mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-30 16:18:41 +02:00 
			
		
		
		
	 50647a1176
			
		
	
	
		50647a1176
		
	
	
	
	
		
			
			Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCaN3daAAKCRBZ7Krx/gZQ
 6zNWAP9kD6rOJRNqDgea4pibDPa47Tps/WM5tsDv3dsLliY29gEA6sveOWZ3guAj
 4oY3ts/NtHLWXvhI7Vd/1mr2aTKEZQk=
 =YNK+
 -----END PGP SIGNATURE-----
Merge tag 'pull-f_path' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull file->f_path constification from Al Viro:
 "Only one thing was modifying ->f_path of an opened file - acct(2).
  Massaging that away and constifying a bunch of struct path * arguments
  in functions that might be given &file->f_path ends up with the
  situation where we can turn ->f_path into an anon union of const
  struct path f_path and struct path __f_path, the latter modified only
  in a few places in fs/{file_table,open,namei}.c, all for struct file
  instances that are yet to be opened"
* tag 'pull-f_path' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (23 commits)
  Have cc(1) catch attempts to modify ->f_path
  kernel/acct.c: saner struct file treatment
  configfs:get_target() - release path as soon as we grab configfs_item reference
  apparmor/af_unix: constify struct path * arguments
  ovl_is_real_file: constify realpath argument
  ovl_sync_file(): constify path argument
  ovl_lower_dir(): constify path argument
  ovl_get_verity_digest(): constify path argument
  ovl_validate_verity(): constify {meta,data}path arguments
  ovl_ensure_verity_loaded(): constify datapath argument
  ksmbd_vfs_set_init_posix_acl(): constify path argument
  ksmbd_vfs_inherit_posix_acl(): constify path argument
  ksmbd_vfs_kern_path_unlock(): constify path argument
  ksmbd_vfs_path_lookup_locked(): root_share_path can be const struct path *
  check_export(): constify path argument
  export_operations->open(): constify path argument
  rqst_exp_get_by_name(): constify path argument
  nfs: constify path argument of __vfs_getattr()
  bpf...d_path(): constify path argument
  done_path_create(): constify path argument
  ...
		
	
			
		
			
				
	
	
		
			1085 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1085 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/exportfs.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/pid.h>
 | |
| #include <linux/pidfs.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/pseudo_fs.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <uapi/linux/pidfd.h>
 | |
| #include <linux/ipc_namespace.h>
 | |
| #include <linux/time_namespace.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <net/net_namespace.h>
 | |
| #include <linux/coredump.h>
 | |
| #include <linux/xattr.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "mount.h"
 | |
| 
 | |
| #define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
 | |
| 
 | |
| static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
 | |
| static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
 | |
| 
 | |
| static struct path pidfs_root_path = {};
 | |
| 
 | |
| void pidfs_get_root(struct path *path)
 | |
| {
 | |
| 	*path = pidfs_root_path;
 | |
| 	path_get(path);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stashes information that userspace needs to access even after the
 | |
|  * process has been reaped.
 | |
|  */
 | |
| struct pidfs_exit_info {
 | |
| 	__u64 cgroupid;
 | |
| 	__s32 exit_code;
 | |
| 	__u32 coredump_mask;
 | |
| };
 | |
| 
 | |
| struct pidfs_attr {
 | |
| 	struct simple_xattrs *xattrs;
 | |
| 	struct pidfs_exit_info __pei;
 | |
| 	struct pidfs_exit_info *exit_info;
 | |
| };
 | |
| 
 | |
| static struct rb_root pidfs_ino_tree = RB_ROOT;
 | |
| 
 | |
| #if BITS_PER_LONG == 32
 | |
| static inline unsigned long pidfs_ino(u64 ino)
 | |
| {
 | |
| 	return lower_32_bits(ino);
 | |
| }
 | |
| 
 | |
| /* On 32 bit the generation number are the upper 32 bits. */
 | |
| static inline u32 pidfs_gen(u64 ino)
 | |
| {
 | |
| 	return upper_32_bits(ino);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* On 64 bit simply return ino. */
 | |
| static inline unsigned long pidfs_ino(u64 ino)
 | |
| {
 | |
| 	return ino;
 | |
| }
 | |
| 
 | |
| /* On 64 bit the generation number is 0. */
 | |
| static inline u32 pidfs_gen(u64 ino)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
 | |
| {
 | |
| 	struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
 | |
| 	struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
 | |
| 	u64 pid_ino_a = pid_a->ino;
 | |
| 	u64 pid_ino_b = pid_b->ino;
 | |
| 
 | |
| 	if (pid_ino_a < pid_ino_b)
 | |
| 		return -1;
 | |
| 	if (pid_ino_a > pid_ino_b)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void pidfs_add_pid(struct pid *pid)
 | |
| {
 | |
| 	static u64 pidfs_ino_nr = 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * On 64 bit nothing special happens. The 64bit number assigned
 | |
| 	 * to struct pid is the inode number.
 | |
| 	 *
 | |
| 	 * On 32 bit the 64 bit number assigned to struct pid is split
 | |
| 	 * into two 32 bit numbers. The lower 32 bits are used as the
 | |
| 	 * inode number and the upper 32 bits are used as the inode
 | |
| 	 * generation number.
