mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 46e75c56df
			
		
	
	
		46e75c56df
		
	
	
	
	
		
			
			The following code paths may result in high latency or even task hangs: 1. fastcommit io is throttled by wbt. 2. jbd2_fc_wait_bufs() might wait for a long time while JBD2_FAST_COMMIT_ONGOING is set in journal->flags, and then jbd2_journal_commit_transaction() waits for the JBD2_FAST_COMMIT_ONGOING bit for a long time while holding the write lock of j_state_lock. 3. start_this_handle() waits for read lock of j_state_lock which results in high latency or task hang. Given the fact that ext4_fc_commit() already modifies the current process' IO priority to match that of the jbd2 thread, it should be reasonable to match jbd2's IO submission flags as well. Suggested-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com> Signed-off-by: Julian Sun <sunjunchao@bytedance.com> Reviewed-by: Zhang Yi <yi.zhang@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Message-ID: <20250827121812.1477634-1-sunjunchao@bytedance.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
		
			
				
	
	
		
			2343 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2343 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| /*
 | |
|  * fs/ext4/fast_commit.c
 | |
|  *
 | |
|  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
 | |
|  *
 | |
|  * Ext4 fast commits routines.
 | |
|  */
 | |
| #include "ext4.h"
 | |
| #include "ext4_jbd2.h"
 | |
| #include "ext4_extents.h"
 | |
| #include "mballoc.h"
 | |
| 
 | |
| #include <linux/lockdep.h>
 | |
| /*
 | |
|  * Ext4 Fast Commits
 | |
|  * -----------------
 | |
|  *
 | |
|  * Ext4 fast commits implement fine grained journalling for Ext4.
 | |
|  *
 | |
|  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
 | |
|  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
 | |
|  * TLV during the recovery phase. For the scenarios for which we currently
 | |
|  * don't have replay code, fast commit falls back to full commits.
 | |
|  * Fast commits record delta in one of the following three categories.
 | |
|  *
 | |
|  * (A) Directory entry updates:
 | |
|  *
 | |
|  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
 | |
|  * - EXT4_FC_TAG_LINK		- records directory entry link
 | |
|  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
 | |
|  *
 | |
|  * (B) File specific data range updates:
 | |
|  *
 | |
|  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
 | |
|  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
 | |
|  *
 | |
|  * (C) Inode metadata (mtime / ctime etc):
 | |
|  *
 | |
|  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
 | |
|  *				  during recovery. Note that iblocks field is
 | |
|  *				  not replayed and instead derived during
 | |
|  *				  replay.
 | |
|  * Commit Operation
 | |
|  * ----------------
 | |
|  * With fast commits, we maintain all the directory entry operations in the
 | |
|  * order in which they are issued in an in-memory queue. This queue is flushed
 | |
|  * to disk during the commit operation. We also maintain a list of inodes
 | |
|  * that need to be committed during a fast commit in another in memory queue of
 | |
|  * inodes. During the commit operation, we commit in the following order:
 | |
|  *
 | |
|  * [1] Prepare all the inodes to write out their data by setting
 | |
|  *     "EXT4_STATE_FC_FLUSHING_DATA". This ensures that inode cannot be
 | |
|  *     deleted while it is being flushed.
 | |
|  * [2] Flush data buffers to disk and clear "EXT4_STATE_FC_FLUSHING_DATA"
 | |
|  *     state.
 | |
|  * [3] Lock the journal by calling jbd2_journal_lock_updates. This ensures that
 | |
|  *     all the exsiting handles finish and no new handles can start.
 | |
|  * [4] Mark all the fast commit eligible inodes as undergoing fast commit
 | |
|  *     by setting "EXT4_STATE_FC_COMMITTING" state.
 | |
|  * [5] Unlock the journal by calling jbd2_journal_unlock_updates. This allows
 | |
|  *     starting of new handles. If new handles try to start an update on
 | |
|  *     any of the inodes that are being committed, ext4_fc_track_inode()
 | |
|  *     will block until those inodes have finished the fast commit.
 | |
|  * [6] Commit all the directory entry updates in the fast commit space.
 | |
|  * [7] Commit all the changed inodes in the fast commit space and clear
 | |
|  *     "EXT4_STATE_FC_COMMITTING" for these inodes.
 | |
|  * [8] Write tail tag (this tag ensures the atomicity, please read the following
 | |
|  *     section for more details).
 | |
|  *
 | |
|  * All the inode updates must be enclosed within jbd2_jounrnal_start()
 | |
|  * and jbd2_journal_stop() similar to JBD2 journaling.
 | |
|  *
 | |
|  * Fast Commit Ineligibility
 | |
|  * -------------------------
 | |
|  *
 | |
|  * Not all operations are supported by fast commits today (e.g extended
 | |
|  * attributes). Fast commit ineligibility is marked by calling
 | |
|  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
 | |
|  * to full commit.
 | |
|  *
 | |
|  * Atomicity of commits
 | |
|  * --------------------
 | |
|  * In order to guarantee atomicity during the commit operation, fast commit
 | |
|  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
 | |
|  * tag contains CRC of the contents and TID of the transaction after which
 | |
|  * this fast commit should be applied. Recovery code replays fast commit
 | |
|  * logs only if there's at least 1 valid tail present. For every fast commit
 | |
|  * operation, there is 1 tail. This means, we may end up with multiple tails
 | |
|  * in the fast commit space. Here's an example:
 | |
|  *
 | |
|  * - Create a new file A and remove existing file B
 | |
|  * - fsync()
 | |
|  * - Append contents to file A
 | |
|  * - Truncate file A
 | |
|  * - fsync()
 | |
|  *
 | |
|  * The fast commit space at the end of above operations would look like this:
 | |
|  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
 | |
|  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
 | |
|  *
 | |
|  * Replay code should thus check for all the valid tails in the FC area.
 | |
|  *
 | |
|  * Fast Commit Replay Idempotence
 | |
|  * ------------------------------
 | |
|  *
 | |
|  * Fast commits tags are idempotent in nature provided the recovery code follows
 | |
|  * certain rules. The guiding principle that the commit path follows while
 | |
|  * committing is that it stores the result of a particular operation instead of
 | |
|  * storing the procedure.
 | |
|  *
 | |
|  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
 | |
|  * was associated with inode 10. During fast commit, instead of storing this
 | |
|  * operation as a procedure "rename a to b", we store the resulting file system
 | |
|  * state as a "series" of outcomes:
 | |
|  *
 | |
|  * - Link dirent b to inode 10
 | |
|  * - Unlink dirent a
 | |
|  * - Inode <10> with valid refcount
 | |
|  *
 | |
|  * Now when recovery code runs, it needs "enforce" this state on the file
 | |
|  * system. This is what guarantees idempotence of fast commit replay.
 | |
|  *
 | |
|  * Let's take an example of a procedure that is not idempotent and see how fast
 | |
|  * commits make it idempotent. Consider following sequence of operations:
 | |
|  *
 | |
|  *     rm A;    mv B A;    read A
 | |
|  *  (x)     (y)        (z)
 | |
|  *
 | |
|  * (x), (y) and (z) are the points at which we can crash. If we store this
 | |
|  * sequence of operations as is then the replay is not idempotent. Let's say
 | |
|  * while in replay, we crash at (z). During the second replay, file A (which was
 | |
|  * actually created as a result of "mv B A" operation) would get deleted. Thus,
 | |
|  * file named A would be absent when we try to read A. So, this sequence of
 | |
|  * operations is not idempotent. However, as mentioned above, instead of storing
 | |
|  * the procedure fast commits store the outcome of each procedure. Thus the fast
 | |
|  * commit log for above procedure would be as follows:
 | |
|  *
 | |
|  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
 | |
|  * inode 11 before the replay)
 | |
|  *
 | |
|  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
 | |
|  * (w)          (x)                    (y)          (z)
 | |
|  *
 | |
|  * If we crash at (z), we will have file A linked to inode 11. During the second
 | |
|  * replay, we will remove file A (inode 11). But we will create it back and make
 | |
|  * it point to inode 11. We won't find B, so we'll just skip that step. At this
 | |
|  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
 | |
|  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
 | |
|  * similarly. Thus, by converting a non-idempotent procedure into a series of
 | |
|  * idempotent outcomes, fast commits ensured idempotence during the replay.
 | |
|  *
 | |
|  * Locking
 | |
|  * -------
 | |
|  * sbi->s_fc_lock protects the fast commit inodes queue and the fast commit
 | |
|  * dentry queue. ei->i_fc_lock protects the fast commit related info in a given
 | |
|  * inode. Most of the code avoids acquiring both the locks, but if one must do
 | |
|  * that then sbi->s_fc_lock must be acquired before ei->i_fc_lock.
 | |
|  *
 | |
|  * TODOs
 | |
|  * -----
 | |
|  *
 | |
|  * 0) Fast commit replay path hardening: Fast commit replay code should use
 | |
|  *    journal handles to make sure all the updates it does during the replay
 | |
|  *    path are atomic. With that if we crash during fast commit replay, after
 | |
|  *    trying to do recovery again, we will find a file system where fast commit
 | |
|  *    area is invalid (because new full commit would be found). In order to deal
 | |
|  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
 | |
|  *    superblock state is persisted before starting the replay, so that after
 | |
|  *    the crash, fast commit recovery code can look at that flag and perform
 | |
|  *    fast commit recovery even if that area is invalidated by later full
 | |
|  *    commits.
 | |
|  *
 | |
|  * 1) Handle more ineligible cases.
 | |
|  *
 | |
|  * 2) Change ext4_fc_commit() to lookup logical to physical mapping using extent
 | |
|  *    status tree. This would get rid of the need to call ext4_fc_track_inode()
 | |
|  *    before acquiring i_data_sem. To do that we would need to ensure that
 | |
|  *    modified extents from the extent status tree are not evicted from memory.
