mirror of
https://github.com/torvalds/linux.git
synced 2025-11-01 00:58:39 +02:00
The following NULL pointer dereference is encountered on mount of resctrl fs
after booting a system that supports assignable counters with the
"rdt=!mbmtotal,!mbmlocal" kernel parameters:
BUG: kernel NULL pointer dereference, address: 0000000000000008
RIP: 0010:mbm_cntr_get
Call Trace:
rdtgroup_assign_cntr_event
rdtgroup_assign_cntrs
rdt_get_tree
Specifying the kernel parameter "rdt=!mbmtotal,!mbmlocal" effectively disables
the legacy X86_FEATURE_CQM_MBM_TOTAL and X86_FEATURE_CQM_MBM_LOCAL features
and the MBM events they represent. This results in the per-domain MBM event
related data structures to not be allocated during early initialization.
resctrl fs initialization follows by implicitly enabling both MBM total and
local events on a system that supports assignable counters (mbm_event mode),
but this enabling occurs after the per-domain data structures have been
created.
After booting, resctrl fs assumes that an enabled event can access all its
state. This results in NULL pointer dereference when resctrl attempts to
access the un-allocated structures of an enabled event.
Remove the late MBM event enabling from resctrl fs.
This leaves a problem where the X86_FEATURE_CQM_MBM_TOTAL and
X86_FEATURE_CQM_MBM_LOCAL features may be disabled while assignable counter
(mbm_event) mode is enabled without any events to support. Switching between
the "default" and "mbm_event" mode without any events is not practical.
Create a dependency between the X86_FEATURE_{CQM_MBM_TOTAL,CQM_MBM_LOCAL} and
X86_FEATURE_ABMC (assignable counter) hardware features. An x86 system that
supports assignable counters now requires support of X86_FEATURE_CQM_MBM_TOTAL
or X86_FEATURE_CQM_MBM_LOCAL.
This ensures all needed MBM related data structures are created before use and
that it is only possible to switch between "default" and "mbm_event" mode when
the same events are available in both modes. This dependency does not exist in
the hardware but this usage of these feature settings work for known systems.
[ bp: Massage commit message. ]
Fixes: 13390861b4 ("x86,fs/resctrl: Detect Assignable Bandwidth Monitoring feature details")
Co-developed-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://patch.msgid.link/a62e6ac063d0693475615edd213d5be5e55443e6.1760560934.git.babu.moger@amd.com
1811 lines
48 KiB
C
1811 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Resource Director Technology(RDT)
|
|
* - Monitoring code
|
|
*
|
|
* Copyright (C) 2017 Intel Corporation
|
|
*
|
|
* Author:
|
|
* Vikas Shivappa <vikas.shivappa@intel.com>
|
|
*
|
|
* This replaces the cqm.c based on perf but we reuse a lot of
|
|
* code and datastructures originally from Peter Zijlstra and Matt Fleming.
|
|
*
|
|
* More information about RDT be found in the Intel (R) x86 Architecture
|
|
* Software Developer Manual June 2016, volume 3, section 17.17.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "resctrl: " fmt
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/resctrl.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
|
|
#include "monitor_trace.h"
|
|
|
|
/**
|
|
* struct rmid_entry - dirty tracking for all RMID.
|
|
* @closid: The CLOSID for this entry.
|
|
* @rmid: The RMID for this entry.
|
|
* @busy: The number of domains with cached data using this RMID.
|
|
* @list: Member of the rmid_free_lru list when busy == 0.
|
|
*
|
|
* Depending on the architecture the correct monitor is accessed using
|
|
* both @closid and @rmid, or @rmid only.
|
|
*
|
|
* Take the rdtgroup_mutex when accessing.
|
|
*/
|
|
struct rmid_entry {
|
|
u32 closid;
|
|
u32 rmid;
|
|
int busy;
|
|
struct list_head list;
|
|
};
|
|
|
|
/*
|
|
* @rmid_free_lru - A least recently used list of free RMIDs
|
|
* These RMIDs are guaranteed to have an occupancy less than the
|
|
* threshold occupancy
|
|
*/
|
|
static LIST_HEAD(rmid_free_lru);
|
|
|
|
/*
|
|
* @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
|
|
* Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
|
|
* Indexed by CLOSID. Protected by rdtgroup_mutex.
|
|
*/
|
|
static u32 *closid_num_dirty_rmid;
|
|
|
|
/*
|
|
* @rmid_limbo_count - count of currently unused but (potentially)
|
|
* dirty RMIDs.
|
|
* This counts RMIDs that no one is currently using but that
|
|
* may have a occupancy value > resctrl_rmid_realloc_threshold. User can
|
|
* change the threshold occupancy value.
|
|
*/
|
|
static unsigned int rmid_limbo_count;
|
|
|
|
/*
|
|
* @rmid_entry - The entry in the limbo and free lists.
|
|
*/
|
|
static struct rmid_entry *rmid_ptrs;
|
|
|
|
/*
|
|
* This is the threshold cache occupancy in bytes at which we will consider an
|
|
* RMID available for re-allocation.
|
|
*/
|
|
unsigned int resctrl_rmid_realloc_threshold;
|
|
|
|
/*
|
|
* This is the maximum value for the reallocation threshold, in bytes.
|
|
*/
|
|
unsigned int resctrl_rmid_realloc_limit;
|
|
|
|
/*
|
|
* x86 and arm64 differ in their handling of monitoring.
|
|
* x86's RMID are independent numbers, there is only one source of traffic
|
|
* with an RMID value of '1'.
|
|
* arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
|
|
* traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
|
|
* value is no longer unique.
|
|
* To account for this, resctrl uses an index. On x86 this is just the RMID,
|
|
* on arm64 it encodes the CLOSID and RMID. This gives a unique number.
|
|
*
|
|
* The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
|
|
* must accept an attempt to read every index.
|
|
*/
|
|
static inline struct rmid_entry *__rmid_entry(u32 idx)
|
|
{
|
|
struct rmid_entry *entry;
|
|
u32 closid, rmid;
|
|
|
|
entry = &rmid_ptrs[idx];
|
|
resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
|
|
|
|
WARN_ON_ONCE(entry->closid != closid);
|
|
WARN_ON_ONCE(entry->rmid != rmid);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static void limbo_release_entry(struct rmid_entry *entry)
|
|
{
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
rmid_limbo_count--;
|
|
list_add_tail(&entry->list, &rmid_free_lru);
|
|
|
|
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
|
|
closid_num_dirty_rmid[entry->closid]--;
|
|
}
|
|
|
|
/*
|
|
* Check the RMIDs that are marked as busy for this domain. If the
|
|
* reported LLC occupancy is below the threshold clear the busy bit and
|
|
* decrement the count. If the busy count gets to zero on an RMID, we
|
|
* free the RMID
|
|
*/
|
|
void __check_limbo(struct rdt_mon_domain *d, bool force_free)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
|
|
struct rmid_entry *entry;
|
|
u32 idx, cur_idx = 1;
|
|
void *arch_mon_ctx;
|
|
bool rmid_dirty;
|
|
u64 val = 0;
|
|
|
|
arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
|
|
if (IS_ERR(arch_mon_ctx)) {
|
|
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
|
|
PTR_ERR(arch_mon_ctx));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Skip RMID 0 and start from RMID 1 and check all the RMIDs that
|
|
* are marked as busy for occupancy < threshold. If the occupancy
|
|
* is less than the threshold decrement the busy counter of the
|
|
* RMID and move it to the free list when the counter reaches 0.