 | |
| 	 *
 | |
| 	 * On 32 bit pidfs_ino() will return the lower 32 bit. When
 | |
| 	 * pidfs_ino() returns zero a wrap around happened. When a
 | |
| 	 * wraparound happens the 64 bit number will be incremented by 2
 | |
| 	 * so inode numbering starts at 2 again.
 | |
| 	 *
 | |
| 	 * On 64 bit comparing two pidfds is as simple as comparing
 | |
| 	 * inode numbers.
 | |
| 	 *
 | |
| 	 * When a wraparound happens on 32 bit multiple pidfds with the
 | |
| 	 * same inode number are likely to exist (This isn't a problem
 | |
| 	 * since before pidfs pidfds used the anonymous inode meaning
 | |
| 	 * all pidfds had the same inode number.). Userspace can
 | |
| 	 * reconstruct the 64 bit identifier by retrieving both the
 | |
| 	 * inode number and the inode generation number to compare or
 | |
| 	 * use file handles.
 | |
| 	 */
 | |
| 	if (pidfs_ino(pidfs_ino_nr) == 0)
 | |
| 		pidfs_ino_nr += 2;
 | |
| 
 | |
| 	pid->ino = pidfs_ino_nr;
 | |
| 	pid->stashed = NULL;
 | |
| 	pid->attr = NULL;
 | |
| 	pidfs_ino_nr++;
 | |
| 
 | |
| 	write_seqcount_begin(&pidmap_lock_seq);
 | |
| 	rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
 | |
| 	write_seqcount_end(&pidmap_lock_seq);
 | |
| }
 | |
| 
 | |
| void pidfs_remove_pid(struct pid *pid)
 | |
| {
 | |
| 	write_seqcount_begin(&pidmap_lock_seq);
 | |
| 	rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
 | |
| 	write_seqcount_end(&pidmap_lock_seq);
 | |
| }
 | |
| 
 | |
| void pidfs_free_pid(struct pid *pid)
 | |
| {
 | |
| 	struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
 | |
| 	struct simple_xattrs *xattrs __free(kfree) = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Any dentry must've been wiped from the pid by now.
 | |
| 	 * Otherwise there's a reference count bug.
 | |
| 	 */
 | |
| 	VFS_WARN_ON_ONCE(pid->stashed);
 | |
| 
 | |
| 	/*
 | |
| 	 * This if an error occurred during e.g., task creation that
 | |
| 	 * causes us to never go through the exit path.
 | |
| 	 */
 | |
| 	if (unlikely(!attr))
 | |
| 		return;
 | |
| 
 | |
| 	/* This never had a pidfd created. */
 | |
| 	if (IS_ERR(attr))
 | |
| 		return;
 | |
| 
 | |
| 	xattrs = no_free_ptr(attr->xattrs);
 | |
| 	if (xattrs)
 | |
| 		simple_xattrs_free(xattrs, NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /**
 | |
|  * pidfd_show_fdinfo - print information about a pidfd
 | |
|  * @m: proc fdinfo file
 | |
|  * @f: file referencing a pidfd
 | |
|  *
 | |
|  * Pid:
 | |
|  * This function will print the pid that a given pidfd refers to in the
 | |
|  * pid namespace of the procfs instance.
 | |
|  * If the pid namespace of the process is not a descendant of the pid
 | |
|  * namespace of the procfs instance 0 will be shown as its pid. This is
 | |
|  * similar to calling getppid() on a process whose parent is outside of
 | |
|  * its pid namespace.
 | |
|  *
 | |
|  * NSpid:
 | |
|  * If pid namespaces are supported then this function will also print
 | |
|  * the pid of a given pidfd refers to for all descendant pid namespaces
 | |
|  * starting from the current pid namespace of the instance, i.e. the
 | |
|  * Pid field and the first entry in the NSpid field will be identical.
 | |
|  * If the pid namespace of the process is not a descendant of the pid
 | |
|  * namespace of the procfs instance 0 will be shown as its first NSpid
 | |
|  * entry and no others will be shown.
 | |
|  * Note that this differs from the Pid and NSpid fields in
 | |
|  * /proc/<pid>/status where Pid and NSpid are always shown relative to
 | |
|  * the  pid namespace of the procfs instance. The difference becomes
 | |
|  * obvious when sending around a pidfd between pid namespaces from a
 | |
|  * different branch of the tree, i.e. where no ancestral relation is
 | |
|  * present between the pid namespaces:
 | |
|  * - create two new pid namespaces ns1 and ns2 in the initial pid
 | |
|  *   namespace (also take care to create new mount namespaces in the
 | |
|  *   new pid namespace and mount procfs)
 | |
|  * - create a process with a pidfd in ns1
 | |
|  * - send pidfd from ns1 to ns2
 | |
|  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
 | |
|  *   have exactly one entry, which is 0
 | |
|  */
 | |
| static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
 | |
| {
 | |
| 	struct pid *pid = pidfd_pid(f);
 | |
| 	struct pid_namespace *ns;
 | |
| 	pid_t nr = -1;
 | |
| 
 | |
| 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
 | |
| 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
 | |
| 		nr = pid_nr_ns(pid, ns);
 | |
| 	}
 | |
| 
 | |
| 	seq_put_decimal_ll(m, "Pid:\t", nr);
 | |
| 
 | |
| #ifdef CONFIG_PID_NS
 | |
| 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
 | |
| 	if (nr > 0) {
 | |
| 		int i;
 | |
| 
 | |
| 		/* If nr is non-zero it means that 'pid' is valid and that
 | |
| 		 * ns, i.e. the pid namespace associated with the procfs
 | |
| 		 * instance, is in the pid namespace hierarchy of pid.
