mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 915651b7c9
			
		
	
	
		915651b7c9
		
	
	
	
	
		
			
			Fix the indentation to ensure consistent code style and improve readability and to fix the errors: ERROR: code indent should use tabs where possible + return io_net_import_vec(req, kmsg, sr->buf, sr->len, ITER_SOURCE);$ ERROR: code indent should use tabs where possible +^I^I^I struct io_big_cqe *big_cqe)$ Tested by running the /scripts/checkpatch.pl Signed-off-by: Ranganath V N <vnranganath.20@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
		
			
				
	
	
		
			4086 lines
		
	
	
	
		
			109 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4086 lines
		
	
	
	
		
			109 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Shared application/kernel submission and completion ring pairs, for
 | |
|  * supporting fast/efficient IO.
 | |
|  *
 | |
|  * A note on the read/write ordering memory barriers that are matched between
 | |
|  * the application and kernel side.
 | |
|  *
 | |
|  * After the application reads the CQ ring tail, it must use an
 | |
|  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
 | |
|  * before writing the tail (using smp_load_acquire to read the tail will
 | |
|  * do). It also needs a smp_mb() before updating CQ head (ordering the
 | |
|  * entry load(s) with the head store), pairing with an implicit barrier
 | |
|  * through a control-dependency in io_get_cqe (smp_store_release to
 | |
|  * store head will do). Failure to do so could lead to reading invalid
 | |
|  * CQ entries.
 | |
|  *
 | |
|  * Likewise, the application must use an appropriate smp_wmb() before
 | |
|  * writing the SQ tail (ordering SQ entry stores with the tail store),
 | |
|  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
 | |
|  * to store the tail will do). And it needs a barrier ordering the SQ
 | |
|  * head load before writing new SQ entries (smp_load_acquire to read
 | |
|  * head will do).
 | |
|  *
 | |
|  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
 | |
|  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
 | |
|  * updating the SQ tail; a full memory barrier smp_mb() is needed
 | |
|  * between.
 | |
|  *
 | |
|  * Also see the examples in the liburing library:
 | |
|  *
 | |
|  *	git://git.kernel.org/pub/scm/linux/kernel/git/axboe/liburing.git
 | |
|  *
 | |
|  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
 | |
|  * from data shared between the kernel and application. This is done both
 | |
|  * for ordering purposes, but also to ensure that once a value is loaded from
 | |
|  * data that the application could potentially modify, it remains stable.
 | |
|  *
 | |
|  * Copyright (C) 2018-2019 Jens Axboe
 | |
|  * Copyright (c) 2018-2019 Christoph Hellwig
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <net/compat.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/bits.h>
 | |
| 
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bvec.h>
 | |
| #include <linux/net.h>
 | |
| #include <net/sock.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/nospec.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/fadvise.h>
 | |
| #include <linux/task_work.h>
 | |
| #include <linux/io_uring.h>
 | |
| #include <linux/io_uring/cmd.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/jump_label.h>
 | |
| #include <asm/shmparam.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/io_uring.h>
 | |
| 
 | |
| #include <uapi/linux/io_uring.h>
 | |
| 
 | |
| #include "io-wq.h"
 | |
| 
 | |
| #include "filetable.h"
 | |
| #include "io_uring.h"
 | |
| #include "opdef.h"
 | |
| #include "refs.h"
 | |
| #include "tctx.h"
 | |
| #include "register.h"
 | |
| #include "sqpoll.h"
 | |
| #include "fdinfo.h"
 | |
| #include "kbuf.h"
 | |
| #include "rsrc.h"
 | |
| #include "cancel.h"
 | |
| #include "net.h"
 | |
| #include "notif.h"
 | |
| #include "waitid.h"
 | |
| #include "futex.h"
 | |
| #include "napi.h"
 | |
| #include "uring_cmd.h"
 | |
| #include "msg_ring.h"
 | |
| #include "memmap.h"
 | |
| #include "zcrx.h"
 | |
| 
 | |
| #include "timeout.h"
 | |
| #include "poll.h"
 | |
| #include "rw.h"
 | |
| #include "alloc_cache.h"
 | |
| #include "eventfd.h"
 | |
| 
 | |
| #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
 | |
| 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
 | |
| 
 | |
| #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
 | |
| 
 | |
| #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
 | |
| 				REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
 | |
| 
 | |
| #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
 | |
| 				 REQ_F_REISSUE | REQ_F_POLLED | \
 | |
| 				 IO_REQ_CLEAN_FLAGS)
 | |
| 
 | |
| #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
 | |
| 
 | |
| #define IO_COMPL_BATCH			32
 | |
| #define IO_REQ_ALLOC_BATCH		8
 | |
| #define IO_LOCAL_TW_DEFAULT_MAX		20
 | |
| 
 | |
| struct io_defer_entry {
 | |
| 	struct list_head	list;
 | |
| 	struct io_kiocb		*req;
 | |
| };
 | |
| 
 | |
| /* requests with any of those set should undergo io_disarm_next() */
 | |
| #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
 | |
| 
 | |
| /*
 | |
|  * No waiters. It's larger than any valid value of the tw counter
 | |
|  * so that tests against ->cq_wait_nr would fail and skip wake_up().
 | |
|  */
 | |
| #define IO_CQ_WAKE_INIT		(-1U)
 | |
| /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
 | |
| #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
 | |
| 
 | |
| static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
 | |
| 					 struct io_uring_task *tctx,
 | |
| 					 bool cancel_all,
 | |
| 					 bool is_sqpoll_thread);
 | |
| 
 | |
| static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
 | |
| static void __io_req_caches_free(struct io_ring_ctx *ctx);
 | |
| 
 | |
| static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
 | |
| 
 | |
| struct kmem_cache *req_cachep;
 | |
| static struct workqueue_struct *iou_wq __ro_after_init;
 | |
| 
 | |
| static int __read_mostly sysctl_io_uring_disabled;
 | |
| static int __read_mostly sysctl_io_uring_group = -1;
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| static const struct ctl_table kernel_io_uring_disabled_table[] = {
 | |
| 	{
 | |
| 		.procname	= "io_uring_disabled",
 | |
| 		.data		= &sysctl_io_uring_disabled,
 | |
| 		.maxlen		= sizeof(sysctl_io_uring_disabled),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_TWO,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "io_uring_group",
 | |
| 		.data		= &sysctl_io_uring_group,
 | |
| 		.maxlen		= sizeof(gid_t),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec,
 | |
| 	},
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static void io_poison_cached_req(struct io_kiocb *req)
 | |
| {
 | |
| 	req->ctx = IO_URING_PTR_POISON;
 | |
| 	req->tctx = IO_URING_PTR_POISON;
 | |
| 	req->file = IO_URING_PTR_POISON;
 | |
| 	req->creds = IO_URING_PTR_POISON;
 | |
| 	req->io_task_work.func = IO_URING_PTR_POISON;
 | |
| 	req->apoll = IO_URING_PTR_POISON;
 | |
| }
 | |
| 
 | |
| static void io_poison_req(struct io_kiocb *req)
 | |
| {
 | |
| 	io_poison_cached_req(req);
 | |
| 	req->async_data = IO_URING_PTR_POISON;
 | |
| 	req->kbuf = IO_URING_PTR_POISON;
 | |
| 	req->comp_list.next = IO_URING_PTR_POISON;
 | |
| 	req->file_node = IO_URING_PTR_POISON;
 | |
| 	req->link = IO_URING_PTR_POISON;
 | |
| }
 | |
| 
 | |
| static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
 | |
| }
 | |
| 
 | |
| static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
 | |
| }
 | |
| 
 | |
| static bool io_match_linked(struct io_kiocb *head)
 | |
| {
 | |
| 	struct io_kiocb *req;
 | |
| 
 | |
| 	io_for_each_link(req, head) {
 | |
| 		if (req->flags & REQ_F_INFLIGHT)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * As io_match_task() but protected against racing with linked timeouts.
 | |
|  * User must not hold timeout_lock.
 | |
|  */
 | |
| bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
 | |
| 			bool cancel_all)
 | |
| {
 | |
| 	bool matched;
 | |
| 
 | |
| 	if (tctx && head->tctx != tctx)
 | |
| 		return false;
 | |
| 	if (cancel_all)
 | |
| 		return true;
 | |
| 
 | |
| 	if (head->flags & REQ_F_LINK_TIMEOUT) {
 | |
| 		struct io_ring_ctx *ctx = head->ctx;
 | |
| 
 | |
| 		/* protect against races with linked timeouts */
 | |
| 		raw_spin_lock_irq(&ctx->timeout_lock);
 | |
| 		matched = io_match_linked(head);
 | |
| 		raw_spin_unlock_irq(&ctx->timeout_lock);
 | |
| 	} else {
 | |
| 		matched = io_match_linked(head);
 | |
| 	}
 | |
| 	return matched;
 | |
| }
 | |
| 
 | |
| static inline void req_fail_link_node(struct io_kiocb *req, int res)
 | |
| {
 | |
| 	req_set_fail(req);
 | |
| 	io_req_set_res(req, res, 0);
 | |
| }
 | |
| 
 | |
| static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_KASAN))
 | |
| 		io_poison_cached_req(req);
 | |
| 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
 | |
| }
 | |
| 
 | |
| static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
 | |
| 
 | |
| 	complete(&ctx->ref_comp);
 | |
| }
 | |
| 
 | |
| static __cold void io_fallback_req_func(struct work_struct *work)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
 | |
| 						fallback_work.work);
 | |
| 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
 | |
| 	struct io_kiocb *req, *tmp;
 | |
| 	struct io_tw_state ts = {};
 | |
| 
 | |
| 	percpu_ref_get(&ctx->refs);
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
 | |
| 		req->io_task_work.func(req, ts);
 | |
| 	io_submit_flush_completions(ctx);
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 	percpu_ref_put(&ctx->refs);
 | |
| }
 | |
| 
 | |
| static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
 | |
| {
 | |
| 	unsigned int hash_buckets;
 | |
| 	int i;
 | |
| 
 | |
| 	do {
 | |
| 		hash_buckets = 1U << bits;
 | |
| 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
 | |
| 						GFP_KERNEL_ACCOUNT);
 | |
| 		if (table->hbs)
 | |
| 			break;
 | |
| 		if (bits == 1)
 | |
| 			return -ENOMEM;
 | |
| 		bits--;
 | |
| 	} while (1);
 | |
| 
 | |
| 	table->hash_bits = bits;
 | |
| 	for (i = 0; i < hash_buckets; i++)
 | |
| 		INIT_HLIST_HEAD(&table->hbs[i].list);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_free_alloc_caches(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
 | |
| 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
 | |
| 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
 | |
| 	io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
 | |
| 	io_futex_cache_free(ctx);
 | |
| 	io_rsrc_cache_free(ctx);
 | |
| }
 | |
| 
 | |
| static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx;
 | |
| 	int hash_bits;
 | |
| 	bool ret;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return NULL;
 | |
| 
 | |
| 	xa_init(&ctx->io_bl_xa);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use 5 bits less than the max cq entries, that should give us around
 | |
| 	 * 32 entries per hash list if totally full and uniformly spread, but
 | |
| 	 * don't keep too many buckets to not overconsume memory.
 | |
| 	 */
 | |
| 	hash_bits = ilog2(p->cq_entries) - 5;
 | |
| 	hash_bits = clamp(hash_bits, 1, 8);
 | |
| 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
 | |
| 		goto err;
 | |
| 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
 | |
| 			    0, GFP_KERNEL))
 | |
| 		goto err;
 | |
| 
 | |
| 	ctx->flags = p->flags;
 | |
| 	ctx->hybrid_poll_time = LLONG_MAX;
 | |
| 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
 | |
| 	init_waitqueue_head(&ctx->sqo_sq_wait);
 | |
| 	INIT_LIST_HEAD(&ctx->sqd_list);
 | |
| 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
 | |
| 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
 | |
| 			    sizeof(struct async_poll), 0);
 | |
| 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
 | |
| 			    sizeof(struct io_async_msghdr),
 | |
| 			    offsetof(struct io_async_msghdr, clear));
 | |
| 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
 | |
| 			    sizeof(struct io_async_rw),
 | |
| 			    offsetof(struct io_async_rw, clear));
 | |
| 	ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
 | |
| 			    sizeof(struct io_async_cmd),
 | |
| 			    sizeof(struct io_async_cmd));
 | |
| 	ret |= io_futex_cache_init(ctx);
 | |
| 	ret |= io_rsrc_cache_init(ctx);
 | |
| 	if (ret)
 | |
| 		goto free_ref;
 | |
| 	init_completion(&ctx->ref_comp);
 | |
| 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
 | |
| 	mutex_init(&ctx->uring_lock);
 | |
| 	init_waitqueue_head(&ctx->cq_wait);
 | |
| 	init_waitqueue_head(&ctx->poll_wq);
 | |
| 	spin_lock_init(&ctx->completion_lock);
 | |
| 	raw_spin_lock_init(&ctx->timeout_lock);
 | |
| 	INIT_WQ_LIST(&ctx->iopoll_list);
 | |
| 	INIT_LIST_HEAD(&ctx->defer_list);
 | |
| 	INIT_LIST_HEAD(&ctx->timeout_list);
 | |
| 	INIT_LIST_HEAD(&ctx->ltimeout_list);
 | |
| 	init_llist_head(&ctx->work_llist);
 | |
| 	INIT_LIST_HEAD(&ctx->tctx_list);
 | |
| 	ctx->submit_state.free_list.next = NULL;
 | |
| 	INIT_HLIST_HEAD(&ctx->waitid_list);
 | |
| 	xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	INIT_HLIST_HEAD(&ctx->futex_list);
 | |
| #endif
 | |
| 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
 | |
| 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
 | |
| 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
 | |
| 	io_napi_init(ctx);
 | |
| 	mutex_init(&ctx->mmap_lock);
 | |
| 
 | |
| 	return ctx;
 | |
| 
 | |
| free_ref:
 | |
| 	percpu_ref_exit(&ctx->refs);
 | |
| err:
 | |
| 	io_free_alloc_caches(ctx);
 | |
| 	kvfree(ctx->cancel_table.hbs);
 | |
| 	xa_destroy(&ctx->io_bl_xa);
 | |
| 	kfree(ctx);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void io_clean_op(struct io_kiocb *req)
 | |
| {
 | |
| 	if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
 | |
| 		io_kbuf_drop_legacy(req);
 | |
| 
 | |
| 	if (req->flags & REQ_F_NEED_CLEANUP) {
 | |
| 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
 | |
| 
 | |
| 		if (def->cleanup)
 | |
| 			def->cleanup(req);
 | |
| 	}
 | |
| 	if (req->flags & REQ_F_INFLIGHT)
 | |
| 		atomic_dec(&req->tctx->inflight_tracked);
 | |
| 	if (req->flags & REQ_F_CREDS)
 | |
| 		put_cred(req->creds);
 | |
| 	if (req->flags & REQ_F_ASYNC_DATA) {
 | |
| 		kfree(req->async_data);
 | |
| 		req->async_data = NULL;
 | |
| 	}
 | |
| 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the request as inflight, so that file cancelation will find it.