|
|
*/
|
|
for (;;) {
|
|
idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
|
|
if (idx >= idx_limit)
|
|
break;
|
|
|
|
entry = __rmid_entry(idx);
|
|
if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
|
|
QOS_L3_OCCUP_EVENT_ID, &val,
|
|
arch_mon_ctx)) {
|
|
rmid_dirty = true;
|
|
} else {
|
|
rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
|
|
|
|
/*
|
|
* x86's CLOSID and RMID are independent numbers, so the entry's
|
|
* CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
|
|
* RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
|
|
* used to select the configuration. It is thus necessary to track both
|
|
* CLOSID and RMID because there may be dependencies between them
|
|
* on some architectures.
|
|
*/
|
|
trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
|
|
}
|
|
|
|
if (force_free || !rmid_dirty) {
|
|
clear_bit(idx, d->rmid_busy_llc);
|
|
if (!--entry->busy)
|
|
limbo_release_entry(entry);
|
|
}
|
|
cur_idx = idx + 1;
|
|
}
|
|
|
|
resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
|
|
}
|
|
|
|
bool has_busy_rmid(struct rdt_mon_domain *d)
|
|
{
|
|
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
|
|
|
|
return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
|
|
}
|
|
|
|
static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
|
|
{
|
|
struct rmid_entry *itr;
|
|
u32 itr_idx, cmp_idx;
|
|
|
|
if (list_empty(&rmid_free_lru))
|
|
return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
|
|
|
|
list_for_each_entry(itr, &rmid_free_lru, list) {
|
|
/*
|
|
* Get the index of this free RMID, and the index it would need
|
|
* to be if it were used with this CLOSID.
|
|
* If the CLOSID is irrelevant on this architecture, the two
|
|
* index values are always the same on every entry and thus the
|
|
* very first entry will be returned.
|
|
*/
|
|
itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
|
|
cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
|
|
|
|
if (itr_idx == cmp_idx)
|
|
return itr;
|
|
}
|
|
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
/**
|
|
* resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
|
|
* RMID are clean, or the CLOSID that has
|
|
* the most clean RMID.
|
|
*
|
|
* MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
|
|
* may not be able to allocate clean RMID. To avoid this the allocator will
|
|
* choose the CLOSID with the most clean RMID.
|
|
*
|
|
* When the CLOSID and RMID are independent numbers, the first free CLOSID will
|
|
* be returned.
|
|
*/
|
|
int resctrl_find_cleanest_closid(void)
|
|
{
|
|
u32 cleanest_closid = ~0;
|
|
int i = 0;
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
|
|
return -EIO;
|
|
|
|
for (i = 0; i < closids_supported(); i++) {
|
|
int num_dirty;
|
|
|
|
if (closid_allocated(i))
|
|
continue;
|
|
|
|
num_dirty = closid_num_dirty_rmid[i];
|
|
if (num_dirty == 0)
|
|
return i;
|
|
|
|
if (cleanest_closid == ~0)
|
|
cleanest_closid = i;
|
|
|
|
if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
|
|
cleanest_closid = i;
|
|
}
|
|
|
|
if (cleanest_closid == ~0)
|
|
return -ENOSPC;
|
|
|
|
return cleanest_closid;
|
|
}
|
|
|
|
/*
|
|
* For MPAM the RMID value is not unique, and has to be considered with
|
|
* the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
|
|
* allows all domains to be managed by a single free list.
|
|
* Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
|
|
*/
|
|
int alloc_rmid(u32 closid)
|
|
{
|
|
struct rmid_entry *entry;
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
entry = resctrl_find_free_rmid(closid);
|
|
if (IS_ERR(entry))
|
|
return PTR_ERR(entry);
|
|
|
|
list_del(&entry->list);
|
|
return entry->rmid;
|
|
}
|
|
|
|
static void add_rmid_to_limbo(struct rmid_entry *entry)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
struct rdt_mon_domain *d;
|
|
u32 idx;
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
/* Walking r->domains, ensure it can't race with cpuhp */
|
|
lockdep_assert_cpus_held();
|
|
|
|
idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
|
|
|
|
entry->busy = 0;
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list) {
|
|
/*
|
|
* For the first limbo RMID in the domain,
|
|
* setup up the limbo worker.
|
|
*/
|
|
if (!has_busy_rmid(d))
|
|
cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
|
|
RESCTRL_PICK_ANY_CPU);
|
|
set_bit(idx, d->rmid_busy_llc);
|
|
entry->busy++;
|
|
}
|
|
|
|
rmid_limbo_count++;
|
|
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
|
|
closid_num_dirty_rmid[entry->closid]++;
|
|
}
|
|
|
|
void free_rmid(u32 closid, u32 rmid)
|
|
{
|
|
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
|
|
struct rmid_entry *entry;
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
/*
|
|
* Do not allow the default rmid to be free'd. Comparing by index
|
|
* allows architectures that ignore the closid parameter to avoid an
|
|
* unnecessary check.
|
|
*/
|
|
if (!resctrl_arch_mon_capable() ||
|
|
idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
|
|
RESCTRL_RESERVED_RMID))
|
|
return;
|
|
|
|
entry = __rmid_entry(idx);
|
|
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID))
|
|
add_rmid_to_limbo(entry);
|
|
else
|
|
list_add_tail(&entry->list, &rmid_free_lru);
|
|
}
|
|
|
|
static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
|
|
u32 rmid, enum resctrl_event_id evtid)
|
|
{
|
|
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
|
|
struct mbm_state *state;
|
|
|
|
if (!resctrl_is_mbm_event(evtid))
|
|
return NULL;
|
|
|
|
state = d->mbm_states[MBM_STATE_IDX(evtid)];
|
|
|
|
return state ? &state[idx] : NULL;
|
|
}
|
|
|
|
/*
|
|
* mbm_cntr_get() - Return the counter ID for the matching @evtid and @rdtgrp.
|
|
*
|
|
* Return:
|
|
* Valid counter ID on success, or -ENOENT on failure.
|
|
*/
|
|
static int mbm_cntr_get(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
|
|
{
|
|
int cntr_id;
|
|
|
|
if (!r->mon.mbm_cntr_assignable)
|
|
return -ENOENT;
|
|
|
|
if (!resctrl_is_mbm_event(evtid))
|
|
return -ENOENT;
|
|
|
|
for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) {
|
|
if (d->cntr_cfg[cntr_id].rdtgrp == rdtgrp &&
|
|
d->cntr_cfg[cntr_id].evtid == evtid)
|
|
return cntr_id;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* mbm_cntr_alloc() - Initialize and return a new counter ID in the domain @d.