 | |
| 		 * Start at one below the already printed level.
 | |
| 		 */
 | |
| 		for (i = ns->level + 1; i <= pid->level; i++)
 | |
| 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
 | |
| 	}
 | |
| #endif
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Poll support for process exit notification.
 | |
|  */
 | |
| static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
 | |
| {
 | |
| 	struct pid *pid = pidfd_pid(file);
 | |
| 	struct task_struct *task;
 | |
| 	__poll_t poll_flags = 0;
 | |
| 
 | |
| 	poll_wait(file, &pid->wait_pidfd, pts);
 | |
| 	/*
 | |
| 	 * Don't wake waiters if the thread-group leader exited
 | |
| 	 * prematurely. They either get notified when the last subthread
 | |
| 	 * exits or not at all if one of the remaining subthreads execs
 | |
| 	 * and assumes the struct pid of the old thread-group leader.
 | |
| 	 */
 | |
| 	guard(rcu)();
 | |
| 	task = pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!task)
 | |
| 		poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
 | |
| 	else if (task->exit_state && !delay_group_leader(task))
 | |
| 		poll_flags = EPOLLIN | EPOLLRDNORM;
 | |
| 
 | |
| 	return poll_flags;
 | |
| }
 | |
| 
 | |
| static inline bool pid_in_current_pidns(const struct pid *pid)
 | |
| {
 | |
| 	const struct pid_namespace *ns = task_active_pid_ns(current);
 | |
| 
 | |
| 	if (ns->level <= pid->level)
 | |
| 		return pid->numbers[ns->level].ns == ns;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static __u32 pidfs_coredump_mask(unsigned long mm_flags)
 | |
| {
 | |
| 	switch (__get_dumpable(mm_flags)) {
 | |
| 	case SUID_DUMP_USER:
 | |
| 		return PIDFD_COREDUMP_USER;
 | |
| 	case SUID_DUMP_ROOT:
 | |
| 		return PIDFD_COREDUMP_ROOT;
 | |
| 	case SUID_DUMP_DISABLE:
 | |
| 		return PIDFD_COREDUMP_SKIP;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(true);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
 | |
| 	struct task_struct *task __free(put_task) = NULL;
 | |
| 	struct pid *pid = pidfd_pid(file);
 | |
| 	size_t usize = _IOC_SIZE(cmd);
 | |
| 	struct pidfd_info kinfo = {};
 | |
| 	struct pidfs_exit_info *exit_info;
 | |
| 	struct user_namespace *user_ns;
 | |
| 	struct pidfs_attr *attr;
 | |
| 	const struct cred *c;
 | |
| 	__u64 mask;
 | |
| 
 | |
| 	if (!uinfo)
 | |
| 		return -EINVAL;
 | |
| 	if (usize < PIDFD_INFO_SIZE_VER0)
 | |
| 		return -EINVAL; /* First version, no smaller struct possible */
 | |
| 
 | |
| 	if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restrict information retrieval to tasks within the caller's pid
 | |
| 	 * namespace hierarchy.
 | |
| 	 */
 | |
| 	if (!pid_in_current_pidns(pid))
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	attr = READ_ONCE(pid->attr);
 | |
| 	if (mask & PIDFD_INFO_EXIT) {
 | |
| 		exit_info = READ_ONCE(attr->exit_info);
 | |
| 		if (exit_info) {
 | |
| 			kinfo.mask |= PIDFD_INFO_EXIT;
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 			kinfo.cgroupid = exit_info->cgroupid;
 | |
| 			kinfo.mask |= PIDFD_INFO_CGROUPID;
 | |
| #endif
 | |
| 			kinfo.exit_code = exit_info->exit_code;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (mask & PIDFD_INFO_COREDUMP) {
 | |
| 		kinfo.mask |= PIDFD_INFO_COREDUMP;
 | |
| 		kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask);
 | |
| 	}
 | |
| 
 | |
| 	task = get_pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * If the task has already been reaped, only exit
 | |
| 		 * information is available
 | |
| 		 */
 | |
| 		if (!(mask & PIDFD_INFO_EXIT))
 | |
| 			return -ESRCH;
 | |
| 
 | |
| 		goto copy_out;
 | |
| 	}
 | |
| 
 | |
| 	c = get_task_cred(task);
 | |
| 	if (!c)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) {
 | |
| 		task_lock(task);
 | |
| 		if (task->mm) {
 | |
| 			unsigned long flags = __mm_flags_get_dumpable(task->mm);
 | |
| 
 | |
| 			kinfo.coredump_mask = pidfs_coredump_mask(flags);
 | |
| 		}
 | |
| 		task_unlock(task);
 | |
| 	}
 | |
| 
 | |
| 	/* Unconditionally return identifiers and credentials, the rest only on request */
 | |
| 
 | |
| 	user_ns = current_user_ns();
 | |
| 	kinfo.ruid = from_kuid_munged(user_ns, c->uid);
 | |
| 	kinfo.rgid = from_kgid_munged(user_ns, c->gid);
 | |
| 	kinfo.euid = from_kuid_munged(user_ns, c->euid);
 | |
| 	kinfo.egid = from_kgid_munged(user_ns, c->egid);
 | |
| 	kinfo.suid = from_kuid_munged(user_ns, c->suid);
 | |
| 	kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
 | |
| 	kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
 | |