 | |
|  * Can be used if the file is an io_uring instance, or if the request itself
 | |
|  * relies on ->mm being alive for the duration of the request.
 | |
|  */
 | |
| inline void io_req_track_inflight(struct io_kiocb *req)
 | |
| {
 | |
| 	if (!(req->flags & REQ_F_INFLIGHT)) {
 | |
| 		req->flags |= REQ_F_INFLIGHT;
 | |
| 		atomic_inc(&req->tctx->inflight_tracked);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!req->link))
 | |
| 		return NULL;
 | |
| 
 | |
| 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
 | |
| 	req->flags |= REQ_F_LINK_TIMEOUT;
 | |
| 
 | |
| 	/* linked timeouts should have two refs once prep'ed */
 | |
| 	io_req_set_refcount(req);
 | |
| 	__io_req_set_refcount(req->link, 2);
 | |
| 	return req->link;
 | |
| }
 | |
| 
 | |
| static void io_prep_async_work(struct io_kiocb *req)
 | |
| {
 | |
| 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 
 | |
| 	if (!(req->flags & REQ_F_CREDS)) {
 | |
| 		req->flags |= REQ_F_CREDS;
 | |
| 		req->creds = get_current_cred();
 | |
| 	}
 | |
| 
 | |
| 	req->work.list.next = NULL;
 | |
| 	atomic_set(&req->work.flags, 0);
 | |
| 	if (req->flags & REQ_F_FORCE_ASYNC)
 | |
| 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
 | |
| 
 | |
| 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
 | |
| 		req->flags |= io_file_get_flags(req->file);
 | |
| 
 | |
| 	if (req->file && (req->flags & REQ_F_ISREG)) {
 | |
| 		bool should_hash = def->hash_reg_file;
 | |
| 
 | |
| 		/* don't serialize this request if the fs doesn't need it */
 | |
| 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
 | |
| 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
 | |
| 			should_hash = false;
 | |
| 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
 | |
| 			io_wq_hash_work(&req->work, file_inode(req->file));
 | |
| 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
 | |
| 		if (def->unbound_nonreg_file)
 | |
| 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void io_prep_async_link(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_kiocb *cur;
 | |
| 
 | |
| 	if (req->flags & REQ_F_LINK_TIMEOUT) {
 | |
| 		struct io_ring_ctx *ctx = req->ctx;
 | |
| 
 | |
| 		raw_spin_lock_irq(&ctx->timeout_lock);
 | |
| 		io_for_each_link(cur, req)
 | |
| 			io_prep_async_work(cur);
 | |
| 		raw_spin_unlock_irq(&ctx->timeout_lock);
 | |
| 	} else {
 | |
| 		io_for_each_link(cur, req)
 | |
| 			io_prep_async_work(cur);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void io_queue_iowq(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_uring_task *tctx = req->tctx;
 | |
| 
 | |
| 	BUG_ON(!tctx);
 | |
| 
 | |
| 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
 | |
| 		io_req_task_queue_fail(req, -ECANCELED);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* init ->work of the whole link before punting */
 | |
| 	io_prep_async_link(req);
 | |
| 
 | |
| 	/*
 | |
| 	 * Not expected to happen, but if we do have a bug where this _can_
 | |
| 	 * happen, catch it here and ensure the request is marked as
 | |
| 	 * canceled. That will make io-wq go through the usual work cancel
 | |
| 	 * procedure rather than attempt to run this request (or create a new
 | |
| 	 * worker for it).
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
 | |
| 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
 | |
| 
 | |
| 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
 | |
| 	io_wq_enqueue(tctx->io_wq, &req->work);
 | |
| }
 | |
| 
 | |
| static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
 | |
| {
 | |
| 	io_queue_iowq(req);
 | |
| }
 | |
| 
 | |
| void io_req_queue_iowq(struct io_kiocb *req)
 | |
| {
 | |
| 	req->io_task_work.func = io_req_queue_iowq_tw;
 | |
| 	io_req_task_work_add(req);
 | |
| }
 | |
| 
 | |
| static unsigned io_linked_nr(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_kiocb *tmp;
 | |
| 	unsigned nr = 0;
 | |
| 
 | |
| 	io_for_each_link(tmp, req)
 | |
| 		nr++;
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	bool drain_seen = false, first = true;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->uring_lock);
 | |
| 	__io_req_caches_free(ctx);
 | |
| 
 | |
| 	while (!list_empty(&ctx->defer_list)) {
 | |
| 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
 | |
| 						struct io_defer_entry, list);
 | |
| 
 | |
| 		drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
 | |
| 		if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
 | |
| 			return;
 | |
| 
 | |
| 		list_del_init(&de->list);
 | |
| 		ctx->nr_drained -= io_linked_nr(de->req);
 | |
| 		io_req_task_queue(de->req);
 | |
| 		kfree(de);
 | |
| 		first = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	if (ctx->poll_activated)
 | |
| 		io_poll_wq_wake(ctx);
 | |
| 	if (ctx->off_timeout_used)
 | |
| 		io_flush_timeouts(ctx);
 | |
| 	if (ctx->has_evfd)
 | |
| 		io_eventfd_signal(ctx, true);
 | |
| }
 | |
| 
 | |
| static inline void __io_cq_lock(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	if (!ctx->lockless_cq)
 | |
| 		spin_lock(&ctx->completion_lock);
 | |
| }
 | |
| 
 | |
| static inline void io_cq_lock(struct io_ring_ctx *ctx)
 | |
| 	__acquires(ctx->completion_lock)
 | |
| {
 | |
| 	spin_lock(&ctx->completion_lock);
 | |
| }
 | |
| 
 | |
| static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	io_commit_cqring(ctx);
 | |
| 	if (!ctx->task_complete) {
 | |
| 		if (!ctx->lockless_cq)
 | |
| 			spin_unlock(&ctx->completion_lock);
 | |
| 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
 | |
| 		if (!ctx->syscall_iopoll)
 | |
| 			io_cqring_wake(ctx);
 | |
| 	}
 | |
| 	io_commit_cqring_flush(ctx);
 | |
| }
 | |
| 
 | |
| static void io_cq_unlock_post(struct io_ring_ctx *ctx)
 | |
| 	__releases(ctx->completion_lock)
 | |
| {
 | |
| 	io_commit_cqring(ctx);
 | |
| 	spin_unlock(&ctx->completion_lock);
 | |
| 	io_cqring_wake(ctx);
 | |
| 	io_commit_cqring_flush(ctx);
 | |
| }
 | |
| 
 | |
| static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
 | |
| {
 | |
| 	lockdep_assert_held(&ctx->uring_lock);
 | |
| 
 | |
| 	/* don't abort if we're dying, entries must get freed */
 | |
| 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
 | |
| 		return;
 | |
| 
 | |
| 	io_cq_lock(ctx);
 | |
| 	while (!list_empty(&ctx->cq_overflow_list)) {
 | |
| 		size_t cqe_size = sizeof(struct io_uring_cqe);
 | |
| 		struct io_uring_cqe *cqe;
 | |
| 		struct io_overflow_cqe *ocqe;
 | |
| 		bool is_cqe32 = false;
 | |
| 
 | |
| 		ocqe = list_first_entry(&ctx->cq_overflow_list,
 | |
| 					struct io_overflow_cqe, list);
 | |
| 		if (ocqe->cqe.flags & IORING_CQE_F_32 ||
 | |
| 		    ctx->flags & IORING_SETUP_CQE32) {
 | |
| 			is_cqe32 = true;
 | |
| 			cqe_size <<= 1;
 | |
| 		}
 | |
| 
 | |
| 		if (!dying) {
 | |
| 			if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32))
 | |
| 				break;
 | |
| 			memcpy(cqe, &ocqe->cqe, cqe_size);
 | |
| 		}
 | |
| 		list_del(&ocqe->list);
 | |
| 		kfree(ocqe);
 | |
| 
 | |
| 		/*
 | |
| 		 * For silly syzbot cases that deliberately overflow by huge
 | |
| 		 * amounts, check if we need to resched and drop and
 | |
| 		 * reacquire the locks if so. Nothing real would ever hit this.
 | |
| 		 * Ideally we'd have a non-posting unlock for this, but hard
 | |
| 		 * to care for a non-real case.
 | |
| 		 */
 | |
| 		if (need_resched()) {
 | |
| 			ctx->cqe_sentinel = ctx->cqe_cached;
 | |
| 			io_cq_unlock_post(ctx);
 | |
| 			mutex_unlock(&ctx->uring_lock);
 | |
| 			cond_resched();
 | |
| 			mutex_lock(&ctx->uring_lock);
 | |
| 			io_cq_lock(ctx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&ctx->cq_overflow_list)) {
 | |
| 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 | |
| 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 | |
| 	}
 | |
| 	io_cq_unlock_post(ctx);
 | |
| }
 | |
| 
 | |
| static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	if (ctx->rings)
 | |
| 		__io_cqring_overflow_flush(ctx, true);
 | |
| }
 | |
| 
 | |
| static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	__io_cqring_overflow_flush(ctx, false);
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| }
 | |
| 
 | |
| /* must to be called somewhat shortly after putting a request */
 | |
| static inline void io_put_task(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_uring_task *tctx = req->tctx;
 | |
| 
 | |
| 	if (likely(tctx->task == current)) {
 | |
| 		tctx->cached_refs++;
 | |
| 	} else {
 | |
| 		percpu_counter_sub(&tctx->inflight, 1);
 | |
| 		if (unlikely(atomic_read(&tctx->in_cancel)))
 | |
| 			wake_up(&tctx->wait);
 | |
| 		put_task_struct(tctx->task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void io_task_refs_refill(struct io_uring_task *tctx)
 | |
| {
 | |
| 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
 | |
| 
 | |
| 	percpu_counter_add(&tctx->inflight, refill);
 | |
| 	refcount_add(refill, ¤t->usage);
 | |
| 	tctx->cached_refs += refill;
 | |
| }
 | |
| 
 | |
| static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
 | |
| {
 | |
| 	struct io_uring_task *tctx = task->io_uring;
 | |
| 	unsigned int refs = tctx->cached_refs;
 | |
| 
 | |
| 	if (refs) {
 | |
| 		tctx->cached_refs = 0;
 | |
| 		percpu_counter_sub(&tctx->inflight, refs);
 | |
| 		put_task_struct_many(task, refs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
 | |
| 					  struct io_overflow_cqe *ocqe)
 | |
| {
 | |
| 	lockdep_assert_held(&ctx->completion_lock);
 | |
| 
 | |
| 	if (!ocqe) {
 | |
| 		struct io_rings *r = ctx->rings;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we're in ring overflow flush mode, or in task cancel mode,
 | |
| 		 * or cannot allocate an overflow entry, then we need to drop it
 | |
| 		 * on the floor.
 | |
| 		 */
 | |
| 		WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
 | |
| 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (list_empty(&ctx->cq_overflow_list)) {
 | |
| 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 | |
| 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 | |
| 
 | |
| 	}
 | |
| 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
 | |
| 					     struct io_cqe *cqe,
 | |
| 					     struct io_big_cqe *big_cqe, gfp_t gfp)
 | |
| {
 | |
| 	struct io_overflow_cqe *ocqe;
 | |
| 	size_t ocq_size = sizeof(struct io_overflow_cqe);
 | |
| 	bool is_cqe32 = false;
 | |
| 
 | |
| 	if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) {
 | |
| 		is_cqe32 = true;
 | |
| 		ocq_size += sizeof(struct io_uring_cqe);
 | |
| 	}
 | |
| 
 | |
| 	ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
 | |
| 	trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
 | |
| 	if (ocqe) {
 | |
| 		ocqe->cqe.user_data = cqe->user_data;
 | |
| 		ocqe->cqe.res = cqe->res;
 | |
| 		ocqe->cqe.flags = cqe->flags;
 | |
| 		if (is_cqe32 && big_cqe) {
 | |
| 			ocqe->cqe.big_cqe[0] = big_cqe->extra1;
 | |
| 			ocqe->cqe.big_cqe[1] = big_cqe->extra2;
 | |
| 		}
 | |
| 	}
 | |
| 	if (big_cqe)
 | |
| 		big_cqe->extra1 = big_cqe->extra2 = 0;
 | |
| 	return ocqe;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE
 | |
|  * because the ring is a single 16b entry away from wrapping.
 | |
|  */
 | |
| static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off)
 | |
| {
 | |
| 	if (__io_cqring_events(ctx) < ctx->cq_entries) {
 | |
| 		struct io_uring_cqe *cqe = &ctx->rings->cqes[off];
 | |
| 
 | |
| 		cqe->user_data = 0;
 | |
| 		cqe->res = 0;
 | |
| 		cqe->flags = IORING_CQE_F_SKIP;
 | |
| 		ctx->cached_cq_tail++;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * writes to the cq entry need to come after reading head; the
 | |
|  * control dependency is enough as we're using WRITE_ONCE to
 | |
|  * fill the cq entry
 | |
|  */
 | |
| bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32)
 | |
| {
 | |
| 	struct io_rings *rings = ctx->rings;
 | |
| 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
 | |
| 	unsigned int free, queued, len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Posting into the CQ when there are pending overflowed CQEs may break
 | |
| 	 * ordering guarantees, which will affect links, F_MORE users and more.
 | |
| 	 * Force overflow the completion.
 | |
| 	 */
 | |
| 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Post dummy CQE if a 32b CQE is needed and there's only room for a
 | |
| 	 * 16b CQE before the ring wraps.
 | |
| 	 */
 | |
| 	if (cqe32 && off + 1 == ctx->cq_entries) {
 | |
| 		if (!io_fill_nop_cqe(ctx, off))
 | |
| 			return false;
 | |
| 		off = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* userspace may cheat modifying the tail, be safe and do min */
 | |
| 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
 | |
| 	free = ctx->cq_entries - queued;
 | |
| 	/* we need a contiguous range, limit based on the current array offset */
 | |
| 	len = min(free, ctx->cq_entries - off);
 | |
| 	if (len < (cqe32 + 1))
 | |
| 		return false;
 | |
| 
 | |
| 	if (ctx->flags & IORING_SETUP_CQE32) {
 | |
| 		off <<= 1;
 | |
| 		len <<= 1;
 | |
| 	}
 | |
| 
 | |
| 	ctx->cqe_cached = &rings->cqes[off];
 | |
| 	ctx->cqe_sentinel = ctx->cqe_cached + len;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
 | |
| 			      struct io_uring_cqe src_cqe[2])
 | |
| {
 | |
| 	struct io_uring_cqe *cqe;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))))
 | |
| 		return false;
 | |
| 	if (unlikely(!io_get_cqe(ctx, &cqe, true)))
 | |
| 		return false;
 | |
| 
 | |
| 	memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
 | |
| 	trace_io_uring_complete(ctx, NULL, cqe);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
 | |
| 			      u32 cflags)
 | |
| {
 | |
| 	bool cqe32 = cflags & IORING_CQE_F_32;
 | |
| 	struct io_uring_cqe *cqe;
 | |
| 
 | |
| 	if (likely(io_get_cqe(ctx, &cqe, cqe32))) {
 | |
| 		WRITE_ONCE(cqe->user_data, user_data);
 | |
| 		WRITE_ONCE(cqe->res, res);
 | |
| 		WRITE_ONCE(cqe->flags, cflags);
 | |
| 
 | |
| 		if (cqe32) {
 | |
| 			WRITE_ONCE(cqe->big_cqe[0], 0);
 | |
| 			WRITE_ONCE(cqe->big_cqe[1], 0);
 | |
| 		}
 | |
| 
 | |
| 		trace_io_uring_complete(ctx, NULL, cqe);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
 | |
| {
 | |
| 	return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
 | |
| }
 | |
| 
 | |
| static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
 | |
| 				   struct io_big_cqe *big_cqe)
 | |
| {
 | |
| 	struct io_overflow_cqe *ocqe;
 | |
| 
 | |