|
|
* Caller must ensure that the specified event is not assigned already.
|
|
*
|
|
* Return:
|
|
* Valid counter ID on success, or -ENOSPC on failure.
|
|
*/
|
|
static int mbm_cntr_alloc(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
|
|
{
|
|
int cntr_id;
|
|
|
|
for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) {
|
|
if (!d->cntr_cfg[cntr_id].rdtgrp) {
|
|
d->cntr_cfg[cntr_id].rdtgrp = rdtgrp;
|
|
d->cntr_cfg[cntr_id].evtid = evtid;
|
|
return cntr_id;
|
|
}
|
|
}
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* mbm_cntr_free() - Clear the counter ID configuration details in the domain @d.
|
|
*/
|
|
static void mbm_cntr_free(struct rdt_mon_domain *d, int cntr_id)
|
|
{
|
|
memset(&d->cntr_cfg[cntr_id], 0, sizeof(*d->cntr_cfg));
|
|
}
|
|
|
|
static int __mon_event_count(struct rdtgroup *rdtgrp, struct rmid_read *rr)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
u32 closid = rdtgrp->closid;
|
|
u32 rmid = rdtgrp->mon.rmid;
|
|
struct rdt_mon_domain *d;
|
|
int cntr_id = -ENOENT;
|
|
struct mbm_state *m;
|
|
int err, ret;
|
|
u64 tval = 0;
|
|
|
|
if (rr->is_mbm_cntr) {
|
|
cntr_id = mbm_cntr_get(rr->r, rr->d, rdtgrp, rr->evtid);
|
|
if (cntr_id < 0) {
|
|
rr->err = -ENOENT;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (rr->first) {
|
|
if (rr->is_mbm_cntr)
|
|
resctrl_arch_reset_cntr(rr->r, rr->d, closid, rmid, cntr_id, rr->evtid);
|
|
else
|
|
resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
|
|
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
|
|
if (m)
|
|
memset(m, 0, sizeof(struct mbm_state));
|
|
return 0;
|
|
}
|
|
|
|
if (rr->d) {
|
|
/* Reading a single domain, must be on a CPU in that domain. */
|
|
if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
|
|
return -EINVAL;
|
|
if (rr->is_mbm_cntr)
|
|
rr->err = resctrl_arch_cntr_read(rr->r, rr->d, closid, rmid, cntr_id,
|
|
rr->evtid, &tval);
|
|
else
|
|
rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
|
|
rr->evtid, &tval, rr->arch_mon_ctx);
|
|
if (rr->err)
|
|
return rr->err;
|
|
|
|
rr->val += tval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Summing domains that share a cache, must be on a CPU for that cache. */
|
|
if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Legacy files must report the sum of an event across all
|
|
* domains that share the same L3 cache instance.
|
|
* Report success if a read from any domain succeeds, -EINVAL
|
|
* (translated to "Unavailable" for user space) if reading from
|
|
* all domains fail for any reason.
|
|
*/
|
|
ret = -EINVAL;
|
|
list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
|
|
if (d->ci_id != rr->ci->id)
|
|
continue;
|
|
if (rr->is_mbm_cntr)
|
|
err = resctrl_arch_cntr_read(rr->r, d, closid, rmid, cntr_id,
|
|
rr->evtid, &tval);
|
|
else
|
|
err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
|
|
rr->evtid, &tval, rr->arch_mon_ctx);
|
|
if (!err) {
|
|
rr->val += tval;
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
rr->err = ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* mbm_bw_count() - Update bw count from values previously read by
|
|
* __mon_event_count().
|
|
* @rdtgrp: resctrl group associated with the CLOSID and RMID to identify
|
|
* the cached mbm_state.
|
|
* @rr: The struct rmid_read populated by __mon_event_count().
|
|
*
|
|
* Supporting function to calculate the memory bandwidth
|
|
* and delta bandwidth in MBps. The chunks value previously read by
|
|
* __mon_event_count() is compared with the chunks value from the previous
|
|
* invocation. This must be called once per second to maintain values in MBps.
|
|
*/
|
|
static void mbm_bw_count(struct rdtgroup *rdtgrp, struct rmid_read *rr)
|
|
{
|
|
u64 cur_bw, bytes, cur_bytes;
|
|
u32 closid = rdtgrp->closid;
|
|
u32 rmid = rdtgrp->mon.rmid;
|
|
struct mbm_state *m;
|
|
|
|
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
|
|
if (WARN_ON_ONCE(!m))
|
|
return;
|
|
|
|
cur_bytes = rr->val;
|
|
bytes = cur_bytes - m->prev_bw_bytes;
|
|
m->prev_bw_bytes = cur_bytes;
|
|
|
|
cur_bw = bytes / SZ_1M;
|
|
|
|
m->prev_bw = cur_bw;
|
|
}
|
|
|
|
/*
|
|
* This is scheduled by mon_event_read() to read the CQM/MBM counters
|
|
* on a domain.
|
|
*/
|
|
void mon_event_count(void *info)
|
|
{
|
|
struct rdtgroup *rdtgrp, *entry;
|
|
struct rmid_read *rr = info;
|
|
struct list_head *head;
|
|
int ret;
|
|
|
|
rdtgrp = rr->rgrp;
|
|
|
|
ret = __mon_event_count(rdtgrp, rr);
|
|
|
|
/*
|
|
* For Ctrl groups read data from child monitor groups and
|
|
* add them together. Count events which are read successfully.
|
|
* Discard the rmid_read's reporting errors.
|
|
*/
|
|
head = &rdtgrp->mon.crdtgrp_list;
|
|
|
|
if (rdtgrp->type == RDTCTRL_GROUP) {
|
|
list_for_each_entry(entry, head, mon.crdtgrp_list) {
|
|
if (__mon_event_count(entry, rr) == 0)
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __mon_event_count() calls for newly created monitor groups may
|
|
* report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
|
|
* Discard error if any of the monitor event reads succeeded.
|
|
*/
|
|
if (ret == 0)
|
|
rr->err = 0;
|
|
}
|
|
|
|
static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu,
|
|
struct rdt_resource *r)
|
|
{
|
|
struct rdt_ctrl_domain *d;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
|
|
/* Find the domain that contains this CPU */
|
|
if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
|
|
return d;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Feedback loop for MBA software controller (mba_sc)
|
|
*
|
|
* mba_sc is a feedback loop where we periodically read MBM counters and
|
|
* adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
|
|
* that:
|
|
*
|
|
* current bandwidth(cur_bw) < user specified bandwidth(user_bw)
|
|
*
|
|
* This uses the MBM counters to measure the bandwidth and MBA throttle
|
|
* MSRs to control the bandwidth for a particular rdtgrp. It builds on the
|
|
* fact that resctrl rdtgroups have both monitoring and control.
|
|
*
|
|
* The frequency of the checks is 1s and we just tag along the MBM overflow
|
|
* timer. Having 1s interval makes the calculation of bandwidth simpler.