 | |
|  */
 | |
| 
 | |
| #include <trace/events/ext4.h>
 | |
| static struct kmem_cache *ext4_fc_dentry_cachep;
 | |
| 
 | |
| static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
 | |
| {
 | |
| 	BUFFER_TRACE(bh, "");
 | |
| 	if (uptodate) {
 | |
| 		ext4_debug("%s: Block %lld up-to-date",
 | |
| 			   __func__, bh->b_blocknr);
 | |
| 		set_buffer_uptodate(bh);
 | |
| 	} else {
 | |
| 		ext4_debug("%s: Block %lld not up-to-date",
 | |
| 			   __func__, bh->b_blocknr);
 | |
| 		clear_buffer_uptodate(bh);
 | |
| 	}
 | |
| 
 | |
| 	unlock_buffer(bh);
 | |
| }
 | |
| 
 | |
| static inline void ext4_fc_reset_inode(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 
 | |
| 	ei->i_fc_lblk_start = 0;
 | |
| 	ei->i_fc_lblk_len = 0;
 | |
| }
 | |
| 
 | |
| void ext4_fc_init_inode(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 
 | |
| 	ext4_fc_reset_inode(inode);
 | |
| 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
 | |
| 	INIT_LIST_HEAD(&ei->i_fc_list);
 | |
| 	INIT_LIST_HEAD(&ei->i_fc_dilist);
 | |
| 	init_waitqueue_head(&ei->i_fc_wait);
 | |
| }
 | |
| 
 | |
| static bool ext4_fc_disabled(struct super_block *sb)
 | |
| {
 | |
| 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
 | |
| 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove inode from fast commit list. If the inode is being committed
 | |
|  * we wait until inode commit is done.
 | |
|  */
 | |
| void ext4_fc_del(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	struct ext4_fc_dentry_update *fc_dentry;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	if (ext4_fc_disabled(inode->i_sb))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
 | |
| 		mutex_unlock(&sbi->s_fc_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since ext4_fc_del is called from ext4_evict_inode while having a
 | |
| 	 * handle open, there is no need for us to wait here even if a fast
 | |
| 	 * commit is going on. That is because, if this inode is being
 | |
| 	 * committed, ext4_mark_inode_dirty would have waited for inode commit
 | |
| 	 * operation to finish before we come here. So, by the time we come
 | |
| 	 * here, inode's EXT4_STATE_FC_COMMITTING would have been cleared. So,
 | |
| 	 * we shouldn't see EXT4_STATE_FC_COMMITTING to be set on this inode
 | |
| 	 * here.
 | |
| 	 *
 | |
| 	 * We may come here without any handles open in the "no_delete" case of
 | |
| 	 * ext4_evict_inode as well. However, if that happens, we first mark the
 | |
| 	 * file system as fast commit ineligible anyway. So, even in that case,
 | |
| 	 * it is okay to remove the inode from the fc list.
 | |
| 	 */
 | |
| 	WARN_ON(ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)
 | |
| 		&& !ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE));
 | |
| 	while (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) {
 | |
| #if (BITS_PER_LONG < 64)
 | |
| 		DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
 | |
| 				EXT4_STATE_FC_FLUSHING_DATA);
 | |
| 		wq = bit_waitqueue(&ei->i_state_flags,
 | |
| 				   EXT4_STATE_FC_FLUSHING_DATA);
 | |
| #else
 | |
| 		DEFINE_WAIT_BIT(wait, &ei->i_flags,
 | |
| 				EXT4_STATE_FC_FLUSHING_DATA);
 | |
| 		wq = bit_waitqueue(&ei->i_flags,
 | |
| 				   EXT4_STATE_FC_FLUSHING_DATA);
 | |
| #endif
 | |
| 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 | |
| 		if (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) {
 | |
| 			mutex_unlock(&sbi->s_fc_lock);
 | |
| 			schedule();
 | |
| 			mutex_lock(&sbi->s_fc_lock);
 | |
| 		}
 | |
| 		finish_wait(wq, &wait.wq_entry);
 | |
| 	}
 | |
| 	list_del_init(&ei->i_fc_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since this inode is getting removed, let's also remove all FC
 | |
| 	 * dentry create references, since it is not needed to log it anyways.
 | |
| 	 */
 | |
| 	if (list_empty(&ei->i_fc_dilist)) {
 | |
| 		mutex_unlock(&sbi->s_fc_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
 | |
| 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
 | |
| 	list_del_init(&fc_dentry->fcd_list);
 | |
| 	list_del_init(&fc_dentry->fcd_dilist);
 | |
| 
 | |
| 	WARN_ON(!list_empty(&ei->i_fc_dilist));
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 
 | |
| 	release_dentry_name_snapshot(&fc_dentry->fcd_name);
 | |
| 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark file system as fast commit ineligible, and record latest
 | |
|  * ineligible transaction tid. This means until the recorded
 | |
|  * transaction, commit operation would result in a full jbd2 commit.
 | |
|  */
 | |
| void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	tid_t tid;
 | |
| 	bool has_transaction = true;
 | |
| 	bool is_ineligible;
 | |
| 
 | |
| 	if (ext4_fc_disabled(sb))
 | |
| 		return;
 | |
| 
 | |
| 	if (handle && !IS_ERR(handle))
 | |
| 		tid = handle->h_transaction->t_tid;
 | |
| 	else {
 | |
| 		read_lock(&sbi->s_journal->j_state_lock);
 | |
| 		if (sbi->s_journal->j_running_transaction)
 | |
| 			tid = sbi->s_journal->j_running_transaction->t_tid;
 | |
| 		else
 | |
| 			has_transaction = false;
 | |
| 		read_unlock(&sbi->s_journal->j_state_lock);
 | |
| 	}
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
 | |
| 	if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
 | |
| 		sbi->s_fc_ineligible_tid = tid;
 | |
| 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
 | |
| 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic fast commit tracking function. If this is the first time this we are
 | |
|  * called after a full commit, we initialize fast commit fields and then call
 | |
|  * __fc_track_fn() with update = 0. If we have already been called after a full
 | |
|  * commit, we pass update = 1. Based on that, the track function can determine
 | |
|  * if it needs to track a field for the first time or if it needs to just
 | |
|  * update the previously tracked value.
 | |
|  *
 | |
|  * If enqueue is set, this function enqueues the inode in fast commit list.
 | |
|  */
 | |
| static int ext4_fc_track_template(
 | |
| 	handle_t *handle, struct inode *inode,
 | |
| 	int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
 | |
| 	void *args, int enqueue)
 | |
| {
 | |
| 	bool update = false;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 	tid_t tid = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	tid = handle->h_transaction->t_tid;
 | |
| 	spin_lock(&ei->i_fc_lock);
 | |
| 	if (tid == ei->i_sync_tid) {
 | |
| 		update = true;
 | |
| 	} else {
 | |
| 		ext4_fc_reset_inode(inode);
 | |
| 		ei->i_sync_tid = tid;
 | |
| 	}
 | |
| 	ret = __fc_track_fn(handle, inode, args, update);
 | |
| 	spin_unlock(&ei->i_fc_lock);
 | |
| 	if (!enqueue)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	if (list_empty(&EXT4_I(inode)->i_fc_list))
 | |
| 		list_add_tail(&EXT4_I(inode)->i_fc_list,
 | |
| 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
 | |
| 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
 | |
| 				&sbi->s_fc_q[FC_Q_STAGING] :
 | |
| 				&sbi->s_fc_q[FC_Q_MAIN]);
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct __track_dentry_update_args {
 | |
| 	struct dentry *dentry;
 | |
| 	int op;
 | |
| };
 | |
| 
 | |
| /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
 | |
| static int __track_dentry_update(handle_t *handle, struct inode *inode,
 | |
| 				 void *arg, bool update)
 | |
| {
 | |
| 	struct ext4_fc_dentry_update *node;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct __track_dentry_update_args *dentry_update =
 | |
| 		(struct __track_dentry_update_args *)arg;
 | |
| 	struct dentry *dentry = dentry_update->dentry;
 | |
| 	struct inode *dir = dentry->d_parent->d_inode;
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	spin_unlock(&ei->i_fc_lock);
 | |
| 
 | |
| 	if (IS_ENCRYPTED(dir)) {
 | |
| 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
 | |
| 					handle);
 | |
| 		spin_lock(&ei->i_fc_lock);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
 | |
| 	if (!node) {
 | |
| 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
 | |
| 		spin_lock(&ei->i_fc_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	node->fcd_op = dentry_update->op;
 | |
| 	node->fcd_parent = dir->i_ino;
 | |
| 	node->fcd_ino = inode->i_ino;
 | |
| 	take_dentry_name_snapshot(&node->fcd_name, dentry);
 | |
| 	INIT_LIST_HEAD(&node->fcd_dilist);
 | |
| 	INIT_LIST_HEAD(&node->fcd_list);
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
 | |
| 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
 | |
| 		list_add_tail(&node->fcd_list,
 | |
| 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
 | |
| 	else
 | |
| 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
 | |
| 
 | |
| 	/*
 | |
| 	 * This helps us keep a track of all fc_dentry updates which is part of
 | |
| 	 * this ext4 inode. So in case the inode is getting unlinked, before
 | |
| 	 * even we get a chance to fsync, we could remove all fc_dentry
 | |
| 	 * references while evicting the inode in ext4_fc_del().
 | |
| 	 * Also with this, we don't need to loop over all the inodes in
 | |
| 	 * sbi->s_fc_q to get the corresponding inode in
 | |
| 	 * ext4_fc_commit_dentry_updates().
