
.num_pwms = 8,
.pwm45_fixup = false,
.chanreg_base = 0x80,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt8183_pwm_data = {
.num_pwms = 4,
.pwm45_fixup = false,
.pwm_ck_26m_sel_reg = PWM_CK_26M_SEL,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt8365_pwm_data = {
.num_pwms = 3,
.pwm45_fixup = false,
.pwm_ck_26m_sel_reg = PWM_CK_26M_SEL,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt8516_pwm_data = {
.num_pwms = 5,
.pwm45_fixup = false,
.pwm_ck_26m_sel_reg = PWM_CK_26M_SEL,
.chanreg_base = 0x10,
.chanreg_width = 0x40,
};
static const struct pwm_mediatek_of_data mt6991_pwm_data = {
.num_pwms = 4,
.pwm45_fixup = false,
.pwm_ck_26m_sel_reg = PWM_CK_26M_SEL_V3,
.chanreg_base = 0x100,
.chanreg_width = 0x100,
};
static const struct of_device_id pwm_mediatek_of_match[] = {
{ .compatible = "mediatek,mt2712-pwm", .data = &mt2712_pwm_data },
{ .compatible = "mediatek,mt6795-pwm", .data = &mt6795_pwm_data },
{ .compatible = "mediatek,mt6991-pwm", .data = &mt6991_pwm_data },
{ .compatible = "mediatek,mt7622-pwm", .data = &mt7622_pwm_data },
{ .compatible = "mediatek,mt7623-pwm", .data = &mt7623_pwm_data },
{ .compatible = "mediatek,mt7628-pwm", .data = &mt7628_pwm_data },
{ .compatible = "mediatek,mt7629-pwm", .data = &mt7629_pwm_data },
{ .compatible = "mediatek,mt7981-pwm", .data = &mt7981_pwm_data },
{ .compatible = "mediatek,mt7986-pwm", .data = &mt7986_pwm_data },
{ .compatible = "mediatek,mt7988-pwm", .data = &mt7988_pwm_data },
{ .compatible = "mediatek,mt8183-pwm", .data = &mt8183_pwm_data },
{ .compatible = "mediatek,mt8365-pwm", .data = &mt8365_pwm_data },
{ .compatible = "mediatek,mt8516-pwm", .data = &mt8516_pwm_data },
{ },
};
MODULE_DEVICE_TABLE(of, pwm_mediatek_of_match);
static struct platform_driver pwm_mediatek_driver = {
.driver = {
.name = "pwm-mediatek",
.of_match_table = pwm_mediatek_of_match,
},
.probe = pwm_mediatek_probe,
};
module_platform_driver(pwm_mediatek_driver);
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("MediaTek general purpose Pulse Width Modulator driver");
MODULE_LICENSE("GPL v2");