|
|
*
|
|
* Although MBA's goal is to restrict the bandwidth to a maximum, there may
|
|
* be a need to increase the bandwidth to avoid unnecessarily restricting
|
|
* the L2 <-> L3 traffic.
|
|
*
|
|
* Since MBA controls the L2 external bandwidth where as MBM measures the
|
|
* L3 external bandwidth the following sequence could lead to such a
|
|
* situation.
|
|
*
|
|
* Consider an rdtgroup which had high L3 <-> memory traffic in initial
|
|
* phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
|
|
* after some time rdtgroup has mostly L2 <-> L3 traffic.
|
|
*
|
|
* In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
|
|
* throttle MSRs already have low percentage values. To avoid
|
|
* unnecessarily restricting such rdtgroups, we also increase the bandwidth.
|
|
*/
|
|
static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
|
|
{
|
|
u32 closid, rmid, cur_msr_val, new_msr_val;
|
|
struct mbm_state *pmbm_data, *cmbm_data;
|
|
struct rdt_ctrl_domain *dom_mba;
|
|
enum resctrl_event_id evt_id;
|
|
struct rdt_resource *r_mba;
|
|
struct list_head *head;
|
|
struct rdtgroup *entry;
|
|
u32 cur_bw, user_bw;
|
|
|
|
r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
|
|
evt_id = rgrp->mba_mbps_event;
|
|
|
|
closid = rgrp->closid;
|
|
rmid = rgrp->mon.rmid;
|
|
pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id);
|
|
if (WARN_ON_ONCE(!pmbm_data))
|
|
return;
|
|
|
|
dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
|
|
if (!dom_mba) {
|
|
pr_warn_once("Failure to get domain for MBA update\n");
|
|
return;
|
|
}
|
|
|
|
cur_bw = pmbm_data->prev_bw;
|
|
user_bw = dom_mba->mbps_val[closid];
|
|
|
|
/* MBA resource doesn't support CDP */
|
|
cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
|
|
|
|
/*
|
|
* For Ctrl groups read data from child monitor groups.
|
|
*/
|
|
head = &rgrp->mon.crdtgrp_list;
|
|
list_for_each_entry(entry, head, mon.crdtgrp_list) {
|
|
cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id);
|
|
if (WARN_ON_ONCE(!cmbm_data))
|
|
return;
|
|
cur_bw += cmbm_data->prev_bw;
|
|
}
|
|
|
|
/*
|
|
* Scale up/down the bandwidth linearly for the ctrl group. The
|
|
* bandwidth step is the bandwidth granularity specified by the
|
|
* hardware.
|
|
* Always increase throttling if current bandwidth is above the
|
|
* target set by user.
|
|
* But avoid thrashing up and down on every poll by checking
|
|
* whether a decrease in throttling is likely to push the group
|
|
* back over target. E.g. if currently throttling to 30% of bandwidth
|
|
* on a system with 10% granularity steps, check whether moving to
|
|
* 40% would go past the limit by multiplying current bandwidth by
|
|
* "(30 + 10) / 30".
|
|
*/
|
|
if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
|
|
new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
|
|
} else if (cur_msr_val < MAX_MBA_BW &&
|
|
(user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
|
|
new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
|
|
}
|
|
|
|
static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
|
|
{
|
|
struct rmid_read rr = {0};
|
|
|
|
rr.r = r;
|
|
rr.d = d;
|
|
rr.evtid = evtid;
|
|
if (resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rr.is_mbm_cntr = true;
|
|
} else {
|
|
rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
|
|
if (IS_ERR(rr.arch_mon_ctx)) {
|
|
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
|
|
PTR_ERR(rr.arch_mon_ctx));
|
|
return;
|
|
}
|
|
}
|
|
|
|
__mon_event_count(rdtgrp, &rr);
|
|
|
|
/*
|
|
* If the software controller is enabled, compute the
|
|
* bandwidth for this event id.
|
|
*/
|
|
if (is_mba_sc(NULL))
|
|
mbm_bw_count(rdtgrp, &rr);
|
|
|
|
if (rr.arch_mon_ctx)
|
|
resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
|
|
}
|
|
|
|
static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
struct rdtgroup *rdtgrp)
|
|
{
|
|
/*
|
|
* This is protected from concurrent reads from user as both
|
|
* the user and overflow handler hold the global mutex.
|
|
*/
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
|
|
mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_TOTAL_EVENT_ID);
|
|
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
|
|
mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_LOCAL_EVENT_ID);
|
|
}
|
|
|
|
/*
|
|
* Handler to scan the limbo list and move the RMIDs
|
|
* to free list whose occupancy < threshold_occupancy.
|
|
*/
|
|
void cqm_handle_limbo(struct work_struct *work)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
|
|
struct rdt_mon_domain *d;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
|
|
|
|
__check_limbo(d, false);
|
|
|
|
if (has_busy_rmid(d)) {
|
|
d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
|
|
RESCTRL_PICK_ANY_CPU);
|
|
schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
|
|
delay);
|
|
}
|
|
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
|
|
* domain.
|
|
* @dom: The domain the limbo handler should run for.
|
|
* @delay_ms: How far in the future the handler should run.
|
|
* @exclude_cpu: Which CPU the handler should not run on,
|
|
* RESCTRL_PICK_ANY_CPU to pick any CPU.
|
|
*/
|
|
void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
|
|
int exclude_cpu)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(delay_ms);
|
|
int cpu;
|
|
|
|
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
|
|
dom->cqm_work_cpu = cpu;
|
|
|
|
if (cpu < nr_cpu_ids)
|
|
schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
|
|
}
|
|
|
|
void mbm_handle_overflow(struct work_struct *work)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
|
|
struct rdtgroup *prgrp, *crgrp;
|
|
struct rdt_mon_domain *d;
|
|
struct list_head *head;
|
|
struct rdt_resource *r;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
/*
|
|
* If the filesystem has been unmounted this work no longer needs to
|
|
* run.
|
|
*/
|
|
if (!resctrl_mounted || !resctrl_arch_mon_capable())
|
|
goto out_unlock;
|
|
|
|
r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
d = container_of(work, struct rdt_mon_domain, mbm_over.work);
|
|
|
|
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
|
|
mbm_update(r, d, prgrp);
|
|
|
|
head = &prgrp->mon.crdtgrp_list;
|
|
list_for_each_entry(crgrp, head, mon.crdtgrp_list)
|
|
mbm_update(r, d, crgrp);
|
|
|
|
if (is_mba_sc(NULL))
|
|
update_mba_bw(prgrp, d);
|
|
}
|
|
|
|
/*
|
|
* Re-check for housekeeping CPUs. This allows the overflow handler to
|
|
* move off a nohz_full CPU quickly.
|
|
*/
|
|
d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
|
|
RESCTRL_PICK_ANY_CPU);
|
|
schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
|
|
* domain.
|
|
* @dom: The domain the overflow handler should run for.
|
|
* @delay_ms: How far in the future the handler should run.
|
|
* @exclude_cpu: Which CPU the handler should not run on,
|
|
* RESCTRL_PICK_ANY_CPU to pick any CPU.