| 	ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
 | |
| 	spin_lock(&ctx->completion_lock);
 | |
| 	io_cqring_add_overflow(ctx, ocqe);
 | |
| 	spin_unlock(&ctx->completion_lock);
 | |
| }
 | |
| 
 | |
| static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
 | |
| 					  struct io_cqe *cqe,
 | |
| 					  struct io_big_cqe *big_cqe)
 | |
| {
 | |
| 	struct io_overflow_cqe *ocqe;
 | |
| 
 | |
| 	ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC);
 | |
| 	return io_cqring_add_overflow(ctx, ocqe);
 | |
| }
 | |
| 
 | |
| bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
 | |
| {
 | |
| 	bool filled;
 | |
| 
 | |
| 	io_cq_lock(ctx);
 | |
| 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
 | |
| 	if (unlikely(!filled)) {
 | |
| 		struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
 | |
| 
 | |
| 		filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
 | |
| 	}
 | |
| 	io_cq_unlock_post(ctx);
 | |
| 	return filled;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called from inline task_work so we now a flush will happen later,
 | |
|  * and obviously with ctx->uring_lock held (tw always has that).
 | |
|  */
 | |
| void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
 | |
| {
 | |
| 	lockdep_assert_held(&ctx->uring_lock);
 | |
| 	lockdep_assert(ctx->lockless_cq);
 | |
| 
 | |
| 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
 | |
| 		struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
 | |
| 
 | |
| 		io_cqe_overflow(ctx, &cqe, NULL);
 | |
| 	}
 | |
| 	ctx->submit_state.cq_flush = true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A helper for multishot requests posting additional CQEs.
 | |
|  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
 | |
|  */
 | |
| bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	bool posted;
 | |
| 
 | |
| 	/*
 | |
| 	 * If multishot has already posted deferred completions, ensure that
 | |
| 	 * those are flushed first before posting this one. If not, CQEs
 | |
| 	 * could get reordered.
 | |
| 	 */
 | |
| 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
 | |
| 		__io_submit_flush_completions(ctx);
 | |
| 
 | |
| 	lockdep_assert(!io_wq_current_is_worker());
 | |
| 	lockdep_assert_held(&ctx->uring_lock);
 | |
| 
 | |
| 	if (!ctx->lockless_cq) {
 | |
| 		spin_lock(&ctx->completion_lock);
 | |
| 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
 | |
| 		spin_unlock(&ctx->completion_lock);
 | |
| 	} else {
 | |
| 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
 | |
| 	}
 | |
| 
 | |
| 	ctx->submit_state.cq_flush = true;
 | |
| 	return posted;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A helper for multishot requests posting additional CQEs.
 | |
|  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
 | |
|  */
 | |
| bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	bool posted;
 | |
| 
 | |
| 	lockdep_assert(!io_wq_current_is_worker());
 | |
| 	lockdep_assert_held(&ctx->uring_lock);
 | |
| 
 | |
| 	cqe[0].user_data = req->cqe.user_data;
 | |
| 	if (!ctx->lockless_cq) {
 | |
| 		spin_lock(&ctx->completion_lock);
 | |
| 		posted = io_fill_cqe_aux32(ctx, cqe);
 | |
| 		spin_unlock(&ctx->completion_lock);
 | |
| 	} else {
 | |
| 		posted = io_fill_cqe_aux32(ctx, cqe);
 | |
| 	}
 | |
| 
 | |
| 	ctx->submit_state.cq_flush = true;
 | |
| 	return posted;
 | |
| }
 | |
| 
 | |
| static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	bool completed = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * All execution paths but io-wq use the deferred completions by
 | |
| 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
 | |
| 	 * the submitter task context, IOPOLL protects with uring_lock.
 | |
| 	 */
 | |
| 	if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
 | |
| defer_complete:
 | |
| 		req->io_task_work.func = io_req_task_complete;
 | |
| 		io_req_task_work_add(req);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	io_cq_lock(ctx);
 | |
| 	if (!(req->flags & REQ_F_CQE_SKIP))
 | |
| 		completed = io_fill_cqe_req(ctx, req);
 | |
| 	io_cq_unlock_post(ctx);
 | |
| 
 | |
| 	if (!completed)
 | |
| 		goto defer_complete;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't free the request here because we know it's called from
 | |
| 	 * io-wq only, which holds a reference, so it cannot be the last put.
 | |
| 	 */
 | |
| 	req_ref_put(req);
 | |
| }
 | |
| 
 | |
| void io_req_defer_failed(struct io_kiocb *req, s32 res)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
 | |
| 
 | |
| 	lockdep_assert_held(&req->ctx->uring_lock);
 | |
| 
 | |
| 	req_set_fail(req);
 | |
| 	io_req_set_res(req, res, io_put_kbuf(req, res, NULL));
 | |
| 	if (def->fail)
 | |
| 		def->fail(req);
 | |
| 	io_req_complete_defer(req);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A request might get retired back into the request caches even before opcode
 | |
|  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
 | |
|  * Because of that, io_alloc_req() should be called only under ->uring_lock
 | |
|  * and with extra caution to not get a request that is still worked on.
 | |
|  */
 | |
| __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
 | |
| 	void *reqs[IO_REQ_ALLOC_BATCH];
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
 | |
| 	 * retry single alloc to be on the safe side.
 | |
| 	 */
 | |
| 	if (unlikely(ret <= 0)) {
 | |
| 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
 | |
| 		if (!reqs[0])
 | |
| 			return false;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	percpu_ref_get_many(&ctx->refs, ret);
 | |
| 	ctx->nr_req_allocated += ret;
 | |
| 
 | |
| 	while (ret--) {
 | |
| 		struct io_kiocb *req = reqs[ret];
 | |
| 
 | |
| 		io_req_add_to_cache(req, ctx);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| __cold void io_free_req(struct io_kiocb *req)
 | |
| {
 | |
| 	/* refs were already put, restore them for io_req_task_complete() */
 | |
| 	req->flags &= ~REQ_F_REFCOUNT;
 | |
| 	/* we only want to free it, don't post CQEs */
 | |
| 	req->flags |= REQ_F_CQE_SKIP;
 | |
| 	req->io_task_work.func = io_req_task_complete;
 | |
| 	io_req_task_work_add(req);
 | |
| }
 | |
| 
 | |
| static void __io_req_find_next_prep(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 
 | |
| 	spin_lock(&ctx->completion_lock);
 | |
| 	io_disarm_next(req);
 | |
| 	spin_unlock(&ctx->completion_lock);
 | |
| }
 | |
| 
 | |
| static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_kiocb *nxt;
 | |
| 
 | |
| 	/*
 | |
| 	 * If LINK is set, we have dependent requests in this chain. If we
 | |
| 	 * didn't fail this request, queue the first one up, moving any other
 | |
| 	 * dependencies to the next request. In case of failure, fail the rest
 | |
| 	 * of the chain.
 | |
| 	 */
 | |
| 	if (unlikely(req->flags & IO_DISARM_MASK))
 | |
| 		__io_req_find_next_prep(req);
 | |
| 	nxt = req->link;
 | |
| 	req->link = NULL;
 | |
| 	return nxt;
 | |
| }
 | |
| 
 | |
| static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
 | |
| {
 | |
| 	if (!ctx)
 | |
| 		return;
 | |
| 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
 | |
| 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
 | |
| 
 | |
| 	io_submit_flush_completions(ctx);
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 	percpu_ref_put(&ctx->refs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run queued task_work, returning the number of entries processed in *count.
 | |
|  * If more entries than max_entries are available, stop processing once this
 | |
|  * is reached and return the rest of the list.
 | |
|  */
 | |
| struct llist_node *io_handle_tw_list(struct llist_node *node,
 | |
| 				     unsigned int *count,
 | |
| 				     unsigned int max_entries)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = NULL;
 | |
| 	struct io_tw_state ts = { };
 | |
| 
 | |
| 	do {
 | |
| 		struct llist_node *next = node->next;
 | |
| 		struct io_kiocb *req = container_of(node, struct io_kiocb,
 | |
| 						    io_task_work.node);
 | |
| 
 | |
| 		if (req->ctx != ctx) {
 | |
| 			ctx_flush_and_put(ctx, ts);
 | |
| 			ctx = req->ctx;
 | |
| 			mutex_lock(&ctx->uring_lock);
 | |
| 			percpu_ref_get(&ctx->refs);
 | |
| 		}
 | |
| 		INDIRECT_CALL_2(req->io_task_work.func,
 | |
| 				io_poll_task_func, io_req_rw_complete,
 | |
| 				req, ts);
 | |
| 		node = next;
 | |
| 		(*count)++;
 | |
| 		if (unlikely(need_resched())) {
 | |
| 			ctx_flush_and_put(ctx, ts);
 | |
| 			ctx = NULL;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	} while (node && *count < max_entries);
 | |
| 
 | |
| 	ctx_flush_and_put(ctx, ts);
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
 | |
| {
 | |
| 	struct io_ring_ctx *last_ctx = NULL;
 | |
| 	struct io_kiocb *req;
 | |
| 
 | |
| 	while (node) {
 | |
| 		req = container_of(node, struct io_kiocb, io_task_work.node);
 | |
| 		node = node->next;
 | |
| 		if (last_ctx != req->ctx) {
 | |
| 			if (last_ctx) {
 | |
| 				if (sync)
 | |
| 					flush_delayed_work(&last_ctx->fallback_work);
 | |
| 				percpu_ref_put(&last_ctx->refs);
 | |
| 			}
 | |
| 			last_ctx = req->ctx;
 | |
| 			percpu_ref_get(&last_ctx->refs);
 | |
| 		}
 | |
| 		if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
 | |
| 			schedule_delayed_work(&last_ctx->fallback_work, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (last_ctx) {
 | |
| 		if (sync)
 | |
| 			flush_delayed_work(&last_ctx->fallback_work);
 | |
| 		percpu_ref_put(&last_ctx->refs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
 | |
| {
 | |
| 	struct llist_node *node = llist_del_all(&tctx->task_list);
 | |
| 
 | |
| 	__io_fallback_tw(node, sync);
 | |
| }
 | |
| 
 | |
| struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
 | |
| 				      unsigned int max_entries,
 | |
| 				      unsigned int *count)
 | |
| {
 | |
| 	struct llist_node *node;
 | |
| 
 | |
| 	if (unlikely(current->flags & PF_EXITING)) {
 | |
| 		io_fallback_tw(tctx, true);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	node = llist_del_all(&tctx->task_list);
 | |
| 	if (node) {
 | |
| 		node = llist_reverse_order(node);
 | |
| 		node = io_handle_tw_list(node, count, max_entries);
 | |
| 	}
 | |
| 
 | |
| 	/* relaxed read is enough as only the task itself sets ->in_cancel */
 | |
| 	if (unlikely(atomic_read(&tctx->in_cancel)))
 | |
| 		io_uring_drop_tctx_refs(current);
 | |
| 
 | |
| 	trace_io_uring_task_work_run(tctx, *count);
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| void tctx_task_work(struct callback_head *cb)
 | |
| {
 | |
| 	struct io_uring_task *tctx;
 | |
| 	struct llist_node *ret;
 | |
| 	unsigned int count = 0;
 | |
| 
 | |
| 	tctx = container_of(cb, struct io_uring_task, task_work);
 | |
| 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
 | |
| 	/* can't happen */
 | |
| 	WARN_ON_ONCE(ret);
 | |
| }
 | |
| 
 | |
| static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	unsigned nr_wait, nr_tw, nr_tw_prev;
 | |
| 	struct llist_node *head;
 | |
| 
 | |
| 	/* See comment above IO_CQ_WAKE_INIT */
 | |
| 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't know how many reuqests is there in the link and whether
 | |
| 	 * they can even be queued lazily, fall back to non-lazy.
 | |
| 	 */
 | |
| 	if (req->flags & IO_REQ_LINK_FLAGS)
 | |
| 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
 | |
| 
 | |
| 	guard(rcu)();
 | |
| 
 | |
| 	head = READ_ONCE(ctx->work_llist.first);
 | |
| 	do {
 | |
| 		nr_tw_prev = 0;
 | |
| 		if (head) {
 | |
| 			struct io_kiocb *first_req = container_of(head,
 | |
| 							struct io_kiocb,
 | |
| 							io_task_work.node);
 | |
| 			/*
 | |
| 			 * Might be executed at any moment, rely on
 | |
| 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
 | |
| 			 */
 | |
| 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Theoretically, it can overflow, but that's fine as one of
 | |
| 		 * previous adds should've tried to wake the task.
 | |
| 		 */
 | |
| 		nr_tw = nr_tw_prev + 1;
 | |
| 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
 | |
| 			nr_tw = IO_CQ_WAKE_FORCE;
 | |
| 
 | |
| 		req->nr_tw = nr_tw;
 | |
| 		req->io_task_work.node.next = head;
 | |
| 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
 | |
| 			      &req->io_task_work.node));
 | |
| 
 | |
| 	/*
 | |
| 	 * cmpxchg implies a full barrier, which pairs with the barrier
 | |
| 	 * in set_current_state() on the io_cqring_wait() side. It's used
 | |
| 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
 | |
| 	 * going to sleep will observe the work added to the list, which
 | |
| 	 * is similar to the wait/wawke task state sync.
 | |
| 	 */
 | |
| 
 | |
| 	if (!head) {
 | |
| 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
 | |
| 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
 | |
| 		if (ctx->has_evfd)
 | |
| 			io_eventfd_signal(ctx, false);
 | |
| 	}
 | |
| 
 | |
| 	nr_wait = atomic_read(&ctx->cq_wait_nr);
 | |
| 	/* not enough or no one is waiting */
 | |
| 	if (nr_tw < nr_wait)
 | |
| 		return;
 | |
| 	/* the previous add has already woken it up */
 | |
| 	if (nr_tw_prev >= nr_wait)
 | |
| 		return;
 | |
| 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static void io_req_normal_work_add(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_uring_task *tctx = req->tctx;
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 
 | |
| 	/* task_work already pending, we're done */
 | |
| 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
 | |
| 		return;
 | |
| 
 | |
| 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
 | |
| 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
 | |
| 
 | |
| 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
 | |
| 	if (ctx->flags & IORING_SETUP_SQPOLL) {
 | |
| 		__set_notify_signal(tctx->task);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
 | |
| 		return;
 | |
| 
 | |
| 	io_fallback_tw(tctx, false);
 | |
| }
 | |
| 
 | |
| void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
 | |
| {
 | |
| 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
 | |
| 		io_req_local_work_add(req, flags);
 | |
| 	else
 | |
| 		io_req_normal_work_add(req);
 | |
| }
 | |
| 
 | |
| void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
 | |
| 		return;
 | |
| 	__io_req_task_work_add(req, flags);
 | |
| }
 | |
| 
 | |
| static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	struct llist_node *node = llist_del_all(&ctx->work_llist);
 | |
| 