| 	kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
 | |
| 	kinfo.mask |= PIDFD_INFO_CREDS;
 | |
| 	put_cred(c);
 | |
| 
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	if (!kinfo.cgroupid) {
 | |
| 		struct cgroup *cgrp;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		cgrp = task_dfl_cgroup(task);
 | |
| 		kinfo.cgroupid = cgroup_id(cgrp);
 | |
| 		kinfo.mask |= PIDFD_INFO_CGROUPID;
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy pid/tgid last, to reduce the chances the information might be
 | |
| 	 * stale. Note that it is not possible to ensure it will be valid as the
 | |
| 	 * task might return as soon as the copy_to_user finishes, but that's ok
 | |
| 	 * and userspace expects that might happen and can act accordingly, so
 | |
| 	 * this is just best-effort. What we can do however is checking that all
 | |
| 	 * the fields are set correctly, or return ESRCH to avoid providing
 | |
| 	 * incomplete information. */
 | |
| 
 | |
| 	kinfo.ppid = task_ppid_nr_ns(task, NULL);
 | |
| 	kinfo.tgid = task_tgid_vnr(task);
 | |
| 	kinfo.pid = task_pid_vnr(task);
 | |
| 	kinfo.mask |= PIDFD_INFO_PID;
 | |
| 
 | |
| 	if (kinfo.pid == 0 || kinfo.tgid == 0)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| copy_out:
 | |
| 	/*
 | |
| 	 * If userspace and the kernel have the same struct size it can just
 | |
| 	 * be copied. If userspace provides an older struct, only the bits that
 | |
| 	 * userspace knows about will be copied. If userspace provides a new
 | |
| 	 * struct, only the bits that the kernel knows about will be copied.
 | |
| 	 */
 | |
| 	return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
 | |
| }
 | |
| 
 | |
| static bool pidfs_ioctl_valid(unsigned int cmd)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case FS_IOC_GETVERSION:
 | |
| 	case PIDFD_GET_CGROUP_NAMESPACE:
 | |
| 	case PIDFD_GET_IPC_NAMESPACE:
 | |
| 	case PIDFD_GET_MNT_NAMESPACE:
 | |
| 	case PIDFD_GET_NET_NAMESPACE:
 | |
| 	case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
 | |
| 	case PIDFD_GET_TIME_NAMESPACE:
 | |
| 	case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
 | |
| 	case PIDFD_GET_UTS_NAMESPACE:
 | |
| 	case PIDFD_GET_USER_NAMESPACE:
 | |
| 	case PIDFD_GET_PID_NAMESPACE:
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* Extensible ioctls require some more careful checks. */
 | |
| 	switch (_IOC_NR(cmd)) {
 | |
| 	case _IOC_NR(PIDFD_GET_INFO):
 | |
| 		/*
 | |
| 		 * Try to prevent performing a pidfd ioctl when someone
 | |
| 		 * erronously mistook the file descriptor for a pidfd.
 | |
| 		 * This is not perfect but will catch most cases.
 | |
| 		 */
 | |
| 		return extensible_ioctl_valid(cmd, PIDFD_GET_INFO, PIDFD_INFO_SIZE_VER0);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct task_struct *task __free(put_task) = NULL;
 | |
| 	struct nsproxy *nsp __free(put_nsproxy) = NULL;
 | |
| 	struct ns_common *ns_common = NULL;
 | |
| 	struct pid_namespace *pid_ns;
 | |
| 
 | |
| 	if (!pidfs_ioctl_valid(cmd))
 | |
| 		return -ENOIOCTLCMD;
 | |
| 
 | |
| 	if (cmd == FS_IOC_GETVERSION) {
 | |
| 		if (!arg)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		__u32 __user *argp = (__u32 __user *)arg;
 | |
| 		return put_user(file_inode(file)->i_generation, argp);
 | |
| 	}
 | |
| 
 | |
| 	/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
 | |
| 	if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
 | |
| 		return pidfd_info(file, cmd, arg);
 | |
| 
 | |
| 	task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
 | |
| 	if (!task)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	if (arg)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	scoped_guard(task_lock, task) {
 | |
| 		nsp = task->nsproxy;
 | |
| 		if (nsp)
 | |
| 			get_nsproxy(nsp);
 | |
| 	}
 | |
| 	if (!nsp)
 | |
| 		return -ESRCH; /* just pretend it didn't exist */
 | |
| 
 | |
| 	/*
 | |
| 	 * We're trying to open a file descriptor to the namespace so perform a
 | |
| 	 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
 | |
| 	 */
 | |
| 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	/* Namespaces that hang of nsproxy. */
 | |
| 	case PIDFD_GET_CGROUP_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_CGROUPS)) {
 | |
| 			get_cgroup_ns(nsp->cgroup_ns);
 | |
| 			ns_common = to_ns_common(nsp->cgroup_ns);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PIDFD_GET_IPC_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_IPC_NS)) {
 | |
| 			get_ipc_ns(nsp->ipc_ns);
 | |