|
|
*/
|
|
void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
|
|
int exclude_cpu)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(delay_ms);
|
|
int cpu;
|
|
|
|
/*
|
|
* When a domain comes online there is no guarantee the filesystem is
|
|
* mounted. If not, there is no need to catch counter overflow.
|
|
*/
|
|
if (!resctrl_mounted || !resctrl_arch_mon_capable())
|
|
return;
|
|
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
|
|
dom->mbm_work_cpu = cpu;
|
|
|
|
if (cpu < nr_cpu_ids)
|
|
schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
|
|
}
|
|
|
|
static int dom_data_init(struct rdt_resource *r)
|
|
{
|
|
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
|
|
u32 num_closid = resctrl_arch_get_num_closid(r);
|
|
struct rmid_entry *entry = NULL;
|
|
int err = 0, i;
|
|
u32 idx;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
|
|
u32 *tmp;
|
|
|
|
/*
|
|
* If the architecture hasn't provided a sanitised value here,
|
|
* this may result in larger arrays than necessary. Resctrl will
|
|
* use a smaller system wide value based on the resources in
|
|
* use.
|
|
*/
|
|
tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
|
|
if (!tmp) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
closid_num_dirty_rmid = tmp;
|
|
}
|
|
|
|
rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
|
|
if (!rmid_ptrs) {
|
|
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
|
|
kfree(closid_num_dirty_rmid);
|
|
closid_num_dirty_rmid = NULL;
|
|
}
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
for (i = 0; i < idx_limit; i++) {
|
|
entry = &rmid_ptrs[i];
|
|
INIT_LIST_HEAD(&entry->list);
|
|
|
|
resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
|
|
list_add_tail(&entry->list, &rmid_free_lru);
|
|
}
|
|
|
|
/*
|
|
* RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
|
|
* are always allocated. These are used for the rdtgroup_default
|
|
* control group, which will be setup later in resctrl_init().
|
|
*/
|
|
idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
|
|
RESCTRL_RESERVED_RMID);
|
|
entry = __rmid_entry(idx);
|
|
list_del(&entry->list);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void dom_data_exit(struct rdt_resource *r)
|
|
{
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
if (!r->mon_capable)
|
|
goto out_unlock;
|
|
|
|
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
|
|
kfree(closid_num_dirty_rmid);
|
|
closid_num_dirty_rmid = NULL;
|
|
}
|
|
|
|
kfree(rmid_ptrs);
|
|
rmid_ptrs = NULL;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
}
|
|
|
|
/*
|
|
* All available events. Architecture code marks the ones that
|
|
* are supported by a system using resctrl_enable_mon_event()
|
|
* to set .enabled.
|
|
*/
|
|
struct mon_evt mon_event_all[QOS_NUM_EVENTS] = {
|
|
[QOS_L3_OCCUP_EVENT_ID] = {
|
|
.name = "llc_occupancy",
|
|
.evtid = QOS_L3_OCCUP_EVENT_ID,
|
|
.rid = RDT_RESOURCE_L3,
|
|
},
|
|
[QOS_L3_MBM_TOTAL_EVENT_ID] = {
|
|
.name = "mbm_total_bytes",
|
|
.evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
|
|
.rid = RDT_RESOURCE_L3,
|
|
},
|
|
[QOS_L3_MBM_LOCAL_EVENT_ID] = {
|
|
.name = "mbm_local_bytes",
|
|
.evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
|
|
.rid = RDT_RESOURCE_L3,
|
|
},
|
|
};
|
|
|
|
void resctrl_enable_mon_event(enum resctrl_event_id eventid)
|
|
{
|
|
if (WARN_ON_ONCE(eventid < QOS_FIRST_EVENT || eventid >= QOS_NUM_EVENTS))
|
|
return;
|
|
if (mon_event_all[eventid].enabled) {
|
|
pr_warn("Duplicate enable for event %d\n", eventid);
|
|
return;
|
|
}
|
|
|
|
mon_event_all[eventid].enabled = true;
|
|
}
|
|
|
|
bool resctrl_is_mon_event_enabled(enum resctrl_event_id eventid)
|
|
{
|
|
return eventid >= QOS_FIRST_EVENT && eventid < QOS_NUM_EVENTS &&
|
|
mon_event_all[eventid].enabled;
|
|
}
|
|
|
|
u32 resctrl_get_mon_evt_cfg(enum resctrl_event_id evtid)
|
|
{
|
|
return mon_event_all[evtid].evt_cfg;
|
|
}
|
|
|
|
/**
|
|
* struct mbm_transaction - Memory transaction an MBM event can be configured with.
|
|
* @name: Name of memory transaction (read, write ...).
|
|
* @val: The bit (eg. READS_TO_LOCAL_MEM or READS_TO_REMOTE_MEM) used to
|
|
* represent the memory transaction within an event's configuration.
|
|
*/
|
|
struct mbm_transaction {
|
|
char name[32];
|
|
u32 val;
|
|
};
|
|
|
|
/* Decoded values for each type of memory transaction. */
|
|
static struct mbm_transaction mbm_transactions[NUM_MBM_TRANSACTIONS] = {
|
|
{"local_reads", READS_TO_LOCAL_MEM},
|
|
{"remote_reads", READS_TO_REMOTE_MEM},
|
|
{"local_non_temporal_writes", NON_TEMP_WRITE_TO_LOCAL_MEM},
|
|
{"remote_non_temporal_writes", NON_TEMP_WRITE_TO_REMOTE_MEM},
|
|
{"local_reads_slow_memory", READS_TO_LOCAL_S_MEM},
|
|
{"remote_reads_slow_memory", READS_TO_REMOTE_S_MEM},
|
|
{"dirty_victim_writes_all", DIRTY_VICTIMS_TO_ALL_MEM},
|
|
};
|
|
|
|
int event_filter_show(struct kernfs_open_file *of, struct seq_file *seq, void *v)
|
|
{
|
|
struct mon_evt *mevt = rdt_kn_parent_priv(of->kn);
|
|
struct rdt_resource *r;
|
|
bool sep = false;
|
|
int ret = 0, i;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
rdt_last_cmd_clear();
|
|
|
|
r = resctrl_arch_get_resource(mevt->rid);
|
|
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) {
|
|
if (mevt->evt_cfg & mbm_transactions[i].val) {
|
|
if (sep)
|
|
seq_putc(seq, ',');
|
|
seq_printf(seq, "%s", mbm_transactions[i].name);
|
|
sep = true;
|
|
}
|
|
}
|
|
seq_putc(seq, '\n');
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int resctrl_mbm_assign_on_mkdir_show(struct kernfs_open_file *of, struct seq_file *s,
|
|
void *v)
|
|
{
|
|
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
rdt_last_cmd_clear();
|
|
|
|
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
seq_printf(s, "%u\n", r->mon.mbm_assign_on_mkdir);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
ssize_t resctrl_mbm_assign_on_mkdir_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
|
|
bool value;
|
|
int ret;
|
|
|
|
ret = kstrtobool(buf, &value);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
rdt_last_cmd_clear();
|
|
|
|
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
r->mon.mbm_assign_on_mkdir = value;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
/*
|
|
* mbm_cntr_free_all() - Clear all the counter ID configuration details in the
|
|
* domain @d. Called when mbm_assign_mode is changed.