 | |
| 	__io_fallback_tw(node, false);
 | |
| 	node = llist_del_all(&ctx->retry_llist);
 | |
| 	__io_fallback_tw(node, false);
 | |
| }
 | |
| 
 | |
| static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
 | |
| 				       int min_events)
 | |
| {
 | |
| 	if (!io_local_work_pending(ctx))
 | |
| 		return false;
 | |
| 	if (events < min_events)
 | |
| 		return true;
 | |
| 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
 | |
| 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __io_run_local_work_loop(struct llist_node **node,
 | |
| 				    io_tw_token_t tw,
 | |
| 				    int events)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (*node) {
 | |
| 		struct llist_node *next = (*node)->next;
 | |
| 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
 | |
| 						    io_task_work.node);
 | |
| 		INDIRECT_CALL_2(req->io_task_work.func,
 | |
| 				io_poll_task_func, io_req_rw_complete,
 | |
| 				req, tw);
 | |
| 		*node = next;
 | |
| 		if (++ret >= events)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
 | |
| 			       int min_events, int max_events)
 | |
| {
 | |
| 	struct llist_node *node;
 | |
| 	unsigned int loops = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(ctx->submitter_task != current))
 | |
| 		return -EEXIST;
 | |
| 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
 | |
| 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
 | |
| again:
 | |
| 	min_events -= ret;
 | |
| 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
 | |
| 	if (ctx->retry_llist.first)
 | |
| 		goto retry_done;
 | |
| 
 | |
| 	/*
 | |
| 	 * llists are in reverse order, flip it back the right way before
 | |
| 	 * running the pending items.
 | |
| 	 */
 | |
| 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
 | |
| 	ret += __io_run_local_work_loop(&node, tw, max_events - ret);
 | |
| 	ctx->retry_llist.first = node;
 | |
| 	loops++;
 | |
| 
 | |
| 	if (io_run_local_work_continue(ctx, ret, min_events))
 | |
| 		goto again;
 | |
| retry_done:
 | |
| 	io_submit_flush_completions(ctx);
 | |
| 	if (io_run_local_work_continue(ctx, ret, min_events))
 | |
| 		goto again;
 | |
| 
 | |
| 	trace_io_uring_local_work_run(ctx, ret, loops);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
 | |
| 					   int min_events)
 | |
| {
 | |
| 	struct io_tw_state ts = {};
 | |
| 
 | |
| 	if (!io_local_work_pending(ctx))
 | |
| 		return 0;
 | |
| 	return __io_run_local_work(ctx, ts, min_events,
 | |
| 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
 | |
| }
 | |
| 
 | |
| static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
 | |
| 			     int max_events)
 | |
| {
 | |
| 	struct io_tw_state ts = {};
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	ret = __io_run_local_work(ctx, ts, min_events, max_events);
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
 | |
| {
 | |
| 	io_tw_lock(req->ctx, tw);
 | |
| 	io_req_defer_failed(req, req->cqe.res);
 | |
| }
 | |
| 
 | |
| void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 
 | |
| 	io_tw_lock(ctx, tw);
 | |
| 	if (unlikely(io_should_terminate_tw(ctx)))
 | |
| 		io_req_defer_failed(req, -EFAULT);
 | |
| 	else if (req->flags & REQ_F_FORCE_ASYNC)
 | |
| 		io_queue_iowq(req);
 | |
| 	else
 | |
| 		io_queue_sqe(req, 0);
 | |
| }
 | |
| 
 | |
| void io_req_task_queue_fail(struct io_kiocb *req, int ret)
 | |
| {
 | |
| 	io_req_set_res(req, ret, 0);
 | |
| 	req->io_task_work.func = io_req_task_cancel;
 | |
| 	io_req_task_work_add(req);
 | |
| }
 | |
| 
 | |
| void io_req_task_queue(struct io_kiocb *req)
 | |
| {
 | |
| 	req->io_task_work.func = io_req_task_submit;
 | |
| 	io_req_task_work_add(req);
 | |
| }
 | |
| 
 | |
| void io_queue_next(struct io_kiocb *req)
 | |
| {
 | |
| 	struct io_kiocb *nxt = io_req_find_next(req);
 | |
| 
 | |
| 	if (nxt)
 | |
| 		io_req_task_queue(nxt);
 | |
| }
 | |
| 
 | |
| static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
 | |
| {
 | |
| 	if (req->file_node) {
 | |
| 		io_put_rsrc_node(req->ctx, req->file_node);
 | |
| 		req->file_node = NULL;
 | |
| 	}
 | |
| 	if (req->flags & REQ_F_BUF_NODE)
 | |
| 		io_put_rsrc_node(req->ctx, req->buf_node);
 | |
| }
 | |
| 
 | |
| static void io_free_batch_list(struct io_ring_ctx *ctx,
 | |
| 			       struct io_wq_work_node *node)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	do {
 | |
| 		struct io_kiocb *req = container_of(node, struct io_kiocb,
 | |
| 						    comp_list);
 | |
| 
 | |
| 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
 | |
| 			if (req->flags & REQ_F_REISSUE) {
 | |
| 				node = req->comp_list.next;
 | |
| 				req->flags &= ~REQ_F_REISSUE;
 | |
| 				io_queue_iowq(req);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (req->flags & REQ_F_REFCOUNT) {
 | |
| 				node = req->comp_list.next;
 | |
| 				if (!req_ref_put_and_test(req))
 | |
| 					continue;
 | |
| 			}
 | |
| 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
 | |
| 				struct async_poll *apoll = req->apoll;
 | |
| 
 | |
| 				if (apoll->double_poll)
 | |
| 					kfree(apoll->double_poll);
 | |
| 				io_cache_free(&ctx->apoll_cache, apoll);
 | |
| 				req->flags &= ~REQ_F_POLLED;
 | |
| 			}
 | |
| 			if (req->flags & IO_REQ_LINK_FLAGS)
 | |
| 				io_queue_next(req);
 | |
| 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
 | |
| 				io_clean_op(req);
 | |
| 		}
 | |
| 		io_put_file(req);
 | |
| 		io_req_put_rsrc_nodes(req);
 | |
| 		io_put_task(req);
 | |
| 
 | |
| 		node = req->comp_list.next;
 | |
| 		io_req_add_to_cache(req, ctx);
 | |
| 	} while (node);
 | |
| }
 | |
| 
 | |
| void __io_submit_flush_completions(struct io_ring_ctx *ctx)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	struct io_submit_state *state = &ctx->submit_state;
 | |
| 	struct io_wq_work_node *node;
 | |
| 
 | |
| 	__io_cq_lock(ctx);
 | |
| 	__wq_list_for_each(node, &state->compl_reqs) {
 | |
| 		struct io_kiocb *req = container_of(node, struct io_kiocb,
 | |
| 					    comp_list);
 | |
| 
 | |
| 		/*
 | |
| 		 * Requests marked with REQUEUE should not post a CQE, they
 | |
| 		 * will go through the io-wq retry machinery and post one
 | |
| 		 * later.
 | |
| 		 */
 | |
| 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
 | |
| 		    unlikely(!io_fill_cqe_req(ctx, req))) {
 | |
| 			if (ctx->lockless_cq)
 | |
| 				io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
 | |
| 			else
 | |
| 				io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
 | |
| 		}
 | |
| 	}
 | |
| 	__io_cq_unlock_post(ctx);
 | |
| 
 | |
| 	if (!wq_list_empty(&state->compl_reqs)) {
 | |
| 		io_free_batch_list(ctx, state->compl_reqs.first);
 | |
| 		INIT_WQ_LIST(&state->compl_reqs);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ctx->drain_active))
 | |
| 		io_queue_deferred(ctx);
 | |
| 
 | |
| 	ctx->submit_state.cq_flush = false;
 | |
| }
 | |
| 
 | |
| static unsigned io_cqring_events(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	/* See comment at the top of this file */
 | |
| 	smp_rmb();
 | |
| 	return __io_cqring_events(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can't just wait for polled events to come to us, we have to actively
 | |
|  * find and complete them.
 | |
|  */
 | |
| static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	while (!wq_list_empty(&ctx->iopoll_list)) {
 | |
| 		/* let it sleep and repeat later if can't complete a request */
 | |
| 		if (io_do_iopoll(ctx, true) == 0)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Ensure we allow local-to-the-cpu processing to take place,
 | |
| 		 * in this case we need to ensure that we reap all events.
 | |
| 		 * Also let task_work, etc. to progress by releasing the mutex
 | |
| 		 */
 | |
| 		if (need_resched()) {
 | |
| 			mutex_unlock(&ctx->uring_lock);
 | |
| 			cond_resched();
 | |
| 			mutex_lock(&ctx->uring_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 
 | |
| 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
 | |
| 		io_move_task_work_from_local(ctx);
 | |
| }
 | |
| 
 | |
| static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
 | |
| {
 | |
| 	unsigned int nr_events = 0;
 | |
| 	unsigned long check_cq;
 | |
| 
 | |
| 	min_events = min(min_events, ctx->cq_entries);
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->uring_lock);
 | |
| 
 | |
| 	if (!io_allowed_run_tw(ctx))
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	check_cq = READ_ONCE(ctx->check_cq);
 | |
| 	if (unlikely(check_cq)) {
 | |
| 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
 | |
| 			__io_cqring_overflow_flush(ctx, false);
 | |
| 		/*
 | |
| 		 * Similarly do not spin if we have not informed the user of any
 | |
| 		 * dropped CQE.
 | |
| 		 */
 | |
| 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
 | |
| 			return -EBADR;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Don't enter poll loop if we already have events pending.
 | |
| 	 * If we do, we can potentially be spinning for commands that
 | |
| 	 * already triggered a CQE (eg in error).
 | |
| 	 */
 | |
| 	if (io_cqring_events(ctx))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		int ret = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If a submit got punted to a workqueue, we can have the
 | |
| 		 * application entering polling for a command before it gets
 | |
| 		 * issued. That app will hold the uring_lock for the duration
 | |
| 		 * of the poll right here, so we need to take a breather every
 | |
| 		 * now and then to ensure that the issue has a chance to add
 | |
| 		 * the poll to the issued list. Otherwise we can spin here
 | |
| 		 * forever, while the workqueue is stuck trying to acquire the
 | |
| 		 * very same mutex.
 | |
| 		 */
 | |
| 		if (wq_list_empty(&ctx->iopoll_list) ||
 | |
| 		    io_task_work_pending(ctx)) {
 | |
| 			u32 tail = ctx->cached_cq_tail;
 | |
| 
 | |
| 			(void) io_run_local_work_locked(ctx, min_events);
 | |
| 
 | |
| 			if (task_work_pending(current) ||
 | |
| 			    wq_list_empty(&ctx->iopoll_list)) {
 | |
| 				mutex_unlock(&ctx->uring_lock);
 | |
| 				io_run_task_work();
 | |
| 				mutex_lock(&ctx->uring_lock);
 | |
| 			}
 | |
| 			/* some requests don't go through iopoll_list */
 | |
| 			if (tail != ctx->cached_cq_tail ||
 | |
| 			    wq_list_empty(&ctx->iopoll_list))
 | |
| 				break;
 | |
| 		}
 | |
| 		ret = io_do_iopoll(ctx, !min_events);
 | |
| 		if (unlikely(ret < 0))
 | |
| 			return ret;
 | |
| 
 | |
| 		if (task_sigpending(current))
 | |
| 			return -EINTR;
 | |
| 		if (need_resched())
 | |
| 			break;
 | |
| 
 | |
| 		nr_events += ret;
 | |
| 	} while (nr_events < min_events);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
 | |
| {
 | |
| 	io_req_complete_defer(req);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After the iocb has been issued, it's safe to be found on the poll list.
 | |
|  * Adding the kiocb to the list AFTER submission ensures that we don't
 | |
|  * find it from a io_do_iopoll() thread before the issuer is done
 | |
|  * accessing the kiocb cookie.
 | |
|  */
 | |
| static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
 | |
| 
 | |
| 	/* workqueue context doesn't hold uring_lock, grab it now */
 | |
| 	if (unlikely(needs_lock))
 | |
| 		mutex_lock(&ctx->uring_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Track whether we have multiple files in our lists. This will impact
 | |
| 	 * how we do polling eventually, not spinning if we're on potentially
 | |
| 	 * different devices.
 | |
| 	 */
 | |
| 	if (wq_list_empty(&ctx->iopoll_list)) {
 | |
| 		ctx->poll_multi_queue = false;
 | |
| 	} else if (!ctx->poll_multi_queue) {
 | |
| 		struct io_kiocb *list_req;
 | |
| 
 | |
| 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
 | |
| 					comp_list);
 | |
| 		if (list_req->file != req->file)
 | |
| 			ctx->poll_multi_queue = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For fast devices, IO may have already completed. If it has, add
 | |
| 	 * it to the front so we find it first.
 | |
| 	 */
 | |
| 	if (READ_ONCE(req->iopoll_completed))
 | |
| 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
 | |
| 	else
 | |
| 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
 | |
| 
 | |
| 	if (unlikely(needs_lock)) {
 | |
| 		/*
 | |
| 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
 | |
| 		 * in sq thread task context or in io worker task context. If
 | |
| 		 * current task context is sq thread, we don't need to check
 | |
| 		 * whether should wake up sq thread.
 | |
| 		 */
 | |
| 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
 | |
| 		    wq_has_sleeper(&ctx->sq_data->wait))
 | |
| 			wake_up(&ctx->sq_data->wait);
 | |
| 
 | |
| 		mutex_unlock(&ctx->uring_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| io_req_flags_t io_file_get_flags(struct file *file)
 | |
| {
 | |
| 	io_req_flags_t res = 0;
 | |
| 
 | |
| 	BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
 | |
| 
 | |
| 	if (S_ISREG(file_inode(file)->i_mode))
 | |
| 		res |= REQ_F_ISREG;
 | |
| 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
 | |
| 		res |= REQ_F_SUPPORT_NOWAIT;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static __cold void io_drain_req(struct io_kiocb *req)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	bool drain = req->flags & IOSQE_IO_DRAIN;
 | |
| 	struct io_defer_entry *de;
 | |
| 
 | |
| 	de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!de) {
 | |
| 		io_req_defer_failed(req, -ENOMEM);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	io_prep_async_link(req);
 | |
| 	trace_io_uring_defer(req);
 | |
| 	de->req = req;
 | |
| 
 | |
| 	ctx->nr_drained += io_linked_nr(req);
 | |
| 	list_add_tail(&de->list, &ctx->defer_list);
 | |
| 	io_queue_deferred(ctx);
 | |
| 	if (!drain && list_empty(&ctx->defer_list))
 | |
| 		ctx->drain_active = false;
 | |
| }
 | |
| 
 | |
| static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
 | |
| 			   unsigned int issue_flags)
 | |
| {
 | |
| 	if (req->file || !def->needs_file)
 | |
| 		return true;
 | |
| 
 | |
| 	if (req->flags & REQ_F_FIXED_FILE)
 | |
| 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
 | |
| 	else
 | |
| 		req->file = io_file_get_normal(req, req->cqe.fd);
 | |
| 
 | |
| 	return !!req->file;
 | |
| }
 | |
| 
 | |
| #define REQ_ISSUE_SLOW_FLAGS	(REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
 | |
| 
 | |
| static inline int __io_issue_sqe(struct io_kiocb *req,