| 			ns_common = to_ns_common(nsp->ipc_ns);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PIDFD_GET_MNT_NAMESPACE:
 | |
| 		get_mnt_ns(nsp->mnt_ns);
 | |
| 		ns_common = to_ns_common(nsp->mnt_ns);
 | |
| 		break;
 | |
| 	case PIDFD_GET_NET_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_NET_NS)) {
 | |
| 			ns_common = to_ns_common(nsp->net_ns);
 | |
| 			get_net_ns(ns_common);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_PID_NS)) {
 | |
| 			get_pid_ns(nsp->pid_ns_for_children);
 | |
| 			ns_common = to_ns_common(nsp->pid_ns_for_children);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PIDFD_GET_TIME_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_TIME_NS)) {
 | |
| 			get_time_ns(nsp->time_ns);
 | |
| 			ns_common = to_ns_common(nsp->time_ns);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_TIME_NS)) {
 | |
| 			get_time_ns(nsp->time_ns_for_children);
 | |
| 			ns_common = to_ns_common(nsp->time_ns_for_children);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PIDFD_GET_UTS_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_UTS_NS)) {
 | |
| 			get_uts_ns(nsp->uts_ns);
 | |
| 			ns_common = to_ns_common(nsp->uts_ns);
 | |
| 		}
 | |
| 		break;
 | |
| 	/* Namespaces that don't hang of nsproxy. */
 | |
| 	case PIDFD_GET_USER_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_USER_NS)) {
 | |
| 			rcu_read_lock();
 | |
| 			ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
 | |
| 			rcu_read_unlock();
 | |
| 		}
 | |
| 		break;
 | |
| 	case PIDFD_GET_PID_NAMESPACE:
 | |
| 		if (IS_ENABLED(CONFIG_PID_NS)) {
 | |
| 			rcu_read_lock();
 | |
| 			pid_ns = task_active_pid_ns(task);
 | |
| 			if (pid_ns)
 | |
| 				ns_common = to_ns_common(get_pid_ns(pid_ns));
 | |
| 			rcu_read_unlock();
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -ENOIOCTLCMD;
 | |
| 	}
 | |
| 
 | |
| 	if (!ns_common)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/* open_namespace() unconditionally consumes the reference */
 | |
| 	return open_namespace(ns_common);
 | |
| }
 | |
| 
 | |
| static const struct file_operations pidfs_file_operations = {
 | |
| 	.poll		= pidfd_poll,
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	.show_fdinfo	= pidfd_show_fdinfo,
 | |
| #endif
 | |
| 	.unlocked_ioctl	= pidfd_ioctl,
 | |
| 	.compat_ioctl   = compat_ptr_ioctl,
 | |
| };
 | |
| 
 | |
| struct pid *pidfd_pid(const struct file *file)
 | |
| {
 | |
| 	if (file->f_op != &pidfs_file_operations)
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 	return file_inode(file)->i_private;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're called from release_task(). We know there's at least one
 | |
|  * reference to struct pid being held that won't be released until the
 | |
|  * task has been reaped which cannot happen until we're out of
 | |
|  * release_task().
 | |
|  *
 | |
|  * If this struct pid has at least once been referred to by a pidfd then
 | |
|  * pid->attr will be allocated. If not we mark the struct pid as dead so
 | |
|  * anyone who is trying to register it with pidfs will fail to do so.
 | |
|  * Otherwise we would hand out pidfs for reaped tasks without having
 | |
|  * exit information available.
 | |
|  *
 | |
|  * Worst case is that we've filled in the info and the pid gets freed
 | |
|  * right away in free_pid() when no one holds a pidfd anymore. Since
 | |
|  * pidfs_exit() currently is placed after exit_task_work() we know that
 | |
|  * it cannot be us aka the exiting task holding a pidfd to itself.
 | |
|  */
 | |
| void pidfs_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	struct pid *pid = task_pid(tsk);
 | |
| 	struct pidfs_attr *attr;
 | |
| 	struct pidfs_exit_info *exit_info;
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	struct cgroup *cgrp;
 | |
| #endif
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	guard(spinlock_irq)(&pid->wait_pidfd.lock);
 | |
| 	attr = pid->attr;
 | |
| 	if (!attr) {
 | |
| 		/*
 | |
| 		 * No one ever held a pidfd for this struct pid.
 | |
| 		 * Mark it as dead so no one can add a pidfs
 | |
| 		 * entry anymore. We're about to be reaped and
 | |
| 		 * so no exit information would be available.
 | |
| 		 */
 | |
| 		pid->attr = PIDFS_PID_DEAD;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If @pid->attr is set someone might still legitimately hold a
 | |
| 	 * pidfd to @pid or someone might concurrently still be getting
 | |
| 	 * a reference to an already stashed dentry from @pid->stashed.