|
|
*/
|
|
static void mbm_cntr_free_all(struct rdt_resource *r, struct rdt_mon_domain *d)
|
|
{
|
|
memset(d->cntr_cfg, 0, sizeof(*d->cntr_cfg) * r->mon.num_mbm_cntrs);
|
|
}
|
|
|
|
/*
|
|
* resctrl_reset_rmid_all() - Reset all non-architecture states for all the
|
|
* supported RMIDs.
|
|
*/
|
|
static void resctrl_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
|
|
{
|
|
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
|
|
enum resctrl_event_id evt;
|
|
int idx;
|
|
|
|
for_each_mbm_event_id(evt) {
|
|
if (!resctrl_is_mon_event_enabled(evt))
|
|
continue;
|
|
idx = MBM_STATE_IDX(evt);
|
|
memset(d->mbm_states[idx], 0, sizeof(*d->mbm_states[0]) * idx_limit);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_assign_cntr() - Assign/unassign the counter ID for the event, RMID
|
|
* pair in the domain.
|
|
*
|
|
* Assign the counter if @assign is true else unassign the counter. Reset the
|
|
* associated non-architectural state.
|
|
*/
|
|
static void rdtgroup_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
enum resctrl_event_id evtid, u32 rmid, u32 closid,
|
|
u32 cntr_id, bool assign)
|
|
{
|
|
struct mbm_state *m;
|
|
|
|
resctrl_arch_config_cntr(r, d, evtid, rmid, closid, cntr_id, assign);
|
|
|
|
m = get_mbm_state(d, closid, rmid, evtid);
|
|
if (m)
|
|
memset(m, 0, sizeof(*m));
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_alloc_assign_cntr() - Allocate a counter ID and assign it to the event
|
|
* pointed to by @mevt and the resctrl group @rdtgrp within the domain @d.
|
|
*
|
|
* Return:
|
|
* 0 on success, < 0 on failure.
|
|
*/
|
|
static int rdtgroup_alloc_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
struct rdtgroup *rdtgrp, struct mon_evt *mevt)
|
|
{
|
|
int cntr_id;
|
|
|
|
/* No action required if the counter is assigned already. */
|
|
cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid);
|
|
if (cntr_id >= 0)
|
|
return 0;
|
|
|
|
cntr_id = mbm_cntr_alloc(r, d, rdtgrp, mevt->evtid);
|
|
if (cntr_id < 0) {
|
|
rdt_last_cmd_printf("Failed to allocate counter for %s in domain %d\n",
|
|
mevt->name, d->hdr.id);
|
|
return cntr_id;
|
|
}
|
|
|
|
rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_assign_cntr_event() - Assign a hardware counter for the event in
|
|
* @mevt to the resctrl group @rdtgrp. Assign counters to all domains if @d is
|
|
* NULL; otherwise, assign the counter to the specified domain @d.
|
|
*
|
|
* If all counters in a domain are already in use, rdtgroup_alloc_assign_cntr()
|
|
* will fail. The assignment process will abort at the first failure encountered
|
|
* during domain traversal, which may result in the event being only partially
|
|
* assigned.
|
|
*
|
|
* Return:
|
|
* 0 on success, < 0 on failure.
|
|
*/
|
|
static int rdtgroup_assign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp,
|
|
struct mon_evt *mevt)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
|
|
int ret = 0;
|
|
|
|
if (!d) {
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list) {
|
|
ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
} else {
|
|
ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_assign_cntrs() - Assign counters to MBM events. Called when
|
|
* a new group is created.
|
|
*
|
|
* Each group can accommodate two counters per domain: one for the total
|
|
* event and one for the local event. Assignments may fail due to the limited
|
|
* number of counters. However, it is not necessary to fail the group creation
|
|
* and thus no failure is returned. Users have the option to modify the
|
|
* counter assignments after the group has been created.
|
|
*/
|
|
void rdtgroup_assign_cntrs(struct rdtgroup *rdtgrp)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
|
|
if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r) ||
|
|
!r->mon.mbm_assign_on_mkdir)
|
|
return;
|
|
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
|
|
rdtgroup_assign_cntr_event(NULL, rdtgrp,
|
|
&mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]);
|
|
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
|
|
rdtgroup_assign_cntr_event(NULL, rdtgrp,
|
|
&mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]);
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_free_unassign_cntr() - Unassign and reset the counter ID configuration
|
|
* for the event pointed to by @mevt within the domain @d and resctrl group @rdtgrp.
|
|
*/
|
|
static void rdtgroup_free_unassign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
struct rdtgroup *rdtgrp, struct mon_evt *mevt)
|
|
{
|
|
int cntr_id;
|
|
|
|
cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid);
|
|
|
|
/* If there is no cntr_id assigned, nothing to do */
|
|
if (cntr_id < 0)
|
|
return;
|
|
|
|
rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, false);
|
|
|
|
mbm_cntr_free(d, cntr_id);
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_unassign_cntr_event() - Unassign a hardware counter associated with
|
|
* the event structure @mevt from the domain @d and the group @rdtgrp. Unassign
|
|
* the counters from all the domains if @d is NULL else unassign from @d.
|
|
*/
|
|
static void rdtgroup_unassign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp,
|
|
struct mon_evt *mevt)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
|
|
|
|
if (!d) {
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list)
|
|
rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt);
|
|
} else {
|
|
rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_unassign_cntrs() - Unassign the counters associated with MBM events.
|
|
* Called when a group is deleted.
|
|
*/
|
|
void rdtgroup_unassign_cntrs(struct rdtgroup *rdtgrp)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
|
|
if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r))
|
|
return;
|
|
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
|
|
rdtgroup_unassign_cntr_event(NULL, rdtgrp,
|
|
&mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]);
|
|
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
|
|
rdtgroup_unassign_cntr_event(NULL, rdtgrp,
|
|
&mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]);
|
|
}
|
|
|
|
static int resctrl_parse_mem_transactions(char *tok, u32 *val)
|
|
{
|
|
u32 temp_val = 0;
|
|
char *evt_str;
|
|
bool found;
|
|
int i;
|
|
|
|
next_config:
|
|
if (!tok || tok[0] == '\0') {
|
|
*val = temp_val;
|
|
return 0;
|
|
}
|
|
|
|
/* Start processing the strings for each memory transaction type */
|
|
evt_str = strim(strsep(&tok, ","));
|
|
found = false;
|
|
for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) {
|
|
if (!strcmp(mbm_transactions[i].name, evt_str)) {
|
|
temp_val |= mbm_transactions[i].val;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
rdt_last_cmd_printf("Invalid memory transaction type %s\n", evt_str);
|
|
return -EINVAL;
|
|
}
|
|
|
|
goto next_config;
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_update_cntr_event - Update the counter assignments for the event
|
|
* in a group.
|
|
* @r: Resource to which update needs to be done.