 | |
| 				 unsigned int issue_flags,
 | |
| 				 const struct io_issue_def *def)
 | |
| {
 | |
| 	const struct cred *creds = NULL;
 | |
| 	struct io_kiocb *link = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
 | |
| 		if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
 | |
| 			creds = override_creds(req->creds);
 | |
| 		if (req->flags & REQ_F_ARM_LTIMEOUT)
 | |
| 			link = __io_prep_linked_timeout(req);
 | |
| 	}
 | |
| 
 | |
| 	if (!def->audit_skip)
 | |
| 		audit_uring_entry(req->opcode);
 | |
| 
 | |
| 	ret = def->issue(req, issue_flags);
 | |
| 
 | |
| 	if (!def->audit_skip)
 | |
| 		audit_uring_exit(!ret, ret);
 | |
| 
 | |
| 	if (unlikely(creds || link)) {
 | |
| 		if (creds)
 | |
| 			revert_creds(creds);
 | |
| 		if (link)
 | |
| 			io_queue_linked_timeout(link);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
 | |
| {
 | |
| 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(!io_assign_file(req, def, issue_flags)))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	ret = __io_issue_sqe(req, issue_flags, def);
 | |
| 
 | |
| 	if (ret == IOU_COMPLETE) {
 | |
| 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
 | |
| 			io_req_complete_defer(req);
 | |
| 		else
 | |
| 			io_req_complete_post(req, issue_flags);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
 | |
| 		ret = 0;
 | |
| 
 | |
| 		/* If the op doesn't have a file, we're not polling for it */
 | |
| 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
 | |
| 			io_iopoll_req_issued(req, issue_flags);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
 | |
| {
 | |
| 	const unsigned int issue_flags = IO_URING_F_NONBLOCK |
 | |
| 					 IO_URING_F_MULTISHOT |
 | |
| 					 IO_URING_F_COMPLETE_DEFER;
 | |
| 	int ret;
 | |
| 
 | |
| 	io_tw_lock(req->ctx, tw);
 | |
| 
 | |
| 	WARN_ON_ONCE(!req->file);
 | |
| 	if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
 | |
| 
 | |
| 	WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
 | |
| {
 | |
| 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
 | |
| 	struct io_kiocb *nxt = NULL;
 | |
| 
 | |
| 	if (req_ref_put_and_test_atomic(req)) {
 | |
| 		if (req->flags & IO_REQ_LINK_FLAGS)
 | |
| 			nxt = io_req_find_next(req);
 | |
| 		io_free_req(req);
 | |
| 	}
 | |
| 	return nxt ? &nxt->work : NULL;
 | |
| }
 | |
| 
 | |
| void io_wq_submit_work(struct io_wq_work *work)
 | |
| {
 | |
| 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
 | |
| 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
 | |
| 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
 | |
| 	bool needs_poll = false;
 | |
| 	int ret = 0, err = -ECANCELED;
 | |
| 
 | |
| 	/* one will be dropped by io_wq_free_work() after returning to io-wq */
 | |
| 	if (!(req->flags & REQ_F_REFCOUNT))
 | |
| 		__io_req_set_refcount(req, 2);
 | |
| 	else
 | |
| 		req_ref_get(req);
 | |
| 
 | |
| 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
 | |
| 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
 | |
| fail:
 | |
| 		io_req_task_queue_fail(req, err);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!io_assign_file(req, def, issue_flags)) {
 | |
| 		err = -EBADF;
 | |
| 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
 | |
| 	 * submitter task context. Final request completions are handed to the
 | |
| 	 * right context, however this is not the case of auxiliary CQEs,
 | |
| 	 * which is the main mean of operation for multishot requests.
 | |
| 	 * Don't allow any multishot execution from io-wq. It's more restrictive
 | |
| 	 * than necessary and also cleaner.
 | |
| 	 */
 | |
| 	if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
 | |
| 		err = -EBADFD;
 | |
| 		if (!io_file_can_poll(req))
 | |
| 			goto fail;
 | |
| 		if (req->file->f_flags & O_NONBLOCK ||
 | |
| 		    req->file->f_mode & FMODE_NOWAIT) {
 | |
| 			err = -ECANCELED;
 | |
| 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
 | |
| 				goto fail;
 | |
| 			return;
 | |
| 		} else {
 | |
| 			req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (req->flags & REQ_F_FORCE_ASYNC) {
 | |
| 		bool opcode_poll = def->pollin || def->pollout;
 | |
| 
 | |
| 		if (opcode_poll && io_file_can_poll(req)) {
 | |
| 			needs_poll = true;
 | |
| 			issue_flags |= IO_URING_F_NONBLOCK;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		ret = io_issue_sqe(req, issue_flags);
 | |
| 		if (ret != -EAGAIN)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
 | |
| 		 * poll. -EAGAIN is final for that case.
 | |
| 		 */
 | |
| 		if (req->flags & REQ_F_NOWAIT)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can get EAGAIN for iopolled IO even though we're
 | |
| 		 * forcing a sync submission from here, since we can't
 | |
| 		 * wait for request slots on the block side.
 | |
| 		 */
 | |
| 		if (!needs_poll) {
 | |
| 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
 | |
| 				break;
 | |
| 			if (io_wq_worker_stopped())
 | |
| 				break;
 | |
| 			cond_resched();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
 | |
| 			return;
 | |
| 		/* aborted or ready, in either case retry blocking */
 | |
| 		needs_poll = false;
 | |
| 		issue_flags &= ~IO_URING_F_NONBLOCK;
 | |
| 	} while (1);
 | |
| 
 | |
| 	/* avoid locking problems by failing it from a clean context */
 | |
| 	if (ret)
 | |
| 		io_req_task_queue_fail(req, ret);
 | |
| }
 | |
| 
 | |
| inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
 | |
| 				      unsigned int issue_flags)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	struct io_rsrc_node *node;
 | |
| 	struct file *file = NULL;
 | |
| 
 | |
| 	io_ring_submit_lock(ctx, issue_flags);
 | |
| 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
 | |
| 	if (node) {
 | |
| 		node->refs++;
 | |
| 		req->file_node = node;
 | |
| 		req->flags |= io_slot_flags(node);
 | |
| 		file = io_slot_file(node);
 | |
| 	}
 | |
| 	io_ring_submit_unlock(ctx, issue_flags);
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| struct file *io_file_get_normal(struct io_kiocb *req, int fd)
 | |
| {
 | |
| 	struct file *file = fget(fd);
 | |
| 
 | |
| 	trace_io_uring_file_get(req, fd);
 | |
| 
 | |
| 	/* we don't allow fixed io_uring files */
 | |
| 	if (file && io_is_uring_fops(file))
 | |
| 		io_req_track_inflight(req);
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
 | |
| {
 | |
| 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
 | |
| 
 | |
| 	if (req->flags & REQ_F_SQE_COPIED)
 | |
| 		return 0;
 | |
| 	req->flags |= REQ_F_SQE_COPIED;
 | |
| 	if (!def->sqe_copy)
 | |
| 		return 0;
 | |
| 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
 | |
| 		return -EFAULT;
 | |
| 	def->sqe_copy(req);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
 | |
| 	__must_hold(&req->ctx->uring_lock)
 | |
| {
 | |
| 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
 | |
| fail:
 | |
| 		io_req_defer_failed(req, ret);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = io_req_sqe_copy(req, issue_flags);
 | |
| 	if (unlikely(ret))
 | |
| 		goto fail;
 | |
| 
 | |
| 	switch (io_arm_poll_handler(req, 0)) {
 | |
| 	case IO_APOLL_READY:
 | |
| 		io_req_task_queue(req);
 | |
| 		break;
 | |
| 	case IO_APOLL_ABORTED:
 | |
| 		io_queue_iowq(req);
 | |
| 		break;
 | |
| 	case IO_APOLL_OK:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
 | |
| 	__must_hold(&req->ctx->uring_lock)
 | |
| {
 | |
| 	unsigned int issue_flags = IO_URING_F_NONBLOCK |
 | |
| 				   IO_URING_F_COMPLETE_DEFER | extra_flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = io_issue_sqe(req, issue_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
 | |
| 	 * doesn't support non-blocking read/write attempts
 | |
| 	 */
 | |
| 	if (unlikely(ret))
 | |
| 		io_queue_async(req, issue_flags, ret);
 | |
| }
 | |
| 
 | |
| static void io_queue_sqe_fallback(struct io_kiocb *req)
 | |
| 	__must_hold(&req->ctx->uring_lock)
 | |
| {
 | |
| 	if (unlikely(req->flags & REQ_F_FAIL)) {
 | |
| 		/*
 | |
| 		 * We don't submit, fail them all, for that replace hardlinks
 | |
| 		 * with normal links. Extra REQ_F_LINK is tolerated.
 | |
| 		 */
 | |
| 		req->flags &= ~REQ_F_HARDLINK;
 | |
| 		req->flags |= REQ_F_LINK;
 | |
| 		io_req_defer_failed(req, req->cqe.res);
 | |
| 	} else {
 | |
| 		/* can't fail with IO_URING_F_INLINE */
 | |
| 		io_req_sqe_copy(req, IO_URING_F_INLINE);
 | |
| 		if (unlikely(req->ctx->drain_active))
 | |
| 			io_drain_req(req);
 | |
| 		else
 | |
| 			io_queue_iowq(req);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check SQE restrictions (opcode and flags).
 | |
|  *
 | |
|  * Returns 'true' if SQE is allowed, 'false' otherwise.
 | |
|  */
 | |
| static inline bool io_check_restriction(struct io_ring_ctx *ctx,
 | |
| 					struct io_kiocb *req,
 | |
| 					unsigned int sqe_flags)
 | |
| {
 | |
| 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
 | |
| 	    ctx->restrictions.sqe_flags_required)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
 | |
| 			  ctx->restrictions.sqe_flags_required))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void io_init_drain(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	struct io_kiocb *head = ctx->submit_state.link.head;
 | |
| 
 | |
| 	ctx->drain_active = true;
 | |
| 	if (head) {
 | |
| 		/*
 | |
| 		 * If we need to drain a request in the middle of a link, drain
 | |
| 		 * the head request and the next request/link after the current
 | |
| 		 * link. Considering sequential execution of links,
 | |
| 		 * REQ_F_IO_DRAIN will be maintained for every request of our
 | |
| 		 * link.
 | |
| 		 */
 | |
| 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
 | |
| 		ctx->drain_next = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __cold int io_init_fail_req(struct io_kiocb *req, int err)
 | |
| {
 | |
| 	/* ensure per-opcode data is cleared if we fail before prep */
 | |
| 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
 | |
| 		       const struct io_uring_sqe *sqe)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	const struct io_issue_def *def;
 | |
| 	unsigned int sqe_flags;
 | |
| 	int personality;
 | |
| 	u8 opcode;
 | |
| 
 | |
| 	req->ctx = ctx;
 | |
| 	req->opcode = opcode = READ_ONCE(sqe->opcode);
 | |
| 	/* same numerical values with corresponding REQ_F_*, safe to copy */
 | |
| 	sqe_flags = READ_ONCE(sqe->flags);
 | |
| 	req->flags = (__force io_req_flags_t) sqe_flags;
 | |
| 	req->cqe.user_data = READ_ONCE(sqe->user_data);
 | |
| 	req->file = NULL;
 | |
| 	req->tctx = current->io_uring;
 | |
| 	req->cancel_seq_set = false;
 | |
| 	req->async_data = NULL;
 | |
| 
 | |
| 	if (unlikely(opcode >= IORING_OP_LAST)) {
 | |
| 		req->opcode = 0;
 | |
| 		return io_init_fail_req(req, -EINVAL);
 | |
| 	}
 | |
| 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
 | |
| 
 | |
| 	def = &io_issue_defs[opcode];
 | |
| 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
 | |
| 		/* enforce forwards compatibility on users */
 | |
| 		if (sqe_flags & ~SQE_VALID_FLAGS)
 | |
| 			return io_init_fail_req(req, -EINVAL);
 | |
| 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
 | |
| 			if (!def->buffer_select)
 | |
| 				return io_init_fail_req(req, -EOPNOTSUPP);
 | |
| 			req->buf_index = READ_ONCE(sqe->buf_group);
 | |
| 		}
 | |
| 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
 | |
| 			ctx->drain_disabled = true;
 | |
| 		if (sqe_flags & IOSQE_IO_DRAIN) {
 | |
| 			if (ctx->drain_disabled)
 | |
| 				return io_init_fail_req(req, -EOPNOTSUPP);
 | |
| 			io_init_drain(ctx);
 | |
| 		}
 | |
| 	}
 | |
| 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
 | |
| 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
 | |
| 			return io_init_fail_req(req, -EACCES);
 | |
| 		/* knock it to the slow queue path, will be drained there */
 | |
| 		if (ctx->drain_active)
 | |
| 			req->flags |= REQ_F_FORCE_ASYNC;
 | |
| 		/* if there is no link, we're at "next" request and need to drain */
 | |
| 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
 | |
| 			ctx->drain_next = false;
 | |
| 			ctx->drain_active = true;
 | |
| 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!def->ioprio && sqe->ioprio)
 | |
| 		return io_init_fail_req(req, -EINVAL);
 | |
| 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
 | |
| 		return io_init_fail_req(req, -EINVAL);
 | |
| 
 | |
| 	if (def->needs_file) {
 | |
| 		struct io_submit_state *state = &ctx->submit_state;
 | |
| 
 | |
| 		req->cqe.fd = READ_ONCE(sqe->fd);
 | |
| 
 | |
| 		/*
 | |
| 		 * Plug now if we have more than 2 IO left after this, and the
 | |
| 		 * target is potentially a read/write to block based storage.
 | |
| 		 */
 | |
| 		if (state->need_plug && def->plug) {
 | |
| 			state->plug_started = true;
 | |
| 			state->need_plug = false;
 | |
| 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	personality = READ_ONCE(sqe->personality);
 | |
| 	if (personality) {
 | |
| 		int ret;
 | |
| 
 | |
| 		req->creds = xa_load(&ctx->personalities, personality);
 | |
| 		if (!req->creds)
 | |
| 			return io_init_fail_req(req, -EINVAL);
 | |
| 		get_cred(req->creds);
 | |
| 		ret = security_uring_override_creds(req->creds);
 | |
| 		if (ret) {
 | |
| 			put_cred(req->creds);
 | |
| 			return io_init_fail_req(req, ret);
 | |
| 		}
 | |
| 		req->flags |= REQ_F_CREDS;
 | |
| 	}
 | |
| 
 | |
| 	return def->prep(req, sqe);
 | |
| }
 | |
| 
 | |
| static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
 | |
| 				      struct io_kiocb *req, int ret)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = req->ctx;
 | |
| 	struct io_submit_link *link = &ctx->submit_state.link;
 | |
| 	struct io_kiocb *head = link->head;
 | |
| 
 | |
| 	trace_io_uring_req_failed(sqe, req, ret);
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid breaking links in the middle as it renders links with SQPOLL
 | |
| 	 * unusable. Instead of failing eagerly, continue assembling the link if
 | |
| 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
 | |
| 	 * should find the flag and handle the rest.
 | |
| 	 */
 | |
| 	req_fail_link_node(req, ret);
 | |
| 	if (head && !(head->flags & REQ_F_FAIL))
 | |
| 		req_fail_link_node(head, -ECANCELED);
 | |
| 
 | |
| 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
 | |
| 		if (head) {
 | |
| 			link->last->link = req;
 | |
| 			link->head = NULL;
 | |
| 			req = head;
 | |
| 		}
 | |