 | |
| 	 */
 | |
| 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
 | |
| 		WARN_ON(!list_empty(&ei->i_fc_dilist));
 | |
| 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
 | |
| 	}
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 	spin_lock(&ei->i_fc_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __ext4_fc_track_unlink(handle_t *handle,
 | |
| 		struct inode *inode, struct dentry *dentry)
 | |
| {
 | |
| 	struct __track_dentry_update_args args;
 | |
| 	int ret;
 | |
| 
 | |
| 	args.dentry = dentry;
 | |
| 	args.op = EXT4_FC_TAG_UNLINK;
 | |
| 
 | |
| 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
 | |
| 					(void *)&args, 0);
 | |
| 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
 | |
| }
 | |
| 
 | |
| void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
 | |
| {
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 
 | |
| 	if (ext4_fc_disabled(inode->i_sb))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 | |
| 		return;
 | |
| 
 | |
| 	__ext4_fc_track_unlink(handle, inode, dentry);
 | |
| }
 | |
| 
 | |
| void __ext4_fc_track_link(handle_t *handle,
 | |
| 	struct inode *inode, struct dentry *dentry)
 | |
| {
 | |
| 	struct __track_dentry_update_args args;
 | |
| 	int ret;
 | |
| 
 | |
| 	args.dentry = dentry;
 | |
| 	args.op = EXT4_FC_TAG_LINK;
 | |
| 
 | |
| 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
 | |
| 					(void *)&args, 0);
 | |
| 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
 | |
| }
 | |
| 
 | |
| void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
 | |
| {
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 
 | |
| 	if (ext4_fc_disabled(inode->i_sb))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 | |
| 		return;
 | |
| 
 | |
| 	__ext4_fc_track_link(handle, inode, dentry);
 | |
| }
 | |
| 
 | |
| void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
 | |
| 			  struct dentry *dentry)
 | |
| {
 | |
| 	struct __track_dentry_update_args args;
 | |
| 	int ret;
 | |
| 
 | |
| 	args.dentry = dentry;
 | |
| 	args.op = EXT4_FC_TAG_CREAT;
 | |
| 
 | |
| 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
 | |
| 					(void *)&args, 0);
 | |
| 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
 | |
| }
 | |
| 
 | |
| void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
 | |
| {
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 
 | |
| 	if (ext4_fc_disabled(inode->i_sb))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 | |
| 		return;
 | |
| 
 | |
| 	__ext4_fc_track_create(handle, inode, dentry);
 | |
| }
 | |
| 
 | |
| /* __track_fn for inode tracking */
 | |
| static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
 | |
| 			 bool update)
 | |
| {
 | |
| 	if (update)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	EXT4_I(inode)->i_fc_lblk_len = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	wait_queue_head_t *wq;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (S_ISDIR(inode->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_fc_disabled(inode->i_sb))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_should_journal_data(inode)) {
 | |
| 		ext4_fc_mark_ineligible(inode->i_sb,
 | |
| 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we come here, we may sleep while waiting for the inode to
 | |
| 	 * commit. We shouldn't be holding i_data_sem when we go to sleep since
 | |
| 	 * the commit path needs to grab the lock while committing the inode.
 | |
| 	 */
 | |
| 	lockdep_assert_not_held(&ei->i_data_sem);
 | |
| 
 | |
| 	while (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
 | |
| #if (BITS_PER_LONG < 64)
 | |
| 		DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
 | |
| 				EXT4_STATE_FC_COMMITTING);
 | |
| 		wq = bit_waitqueue(&ei->i_state_flags,
 | |
| 				   EXT4_STATE_FC_COMMITTING);
 | |
| #else
 | |
| 		DEFINE_WAIT_BIT(wait, &ei->i_flags,
 | |
| 				EXT4_STATE_FC_COMMITTING);
 | |
| 		wq = bit_waitqueue(&ei->i_flags,
 | |
| 				   EXT4_STATE_FC_COMMITTING);
 | |
| #endif
 | |
| 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 | |
| 		if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
 | |
| 			schedule();
 | |
| 		finish_wait(wq, &wait.wq_entry);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * From this point on, this inode will not be committed either
 | |
| 	 * by fast or full commit as long as the handle is open.
 | |
| 	 */
 | |
| 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
 | |
| 	trace_ext4_fc_track_inode(handle, inode, ret);
 | |
| }
 | |
| 
 | |
| struct __track_range_args {
 | |
| 	ext4_lblk_t start, end;
 | |
| };
 | |
| 
 | |
| /* __track_fn for tracking data updates */
 | |
| static int __track_range(handle_t *handle, struct inode *inode, void *arg,
 | |
| 			 bool update)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	ext4_lblk_t oldstart;
 | |
| 	struct __track_range_args *__arg =
 | |
| 		(struct __track_range_args *)arg;
 | |
| 
 | |
| 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
 | |
| 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
 | |
| 		return -ECANCELED;
 | |
| 	}
 | |
| 
 | |
| 	oldstart = ei->i_fc_lblk_start;
 | |
| 
 | |
| 	if (update && ei->i_fc_lblk_len > 0) {
 | |
| 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
 | |
| 		ei->i_fc_lblk_len =
 | |
| 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
 | |
| 				ei->i_fc_lblk_start + 1;
 | |
| 	} else {
 | |
| 		ei->i_fc_lblk_start = __arg->start;
 | |
| 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
 | |
| 			 ext4_lblk_t end)
 | |
| {
 | |
| 	struct __track_range_args args;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (S_ISDIR(inode->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_fc_disabled(inode->i_sb))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 | |
| 		return;
 | |
| 
 | |
| 	if (ext4_has_inline_data(inode)) {
 | |
| 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
 | |
| 					handle);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	args.start = start;
 | |
| 	args.end = end;
 | |
| 
 | |
| 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
 | |
| 
 | |
| 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
 | |
| }
 | |
| 
 | |
| static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
 | |
| {
 | |
| 	blk_opf_t write_flags = JBD2_JOURNAL_REQ_FLAGS;
 | |
| 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
 | |
| 
 | |
| 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
 | |
| 	if (test_opt(sb, BARRIER) && is_tail)
 | |
| 		write_flags |= REQ_FUA | REQ_PREFLUSH;
 | |
| 	lock_buffer(bh);
 | |
| 	set_buffer_dirty(bh);
 | |
| 	set_buffer_uptodate(bh);
 | |
| 	bh->b_end_io = ext4_end_buffer_io_sync;
 | |
| 	submit_bh(REQ_OP_WRITE | write_flags, bh);
 | |
| 	EXT4_SB(sb)->s_fc_bh = NULL;
 | |
| }
 | |
| 
 | |
| /* Ext4 commit path routines */
 | |
| 
 | |
| /*
 | |
|  * Allocate len bytes on a fast commit buffer.
 | |
|  *
 | |
|  * During the commit time this function is used to manage fast commit
 | |
|  * block space. We don't split a fast commit log onto different
 | |
|  * blocks. So this function makes sure that if there's not enough space
 | |
|  * on the current block, the remaining space in the current block is
 | |
|  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
 | |
|  * new block is from jbd2 and CRC is updated to reflect the padding
 | |
|  * we added.
 | |
|  */
 | |
| static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
 | |
| {
 | |
| 	struct ext4_fc_tl tl;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct buffer_head *bh;
 | |
| 	int bsize = sbi->s_journal->j_blocksize;
 | |
| 	int ret, off = sbi->s_fc_bytes % bsize;
 | |
| 	int remaining;
 | |
| 	u8 *dst;
 | |
| 
 | |
| 	/*
 | |
| 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
 | |
| 	 * cannot fulfill the request.
 | |
| 	 */
 | |
| 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!sbi->s_fc_bh) {
 | |
| 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
 | |
| 		if (ret)
 | |
| 			return NULL;
 | |
| 		sbi->s_fc_bh = bh;
 | |
| 	}
 | |
| 	dst = sbi->s_fc_bh->b_data + off;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the bytes in the current block if we can do so while still
 | |
| 	 * leaving enough space for a PAD tlv.
 | |
| 	 */
 | |
| 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
 | |
| 	if (len <= remaining) {
 | |
| 		sbi->s_fc_bytes += len;
 | |
| 		return dst;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Else, terminate the current block with a PAD tlv, then allocate a new
 | |
| 	 * block and allocate the bytes at the start of that new block.
 | |
| 	 */
 | |
| 
 | |
| 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
 | |
| 	tl.fc_len = cpu_to_le16(remaining);
 | |
| 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 | |
| 	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
 | |
| 	*crc = ext4_chksum(*crc, sbi->s_fc_bh->b_data, bsize);
 | |
| 
 | |
| 	ext4_fc_submit_bh(sb, false);
 | |
| 
 | |
| 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
 | |
| 	if (ret)
 | |
| 		return NULL;
 | |
| 	sbi->s_fc_bh = bh;
 | |
| 	sbi->s_fc_bytes += bsize - off + len;
 | |
| 	return sbi->s_fc_bh->b_data;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Complete a fast commit by writing tail tag.
 | |
|  *
 | |
|  * Writing tail tag marks the end of a fast commit. In order to guarantee
 | |
|  * atomicity, after writing tail tag, even if there's space remaining
 | |
|  * in the block, next commit shouldn't use it. That's why tail tag
 | |
|  * has the length as that of the remaining space on the block.
 | |
|  */
 | |
| static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_fc_tl tl;
 | |
| 	struct ext4_fc_tail tail;
 | |
| 	int off, bsize = sbi->s_journal->j_blocksize;
 | |
| 	u8 *dst;
 | |
| 
 | |
| 	/*
 | |
| 	 * ext4_fc_reserve_space takes care of allocating an extra block if
 | |
| 	 * there's no enough space on this block for accommodating this tail.
 | |
| 	 */
 | |
| 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
 | |
| 	if (!dst)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	off = sbi->s_fc_bytes % bsize;
 | |
| 
 | |
| 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
 | |
| 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
 | |
| 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
 | |
| 
 | |
| 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 | |
| 	dst += EXT4_FC_TAG_BASE_LEN;
 | |
| 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
 | |
| 	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
 | |
| 	dst += sizeof(tail.fc_tid);
 | |
| 	crc = ext4_chksum(crc, sbi->s_fc_bh->b_data,
 | |
| 			  dst - (u8 *)sbi->s_fc_bh->b_data);
 | |
| 	tail.fc_crc = cpu_to_le32(crc);
 | |
| 	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
 | |
| 	dst += sizeof(tail.fc_crc);
 | |
| 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
 | |
| 
 | |
| 	ext4_fc_submit_bh(sb, true);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
 | |
|  * Returns false if there's not enough space.