|
|
* @rdtgrp: Resctrl group.
|
|
* @evtid: MBM monitor event.
|
|
*/
|
|
static void rdtgroup_update_cntr_event(struct rdt_resource *r, struct rdtgroup *rdtgrp,
|
|
enum resctrl_event_id evtid)
|
|
{
|
|
struct rdt_mon_domain *d;
|
|
int cntr_id;
|
|
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list) {
|
|
cntr_id = mbm_cntr_get(r, d, rdtgrp, evtid);
|
|
if (cntr_id >= 0)
|
|
rdtgroup_assign_cntr(r, d, evtid, rdtgrp->mon.rmid,
|
|
rdtgrp->closid, cntr_id, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* resctrl_update_cntr_allrdtgrp - Update the counter assignments for the event
|
|
* for all the groups.
|
|
* @mevt MBM Monitor event.
|
|
*/
|
|
static void resctrl_update_cntr_allrdtgrp(struct mon_evt *mevt)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
|
|
struct rdtgroup *prgrp, *crgrp;
|
|
|
|
/*
|
|
* Find all the groups where the event is assigned and update the
|
|
* configuration of existing assignments.
|
|
*/
|
|
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
|
|
rdtgroup_update_cntr_event(r, prgrp, mevt->evtid);
|
|
|
|
list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
|
|
rdtgroup_update_cntr_event(r, crgrp, mevt->evtid);
|
|
}
|
|
}
|
|
|
|
ssize_t event_filter_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
|
|
loff_t off)
|
|
{
|
|
struct mon_evt *mevt = rdt_kn_parent_priv(of->kn);
|
|
struct rdt_resource *r;
|
|
u32 evt_cfg = 0;
|
|
int ret = 0;
|
|
|
|
/* Valid input requires a trailing newline */
|
|
if (nbytes == 0 || buf[nbytes - 1] != '\n')
|
|
return -EINVAL;
|
|
|
|
buf[nbytes - 1] = '\0';
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
rdt_last_cmd_clear();
|
|
|
|
r = resctrl_arch_get_resource(mevt->rid);
|
|
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = resctrl_parse_mem_transactions(buf, &evt_cfg);
|
|
if (!ret && mevt->evt_cfg != evt_cfg) {
|
|
mevt->evt_cfg = evt_cfg;
|
|
resctrl_update_cntr_allrdtgrp(mevt);
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
int resctrl_mbm_assign_mode_show(struct kernfs_open_file *of,
|
|
struct seq_file *s, void *v)
|
|
{
|
|
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
|
|
bool enabled;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
enabled = resctrl_arch_mbm_cntr_assign_enabled(r);
|
|
|
|
if (r->mon.mbm_cntr_assignable) {
|
|
if (enabled)
|
|
seq_puts(s, "[mbm_event]\n");
|
|
else
|
|
seq_puts(s, "[default]\n");
|
|
|
|
if (!IS_ENABLED(CONFIG_RESCTRL_ASSIGN_FIXED)) {
|
|
if (enabled)
|
|
seq_puts(s, "default\n");
|
|
else
|
|
seq_puts(s, "mbm_event\n");
|
|
}
|
|
} else {
|
|
seq_puts(s, "[default]\n");
|
|
}
|
|
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
ssize_t resctrl_mbm_assign_mode_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
|
|
struct rdt_mon_domain *d;
|
|
int ret = 0;
|
|
bool enable;
|
|
|
|
/* Valid input requires a trailing newline */
|
|
if (nbytes == 0 || buf[nbytes - 1] != '\n')
|
|
return -EINVAL;
|
|
|
|
buf[nbytes - 1] = '\0';
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
rdt_last_cmd_clear();
|
|
|
|
if (!strcmp(buf, "default")) {
|
|
enable = 0;
|
|
} else if (!strcmp(buf, "mbm_event")) {
|
|
if (r->mon.mbm_cntr_assignable) {
|
|
enable = 1;
|
|
} else {
|
|
ret = -EINVAL;
|
|
rdt_last_cmd_puts("mbm_event mode is not supported\n");
|
|
goto out_unlock;
|
|
}
|
|
} else {
|
|
ret = -EINVAL;
|
|
rdt_last_cmd_puts("Unsupported assign mode\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (enable != resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
ret = resctrl_arch_mbm_cntr_assign_set(r, enable);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/* Update the visibility of BMEC related files */
|
|
resctrl_bmec_files_show(r, NULL, !enable);
|
|
|
|
/*
|
|
* Initialize the default memory transaction values for
|
|
* total and local events.
|
|
*/
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
|
|
mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask;
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
|
|
mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask &
|
|
(READS_TO_LOCAL_MEM |
|
|
READS_TO_LOCAL_S_MEM |
|
|
NON_TEMP_WRITE_TO_LOCAL_MEM);
|
|
/* Enable auto assignment when switching to "mbm_event" mode */
|
|
if (enable)
|
|
r->mon.mbm_assign_on_mkdir = true;
|
|
/*
|
|
* Reset all the non-achitectural RMID state and assignable counters.
|
|
*/
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list) {
|
|
mbm_cntr_free_all(r, d);
|
|
resctrl_reset_rmid_all(r, d);
|
|
}
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
int resctrl_num_mbm_cntrs_show(struct kernfs_open_file *of,
|
|
struct seq_file *s, void *v)
|
|
{
|
|
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
|
|
struct rdt_mon_domain *dom;
|
|
bool sep = false;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
list_for_each_entry(dom, &r->mon_domains, hdr.list) {
|
|
if (sep)
|
|
seq_putc(s, ';');
|
|
|
|
seq_printf(s, "%d=%d", dom->hdr.id, r->mon.num_mbm_cntrs);
|
|
sep = true;
|
|
}
|
|
seq_putc(s, '\n');
|
|
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
return 0;
|
|
}
|
|
|
|
int resctrl_available_mbm_cntrs_show(struct kernfs_open_file *of,
|
|
struct seq_file *s, void *v)
|
|
{
|
|
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
|
|
struct rdt_mon_domain *dom;
|
|
bool sep = false;
|
|
u32 cntrs, i;
|
|
int ret = 0;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
rdt_last_cmd_clear();
|
|
|
|
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
list_for_each_entry(dom, &r->mon_domains, hdr.list) {
|
|
if (sep)
|
|
seq_putc(s, ';');
|
|
|
|
cntrs = 0;
|
|
for (i = 0; i < r->mon.num_mbm_cntrs; i++) {
|
|
if (!dom->cntr_cfg[i].rdtgrp)
|
|
cntrs++;
|
|
}
|
|
|
|
seq_printf(s, "%d=%u", dom->hdr.id, cntrs);
|
|
sep = true;
|
|
}
|
|
seq_putc(s, '\n');
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mbm_L3_assignments_show(struct kernfs_open_file *of, struct seq_file *s, void *v)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
struct rdt_mon_domain *d;
|
|
struct rdtgroup *rdtgrp;
|
|
struct mon_evt *mevt;
|
|
int ret = 0;
|
|
bool sep;
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
if (!rdtgrp) {
|
|
ret = -ENOENT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
rdt_last_cmd_clear();
|
|
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
for_each_mon_event(mevt) {
|
|
if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid))
|
|
continue;
|
|
|
|
sep = false;
|
|
seq_printf(s, "%s:", mevt->name);
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list) {
|
|
if (sep)
|
|
seq_putc(s, ';');
|
|
|
|
if (mbm_cntr_get(r, d, rdtgrp, mevt->evtid) < 0)
|
|
seq_printf(s, "%d=_", d->hdr.id);
|
|
else
|
|
seq_printf(s, "%d=e", d->hdr.id);
|
|
|
|
sep = true;
|
|
}
|
|
seq_putc(s, '\n');
|
|
}
|
|
|
|
out_unlock:
|
|
rdtgroup_kn_unlock(of->kn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* mbm_get_mon_event_by_name() - Return the mon_evt entry for the matching
|
|
* event name.