 | |
| 	 * So defer cleaning @pid->attr until the last reference to @pid
 | |
| 	 * is put
 | |
| 	 */
 | |
| 
 | |
| 	exit_info = &attr->__pei;
 | |
| 
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	rcu_read_lock();
 | |
| 	cgrp = task_dfl_cgroup(tsk);
 | |
| 	exit_info->cgroupid = cgroup_id(cgrp);
 | |
| 	rcu_read_unlock();
 | |
| #endif
 | |
| 	exit_info->exit_code = tsk->exit_code;
 | |
| 
 | |
| 	/* Ensure that PIDFD_GET_INFO sees either all or nothing. */
 | |
| 	smp_store_release(&attr->exit_info, &attr->__pei);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COREDUMP
 | |
| void pidfs_coredump(const struct coredump_params *cprm)
 | |
| {
 | |
| 	struct pid *pid = cprm->pid;
 | |
| 	struct pidfs_exit_info *exit_info;
 | |
| 	struct pidfs_attr *attr;
 | |
| 	__u32 coredump_mask = 0;
 | |
| 
 | |
| 	attr = READ_ONCE(pid->attr);
 | |
| 
 | |
| 	VFS_WARN_ON_ONCE(!attr);
 | |
| 	VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
 | |
| 
 | |
| 	exit_info = &attr->__pei;
 | |
| 	/* Note how we were coredumped. */
 | |
| 	coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
 | |
| 	/* Note that we actually did coredump. */
 | |
| 	coredump_mask |= PIDFD_COREDUMPED;
 | |
| 	/* If coredumping is set to skip we should never end up here. */
 | |
| 	VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
 | |
| 	smp_store_release(&exit_info->coredump_mask, coredump_mask);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct vfsmount *pidfs_mnt __ro_after_init;
 | |
| 
 | |
| /*
 | |
|  * The vfs falls back to simple_setattr() if i_op->setattr() isn't
 | |
|  * implemented. Let's reject it completely until we have a clean
 | |
|  * permission concept for pidfds.
 | |
|  */
 | |
| static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
 | |
| 			 struct iattr *attr)
 | |
| {
 | |
| 	return anon_inode_setattr(idmap, dentry, attr);
 | |
| }
 | |
| 
 | |
| static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
 | |
| 			 struct kstat *stat, u32 request_mask,
 | |
| 			 unsigned int query_flags)
 | |
| {
 | |
| 	return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
 | |
| }
 | |
| 
 | |
| static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
 | |
| {
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 	struct pid *pid = inode->i_private;
 | |
| 	struct pidfs_attr *attr = pid->attr;
 | |
| 	struct simple_xattrs *xattrs;
 | |
| 
 | |
| 	xattrs = READ_ONCE(attr->xattrs);
 | |
| 	if (!xattrs)
 | |
| 		return 0;
 | |
| 
 | |
| 	return simple_xattr_list(inode, xattrs, buf, size);
 | |
| }
 | |
| 
 | |
| static const struct inode_operations pidfs_inode_operations = {
 | |
| 	.getattr	= pidfs_getattr,
 | |
| 	.setattr	= pidfs_setattr,
 | |
| 	.listxattr	= pidfs_listxattr,
 | |
| };
 | |
| 
 | |
| static void pidfs_evict_inode(struct inode *inode)
 | |
| {
 | |
| 	struct pid *pid = inode->i_private;
 | |
| 
 | |
| 	clear_inode(inode);
 | |
| 	put_pid(pid);
 | |
| }
 | |
| 
 | |
| static const struct super_operations pidfs_sops = {
 | |
| 	.drop_inode	= inode_just_drop,
 | |
| 	.evict_inode	= pidfs_evict_inode,
 | |
| 	.statfs		= simple_statfs,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * 'lsof' has knowledge of out historical anon_inode use, and expects
 | |
|  * the pidfs dentry name to start with 'anon_inode'.
 | |
|  */
 | |
| static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
 | |
| {
 | |
| 	return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
 | |
| }
 | |
| 
 | |
| const struct dentry_operations pidfs_dentry_operations = {
 | |
| 	.d_dname	= pidfs_dname,
 | |
| 	.d_prune	= stashed_dentry_prune,
 | |
| };
 | |
| 
 | |
| static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
 | |
| 			   struct inode *parent)
 | |
| {
 | |
| 	const struct pid *pid = inode->i_private;
 | |
| 
 | |
| 	if (*max_len < 2) {
 | |
| 		*max_len = 2;
 | |
| 		return FILEID_INVALID;
 | |
| 	}
 | |
| 
 | |
| 	*max_len = 2;
 | |
| 	*(u64 *)fh = pid->ino;
 | |
| 	return FILEID_KERNFS;
 | |
| }
 | |
| 
 | |
| static int pidfs_ino_find(const void *key, const struct rb_node *node)
 | |
| {
 | |
| 	const u64 pid_ino = *(u64 *)key;
 | |
| 	const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
 | |
| 
 | |
| 	if (pid_ino < pid->ino)
 | |
| 		return -1;
 | |
| 	if (pid_ino > pid->ino)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Find a struct pid based on the inode number. */
 | |
| static struct pid *pidfs_ino_get_pid(u64 ino)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	struct rb_node *node;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	guard(rcu)();
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&pidmap_lock_seq);
 | |
| 		node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
 | |
| 		if (node)
 | |
| 			break;
 | |
| 	} while (read_seqcount_retry(&pidmap_lock_seq, seq));
 | |
| 
 | |
| 	if (!node)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pid = rb_entry(node, struct pid, pidfs_node);
 | |
| 
 | |
| 	/* Within our pid namespace hierarchy? */
 | |
| 	if (pid_vnr(pid) == 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return get_pid(pid);
 | |
| }
 | |
| 
 | |
| static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
 | |
| 					 struct fid *fid, int fh_len,
 | |
| 					 int fh_type)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 pid_ino;
 | |
| 	struct path path;
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	if (fh_len < 2)
 | |
| 		return NULL;
 | |
| 
 | |
| 	switch (fh_type) {
 | |
| 	case FILEID_KERNFS:
 | |
| 		pid_ino = *(u64 *)fid;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	pid = pidfs_ino_get_pid(pid_ino);
 | |
| 	if (!pid)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
 | |
| 	if (ret < 0)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	VFS_WARN_ON_ONCE(!pid->attr);
 | |
| 
 | |
| 	mntput(path.mnt);
 | |
| 	return path.dentry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure that we reject any nonsensical flags that users pass via
 | |
|  * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
 | |
|  * PIDFD_NONBLOCK as O_NONBLOCK.