 | |
|  */
 | |
| static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
 | |
| 			   u32 *crc)
 | |
| {
 | |
| 	struct ext4_fc_tl tl;
 | |
| 	u8 *dst;
 | |
| 
 | |
| 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
 | |
| 	if (!dst)
 | |
| 		return false;
 | |
| 
 | |
| 	tl.fc_tag = cpu_to_le16(tag);
 | |
| 	tl.fc_len = cpu_to_le16(len);
 | |
| 
 | |
| 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 | |
| 	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Same as above, but adds dentry tlv. */
 | |
| static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
 | |
| 				   struct ext4_fc_dentry_update *fc_dentry)
 | |
| {
 | |
| 	struct ext4_fc_dentry_info fcd;
 | |
| 	struct ext4_fc_tl tl;
 | |
| 	int dlen = fc_dentry->fcd_name.name.len;
 | |
| 	u8 *dst = ext4_fc_reserve_space(sb,
 | |
| 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
 | |
| 
 | |
| 	if (!dst)
 | |
| 		return false;
 | |
| 
 | |
| 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
 | |
| 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
 | |
| 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
 | |
| 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
 | |
| 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 | |
| 	dst += EXT4_FC_TAG_BASE_LEN;
 | |
| 	memcpy(dst, &fcd, sizeof(fcd));
 | |
| 	dst += sizeof(fcd);
 | |
| 	memcpy(dst, fc_dentry->fcd_name.name.name, dlen);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writes inode in the fast commit space under TLV with tag @tag.
 | |
|  * Returns 0 on success, error on failure.
 | |
|  */
 | |
| static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
 | |
| 	int ret;
 | |
| 	struct ext4_iloc iloc;
 | |
| 	struct ext4_fc_inode fc_inode;
 | |
| 	struct ext4_fc_tl tl;
 | |
| 	u8 *dst;
 | |
| 
 | |
| 	ret = ext4_get_inode_loc(inode, &iloc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
 | |
| 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
 | |
| 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
 | |
| 		inode_len += ei->i_extra_isize;
 | |
| 
 | |
| 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
 | |
| 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
 | |
| 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
 | |
| 
 | |
| 	ret = -ECANCELED;
 | |
| 	dst = ext4_fc_reserve_space(inode->i_sb,
 | |
| 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
 | |
| 	if (!dst)
 | |
| 		goto err;
 | |
| 
 | |
| 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 | |
| 	dst += EXT4_FC_TAG_BASE_LEN;
 | |
| 	memcpy(dst, &fc_inode, sizeof(fc_inode));
 | |
| 	dst += sizeof(fc_inode);
 | |
| 	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
 | |
| 	ret = 0;
 | |
| err:
 | |
| 	brelse(iloc.bh);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writes updated data ranges for the inode in question. Updates CRC.
 | |
|  * Returns 0 on success, error otherwise.
 | |
|  */
 | |
| static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
 | |
| {
 | |
| 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_map_blocks map;
 | |
| 	struct ext4_fc_add_range fc_ext;
 | |
| 	struct ext4_fc_del_range lrange;
 | |
| 	struct ext4_extent *ex;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&ei->i_fc_lock);
 | |
| 	if (ei->i_fc_lblk_len == 0) {
 | |
| 		spin_unlock(&ei->i_fc_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	old_blk_size = ei->i_fc_lblk_start;
 | |
| 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
 | |
| 	ei->i_fc_lblk_len = 0;
 | |
| 	spin_unlock(&ei->i_fc_lock);
 | |
| 
 | |
| 	cur_lblk_off = old_blk_size;
 | |
| 	ext4_debug("will try writing %d to %d for inode %ld\n",
 | |
| 		   cur_lblk_off, new_blk_size, inode->i_ino);
 | |
| 
 | |
| 	while (cur_lblk_off <= new_blk_size) {
 | |
| 		map.m_lblk = cur_lblk_off;
 | |
| 		map.m_len = new_blk_size - cur_lblk_off + 1;
 | |
| 		ret = ext4_map_blocks(NULL, inode, &map,
 | |
| 				      EXT4_GET_BLOCKS_IO_SUBMIT |
 | |
| 				      EXT4_EX_NOCACHE);
 | |
| 		if (ret < 0)
 | |
| 			return -ECANCELED;
 | |
| 
 | |
| 		if (map.m_len == 0) {
 | |
| 			cur_lblk_off++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
 | |
| 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
 | |
| 			lrange.fc_len = cpu_to_le32(map.m_len);
 | |
| 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
 | |
| 					    sizeof(lrange), (u8 *)&lrange, crc))
 | |
| 				return -ENOSPC;
 | |
| 		} else {
 | |
| 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
 | |
| 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
 | |
| 
 | |
| 			/* Limit the number of blocks in one extent */
 | |
| 			map.m_len = min(max, map.m_len);
 | |
| 
 | |
| 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
 | |
| 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
 | |
| 			ex->ee_block = cpu_to_le32(map.m_lblk);
 | |
| 			ex->ee_len = cpu_to_le16(map.m_len);
 | |
| 			ext4_ext_store_pblock(ex, map.m_pblk);
 | |
| 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
 | |
| 				ext4_ext_mark_unwritten(ex);
 | |
| 			else
 | |
| 				ext4_ext_mark_initialized(ex);
 | |
| 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
 | |
| 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
 | |
| 				return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		cur_lblk_off += map.m_len;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Flushes data of all the inodes in the commit queue. */
 | |
| static int ext4_fc_flush_data(journal_t *journal)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_inode_info *ei;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
 | |
| 		ret = jbd2_submit_inode_data(journal, ei->jinode);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
 | |
| 		ret = jbd2_wait_inode_data(journal, ei->jinode);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Commit all the directory entry updates */
 | |
| static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
 | |
| 	struct inode *inode;
 | |
| 	struct ext4_inode_info *ei;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
 | |
| 		return 0;
 | |
| 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
 | |
| 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
 | |
| 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
 | |
| 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry))
 | |
| 				return -ENOSPC;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
 | |
| 		 * corresponding inode. Also, the corresponding inode could have been
 | |
| 		 * deleted, in which case, we don't need to do anything.
 | |
| 		 */
 | |
| 		if (list_empty(&fc_dentry->fcd_dilist))
 | |
| 			continue;
 | |
| 		ei = list_first_entry(&fc_dentry->fcd_dilist,
 | |
| 				struct ext4_inode_info, i_fc_dilist);
 | |
| 		inode = &ei->vfs_inode;
 | |
| 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
 | |
| 
 | |
| 		/*
 | |
| 		 * We first write the inode and then the create dirent. This
 | |
| 		 * allows the recovery code to create an unnamed inode first
 | |
| 		 * and then link it to a directory entry. This allows us
 | |
| 		 * to use namei.c routines almost as is and simplifies
 | |
| 		 * the recovery code.
 | |
| 		 */
 | |
| 		ret = ext4_fc_write_inode(inode, crc);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		ret = ext4_fc_write_inode_data(inode, crc);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry))
 | |
| 			return -ENOSPC;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_fc_perform_commit(journal_t *journal)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_inode_info *iter;
 | |
| 	struct ext4_fc_head head;
 | |
| 	struct inode *inode;
 | |
| 	struct blk_plug plug;
 | |
| 	int ret = 0;
 | |
| 	u32 crc = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 1: Mark all inodes on s_fc_q[MAIN] with
 | |
| 	 * EXT4_STATE_FC_FLUSHING_DATA. This prevents these inodes from being
 | |
| 	 * freed until the data flush is over.
 | |
| 	 */
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
 | |
| 		ext4_set_inode_state(&iter->vfs_inode,
 | |
| 				     EXT4_STATE_FC_FLUSHING_DATA);
 | |
| 	}
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 
 | |
| 	/* Step 2: Flush data for all the eligible inodes. */
 | |
| 	ret = ext4_fc_flush_data(journal);
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 3: Clear EXT4_STATE_FC_FLUSHING_DATA flag, before returning
 | |
| 	 * any error from step 2. This ensures that waiters waiting on
 | |
| 	 * EXT4_STATE_FC_FLUSHING_DATA can resume.
 | |
| 	 */
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
 | |
| 		ext4_clear_inode_state(&iter->vfs_inode,
 | |
| 				       EXT4_STATE_FC_FLUSHING_DATA);
 | |
| #if (BITS_PER_LONG < 64)
 | |
| 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_FLUSHING_DATA);
 | |
| #else
 | |
| 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_FLUSHING_DATA);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure clearing of EXT4_STATE_FC_FLUSHING_DATA is visible before
 | |
| 	 * the waiter checks the bit. Pairs with implicit barrier in
 | |
| 	 * prepare_to_wait() in ext4_fc_del().
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we encountered error in Step 2, return it now after clearing
 | |
| 	 * EXT4_STATE_FC_FLUSHING_DATA bit.
 | |
| 	 */
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 
 | |
| 	/* Step 4: Mark all inodes as being committed. */
 | |
| 	jbd2_journal_lock_updates(journal);
 | |
| 	/*
 | |
| 	 * The journal is now locked. No more handles can start and all the
 | |
| 	 * previous handles are now drained. We now mark the inodes on the
 | |
| 	 * commit queue as being committed.
 | |
| 	 */
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
 | |
| 		ext4_set_inode_state(&iter->vfs_inode,
 | |
| 				     EXT4_STATE_FC_COMMITTING);
 | |
| 	}
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 	jbd2_journal_unlock_updates(journal);
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 5: If file system device is different from journal device,
 | |
| 	 * issue a cache flush before we start writing fast commit blocks.
 | |
| 	 */
 | |
| 	if (journal->j_fs_dev != journal->j_dev)
 | |
| 		blkdev_issue_flush(journal->j_fs_dev);
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	/* Step 6: Write fast commit blocks to disk. */
 | |
| 	if (sbi->s_fc_bytes == 0) {
 | |
| 		/*
 | |
| 		 * Step 6.1: Add a head tag only if this is the first fast
 | |
| 		 * commit in this TID.