|
|
*/
|
|
static struct mon_evt *mbm_get_mon_event_by_name(struct rdt_resource *r, char *name)
|
|
{
|
|
struct mon_evt *mevt;
|
|
|
|
for_each_mon_event(mevt) {
|
|
if (mevt->rid == r->rid && mevt->enabled &&
|
|
resctrl_is_mbm_event(mevt->evtid) &&
|
|
!strcmp(mevt->name, name))
|
|
return mevt;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int rdtgroup_modify_assign_state(char *assign, struct rdt_mon_domain *d,
|
|
struct rdtgroup *rdtgrp, struct mon_evt *mevt)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!assign || strlen(assign) != 1)
|
|
return -EINVAL;
|
|
|
|
switch (*assign) {
|
|
case 'e':
|
|
ret = rdtgroup_assign_cntr_event(d, rdtgrp, mevt);
|
|
break;
|
|
case '_':
|
|
rdtgroup_unassign_cntr_event(d, rdtgrp, mevt);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int resctrl_parse_mbm_assignment(struct rdt_resource *r, struct rdtgroup *rdtgrp,
|
|
char *event, char *tok)
|
|
{
|
|
struct rdt_mon_domain *d;
|
|
unsigned long dom_id = 0;
|
|
char *dom_str, *id_str;
|
|
struct mon_evt *mevt;
|
|
int ret;
|
|
|
|
mevt = mbm_get_mon_event_by_name(r, event);
|
|
if (!mevt) {
|
|
rdt_last_cmd_printf("Invalid event %s\n", event);
|
|
return -ENOENT;
|
|
}
|
|
|
|
next:
|
|
if (!tok || tok[0] == '\0')
|
|
return 0;
|
|
|
|
/* Start processing the strings for each domain */
|
|
dom_str = strim(strsep(&tok, ";"));
|
|
|
|
id_str = strsep(&dom_str, "=");
|
|
|
|
/* Check for domain id '*' which means all domains */
|
|
if (id_str && *id_str == '*') {
|
|
ret = rdtgroup_modify_assign_state(dom_str, NULL, rdtgrp, mevt);
|
|
if (ret)
|
|
rdt_last_cmd_printf("Assign operation '%s:*=%s' failed\n",
|
|
event, dom_str);
|
|
return ret;
|
|
} else if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
|
|
rdt_last_cmd_puts("Missing domain id\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Verify if the dom_id is valid */
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list) {
|
|
if (d->hdr.id == dom_id) {
|
|
ret = rdtgroup_modify_assign_state(dom_str, d, rdtgrp, mevt);
|
|
if (ret) {
|
|
rdt_last_cmd_printf("Assign operation '%s:%ld=%s' failed\n",
|
|
event, dom_id, dom_str);
|
|
return ret;
|
|
}
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
rdt_last_cmd_printf("Invalid domain id %ld\n", dom_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ssize_t mbm_L3_assignments_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
struct rdtgroup *rdtgrp;
|
|
char *token, *event;
|
|
int ret = 0;
|
|
|
|
/* Valid input requires a trailing newline */
|
|
if (nbytes == 0 || buf[nbytes - 1] != '\n')
|
|
return -EINVAL;
|
|
|
|
buf[nbytes - 1] = '\0';
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
if (!rdtgrp) {
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return -ENOENT;
|
|
}
|
|
rdt_last_cmd_clear();
|
|
|
|
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
|
|
rdt_last_cmd_puts("mbm_event mode is not enabled\n");
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return -EINVAL;
|
|
}
|
|
|
|
while ((token = strsep(&buf, "\n")) != NULL) {
|
|
/*
|
|
* The write command follows the following format:
|
|
* "<Event>:<Domain ID>=<Assignment state>"
|
|
* Extract the event name first.
|
|
*/
|
|
event = strsep(&token, ":");
|
|
|
|
ret = resctrl_parse_mbm_assignment(r, rdtgrp, event, token);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
rdtgroup_kn_unlock(of->kn);
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
/**
|
|
* resctrl_mon_resource_init() - Initialise global monitoring structures.
|
|
*
|
|
* Allocate and initialise global monitor resources that do not belong to a
|
|
* specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists.
|
|
* Called once during boot after the struct rdt_resource's have been configured
|
|
* but before the filesystem is mounted.
|
|
* Resctrl's cpuhp callbacks may be called before this point to bring a domain
|
|
* online.
|
|
*
|
|
* Returns 0 for success, or -ENOMEM.
|
|
*/
|
|
int resctrl_mon_resource_init(void)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
int ret;
|
|
|
|
if (!r->mon_capable)
|
|
return 0;
|
|
|
|
ret = dom_data_init(r);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) {
|
|
mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].configurable = true;
|
|
resctrl_file_fflags_init("mbm_total_bytes_config",
|
|
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
|
|
}
|
|
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) {
|
|
mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].configurable = true;
|
|
resctrl_file_fflags_init("mbm_local_bytes_config",
|
|
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
|
|
}
|
|
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
|
|
mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID;
|
|
else if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
|
|
mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID;
|
|
|
|
if (r->mon.mbm_cntr_assignable) {
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
|
|
mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask;
|
|
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
|
|
mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask &
|
|
(READS_TO_LOCAL_MEM |
|
|
READS_TO_LOCAL_S_MEM |
|
|
NON_TEMP_WRITE_TO_LOCAL_MEM);
|
|
r->mon.mbm_assign_on_mkdir = true;
|
|
resctrl_file_fflags_init("num_mbm_cntrs",
|
|
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
|
|
resctrl_file_fflags_init("available_mbm_cntrs",
|
|
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
|
|
resctrl_file_fflags_init("event_filter", RFTYPE_ASSIGN_CONFIG);
|
|
resctrl_file_fflags_init("mbm_assign_on_mkdir", RFTYPE_MON_INFO |
|
|
RFTYPE_RES_CACHE);
|
|
resctrl_file_fflags_init("mbm_L3_assignments", RFTYPE_MON_BASE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void resctrl_mon_resource_exit(void)
|
|
{
|
|
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
|
|
|
|
dom_data_exit(r);
|
|
}
|