 | |
|  */
 | |
| #define VALID_FILE_HANDLE_OPEN_FLAGS \
 | |
| 	(O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
 | |
| 
 | |
| static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
 | |
| 				   unsigned int oflags)
 | |
| {
 | |
| 	if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * pidfd_ino_get_pid() will verify that the struct pid is part
 | |
| 	 * of the caller's pid namespace hierarchy. No further
 | |
| 	 * permission checks are needed.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct file *pidfs_export_open(const struct path *path, unsigned int oflags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Clear O_LARGEFILE as open_by_handle_at() forces it and raise
 | |
| 	 * O_RDWR as pidfds always are.
 | |
| 	 */
 | |
| 	oflags &= ~O_LARGEFILE;
 | |
| 	return dentry_open(path, oflags | O_RDWR, current_cred());
 | |
| }
 | |
| 
 | |
| static const struct export_operations pidfs_export_operations = {
 | |
| 	.encode_fh	= pidfs_encode_fh,
 | |
| 	.fh_to_dentry	= pidfs_fh_to_dentry,
 | |
| 	.open		= pidfs_export_open,
 | |
| 	.permission	= pidfs_export_permission,
 | |
| };
 | |
| 
 | |
| static int pidfs_init_inode(struct inode *inode, void *data)
 | |
| {
 | |
| 	const struct pid *pid = data;
 | |
| 
 | |
| 	inode->i_private = data;
 | |
| 	inode->i_flags |= S_PRIVATE | S_ANON_INODE;
 | |
| 	/* We allow to set xattrs. */
 | |
| 	inode->i_flags &= ~S_IMMUTABLE;
 | |
| 	inode->i_mode |= S_IRWXU;
 | |
| 	inode->i_op = &pidfs_inode_operations;
 | |
| 	inode->i_fop = &pidfs_file_operations;
 | |
| 	inode->i_ino = pidfs_ino(pid->ino);
 | |
| 	inode->i_generation = pidfs_gen(pid->ino);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pidfs_put_data(void *data)
 | |
| {
 | |
| 	struct pid *pid = data;
 | |
| 	put_pid(pid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pidfs_register_pid - register a struct pid in pidfs
 | |
|  * @pid: pid to pin
 | |
|  *
 | |
|  * Register a struct pid in pidfs.
 | |
|  *
 | |
|  * Return: On success zero, on error a negative error code is returned.
 | |
|  */
 | |
| int pidfs_register_pid(struct pid *pid)
 | |
| {
 | |
| 	struct pidfs_attr *new_attr __free(kfree) = NULL;
 | |
| 	struct pidfs_attr *attr;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (!pid)
 | |
| 		return 0;
 | |
| 
 | |
| 	attr = READ_ONCE(pid->attr);
 | |
| 	if (unlikely(attr == PIDFS_PID_DEAD))
 | |
| 		return PTR_ERR(PIDFS_PID_DEAD);
 | |
| 	if (attr)
 | |
| 		return 0;
 | |
| 
 | |
| 	new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
 | |
| 	if (!new_attr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Synchronize with pidfs_exit(). */
 | |
| 	guard(spinlock_irq)(&pid->wait_pidfd.lock);
 | |
| 
 | |
| 	attr = pid->attr;
 | |
| 	if (unlikely(attr == PIDFS_PID_DEAD))
 | |
| 		return PTR_ERR(PIDFS_PID_DEAD);
 | |
| 	if (unlikely(attr))
 | |
| 		return 0;
 | |
| 
 | |
| 	pid->attr = no_free_ptr(new_attr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
 | |
| 					 struct dentry *dentry)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct pid *pid = d_inode(dentry)->i_private;
 | |
| 
 | |
| 	VFS_WARN_ON_ONCE(stashed != &pid->stashed);
 | |
| 
 | |
| 	ret = pidfs_register_pid(pid);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	return stash_dentry(stashed, dentry);
 | |
| }
 | |
| 
 | |
| static const struct stashed_operations pidfs_stashed_ops = {
 | |
| 	.stash_dentry	= pidfs_stash_dentry,
 | |
| 	.init_inode	= pidfs_init_inode,
 | |
| 	.put_data	= pidfs_put_data,
 | |
| };
 | |
| 
 | |
| static int pidfs_xattr_get(const struct xattr_handler *handler,
 | |
| 			   struct dentry *unused, struct inode *inode,
 | |
| 			   const char *suffix, void *value, size_t size)
 | |
| {
 | |
| 	struct pid *pid = inode->i_private;
 | |
| 	struct pidfs_attr *attr = pid->attr;
 | |
| 	const char *name;
 | |
| 	struct simple_xattrs *xattrs;
 | |
| 
 | |
| 	xattrs = READ_ONCE(attr->xattrs);
 | |
| 	if (!xattrs)
 | |
| 		return 0;
 | |
| 
 | |