| 		io_queue_sqe_fallback(req);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (head)
 | |
| 		link->last->link = req;
 | |
| 	else
 | |
| 		link->head = req;
 | |
| 	link->last = req;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
 | |
| 			 const struct io_uring_sqe *sqe)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	struct io_submit_link *link = &ctx->submit_state.link;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = io_init_req(ctx, req, sqe);
 | |
| 	if (unlikely(ret))
 | |
| 		return io_submit_fail_init(sqe, req, ret);
 | |
| 
 | |
| 	trace_io_uring_submit_req(req);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we already have a head request, queue this one for async
 | |
| 	 * submittal once the head completes. If we don't have a head but
 | |
| 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
 | |
| 	 * submitted sync once the chain is complete. If none of those
 | |
| 	 * conditions are true (normal request), then just queue it.
 | |
| 	 */
 | |
| 	if (unlikely(link->head)) {
 | |
| 		trace_io_uring_link(req, link->last);
 | |
| 		io_req_sqe_copy(req, IO_URING_F_INLINE);
 | |
| 		link->last->link = req;
 | |
| 		link->last = req;
 | |
| 
 | |
| 		if (req->flags & IO_REQ_LINK_FLAGS)
 | |
| 			return 0;
 | |
| 		/* last request of the link, flush it */
 | |
| 		req = link->head;
 | |
| 		link->head = NULL;
 | |
| 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
 | |
| 			goto fallback;
 | |
| 
 | |
| 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
 | |
| 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
 | |
| 		if (req->flags & IO_REQ_LINK_FLAGS) {
 | |
| 			link->head = req;
 | |
| 			link->last = req;
 | |
| 		} else {
 | |
| fallback:
 | |
| 			io_queue_sqe_fallback(req);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	io_queue_sqe(req, IO_URING_F_INLINE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Batched submission is done, ensure local IO is flushed out.
 | |
|  */
 | |
| static void io_submit_state_end(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	struct io_submit_state *state = &ctx->submit_state;
 | |
| 
 | |
| 	if (unlikely(state->link.head))
 | |
| 		io_queue_sqe_fallback(state->link.head);
 | |
| 	/* flush only after queuing links as they can generate completions */
 | |
| 	io_submit_flush_completions(ctx);
 | |
| 	if (state->plug_started)
 | |
| 		blk_finish_plug(&state->plug);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start submission side cache.
 | |
|  */
 | |
| static void io_submit_state_start(struct io_submit_state *state,
 | |
| 				  unsigned int max_ios)
 | |
| {
 | |
| 	state->plug_started = false;
 | |
| 	state->need_plug = max_ios > 2;
 | |
| 	state->submit_nr = max_ios;
 | |
| 	/* set only head, no need to init link_last in advance */
 | |
| 	state->link.head = NULL;
 | |
| }
 | |
| 
 | |
| static void io_commit_sqring(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	struct io_rings *rings = ctx->rings;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure any loads from the SQEs are done at this point,
 | |
| 	 * since once we write the new head, the application could
 | |
| 	 * write new data to them.
 | |
| 	 */
 | |
| 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fetch an sqe, if one is available. Note this returns a pointer to memory
 | |
|  * that is mapped by userspace. This means that care needs to be taken to
 | |
|  * ensure that reads are stable, as we cannot rely on userspace always
 | |
|  * being a good citizen. If members of the sqe are validated and then later
 | |
|  * used, it's important that those reads are done through READ_ONCE() to
 | |
|  * prevent a re-load down the line.
 | |
|  */
 | |
| static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
 | |
| {
 | |
| 	unsigned mask = ctx->sq_entries - 1;
 | |
| 	unsigned head = ctx->cached_sq_head++ & mask;
 | |
| 
 | |
| 	if (static_branch_unlikely(&io_key_has_sqarray) &&
 | |
| 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
 | |
| 		head = READ_ONCE(ctx->sq_array[head]);
 | |
| 		if (unlikely(head >= ctx->sq_entries)) {
 | |
| 			WRITE_ONCE(ctx->rings->sq_dropped,
 | |
| 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
 | |
| 			return false;
 | |
| 		}
 | |
| 		head = array_index_nospec(head, ctx->sq_entries);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The cached sq head (or cq tail) serves two purposes:
 | |
| 	 *
 | |
| 	 * 1) allows us to batch the cost of updating the user visible
 | |
| 	 *    head updates.
 | |
| 	 * 2) allows the kernel side to track the head on its own, even
 | |
| 	 *    though the application is the one updating it.
 | |
| 	 */
 | |
| 
 | |
| 	/* double index for 128-byte SQEs, twice as long */
 | |
| 	if (ctx->flags & IORING_SETUP_SQE128)
 | |
| 		head <<= 1;
 | |
| 	*sqe = &ctx->sq_sqes[head];
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
 | |
| 	__must_hold(&ctx->uring_lock)
 | |
| {
 | |
| 	unsigned int entries = io_sqring_entries(ctx);
 | |
| 	unsigned int left;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(!entries))
 | |
| 		return 0;
 | |
| 	/* make sure SQ entry isn't read before tail */
 | |
| 	ret = left = min(nr, entries);
 | |
| 	io_get_task_refs(left);
 | |
| 	io_submit_state_start(&ctx->submit_state, left);
 | |
| 
 | |
| 	do {
 | |
| 		const struct io_uring_sqe *sqe;
 | |
| 		struct io_kiocb *req;
 | |
| 
 | |
| 		if (unlikely(!io_alloc_req(ctx, &req)))
 | |
| 			break;
 | |
| 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
 | |
| 			io_req_add_to_cache(req, ctx);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Continue submitting even for sqe failure if the
 | |
| 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
 | |
| 		 */
 | |
| 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
 | |
| 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
 | |
| 			left--;
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (--left);
 | |
| 
 | |
| 	if (unlikely(left)) {
 | |
| 		ret -= left;
 | |
| 		/* try again if it submitted nothing and can't allocate a req */
 | |
| 		if (!ret && io_req_cache_empty(ctx))
 | |
| 			ret = -EAGAIN;
 | |
| 		current->io_uring->cached_refs += left;
 | |
| 	}
 | |
| 
 | |
| 	io_submit_state_end(ctx);
 | |
| 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
 | |
| 	io_commit_sqring(ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
 | |
| 			    int wake_flags, void *key)
 | |
| {
 | |
| 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
 | |
| 	 * the task, and the next invocation will do it.
 | |
| 	 */
 | |
| 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
 | |
| 		return autoremove_wake_function(curr, mode, wake_flags, key);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int io_run_task_work_sig(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	if (io_local_work_pending(ctx)) {
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	if (io_run_task_work() > 0)
 | |
| 		return 0;
 | |
| 	if (task_sigpending(current))
 | |
| 		return -EINTR;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool current_pending_io(void)
 | |
| {
 | |
| 	struct io_uring_task *tctx = current->io_uring;
 | |
| 
 | |
| 	if (!tctx)
 | |
| 		return false;
 | |
| 	return percpu_counter_read_positive(&tctx->inflight);
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
 | |
| {
 | |
| 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
 | |
| 
 | |
| 	WRITE_ONCE(iowq->hit_timeout, 1);
 | |
| 	iowq->min_timeout = 0;
 | |
| 	wake_up_process(iowq->wq.private);
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
 | |
|  * wake up. If not, and we have a normal timeout, switch to that and keep
 | |
|  * sleeping.
 | |
|  */
 | |
| static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
 | |
| {
 | |
| 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
 | |
| 	struct io_ring_ctx *ctx = iowq->ctx;
 | |
| 
 | |
| 	/* no general timeout, or shorter (or equal), we are done */
 | |
| 	if (iowq->timeout == KTIME_MAX ||
 | |
| 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
 | |
| 		goto out_wake;
 | |
| 	/* work we may need to run, wake function will see if we need to wake */
 | |
| 	if (io_has_work(ctx))
 | |
| 		goto out_wake;
 | |
| 	/* got events since we started waiting, min timeout is done */
 | |
| 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
 | |
| 		goto out_wake;
 | |
| 	/* if we have any events and min timeout expired, we're done */
 | |
| 	if (io_cqring_events(ctx))
 | |
| 		goto out_wake;
 | |
| 
 | |
| 	/*
 | |
| 	 * If using deferred task_work running and application is waiting on
 | |
| 	 * more than one request, ensure we reset it now where we are switching
 | |
| 	 * to normal sleeps. Any request completion post min_wait should wake
 | |
| 	 * the task and return.
 | |
| 	 */
 | |
| 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
 | |
| 		atomic_set(&ctx->cq_wait_nr, 1);
 | |
| 		smp_mb();
 | |
| 		if (!llist_empty(&ctx->work_llist))
 | |
| 			goto out_wake;
 | |
| 	}
 | |
| 
 | |
| 	hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
 | |
| 	hrtimer_set_expires(timer, iowq->timeout);
 | |
| 	return HRTIMER_RESTART;
 | |
| out_wake:
 | |
| 	return io_cqring_timer_wakeup(timer);
 | |
| }
 | |
| 
 | |
| static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
 | |
| 				      clockid_t clock_id, ktime_t start_time)
 | |
| {
 | |
| 	ktime_t timeout;
 | |
| 
 | |
| 	if (iowq->min_timeout) {
 | |
| 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
 | |
| 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
 | |
| 				       HRTIMER_MODE_ABS);
 | |
| 	} else {
 | |
| 		timeout = iowq->timeout;
 | |
| 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
 | |
| 				       HRTIMER_MODE_ABS);
 | |
| 	}
 | |
| 
 | |
| 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
 | |
| 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
 | |
| 
 | |
| 	if (!READ_ONCE(iowq->hit_timeout))
 | |
| 		schedule();
 | |
| 
 | |
| 	hrtimer_cancel(&iowq->t);
 | |
| 	destroy_hrtimer_on_stack(&iowq->t);
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
 | |
| }
 | |
| 
 | |
| struct ext_arg {
 | |
| 	size_t argsz;
 | |
| 	struct timespec64 ts;
 | |
| 	const sigset_t __user *sig;
 | |
| 	ktime_t min_time;
 | |
| 	bool ts_set;
 | |
| 	bool iowait;
 | |
| };
 | |
| 
 | |
| static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
 | |
| 				     struct io_wait_queue *iowq,
 | |
| 				     struct ext_arg *ext_arg,
 | |
| 				     ktime_t start_time)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
 | |
| 	 * can take into account that the task is waiting for IO - turns out
 | |
| 	 * to be important for low QD IO.
 | |
| 	 */
 | |
| 	if (ext_arg->iowait && current_pending_io())
 | |
| 		current->in_iowait = 1;
 | |
| 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
 | |
| 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
 | |
| 	else
 | |
| 		schedule();
 | |
| 	current->in_iowait = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* If this returns > 0, the caller should retry */
 | |
| static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
 | |
| 					  struct io_wait_queue *iowq,
 | |
| 					  struct ext_arg *ext_arg,
 | |
| 					  ktime_t start_time)
 | |
| {
 | |
| 	if (unlikely(READ_ONCE(ctx->check_cq)))
 | |
| 		return 1;
 | |
| 	if (unlikely(io_local_work_pending(ctx)))
 | |
| 		return 1;
 | |
| 	if (unlikely(task_work_pending(current)))
 | |
| 		return 1;
 | |
| 	if (unlikely(task_sigpending(current)))
 | |
| 		return -EINTR;
 | |
| 	if (unlikely(io_should_wake(iowq)))
 | |
| 		return 0;
 | |
| 
 | |
| 	return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait until events become available, if we don't already have some. The
 | |
|  * application must reap them itself, as they reside on the shared cq ring.
 | |
|  */
 | |
| static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
 | |
| 			  struct ext_arg *ext_arg)
 | |
| {
 | |
| 	struct io_wait_queue iowq;
 | |
| 	struct io_rings *rings = ctx->rings;
 | |
| 	ktime_t start_time;
 | |
| 	int ret;
 | |
| 
 | |
| 	min_events = min_t(int, min_events, ctx->cq_entries);
 | |
| 
 | |
| 	if (!io_allowed_run_tw(ctx))
 | |
| 		return -EEXIST;
 | |
| 	if (io_local_work_pending(ctx))
 | |
| 		io_run_local_work(ctx, min_events,
 | |
| 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
 | |
| 	io_run_task_work();
 | |
| 
 | |
| 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
 | |
| 		io_cqring_do_overflow_flush(ctx);
 | |
| 	if (__io_cqring_events_user(ctx) >= min_events)
 | |
| 		return 0;
 | |
| 
 | |
| 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
 | |
| 	iowq.wq.private = current;
 | |
| 	INIT_LIST_HEAD(&iowq.wq.entry);
 | |
| 	iowq.ctx = ctx;
 | |
| 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
 | |
| 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
 | |
| 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
 | |
| 	iowq.hit_timeout = 0;
 | |
| 	iowq.min_timeout = ext_arg->min_time;
 | |
| 	iowq.timeout = KTIME_MAX;
 | |
| 	start_time = io_get_time(ctx);
 | |
| 
 | |
| 	if (ext_arg->ts_set) {
 | |
| 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
 | |
| 		if (!(flags & IORING_ENTER_ABS_TIMER))
 | |
| 			iowq.timeout = ktime_add(iowq.timeout, start_time);
 | |
| 	}
 | |
| 
 | |
| 	if (ext_arg->sig) {
 | |
| #ifdef CONFIG_COMPAT
 | |
| 		if (in_compat_syscall())
 | |
| 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
 | |
| 						      ext_arg->argsz);
 | |
| 		else
 | |
| #endif
 | |
| 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	io_napi_busy_loop(ctx, &iowq);
 | |
| 
 | |
| 	trace_io_uring_cqring_wait(ctx, min_events);
 | |
| 	do {
 | |
| 		unsigned long check_cq;
 | |
| 		int nr_wait;
 | |
| 
 | |
| 		/* if min timeout has been hit, don't reset wait count */
 | |
| 		if (!iowq.hit_timeout)
 | |
| 			nr_wait = (int) iowq.cq_tail -
 | |
| 					READ_ONCE(ctx->rings->cq.tail);
 | |
| 		else
 | |
| 			nr_wait = 1;
 | |
| 
 | |
| 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
 | |
| 			atomic_set(&ctx->cq_wait_nr, nr_wait);
 | |
| 			set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		} else {
 | |
| 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
 | |
| 							TASK_INTERRUPTIBLE);
 | |
| 		}
 | |
| 
 | |
| 		ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
 | |
| 
 | |
| 		/*
 | |