 | |
| 		 */
 | |
| 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
 | |
| 		head.fc_tid = cpu_to_le32(
 | |
| 			sbi->s_journal->j_running_transaction->t_tid);
 | |
| 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
 | |
| 			(u8 *)&head, &crc)) {
 | |
| 			ret = -ENOSPC;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Step 6.2: Now write all the dentry updates. */
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Step 6.3: Now write all the changed inodes to disk. */
 | |
| 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
 | |
| 		inode = &iter->vfs_inode;
 | |
| 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = ext4_fc_write_inode_data(inode, &crc);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		ret = ext4_fc_write_inode(inode, &crc);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	/* Step 6.4: Finally write tail tag to conclude this fast commit. */
 | |
| 	ret = ext4_fc_write_tail(sb, crc);
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 	blk_finish_plug(&plug);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ext4_fc_update_stats(struct super_block *sb, int status,
 | |
| 				 u64 commit_time, int nblks, tid_t commit_tid)
 | |
| {
 | |
| 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
 | |
| 
 | |
| 	ext4_debug("Fast commit ended with status = %d for tid %u",
 | |
| 			status, commit_tid);
 | |
| 	if (status == EXT4_FC_STATUS_OK) {
 | |
| 		stats->fc_num_commits++;
 | |
| 		stats->fc_numblks += nblks;
 | |
| 		if (likely(stats->s_fc_avg_commit_time))
 | |
| 			stats->s_fc_avg_commit_time =
 | |
| 				(commit_time +
 | |
| 				 stats->s_fc_avg_commit_time * 3) / 4;
 | |
| 		else
 | |
| 			stats->s_fc_avg_commit_time = commit_time;
 | |
| 	} else if (status == EXT4_FC_STATUS_FAILED ||
 | |
| 		   status == EXT4_FC_STATUS_INELIGIBLE) {
 | |
| 		if (status == EXT4_FC_STATUS_FAILED)
 | |
| 			stats->fc_failed_commits++;
 | |
| 		stats->fc_ineligible_commits++;
 | |
| 	} else {
 | |
| 		stats->fc_skipped_commits++;
 | |
| 	}
 | |
| 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The main commit entry point. Performs a fast commit for transaction
 | |
|  * commit_tid if needed. If it's not possible to perform a fast commit
 | |
|  * due to various reasons, we fall back to full commit. Returns 0
 | |
|  * on success, error otherwise.
 | |
|  */
 | |
| int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	int nblks = 0, ret, bsize = journal->j_blocksize;
 | |
| 	int subtid = atomic_read(&sbi->s_fc_subtid);
 | |
| 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
 | |
| 	ktime_t start_time, commit_time;
 | |
| 	int old_ioprio, journal_ioprio;
 | |
| 
 | |
| 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
 | |
| 		return jbd2_complete_transaction(journal, commit_tid);
 | |
| 
 | |
| 	trace_ext4_fc_commit_start(sb, commit_tid);
 | |
| 
 | |
| 	start_time = ktime_get();
 | |
| 	old_ioprio = get_current_ioprio();
 | |
| 
 | |
| restart_fc:
 | |
| 	ret = jbd2_fc_begin_commit(journal, commit_tid);
 | |
| 	if (ret == -EALREADY) {
 | |
| 		/* There was an ongoing commit, check if we need to restart */
 | |
| 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
 | |
| 		    tid_gt(commit_tid, journal->j_commit_sequence))
 | |
| 			goto restart_fc;
 | |
| 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
 | |
| 				commit_tid);
 | |
| 		return 0;
 | |
| 	} else if (ret) {
 | |
| 		/*
 | |
| 		 * Commit couldn't start. Just update stats and perform a
 | |
| 		 * full commit.
 | |
| 		 */
 | |
| 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
 | |
| 				commit_tid);
 | |
| 		return jbd2_complete_transaction(journal, commit_tid);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
 | |
| 	 * if we are fast commit ineligible.
 | |
| 	 */
 | |
| 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
 | |
| 		status = EXT4_FC_STATUS_INELIGIBLE;
 | |
| 		goto fallback;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we know that this thread is going to do a fast commit,
 | |
| 	 * elevate the priority to match that of the journal thread.
 | |
| 	 */
 | |
| 	if (journal->j_task->io_context)
 | |
| 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
 | |
| 	else
 | |
| 		journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
 | |
| 	set_task_ioprio(current, journal_ioprio);
 | |
| 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
 | |
| 	ret = ext4_fc_perform_commit(journal);
 | |
| 	if (ret < 0) {
 | |
| 		status = EXT4_FC_STATUS_FAILED;
 | |
| 		goto fallback;
 | |
| 	}
 | |
| 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
 | |
| 	ret = jbd2_fc_wait_bufs(journal, nblks);
 | |
| 	if (ret < 0) {
 | |
| 		status = EXT4_FC_STATUS_FAILED;
 | |
| 		goto fallback;
 | |
| 	}
 | |
| 	atomic_inc(&sbi->s_fc_subtid);
 | |
| 	ret = jbd2_fc_end_commit(journal);
 | |
| 	set_task_ioprio(current, old_ioprio);
 | |
| 	/*
 | |
| 	 * weight the commit time higher than the average time so we
 | |
| 	 * don't react too strongly to vast changes in the commit time
 | |
| 	 */
 | |
| 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
 | |
| 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
 | |
| 	return ret;
 | |
| 
 | |
| fallback:
 | |
| 	set_task_ioprio(current, old_ioprio);
 | |
| 	ret = jbd2_fc_end_commit_fallback(journal);
 | |
| 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast commit cleanup routine. This is called after every fast commit and
 | |
|  * full commit. full is true if we are called after a full commit.
 | |
|  */
 | |
| static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_inode_info *ei;
 | |
| 	struct ext4_fc_dentry_update *fc_dentry;
 | |
| 
 | |
| 	if (full && sbi->s_fc_bh)
 | |
| 		sbi->s_fc_bh = NULL;
 | |
| 
 | |
| 	trace_ext4_fc_cleanup(journal, full, tid);
 | |
| 	jbd2_fc_release_bufs(journal);
 | |
| 
 | |
| 	mutex_lock(&sbi->s_fc_lock);
 | |
| 	while (!list_empty(&sbi->s_fc_q[FC_Q_MAIN])) {
 | |
| 		ei = list_first_entry(&sbi->s_fc_q[FC_Q_MAIN],
 | |
| 					struct ext4_inode_info,
 | |
| 					i_fc_list);
 | |
| 		list_del_init(&ei->i_fc_list);
 | |
| 		ext4_clear_inode_state(&ei->vfs_inode,
 | |
| 				       EXT4_STATE_FC_COMMITTING);
 | |
| 		if (tid_geq(tid, ei->i_sync_tid)) {
 | |
| 			ext4_fc_reset_inode(&ei->vfs_inode);
 | |
| 		} else if (full) {
 | |
| 			/*
 | |
| 			 * We are called after a full commit, inode has been
 | |
| 			 * modified while the commit was running. Re-enqueue
 | |
| 			 * the inode into STAGING, which will then be splice
 | |
| 			 * back into MAIN. This cannot happen during
 | |
| 			 * fastcommit because the journal is locked all the
 | |
| 			 * time in that case (and tid doesn't increase so
 | |
| 			 * tid check above isn't reliable).
 | |
| 			 */
 | |
| 			list_add_tail(&ei->i_fc_list,
 | |
| 				      &sbi->s_fc_q[FC_Q_STAGING]);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Make sure clearing of EXT4_STATE_FC_COMMITTING is
 | |
| 		 * visible before we send the wakeup. Pairs with implicit
 | |
| 		 * barrier in prepare_to_wait() in ext4_fc_track_inode().
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| #if (BITS_PER_LONG < 64)
 | |
| 		wake_up_bit(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING);
 | |
| #else
 | |
| 		wake_up_bit(&ei->i_flags, EXT4_STATE_FC_COMMITTING);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
 | |
| 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
 | |
| 					     struct ext4_fc_dentry_update,
 | |
| 					     fcd_list);
 | |
| 		list_del_init(&fc_dentry->fcd_list);
 | |
| 		list_del_init(&fc_dentry->fcd_dilist);
 | |
| 
 | |
| 		release_dentry_name_snapshot(&fc_dentry->fcd_name);
 | |
| 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
 | |
| 	}
 | |
| 
 | |
| 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
 | |
| 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
 | |
| 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
 | |
| 				&sbi->s_fc_q[FC_Q_MAIN]);
 | |
| 
 | |
| 	if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
 | |
| 		sbi->s_fc_ineligible_tid = 0;
 | |
| 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
 | |
| 	}
 | |
| 
 | |
| 	if (full)
 | |
| 		sbi->s_fc_bytes = 0;
 | |
| 	mutex_unlock(&sbi->s_fc_lock);
 | |
| 	trace_ext4_fc_stats(sb);
 | |
| }
 | |
| 
 | |
| /* Ext4 Replay Path Routines */
 | |
| 
 | |
| /* Helper struct for dentry replay routines */
 | |
| struct dentry_info_args {
 | |
| 	int parent_ino, dname_len, ino, inode_len;
 | |
| 	char *dname;
 | |
| };
 | |
| 
 | |
| /* Same as struct ext4_fc_tl, but uses native endianness fields */
 | |
| struct ext4_fc_tl_mem {
 | |
| 	u16 fc_tag;
 | |
| 	u16 fc_len;
 | |
| };
 | |
| 
 | |
| static inline void tl_to_darg(struct dentry_info_args *darg,
 | |
| 			      struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	struct ext4_fc_dentry_info fcd;
 | |
| 
 | |
| 	memcpy(&fcd, val, sizeof(fcd));
 | |
| 
 | |
| 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
 | |
| 	darg->ino = le32_to_cpu(fcd.fc_ino);
 | |
| 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
 | |
| 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
 | |
| }
 | |
| 
 | |
| static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	struct ext4_fc_tl tl_disk;
 | |
| 
 | |
| 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
 | |
| 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
 | |
| 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
 | |
| }
 | |
| 
 | |
| /* Unlink replay function */
 | |
| static int ext4_fc_replay_unlink(struct super_block *sb,
 | |
| 				 struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	struct inode *inode, *old_parent;
 | |
| 	struct qstr entry;
 | |
| 	struct dentry_info_args darg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	tl_to_darg(&darg, tl, val);
 | |
| 
 | |
| 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
 | |
| 			darg.parent_ino, darg.dname_len);
 | |
| 
 | |
| 	entry.name = darg.dname;
 | |
| 	entry.len = darg.dname_len;
 | |
| 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
 | |
| 
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ext4_debug("Inode %d not found", darg.ino);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	old_parent = ext4_iget(sb, darg.parent_ino,
 | |
| 				EXT4_IGET_NORMAL);
 | |
| 	if (IS_ERR(old_parent)) {
 | |
| 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
 | |
| 		iput(inode);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
 | |
| 	/* -ENOENT ok coz it might not exist anymore. */
 | |
| 	if (ret == -ENOENT)
 | |
| 		ret = 0;
 | |
| 	iput(old_parent);
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ext4_fc_replay_link_internal(struct super_block *sb,
 | |
| 				struct dentry_info_args *darg,
 | |
| 				struct inode *inode)
 | |
| {
 | |
| 	struct inode *dir = NULL;
 | |
| 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
 | |
| 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
 | |
| 	if (IS_ERR(dir)) {
 | |
| 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
 | |
| 		dir = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dentry_dir = d_obtain_alias(dir);
 | |
| 	if (IS_ERR(dentry_dir)) {
 | |
| 		ext4_debug("Failed to obtain dentry");
 | |
| 		dentry_dir = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
 | |
| 	if (!dentry_inode) {
 | |
| 		ext4_debug("Inode dentry not created.");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = __ext4_link(dir, inode, dentry_inode);
 | |
| 	/*
 | |
| 	 * It's possible that link already existed since data blocks
 | |
| 	 * for the dir in question got persisted before we crashed OR
 | |
| 	 * we replayed this tag and crashed before the entire replay
 | |
| 	 * could complete.