| 	name = xattr_full_name(handler, suffix);
 | |
| 	return simple_xattr_get(xattrs, name, value, size);
 | |
| }
 | |
| 
 | |
| static int pidfs_xattr_set(const struct xattr_handler *handler,
 | |
| 			   struct mnt_idmap *idmap, struct dentry *unused,
 | |
| 			   struct inode *inode, const char *suffix,
 | |
| 			   const void *value, size_t size, int flags)
 | |
| {
 | |
| 	struct pid *pid = inode->i_private;
 | |
| 	struct pidfs_attr *attr = pid->attr;
 | |
| 	const char *name;
 | |
| 	struct simple_xattrs *xattrs;
 | |
| 	struct simple_xattr *old_xattr;
 | |
| 
 | |
| 	/* Ensure we're the only one to set @attr->xattrs. */
 | |
| 	WARN_ON_ONCE(!inode_is_locked(inode));
 | |
| 
 | |
| 	xattrs = READ_ONCE(attr->xattrs);
 | |
| 	if (!xattrs) {
 | |
| 		xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
 | |
| 		if (!xattrs)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		simple_xattrs_init(xattrs);
 | |
| 		smp_store_release(&pid->attr->xattrs, xattrs);
 | |
| 	}
 | |
| 
 | |
| 	name = xattr_full_name(handler, suffix);
 | |
| 	old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
 | |
| 	if (IS_ERR(old_xattr))
 | |
| 		return PTR_ERR(old_xattr);
 | |
| 
 | |
| 	simple_xattr_free(old_xattr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct xattr_handler pidfs_trusted_xattr_handler = {
 | |
| 	.prefix = XATTR_TRUSTED_PREFIX,
 | |
| 	.get	= pidfs_xattr_get,
 | |
| 	.set	= pidfs_xattr_set,
 | |
| };
 | |
| 
 | |
| static const struct xattr_handler *const pidfs_xattr_handlers[] = {
 | |
| 	&pidfs_trusted_xattr_handler,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static int pidfs_init_fs_context(struct fs_context *fc)
 | |
| {
 | |
| 	struct pseudo_fs_context *ctx;
 | |
| 
 | |
| 	ctx = init_pseudo(fc, PID_FS_MAGIC);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	fc->s_iflags |= SB_I_NOEXEC;
 | |
| 	fc->s_iflags |= SB_I_NODEV;
 | |
| 	ctx->ops = &pidfs_sops;
 | |
| 	ctx->eops = &pidfs_export_operations;
 | |
| 	ctx->dops = &pidfs_dentry_operations;
 | |
| 	ctx->xattr = pidfs_xattr_handlers;
 | |
| 	fc->s_fs_info = (void *)&pidfs_stashed_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct file_system_type pidfs_type = {
 | |
| 	.name			= "pidfs",
 | |
| 	.init_fs_context	= pidfs_init_fs_context,
 | |
| 	.kill_sb		= kill_anon_super,
 | |
| };
 | |
| 
 | |
| struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
 | |
| {
 | |
| 	struct file *pidfd_file;
 | |
| 	struct path path __free(path_put) = {};
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that PIDFD_STALE can be passed as a flag without
 | |
| 	 * overloading other uapi pidfd flags.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
 | |
| 	BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
 | |
| 
 | |
| 	ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
 | |
| 	if (ret < 0)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	VFS_WARN_ON_ONCE(!pid->attr);
 | |
| 
 | |
| 	flags &= ~PIDFD_STALE;
 | |
| 	flags |= O_RDWR;
 | |
| 	pidfd_file = dentry_open(&path, flags, current_cred());
 | |
| 	/* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
 | |
| 	if (!IS_ERR(pidfd_file))
 | |
| 		pidfd_file->f_flags |= (flags & PIDFD_THREAD);
 | |
| 
 | |
| 	return pidfd_file;
 | |
| }
 | |
| 
 | |
| void __init pidfs_init(void)
 | |
| {
 | |
| 	pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
 | |
| 					 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
 | |
| 					  SLAB_ACCOUNT | SLAB_PANIC), NULL);
 | |
| 
 | |
| 	pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
 | |
| 					       sizeof(struct simple_xattrs), 0,
 | |
| 					       (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
 | |
| 						SLAB_ACCOUNT | SLAB_PANIC), NULL);
 | |
| 
 | |
| 	pidfs_mnt = kern_mount(&pidfs_type);
 | |
| 	if (IS_ERR(pidfs_mnt))
 | |
| 		panic("Failed to mount pidfs pseudo filesystem");
 | |
| 
 | |
| 	pidfs_root_path.mnt = pidfs_mnt;
 | |
| 	pidfs_root_path.dentry = pidfs_mnt->mnt_root;
 | |
| }
 |