| 		 * Run task_work after scheduling and before io_should_wake().
 | |
| 		 * If we got woken because of task_work being processed, run it
 | |
| 		 * now rather than let the caller do another wait loop.
 | |
| 		 */
 | |
| 		if (io_local_work_pending(ctx))
 | |
| 			io_run_local_work(ctx, nr_wait, nr_wait);
 | |
| 		io_run_task_work();
 | |
| 
 | |
| 		/*
 | |
| 		 * Non-local task_work will be run on exit to userspace, but
 | |
| 		 * if we're using DEFER_TASKRUN, then we could have waited
 | |
| 		 * with a timeout for a number of requests. If the timeout
 | |
| 		 * hits, we could have some requests ready to process. Ensure
 | |
| 		 * this break is _after_ we have run task_work, to avoid
 | |
| 		 * deferring running potentially pending requests until the
 | |
| 		 * next time we wait for events.
 | |
| 		 */
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		check_cq = READ_ONCE(ctx->check_cq);
 | |
| 		if (unlikely(check_cq)) {
 | |
| 			/* let the caller flush overflows, retry */
 | |
| 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
 | |
| 				io_cqring_do_overflow_flush(ctx);
 | |
| 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
 | |
| 				ret = -EBADR;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (io_should_wake(&iowq)) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	} while (1);
 | |
| 
 | |
| 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
 | |
| 		finish_wait(&ctx->cq_wait, &iowq.wq);
 | |
| 	restore_saved_sigmask_unless(ret == -EINTR);
 | |
| 
 | |
| 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
 | |
| }
 | |
| 
 | |
| static void io_rings_free(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	io_free_region(ctx, &ctx->sq_region);
 | |
| 	io_free_region(ctx, &ctx->ring_region);
 | |
| 	ctx->rings = NULL;
 | |
| 	ctx->sq_sqes = NULL;
 | |
| }
 | |
| 
 | |
| unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
 | |
| 			 unsigned int cq_entries, size_t *sq_offset)
 | |
| {
 | |
| 	struct io_rings *rings;
 | |
| 	size_t off, sq_array_size;
 | |
| 
 | |
| 	off = struct_size(rings, cqes, cq_entries);
 | |
| 	if (off == SIZE_MAX)
 | |
| 		return SIZE_MAX;
 | |
| 	if (flags & IORING_SETUP_CQE32) {
 | |
| 		if (check_shl_overflow(off, 1, &off))
 | |
| 			return SIZE_MAX;
 | |
| 	}
 | |
| 	if (flags & IORING_SETUP_CQE_MIXED) {
 | |
| 		if (cq_entries < 2)
 | |
| 			return SIZE_MAX;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	off = ALIGN(off, SMP_CACHE_BYTES);
 | |
| 	if (off == 0)
 | |
| 		return SIZE_MAX;
 | |
| #endif
 | |
| 
 | |
| 	if (flags & IORING_SETUP_NO_SQARRAY) {
 | |
| 		*sq_offset = SIZE_MAX;
 | |
| 		return off;
 | |
| 	}
 | |
| 
 | |
| 	*sq_offset = off;
 | |
| 
 | |
| 	sq_array_size = array_size(sizeof(u32), sq_entries);
 | |
| 	if (sq_array_size == SIZE_MAX)
 | |
| 		return SIZE_MAX;
 | |
| 
 | |
| 	if (check_add_overflow(off, sq_array_size, &off))
 | |
| 		return SIZE_MAX;
 | |
| 
 | |
| 	return off;
 | |
| }
 | |
| 
 | |
| static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	struct io_kiocb *req;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	while (!io_req_cache_empty(ctx)) {
 | |
| 		req = io_extract_req(ctx);
 | |
| 		io_poison_req(req);
 | |
| 		kmem_cache_free(req_cachep, req);
 | |
| 		nr++;
 | |
| 	}
 | |
| 	if (nr) {
 | |
| 		ctx->nr_req_allocated -= nr;
 | |
| 		percpu_ref_put_many(&ctx->refs, nr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	guard(mutex)(&ctx->uring_lock);
 | |
| 	__io_req_caches_free(ctx);
 | |
| }
 | |
| 
 | |
| static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	io_sq_thread_finish(ctx);
 | |
| 
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	io_sqe_buffers_unregister(ctx);
 | |
| 	io_sqe_files_unregister(ctx);
 | |
| 	io_unregister_zcrx_ifqs(ctx);
 | |
| 	io_cqring_overflow_kill(ctx);
 | |
| 	io_eventfd_unregister(ctx);
 | |
| 	io_free_alloc_caches(ctx);
 | |
| 	io_destroy_buffers(ctx);
 | |
| 	io_free_region(ctx, &ctx->param_region);
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 	if (ctx->sq_creds)
 | |
| 		put_cred(ctx->sq_creds);
 | |
| 	if (ctx->submitter_task)
 | |
| 		put_task_struct(ctx->submitter_task);
 | |
| 
 | |
| 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
 | |
| 
 | |
| 	if (ctx->mm_account) {
 | |
| 		mmdrop(ctx->mm_account);
 | |
| 		ctx->mm_account = NULL;
 | |
| 	}
 | |
| 	io_rings_free(ctx);
 | |
| 
 | |
| 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
 | |
| 		static_branch_dec(&io_key_has_sqarray);
 | |
| 
 | |
| 	percpu_ref_exit(&ctx->refs);
 | |
| 	free_uid(ctx->user);
 | |
| 	io_req_caches_free(ctx);
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->nr_req_allocated);
 | |
| 
 | |
| 	if (ctx->hash_map)
 | |
| 		io_wq_put_hash(ctx->hash_map);
 | |
| 	io_napi_free(ctx);
 | |
| 	kvfree(ctx->cancel_table.hbs);
 | |
| 	xa_destroy(&ctx->io_bl_xa);
 | |
| 	kfree(ctx);
 | |
| }
 | |
| 
 | |
| static __cold void io_activate_pollwq_cb(struct callback_head *cb)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
 | |
| 					       poll_wq_task_work);
 | |
| 
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	ctx->poll_activated = true;
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wake ups for some events between start of polling and activation
 | |
| 	 * might've been lost due to loose synchronisation.
 | |
| 	 */
 | |
| 	wake_up_all(&ctx->poll_wq);
 | |
| 	percpu_ref_put(&ctx->refs);
 | |
| }
 | |
| 
 | |
| __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	spin_lock(&ctx->completion_lock);
 | |
| 	/* already activated or in progress */
 | |
| 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
 | |
| 		goto out;
 | |
| 	if (WARN_ON_ONCE(!ctx->task_complete))
 | |
| 		goto out;
 | |
| 	if (!ctx->submitter_task)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * with ->submitter_task only the submitter task completes requests, we
 | |
| 	 * only need to sync with it, which is done by injecting a tw
 | |
| 	 */
 | |
| 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
 | |
| 	percpu_ref_get(&ctx->refs);
 | |
| 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
 | |
| 		percpu_ref_put(&ctx->refs);
 | |
| out:
 | |
| 	spin_unlock(&ctx->completion_lock);
 | |
| }
 | |
| 
 | |
| static __poll_t io_uring_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = file->private_data;
 | |
| 	__poll_t mask = 0;
 | |
| 
 | |
| 	if (unlikely(!ctx->poll_activated))
 | |
| 		io_activate_pollwq(ctx);
 | |
| 	/*
 | |
| 	 * provides mb() which pairs with barrier from wq_has_sleeper
 | |
| 	 * call in io_commit_cqring
 | |
| 	 */
 | |
| 	poll_wait(file, &ctx->poll_wq, wait);
 | |
| 
 | |
| 	if (!io_sqring_full(ctx))
 | |
| 		mask |= EPOLLOUT | EPOLLWRNORM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't flush cqring overflow list here, just do a simple check.
 | |
| 	 * Otherwise there could possible be ABBA deadlock:
 | |
| 	 *      CPU0                    CPU1
 | |
| 	 *      ----                    ----
 | |
| 	 * lock(&ctx->uring_lock);
 | |
| 	 *                              lock(&ep->mtx);
 | |
| 	 *                              lock(&ctx->uring_lock);
 | |
| 	 * lock(&ep->mtx);
 | |
| 	 *
 | |
| 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
 | |
| 	 * pushes them to do the flush.
 | |
| 	 */
 | |
| 
 | |
| 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
 | |
| 		mask |= EPOLLIN | EPOLLRDNORM;
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| struct io_tctx_exit {
 | |
| 	struct callback_head		task_work;
 | |
| 	struct completion		completion;
 | |
| 	struct io_ring_ctx		*ctx;
 | |
| };
 | |
| 
 | |
| static __cold void io_tctx_exit_cb(struct callback_head *cb)
 | |
| {
 | |
| 	struct io_uring_task *tctx = current->io_uring;
 | |
| 	struct io_tctx_exit *work;
 | |
| 
 | |
| 	work = container_of(cb, struct io_tctx_exit, task_work);
 | |
| 	/*
 | |
| 	 * When @in_cancel, we're in cancellation and it's racy to remove the
 | |
| 	 * node. It'll be removed by the end of cancellation, just ignore it.
 | |
| 	 * tctx can be NULL if the queueing of this task_work raced with
 | |
| 	 * work cancelation off the exec path.
 | |
| 	 */
 | |
| 	if (tctx && !atomic_read(&tctx->in_cancel))
 | |
| 		io_uring_del_tctx_node((unsigned long)work->ctx);
 | |
| 	complete(&work->completion);
 | |
| }
 | |
| 
 | |
| static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
 | |
| {
 | |
| 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
 | |
| 
 | |
| 	return req->ctx == data;
 | |
| }
 | |
| 
 | |
| static __cold void io_ring_exit_work(struct work_struct *work)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
 | |
| 	unsigned long timeout = jiffies + HZ * 60 * 5;
 | |
| 	unsigned long interval = HZ / 20;
 | |
| 	struct io_tctx_exit exit;
 | |
| 	struct io_tctx_node *node;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're doing polled IO and end up having requests being
 | |
| 	 * submitted async (out-of-line), then completions can come in while
 | |
| 	 * we're waiting for refs to drop. We need to reap these manually,
 | |
| 	 * as nobody else will be looking for them.
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
 | |
| 			mutex_lock(&ctx->uring_lock);
 | |
| 			io_cqring_overflow_kill(ctx);
 | |
| 			mutex_unlock(&ctx->uring_lock);
 | |
| 		}
 | |
| 		if (!xa_empty(&ctx->zcrx_ctxs)) {
 | |
| 			mutex_lock(&ctx->uring_lock);
 | |
| 			io_shutdown_zcrx_ifqs(ctx);
 | |
| 			mutex_unlock(&ctx->uring_lock);
 | |
| 		}
 | |
| 
 | |
| 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
 | |
| 			io_move_task_work_from_local(ctx);
 | |
| 
 | |
| 		/* The SQPOLL thread never reaches this path */
 | |
| 		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
 | |
| 			cond_resched();
 | |
| 
 | |
| 		if (ctx->sq_data) {
 | |
| 			struct io_sq_data *sqd = ctx->sq_data;
 | |
| 			struct task_struct *tsk;
 | |
| 
 | |
| 			io_sq_thread_park(sqd);
 | |
| 			tsk = sqpoll_task_locked(sqd);
 | |
| 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
 | |
| 				io_wq_cancel_cb(tsk->io_uring->io_wq,
 | |
| 						io_cancel_ctx_cb, ctx, true);
 | |
| 			io_sq_thread_unpark(sqd);
 | |
| 		}
 | |
| 
 | |
| 		io_req_caches_free(ctx);
 | |
| 
 | |
| 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
 | |
| 			/* there is little hope left, don't run it too often */
 | |
| 			interval = HZ * 60;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * This is really an uninterruptible wait, as it has to be
 | |
| 		 * complete. But it's also run from a kworker, which doesn't
 | |
| 		 * take signals, so it's fine to make it interruptible. This
 | |
| 		 * avoids scenarios where we knowingly can wait much longer
 | |
| 		 * on completions, for example if someone does a SIGSTOP on
 | |
| 		 * a task that needs to finish task_work to make this loop
 | |
| 		 * complete. That's a synthetic situation that should not
 | |
| 		 * cause a stuck task backtrace, and hence a potential panic
 | |
| 		 * on stuck tasks if that is enabled.
 | |
| 		 */
 | |
| 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
 | |
| 
 | |
| 	init_completion(&exit.completion);
 | |
| 	init_task_work(&exit.task_work, io_tctx_exit_cb);
 | |
| 	exit.ctx = ctx;
 | |
| 
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	while (!list_empty(&ctx->tctx_list)) {
 | |
| 		WARN_ON_ONCE(time_after(jiffies, timeout));
 | |
| 
 | |
| 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
 | |
| 					ctx_node);
 | |
| 		/* don't spin on a single task if cancellation failed */
 | |
| 		list_rotate_left(&ctx->tctx_list);
 | |
| 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
 | |
| 		if (WARN_ON_ONCE(ret))
 | |
| 			continue;
 | |
| 
 | |
| 		mutex_unlock(&ctx->uring_lock);
 | |
| 		/*
 | |
| 		 * See comment above for
 | |
| 		 * wait_for_completion_interruptible_timeout() on why this
 | |
| 		 * wait is marked as interruptible.
 | |
| 		 */
 | |
| 		wait_for_completion_interruptible(&exit.completion);
 | |
| 		mutex_lock(&ctx->uring_lock);
 | |
| 	}
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 	spin_lock(&ctx->completion_lock);
 | |
| 	spin_unlock(&ctx->completion_lock);
 | |
| 
 | |
| 	/* pairs with RCU read section in io_req_local_work_add() */
 | |
| 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
 | |
| 		synchronize_rcu();
 | |
| 
 | |
| 	io_ring_ctx_free(ctx);
 | |
| }
 | |
| 
 | |
| static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	unsigned long index;
 | |
| 	struct creds *creds;
 | |
| 
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	percpu_ref_kill(&ctx->refs);
 | |
| 	xa_for_each(&ctx->personalities, index, creds)
 | |
| 		io_unregister_personality(ctx, index);
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 
 | |
| 	flush_delayed_work(&ctx->fallback_work);
 | |
| 
 | |
| 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
 | |
| 	/*
 | |
| 	 * Use system_dfl_wq to avoid spawning tons of event kworkers
 | |
| 	 * if we're exiting a ton of rings at the same time. It just adds
 | |
| 	 * noise and overhead, there's no discernable change in runtime
 | |
| 	 * over using system_percpu_wq.
 | |
| 	 */
 | |
| 	queue_work(iou_wq, &ctx->exit_work);
 | |
| }
 | |
| 
 | |
| static int io_uring_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx = file->private_data;
 | |
| 
 | |
| 	file->private_data = NULL;
 | |
| 	io_ring_ctx_wait_and_kill(ctx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct io_task_cancel {
 | |
| 	struct io_uring_task *tctx;
 | |
| 	bool all;
 | |
| };
 | |
| 
 | |
| static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
 | |
| {
 | |
| 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
 | |
| 	struct io_task_cancel *cancel = data;
 | |
| 
 | |
| 	return io_match_task_safe(req, cancel->tctx, cancel->all);
 | |
| }
 | |
| 
 | |
| static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
 | |
| 					 struct io_uring_task *tctx,
 | |
| 					 bool cancel_all)
 | |
| {
 | |
| 	struct io_defer_entry *de;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
 | |
| 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
 | |
| 			list_cut_position(&list, &ctx->defer_list, &de->list);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (list_empty(&list))
 | |
| 		return false;
 | |
| 
 | |
| 	while (!list_empty(&list)) {
 | |
| 		de = list_first_entry(&list, struct io_defer_entry, list);
 | |
| 		list_del_init(&de->list);
 | |