 | |
| 	 */
 | |
| 	if (ret && ret != -EEXIST) {
 | |
| 		ext4_debug("Failed to link\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	if (dentry_dir) {
 | |
| 		d_drop(dentry_dir);
 | |
| 		dput(dentry_dir);
 | |
| 	} else if (dir) {
 | |
| 		iput(dir);
 | |
| 	}
 | |
| 	if (dentry_inode) {
 | |
| 		d_drop(dentry_inode);
 | |
| 		dput(dentry_inode);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Link replay function */
 | |
| static int ext4_fc_replay_link(struct super_block *sb,
 | |
| 			       struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct dentry_info_args darg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	tl_to_darg(&darg, tl, val);
 | |
| 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
 | |
| 			darg.parent_ino, darg.dname_len);
 | |
| 
 | |
| 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ext4_debug("Inode not found.");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record all the modified inodes during replay. We use this later to setup
 | |
|  * block bitmaps correctly.
 | |
|  */
 | |
| static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
 | |
| {
 | |
| 	struct ext4_fc_replay_state *state;
 | |
| 	int i;
 | |
| 
 | |
| 	state = &EXT4_SB(sb)->s_fc_replay_state;
 | |
| 	for (i = 0; i < state->fc_modified_inodes_used; i++)
 | |
| 		if (state->fc_modified_inodes[i] == ino)
 | |
| 			return 0;
 | |
| 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
 | |
| 		int *fc_modified_inodes;
 | |
| 
 | |
| 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
 | |
| 				sizeof(int) * (state->fc_modified_inodes_size +
 | |
| 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
 | |
| 				GFP_KERNEL);
 | |
| 		if (!fc_modified_inodes)
 | |
| 			return -ENOMEM;
 | |
| 		state->fc_modified_inodes = fc_modified_inodes;
 | |
| 		state->fc_modified_inodes_size +=
 | |
| 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
 | |
| 	}
 | |
| 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inode replay function
 | |
|  */
 | |
| static int ext4_fc_replay_inode(struct super_block *sb,
 | |
| 				struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	struct ext4_fc_inode fc_inode;
 | |
| 	struct ext4_inode *raw_inode;
 | |
| 	struct ext4_inode *raw_fc_inode;
 | |
| 	struct inode *inode = NULL;
 | |
| 	struct ext4_iloc iloc;
 | |
| 	int inode_len, ino, ret, tag = tl->fc_tag;
 | |
| 	struct ext4_extent_header *eh;
 | |
| 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
 | |
| 
 | |
| 	memcpy(&fc_inode, val, sizeof(fc_inode));
 | |
| 
 | |
| 	ino = le32_to_cpu(fc_inode.fc_ino);
 | |
| 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
 | |
| 
 | |
| 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
 | |
| 	if (!IS_ERR(inode)) {
 | |
| 		ext4_ext_clear_bb(inode);
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 	inode = NULL;
 | |
| 
 | |
| 	ret = ext4_fc_record_modified_inode(sb, ino);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	raw_fc_inode = (struct ext4_inode *)
 | |
| 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
 | |
| 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
 | |
| 	raw_inode = ext4_raw_inode(&iloc);
 | |
| 
 | |
| 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
 | |
| 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
 | |
| 	       inode_len - off_gen);
 | |
| 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
 | |
| 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
 | |
| 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
 | |
| 			memset(eh, 0, sizeof(*eh));
 | |
| 			eh->eh_magic = EXT4_EXT_MAGIC;
 | |
| 			eh->eh_max = cpu_to_le16(
 | |
| 				(sizeof(raw_inode->i_block) -
 | |
| 				 sizeof(struct ext4_extent_header))
 | |
| 				 / sizeof(struct ext4_extent));
 | |
| 		}
 | |
| 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
 | |
| 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
 | |
| 			sizeof(raw_inode->i_block));
 | |
| 	}
 | |
| 
 | |
| 	/* Immediately update the inode on disk. */
 | |
| 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ret = sync_dirty_buffer(iloc.bh);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ret = ext4_mark_inode_used(sb, ino);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
 | |
| 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ext4_debug("Inode not found.");
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Our allocator could have made different decisions than before
 | |
| 	 * crashing. This should be fixed but until then, we calculate
 | |
| 	 * the number of blocks the inode.
 | |
| 	 */
 | |
| 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
 | |
| 		ext4_ext_replay_set_iblocks(inode);
 | |
| 
 | |
| 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
 | |
| 	ext4_reset_inode_seed(inode);
 | |
| 
 | |
| 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
 | |
| 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
 | |
| 	sync_dirty_buffer(iloc.bh);
 | |
| 	brelse(iloc.bh);
 | |
| out:
 | |
| 	iput(inode);
 | |
| 	if (!ret)
 | |
| 		blkdev_issue_flush(sb->s_bdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dentry create replay function.
 | |
|  *
 | |
|  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
 | |
|  * inode for which we are trying to create a dentry here, should already have
 | |
|  * been replayed before we start here.
 | |
|  */
 | |
| static int ext4_fc_replay_create(struct super_block *sb,
 | |
| 				 struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct inode *inode = NULL;
 | |
| 	struct inode *dir = NULL;
 | |
| 	struct dentry_info_args darg;
 | |
| 
 | |
| 	tl_to_darg(&darg, tl, val);
 | |
| 
 | |
| 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
 | |
| 			darg.parent_ino, darg.dname_len);
 | |
| 
 | |
| 	/* This takes care of update group descriptor and other metadata */
 | |
| 	ret = ext4_mark_inode_used(sb, darg.ino);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ext4_debug("inode %d not found.", darg.ino);
 | |
| 		inode = NULL;
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (S_ISDIR(inode->i_mode)) {
 | |
| 		/*
 | |
| 		 * If we are creating a directory, we need to make sure that the
 | |
| 		 * dot and dot dot dirents are setup properly.
 | |
| 		 */
 | |
| 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
 | |
| 		if (IS_ERR(dir)) {
 | |
| 			ext4_debug("Dir %d not found.", darg.ino);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = ext4_init_new_dir(NULL, dir, inode);
 | |
| 		iput(dir);
 | |
| 		if (ret) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	set_nlink(inode, 1);
 | |
| 	ext4_mark_inode_dirty(NULL, inode);
 | |
| out:
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record physical disk regions which are in use as per fast commit area,
 | |
|  * and used by inodes during replay phase. Our simple replay phase
 | |
|  * allocator excludes these regions from allocation.
 | |
|  */
 | |
| int ext4_fc_record_regions(struct super_block *sb, int ino,
 | |
| 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
 | |
| {
 | |
| 	struct ext4_fc_replay_state *state;
 | |
| 	struct ext4_fc_alloc_region *region;
 | |
| 
 | |
| 	state = &EXT4_SB(sb)->s_fc_replay_state;
 | |
| 	/*
 | |
| 	 * during replay phase, the fc_regions_valid may not same as
 | |
| 	 * fc_regions_used, update it when do new additions.
 | |
| 	 */
 | |
| 	if (replay && state->fc_regions_used != state->fc_regions_valid)
 | |
| 		state->fc_regions_used = state->fc_regions_valid;
 | |
| 	if (state->fc_regions_used == state->fc_regions_size) {
 | |
| 		struct ext4_fc_alloc_region *fc_regions;
 | |
| 
 | |
| 		fc_regions = krealloc(state->fc_regions,
 | |
| 				      sizeof(struct ext4_fc_alloc_region) *
 | |
| 				      (state->fc_regions_size +
 | |
| 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
 | |
| 				      GFP_KERNEL);
 | |
| 		if (!fc_regions)
 | |
| 			return -ENOMEM;
 | |
| 		state->fc_regions_size +=
 | |
| 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
 | |
| 		state->fc_regions = fc_regions;
 | |
| 	}
 | |
| 	region = &state->fc_regions[state->fc_regions_used++];
 | |
| 	region->ino = ino;
 | |
| 	region->lblk = lblk;
 | |
| 	region->pblk = pblk;
 | |
| 	region->len = len;
 | |
| 
 | |
| 	if (replay)
 | |
| 		state->fc_regions_valid++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Replay add range tag */
 | |
| static int ext4_fc_replay_add_range(struct super_block *sb,
 | |
| 				    struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	struct ext4_fc_add_range fc_add_ex;
 | |
| 	struct ext4_extent newex, *ex;
 | |
| 	struct inode *inode;
 | |
| 	ext4_lblk_t start, cur;
 | |
| 	int remaining, len;
 | |
| 	ext4_fsblk_t start_pblk;
 | |
| 	struct ext4_map_blocks map;
 | |
| 	struct ext4_ext_path *path = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
 | |
| 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
 | |
| 
 | |
| 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
 | |
| 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
 | |
| 		ext4_ext_get_actual_len(ex));
 | |
| 
 | |
| 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ext4_debug("Inode not found.");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	start = le32_to_cpu(ex->ee_block);
 | |
| 	start_pblk = ext4_ext_pblock(ex);
 | |
| 	len = ext4_ext_get_actual_len(ex);
 | |
| 
 | |
| 	cur = start;
 | |
| 	remaining = len;
 | |
| 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
 | |
| 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
 | |
| 		  inode->i_ino);
 | |
| 
 | |
| 	while (remaining > 0) {
 | |
| 		map.m_lblk = cur;
 | |
| 		map.m_len = remaining;
 | |
| 		map.m_pblk = 0;
 | |
| 		ret = ext4_map_blocks(NULL, inode, &map, 0);
 | |
| 
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			/* Range is not mapped */
 | |
| 			path = ext4_find_extent(inode, cur, path, 0);
 | |
| 			if (IS_ERR(path))
 | |
| 				goto out;
 | |
| 			memset(&newex, 0, sizeof(newex));
 | |
| 			newex.ee_block = cpu_to_le32(cur);
 | |
| 			ext4_ext_store_pblock(
 | |
| 				&newex, start_pblk + cur - start);
 | |
| 			newex.ee_len = cpu_to_le16(map.m_len);
 | |
| 			if (ext4_ext_is_unwritten(ex))
 | |
| 				ext4_ext_mark_unwritten(&newex);
 | |
| 			down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 			path = ext4_ext_insert_extent(NULL, inode,
 | |
| 						      path, &newex, 0);
 | |
| 			up_write((&EXT4_I(inode)->i_data_sem));
 | |
| 			if (IS_ERR(path))
 | |
| 				goto out;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		if (start_pblk + cur - start != map.m_pblk) {
 | |
| 			/*
 | |
| 			 * Logical to physical mapping changed. This can happen
 | |
| 			 * if this range was removed and then reallocated to
 | |
| 			 * map to new physical blocks during a fast commit.
 | |
| 			 */
 | |
| 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
 | |
| 					ext4_ext_is_unwritten(ex),
 | |
| 					start_pblk + cur - start);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			/*
 | |
| 			 * Mark the old blocks as free since they aren't used
 | |
| 			 * anymore. We maintain an array of all the modified
 | |
| 			 * inodes. In case these blocks are still used at either
 | |
| 			 * a different logical range in the same inode or in
 | |
| 			 * some different inode, we will mark them as allocated
 | |
| 			 * at the end of the FC replay using our array of
 | |
| 			 * modified inodes.
 | |
| 			 */
 | |
| 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/* Range is mapped and needs a state change */
 | |
| 		ext4_debug("Converting from %ld to %d %lld",
 | |
| 				map.m_flags & EXT4_MAP_UNWRITTEN,
 | |
| 			ext4_ext_is_unwritten(ex), map.m_pblk);
 | |
| 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
 | |
| 					ext4_ext_is_unwritten(ex), map.m_pblk);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * We may have split the extent tree while toggling the state.
 | |
| 		 * Try to shrink the extent tree now.
 | |
| 		 */
 | |
| 		ext4_ext_replay_shrink_inode(inode, start + len);
 | |
| next:
 | |
| 		cur += map.m_len;
 | |
| 		remaining -= map.m_len;
 | |
| 	}
 | |
| 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
 | |
| 					sb->s_blocksize_bits);
 | |
| out:
 | |
| 	ext4_free_ext_path(path);
 | |
| 	iput(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Replay DEL_RANGE tag */
 | |
| static int
 | |
| ext4_fc_replay_del_range(struct super_block *sb,
 | |
| 			 struct ext4_fc_tl_mem *tl, u8 *val)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct ext4_fc_del_range lrange;
 | |
| 	struct ext4_map_blocks map;
 | |
| 	ext4_lblk_t cur, remaining;
 | |
| 	int ret;
 | |
| 
 | |
| 	memcpy(&lrange, val, sizeof(lrange));
 | |
| 	cur = le32_to_cpu(lrange.fc_lblk);
 | |
| 	remaining = le32_to_cpu(lrange.fc_len);
 | |
| 
 | |
| 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
 | |
| 		le32_to_cpu(lrange.fc_ino), cur, remaining);
 | |
| 
 | |
| 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
 | |
| 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
 | |
| 			le32_to_cpu(lrange.fc_len));
 | |
| 	while (remaining > 0) {
 | |
| 		map.m_lblk = cur;
 | |
| 		map.m_len = remaining;
 | |
| 
 | |
| 		ret = ext4_map_blocks(NULL, inode, &map, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (ret > 0) {
 | |
| 			remaining -= ret;
 | |
| 			cur += ret;
 | |
| 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
 | |
| 		} else {
 | |
| 			remaining -= map.m_len;
 | |
| 			cur += map.m_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	down_write(&EXT4_I(inode)->i_data_sem);
 | |
| 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
 | |
| 				le32_to_cpu(lrange.fc_lblk) +
 | |
| 				le32_to_cpu(lrange.fc_len) - 1);
 | |
| 	up_write(&EXT4_I(inode)->i_data_sem);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ext4_ext_replay_shrink_inode(inode,
 | |
| 		i_size_read(inode) >> sb->s_blocksize_bits);
 | |
| 	ext4_mark_inode_dirty(NULL, inode);
 | |
| out:
 | |
| 	iput(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
 | |
| {
 | |
| 	struct ext4_fc_replay_state *state;
 | |
| 	struct inode *inode;
 | |
| 	struct ext4_ext_path *path = NULL;
 | |
| 	struct ext4_map_blocks map;
 | |
| 	int i, ret, j;
 | |
| 	ext4_lblk_t cur, end;
 | |
| 
 | |
| 	state = &EXT4_SB(sb)->s_fc_replay_state;
 | |
| 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
 | |
| 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
 | |
| 			EXT4_IGET_NORMAL);
 | |
| 		if (IS_ERR(inode)) {
 | |
| 			ext4_debug("Inode %d not found.",
 | |
| 				state->fc_modified_inodes[i]);
 | |
| 			continue;
 | |
| 		}
 | |
| 		cur = 0;
 | |
| 		end = EXT_MAX_BLOCKS;
 | |
| 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
 | |
| 			iput(inode);
 | |
| 			continue;
 | |
| 		}
 | |
| 		while (cur < end) {
 | |
| 			map.m_lblk = cur;
 | |
| 			map.m_len = end - cur;
 | |
| 
 | |
| 			ret = ext4_map_blocks(NULL, inode, &map, 0);
 | |
| 			if (ret < 0)
 | |
| 				break;
 | |
| 
 | |
| 			if (ret > 0) {
 | |
| 				path = ext4_find_extent(inode, map.m_lblk, path, 0);
 | |
| 				if (!IS_ERR(path)) {
 | |
| 					for (j = 0; j < path->p_depth; j++)
 | |
| 						ext4_mb_mark_bb(inode->i_sb,
 | |
| 							path[j].p_block, 1, true);
 | |
| 				} else {
 | |
| 					path = NULL;
 | |
| 				}
 | |
| 				cur += ret;
 | |
| 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
 | |
| 							map.m_len, true);
 | |
| 			} else {
 | |
| 				cur = cur + (map.m_len ? map.m_len : 1);
 | |
| 			}
 | |
| 		}
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 
 | |
| 	ext4_free_ext_path(path);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if block is in excluded regions for block allocation. The simple
 | |
|  * allocator that runs during replay phase is calls this function to see
 | |
|  * if it is okay to use a block.
 | |
|  */
 | |
| bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
 | |
| {
 | |
| 	int i;
 | |
| 	struct ext4_fc_replay_state *state;
 | |
| 
 | |
| 	state = &EXT4_SB(sb)->s_fc_replay_state;
 | |
| 	for (i = 0; i < state->fc_regions_valid; i++) {
 | |
| 		if (state->fc_regions[i].ino == 0 ||
 | |
| 			state->fc_regions[i].len == 0)
 | |
| 			continue;
 | |
| 		if (in_range(blk, state->fc_regions[i].pblk,
 | |
| 					state->fc_regions[i].len))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Cleanup function called after replay */
 | |
| void ext4_fc_replay_cleanup(struct super_block *sb)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
 | |
| 	kfree(sbi->s_fc_replay_state.fc_regions);
 | |
| 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
 | |
| }
 | |
| 
 | |
| static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
 | |
| 				      int tag, int len)
 | |
| {
 | |
| 	switch (tag) {
 | |
| 	case EXT4_FC_TAG_ADD_RANGE:
 | |
| 		return len == sizeof(struct ext4_fc_add_range);
 | |
| 	case EXT4_FC_TAG_DEL_RANGE:
 | |
| 		return len == sizeof(struct ext4_fc_del_range);
 | |
| 	case EXT4_FC_TAG_CREAT:
 | |
| 	case EXT4_FC_TAG_LINK:
 | |
| 	case EXT4_FC_TAG_UNLINK:
 | |
| 		len -= sizeof(struct ext4_fc_dentry_info);
 | |
| 		return len >= 1 && len <= EXT4_NAME_LEN;
 | |
| 	case EXT4_FC_TAG_INODE:
 | |
| 		len -= sizeof(struct ext4_fc_inode);
 | |
| 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
 | |
| 			len <= sbi->s_inode_size;
 | |
| 	case EXT4_FC_TAG_PAD:
 | |
| 		return true; /* padding can have any length */
 | |
| 	case EXT4_FC_TAG_TAIL:
 | |
| 		return len >= sizeof(struct ext4_fc_tail);
 | |
| 	case EXT4_FC_TAG_HEAD:
 | |
| 		return len == sizeof(struct ext4_fc_head);
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recovery Scan phase handler
 | |
|  *
 | |
|  * This function is called during the scan phase and is responsible
 | |
|  * for doing following things:
 | |
|  * - Make sure the fast commit area has valid tags for replay
 | |
|  * - Count number of tags that need to be replayed by the replay handler
 | |
|  * - Verify CRC
 | |
|  * - Create a list of excluded blocks for allocation during replay phase
 | |
|  *
 | |
|  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
 | |
|  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
 | |
|  * to indicate that scan has finished and JBD2 can now start replay phase.
 | |
|  * It returns a negative error to indicate that there was an error. At the end
 | |
|  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
 | |
|  * to indicate the number of tags that need to replayed during the replay phase.
 | |
|  */
 | |
| static int ext4_fc_replay_scan(journal_t *journal,
 | |
| 				struct buffer_head *bh, int off,
 | |
| 				tid_t expected_tid)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_fc_replay_state *state;
 | |
| 	int ret = JBD2_FC_REPLAY_CONTINUE;
 | |
| 	struct ext4_fc_add_range ext;
 | |
| 	struct ext4_fc_tl_mem tl;
 | |
| 	struct ext4_fc_tail tail;
 | |
| 	__u8 *start, *end, *cur, *val;
 | |
| 	struct ext4_fc_head head;
 | |
| 	struct ext4_extent *ex;
 | |
| 
 | |
| 	state = &sbi->s_fc_replay_state;
 | |
| 
 | |
| 	start = (u8 *)bh->b_data;
 | |
| 	end = start + journal->j_blocksize;
 | |
| 
 | |
| 	if (state->fc_replay_expected_off == 0) {
 | |
| 		state->fc_cur_tag = 0;
 | |
| 		state->fc_replay_num_tags = 0;
 | |
| 		state->fc_crc = 0;
 | |
| 		state->fc_regions = NULL;
 | |
| 		state->fc_regions_valid = state->fc_regions_used =
 | |
| 			state->fc_regions_size = 0;
 | |
| 		/* Check if we can stop early */
 | |
| 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
 | |
| 			!= EXT4_FC_TAG_HEAD)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (off != state->fc_replay_expected_off) {
 | |
| 		ret = -EFSCORRUPTED;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	state->fc_replay_expected_off++;
 | |
| 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
 | |
| 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
 | |
| 		ext4_fc_get_tl(&tl, cur);
 | |
| 		val = cur + EXT4_FC_TAG_BASE_LEN;
 | |
| 		if (tl.fc_len > end - val ||
 | |
| 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
 | |
| 			ret = state->fc_replay_num_tags ?
 | |
| 				JBD2_FC_REPLAY_STOP : -ECANCELED;
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
 | |
| 			   tag2str(tl.fc_tag), bh->b_blocknr);
 | |
| 		switch (tl.fc_tag) {
 | |
| 		case EXT4_FC_TAG_ADD_RANGE:
 | |
| 			memcpy(&ext, val, sizeof(ext));
 | |
| 			ex = (struct ext4_extent *)&ext.fc_ex;
 | |
| 			ret = ext4_fc_record_regions(sb,
 | |
| 				le32_to_cpu(ext.fc_ino),
 | |
| 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
 | |
| 				ext4_ext_get_actual_len(ex), 0);
 | |
| 			if (ret < 0)
 | |
| 				break;
 | |
| 			ret = JBD2_FC_REPLAY_CONTINUE;
 | |
| 			fallthrough;
 | |
| 		case EXT4_FC_TAG_DEL_RANGE:
 | |
| 		case EXT4_FC_TAG_LINK:
 | |
| 		case EXT4_FC_TAG_UNLINK:
 | |
| 		case EXT4_FC_TAG_CREAT:
 | |
| 		case EXT4_FC_TAG_INODE:
 | |
| 		case EXT4_FC_TAG_PAD:
 | |
| 			state->fc_cur_tag++;
 | |
| 			state->fc_crc = ext4_chksum(state->fc_crc, cur,
 | |
| 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_TAIL:
 | |
| 			state->fc_cur_tag++;
 | |
| 			memcpy(&tail, val, sizeof(tail));
 | |
| 			state->fc_crc = ext4_chksum(state->fc_crc, cur,
 | |
| 						EXT4_FC_TAG_BASE_LEN +
 | |
| 						offsetof(struct ext4_fc_tail,
 | |
| 						fc_crc));
 | |
| 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
 | |
| 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
 | |
| 				state->fc_replay_num_tags = state->fc_cur_tag;
 | |
| 				state->fc_regions_valid =
 | |
| 					state->fc_regions_used;
 | |
| 			} else {
 | |
| 				ret = state->fc_replay_num_tags ?
 | |
| 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
 | |
| 			}
 | |
| 			state->fc_crc = 0;
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_HEAD:
 | |
| 			memcpy(&head, val, sizeof(head));
 | |
| 			if (le32_to_cpu(head.fc_features) &
 | |
| 				~EXT4_FC_SUPPORTED_FEATURES) {
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
 | |
| 				ret = JBD2_FC_REPLAY_STOP;
 | |
| 				break;
 | |
| 			}
 | |
| 			state->fc_cur_tag++;
 | |
| 			state->fc_crc = ext4_chksum(state->fc_crc, cur,
 | |
| 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret = state->fc_replay_num_tags ?
 | |
| 				JBD2_FC_REPLAY_STOP : -ECANCELED;
 | |
| 		}
 | |
| 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| out_err:
 | |
| 	trace_ext4_fc_replay_scan(sb, ret, off);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main recovery path entry point.
 | |
|  * The meaning of return codes is similar as above.
 | |
|  */
 | |
| static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
 | |
| 				enum passtype pass, int off, tid_t expected_tid)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_fc_tl_mem tl;
 | |
| 	__u8 *start, *end, *cur, *val;
 | |
| 	int ret = JBD2_FC_REPLAY_CONTINUE;
 | |
| 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
 | |
| 	struct ext4_fc_tail tail;
 | |
| 
 | |
| 	if (pass == PASS_SCAN) {
 | |
| 		state->fc_current_pass = PASS_SCAN;
 | |
| 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
 | |
| 	}
 | |
| 
 | |
| 	if (state->fc_current_pass != pass) {
 | |
| 		state->fc_current_pass = pass;
 | |
| 		sbi->s_mount_state |= EXT4_FC_REPLAY;
 | |
| 	}
 | |
| 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
 | |
| 		ext4_debug("Replay stops\n");
 | |
| 		ext4_fc_set_bitmaps_and_counters(sb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_EXT4_DEBUG
 | |
| 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
 | |
| 		pr_warn("Dropping fc block %d because max_replay set\n", off);
 | |
| 		return JBD2_FC_REPLAY_STOP;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	start = (u8 *)bh->b_data;
 | |
| 	end = start + journal->j_blocksize;
 | |
| 
 | |
| 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
 | |
| 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
 | |
| 		ext4_fc_get_tl(&tl, cur);
 | |
| 		val = cur + EXT4_FC_TAG_BASE_LEN;
 | |
| 
 | |
| 		if (state->fc_replay_num_tags == 0) {
 | |
| 			ret = JBD2_FC_REPLAY_STOP;
 | |
| 			ext4_fc_set_bitmaps_and_counters(sb);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
 | |
| 		state->fc_replay_num_tags--;
 | |
| 		switch (tl.fc_tag) {
 | |
| 		case EXT4_FC_TAG_LINK:
 | |
| 			ret = ext4_fc_replay_link(sb, &tl, val);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_UNLINK:
 | |
| 			ret = ext4_fc_replay_unlink(sb, &tl, val);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_ADD_RANGE:
 | |
| 			ret = ext4_fc_replay_add_range(sb, &tl, val);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_CREAT:
 | |
| 			ret = ext4_fc_replay_create(sb, &tl, val);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_DEL_RANGE:
 | |
| 			ret = ext4_fc_replay_del_range(sb, &tl, val);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_INODE:
 | |
| 			ret = ext4_fc_replay_inode(sb, &tl, val);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_PAD:
 | |
| 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
 | |
| 					     tl.fc_len, 0);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_TAIL:
 | |
| 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
 | |
| 					     0, tl.fc_len, 0);
 | |
| 			memcpy(&tail, val, sizeof(tail));
 | |
| 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
 | |
| 			break;
 | |
| 		case EXT4_FC_TAG_HEAD:
 | |
| 			break;
 | |
| 		default:
 | |
| 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
 | |
| 			ret = -ECANCELED;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		ret = JBD2_FC_REPLAY_CONTINUE;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void ext4_fc_init(struct super_block *sb, journal_t *journal)
 | |
| {
 | |
| 	/*
 | |
| 	 * We set replay callback even if fast commit disabled because we may
 | |
| 	 * could still have fast commit blocks that need to be replayed even if
 | |
| 	 * fast commit has now been turned off.
 | |
| 	 */
 | |
| 	journal->j_fc_replay_callback = ext4_fc_replay;
 | |
| 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
 | |
| 		return;
 | |
| 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
 | |
| }
 | |
| 
 | |
| static const char * const fc_ineligible_reasons[] = {
 | |
| 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
 | |
| 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
 | |
| 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
 | |
| 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
 | |
| 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
 | |
| 	[EXT4_FC_REASON_RESIZE] = "Resize",
 | |
| 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
 | |
| 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
 | |
| 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
 | |
| 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
 | |
| };
 | |
| 
 | |
| int ext4_fc_info_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
 | |
| 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
 | |
| 	int i;
 | |
| 
 | |
| 	if (v != SEQ_START_TOKEN)
 | |
| 		return 0;
 | |
| 
 | |
| 	seq_printf(seq,
 | |
| 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
 | |
| 		   stats->fc_num_commits, stats->fc_ineligible_commits,
 | |
| 		   stats->fc_numblks,
 | |
| 		   div_u64(stats->s_fc_avg_commit_time, 1000));
 | |
| 	seq_puts(seq, "Ineligible reasons:\n");
 | |
| 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
 | |
| 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
 | |
| 			stats->fc_ineligible_reason_count[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init ext4_fc_init_dentry_cache(void)
 | |
| {
 | |
| 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
 | |
| 					   SLAB_RECLAIM_ACCOUNT);
 | |
| 
 | |
| 	if (ext4_fc_dentry_cachep == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void ext4_fc_destroy_dentry_cache(void)
 | |
| {
 | |
| 	kmem_cache_destroy(ext4_fc_dentry_cachep);
 | |
| }
 |