| 		ctx->nr_drained -= io_linked_nr(de->req);
 | |
| 		io_req_task_queue_fail(de->req, -ECANCELED);
 | |
| 		kfree(de);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	struct io_tctx_node *node;
 | |
| 	enum io_wq_cancel cret;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
 | |
| 		struct io_uring_task *tctx = node->task->io_uring;
 | |
| 
 | |
| 		/*
 | |
| 		 * io_wq will stay alive while we hold uring_lock, because it's
 | |
| 		 * killed after ctx nodes, which requires to take the lock.
 | |
| 		 */
 | |
| 		if (!tctx || !tctx->io_wq)
 | |
| 			continue;
 | |
| 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
 | |
| 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
 | |
| 	}
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
 | |
| 						struct io_uring_task *tctx,
 | |
| 						bool cancel_all,
 | |
| 						bool is_sqpoll_thread)
 | |
| {
 | |
| 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
 | |
| 	enum io_wq_cancel cret;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	/* set it so io_req_local_work_add() would wake us up */
 | |
| 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
 | |
| 		atomic_set(&ctx->cq_wait_nr, 1);
 | |
| 		smp_mb();
 | |
| 	}
 | |
| 
 | |
| 	/* failed during ring init, it couldn't have issued any requests */
 | |
| 	if (!ctx->rings)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!tctx) {
 | |
| 		ret |= io_uring_try_cancel_iowq(ctx);
 | |
| 	} else if (tctx->io_wq) {
 | |
| 		/*
 | |
| 		 * Cancels requests of all rings, not only @ctx, but
 | |
| 		 * it's fine as the task is in exit/exec.
 | |
| 		 */
 | |
| 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
 | |
| 				       &cancel, true);
 | |
| 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
 | |
| 	}
 | |
| 
 | |
| 	/* SQPOLL thread does its own polling */
 | |
| 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
 | |
| 	    is_sqpoll_thread) {
 | |
| 		while (!wq_list_empty(&ctx->iopoll_list)) {
 | |
| 			io_iopoll_try_reap_events(ctx);
 | |
| 			ret = true;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
 | |
| 	    io_allowed_defer_tw_run(ctx))
 | |
| 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
 | |
| 	mutex_lock(&ctx->uring_lock);
 | |
| 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
 | |
| 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
 | |
| 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
 | |
| 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
 | |
| 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
 | |
| 	mutex_unlock(&ctx->uring_lock);
 | |
| 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
 | |
| 	if (tctx)
 | |
| 		ret |= io_run_task_work() > 0;
 | |
| 	else
 | |
| 		ret |= flush_delayed_work(&ctx->fallback_work);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
 | |
| {
 | |
| 	if (tracked)
 | |
| 		return atomic_read(&tctx->inflight_tracked);
 | |
| 	return percpu_counter_sum(&tctx->inflight);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find any io_uring ctx that this task has registered or done IO on, and cancel
 | |
|  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
 | |
|  */
 | |
| __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
 | |
| {
 | |
| 	struct io_uring_task *tctx = current->io_uring;
 | |
| 	struct io_ring_ctx *ctx;
 | |
| 	struct io_tctx_node *node;
 | |
| 	unsigned long index;
 | |
| 	s64 inflight;
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current);
 | |
| 
 | |
| 	if (!current->io_uring)
 | |
| 		return;
 | |
| 	if (tctx->io_wq)
 | |
| 		io_wq_exit_start(tctx->io_wq);
 | |
| 
 | |
| 	atomic_inc(&tctx->in_cancel);
 | |
| 	do {
 | |
| 		bool loop = false;
 | |
| 
 | |
| 		io_uring_drop_tctx_refs(current);
 | |
| 		if (!tctx_inflight(tctx, !cancel_all))
 | |
| 			break;
 | |
| 
 | |
| 		/* read completions before cancelations */
 | |
| 		inflight = tctx_inflight(tctx, false);
 | |
| 		if (!inflight)
 | |
| 			break;
 | |
| 
 | |
| 		if (!sqd) {
 | |
| 			xa_for_each(&tctx->xa, index, node) {
 | |
| 				/* sqpoll task will cancel all its requests */
 | |
| 				if (node->ctx->sq_data)
 | |
| 					continue;
 | |
| 				loop |= io_uring_try_cancel_requests(node->ctx,
 | |
| 							current->io_uring,
 | |
| 							cancel_all,
 | |
| 							false);
 | |
| 			}
 | |
| 		} else {
 | |
| 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
 | |
| 				loop |= io_uring_try_cancel_requests(ctx,
 | |
| 								     current->io_uring,
 | |
| 								     cancel_all,
 | |
| 								     true);
 | |
| 		}
 | |
| 
 | |
| 		if (loop) {
 | |
| 			cond_resched();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
 | |
| 		io_run_task_work();
 | |
| 		io_uring_drop_tctx_refs(current);
 | |
| 		xa_for_each(&tctx->xa, index, node) {
 | |
| 			if (io_local_work_pending(node->ctx)) {
 | |
| 				WARN_ON_ONCE(node->ctx->submitter_task &&
 | |
| 					     node->ctx->submitter_task != current);
 | |
| 				goto end_wait;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If we've seen completions, retry without waiting. This
 | |
| 		 * avoids a race where a completion comes in before we did
 | |
| 		 * prepare_to_wait().
 | |
| 		 */
 | |
| 		if (inflight == tctx_inflight(tctx, !cancel_all))
 | |
| 			schedule();
 | |
| end_wait:
 | |
| 		finish_wait(&tctx->wait, &wait);
 | |
| 	} while (1);
 | |
| 
 | |
| 	io_uring_clean_tctx(tctx);
 | |
| 	if (cancel_all) {
 | |
| 		/*
 | |
| 		 * We shouldn't run task_works after cancel, so just leave
 | |
| 		 * ->in_cancel set for normal exit.
 | |
| 		 */
 | |
| 		atomic_dec(&tctx->in_cancel);
 | |
| 		/* for exec all current's requests should be gone, kill tctx */
 | |
| 		__io_uring_free(current);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __io_uring_cancel(bool cancel_all)
 | |
| {
 | |
| 	io_uring_unreg_ringfd();
 | |
| 	io_uring_cancel_generic(cancel_all, NULL);
 | |
| }
 | |
| 
 | |
| static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
 | |
| 			const struct io_uring_getevents_arg __user *uarg)
 | |
| {
 | |
| 	unsigned long size = sizeof(struct io_uring_reg_wait);
 | |
| 	unsigned long offset = (uintptr_t)uarg;
 | |
| 	unsigned long end;
 | |
| 
 | |
| 	if (unlikely(offset % sizeof(long)))
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
 | |
| 	if (unlikely(check_add_overflow(offset, size, &end) ||
 | |
| 		     end > ctx->cq_wait_size))
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
 | |
| 	return ctx->cq_wait_arg + offset;
 | |
| }
 | |
| 
 | |
| static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
 | |
| 			       const void __user *argp, size_t argsz)
 | |
| {
 | |
| 	struct io_uring_getevents_arg arg;
 | |
| 
 | |
| 	if (!(flags & IORING_ENTER_EXT_ARG))
 | |
| 		return 0;
 | |
| 	if (flags & IORING_ENTER_EXT_ARG_REG)
 | |
| 		return -EINVAL;
 | |
| 	if (argsz != sizeof(arg))
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&arg, argp, sizeof(arg)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
 | |
| 			  const void __user *argp, struct ext_arg *ext_arg)
 | |
| {
 | |
| 	const struct io_uring_getevents_arg __user *uarg = argp;
 | |
| 	struct io_uring_getevents_arg arg;
 | |
| 
 | |
| 	ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
 | |
| 
 | |
| 	/*
 | |
| 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
 | |
| 	 * is just a pointer to the sigset_t.
 | |
| 	 */
 | |
| 	if (!(flags & IORING_ENTER_EXT_ARG)) {
 | |
| 		ext_arg->sig = (const sigset_t __user *) argp;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & IORING_ENTER_EXT_ARG_REG) {
 | |
| 		struct io_uring_reg_wait *w;
 | |
| 
 | |
| 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
 | |
| 			return -EINVAL;
 | |
| 		w = io_get_ext_arg_reg(ctx, argp);
 | |
| 		if (IS_ERR(w))
 | |
| 			return PTR_ERR(w);
 | |
| 
 | |
| 		if (w->flags & ~IORING_REG_WAIT_TS)
 | |
| 			return -EINVAL;
 | |
| 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
 | |
| 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
 | |
| 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
 | |
| 		if (w->flags & IORING_REG_WAIT_TS) {
 | |
| 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
 | |
| 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
 | |
| 			ext_arg->ts_set = true;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
 | |
| 	 * timespec and sigset_t pointers if good.
 | |
| 	 */
 | |
| 	if (ext_arg->argsz != sizeof(arg))
 | |
| 		return -EINVAL;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	if (!user_access_begin(uarg, sizeof(*uarg)))
 | |
| 		return -EFAULT;
 | |
| 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
 | |
| 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
 | |
| 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
 | |
| 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
 | |
| 	user_access_end();
 | |
| #else
 | |
| 	if (copy_from_user(&arg, uarg, sizeof(arg)))
 | |
| 		return -EFAULT;
 | |
| #endif
 | |
| 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
 | |
| 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
 | |
| 	ext_arg->argsz = arg.sigmask_sz;
 | |
| 	if (arg.ts) {
 | |
| 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
 | |
| 			return -EFAULT;
 | |
| 		ext_arg->ts_set = true;
 | |
| 	}
 | |
| 	return 0;
 | |
| #ifdef CONFIG_64BIT
 | |
| uaccess_end:
 | |
| 	user_access_end();
 | |
| 	return -EFAULT;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
 | |
| 		u32, min_complete, u32, flags, const void __user *, argp,
 | |
| 		size_t, argsz)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx;
 | |
| 	struct file *file;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (unlikely(flags & ~IORING_ENTER_FLAGS))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
 | |
| 	 * need only dereference our task private array to find it.
 | |
| 	 */
 | |
| 	if (flags & IORING_ENTER_REGISTERED_RING) {
 | |
| 		struct io_uring_task *tctx = current->io_uring;
 | |
| 
 | |
| 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
 | |
| 			return -EINVAL;
 | |
| 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
 | |
| 		file = tctx->registered_rings[fd];
 | |
| 		if (unlikely(!file))
 | |
| 			return -EBADF;
 | |
| 	} else {
 | |
| 		file = fget(fd);
 | |
| 		if (unlikely(!file))
 | |
| 			return -EBADF;
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		if (unlikely(!io_is_uring_fops(file)))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	ctx = file->private_data;
 | |
| 	ret = -EBADFD;
 | |
| 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * For SQ polling, the thread will do all submissions and completions.
 | |
| 	 * Just return the requested submit count, and wake the thread if
 | |
| 	 * we were asked to.
 | |
| 	 */
 | |
| 	ret = 0;
 | |
| 	if (ctx->flags & IORING_SETUP_SQPOLL) {
 | |
| 		if (unlikely(ctx->sq_data->thread == NULL)) {
 | |
| 			ret = -EOWNERDEAD;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (flags & IORING_ENTER_SQ_WAKEUP)
 | |
| 			wake_up(&ctx->sq_data->wait);
 | |
| 		if (flags & IORING_ENTER_SQ_WAIT)
 | |
| 			io_sqpoll_wait_sq(ctx);
 | |
| 
 | |
| 		ret = to_submit;
 | |
| 	} else if (to_submit) {
 | |
| 		ret = io_uring_add_tctx_node(ctx);
 | |
| 		if (unlikely(ret))
 | |
| 			goto out;
 | |
| 
 | |
| 		mutex_lock(&ctx->uring_lock);
 | |
| 		ret = io_submit_sqes(ctx, to_submit);
 | |
| 		if (ret != to_submit) {
 | |
| 			mutex_unlock(&ctx->uring_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (flags & IORING_ENTER_GETEVENTS) {
 | |
| 			if (ctx->syscall_iopoll)
 | |
| 				goto iopoll_locked;
 | |
| 			/*
 | |
| 			 * Ignore errors, we'll soon call io_cqring_wait() and
 | |
| 			 * it should handle ownership problems if any.
 | |
| 			 */
 | |
| 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
 | |
| 				(void)io_run_local_work_locked(ctx, min_complete);
 | |
| 		}
 | |
| 		mutex_unlock(&ctx->uring_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & IORING_ENTER_GETEVENTS) {
 | |
| 		int ret2;
 | |
| 
 | |
| 		if (ctx->syscall_iopoll) {
 | |
| 			/*
 | |
| 			 * We disallow the app entering submit/complete with
 | |
| 			 * polling, but we still need to lock the ring to
 | |
| 			 * prevent racing with polled issue that got punted to
 | |
| 			 * a workqueue.
 | |
| 			 */
 | |
| 			mutex_lock(&ctx->uring_lock);
 | |
| iopoll_locked:
 | |
| 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
 | |
| 			if (likely(!ret2))
 | |
| 				ret2 = io_iopoll_check(ctx, min_complete);
 | |
| 			mutex_unlock(&ctx->uring_lock);
 | |
| 		} else {
 | |
| 			struct ext_arg ext_arg = { .argsz = argsz };
 | |
| 
 | |
| 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
 | |
| 			if (likely(!ret2))
 | |
| 				ret2 = io_cqring_wait(ctx, min_complete, flags,
 | |
| 						      &ext_arg);
 | |
| 		}
 | |
| 
 | |
| 		if (!ret) {
 | |
| 			ret = ret2;
 | |
| 
 | |
| 			/*
 | |
| 			 * EBADR indicates that one or more CQE were dropped.
 | |
| 			 * Once the user has been informed we can clear the bit
 | |
| 			 * as they are obviously ok with those drops.
 | |
| 			 */
 | |
| 			if (unlikely(ret2 == -EBADR))
 | |
| 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
 | |
| 					  &ctx->check_cq);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (!(flags & IORING_ENTER_REGISTERED_RING))
 | |
| 		fput(file);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct file_operations io_uring_fops = {
 | |
| 	.release	= io_uring_release,
 | |
| 	.mmap		= io_uring_mmap,
 | |
| 	.get_unmapped_area = io_uring_get_unmapped_area,
 | |
| #ifndef CONFIG_MMU
 | |
| 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
 | |
| #endif
 | |
| 	.poll		= io_uring_poll,
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	.show_fdinfo	= io_uring_show_fdinfo,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| bool io_is_uring_fops(struct file *file)
 | |
| {
 | |
| 	return file->f_op == &io_uring_fops;
 | |
| }
 | |
| 
 | |
| static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
 | |
| 					 struct io_uring_params *p)
 | |
| {
 | |
| 	struct io_uring_region_desc rd;
 | |
| 	struct io_rings *rings;
 | |
| 	size_t size, sq_array_offset;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* make sure these are sane, as we already accounted them */
 | |
| 	ctx->sq_entries = p->sq_entries;
 | |
| 	ctx->cq_entries = p->cq_entries;
 | |
| 
 | |
| 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
 | |
| 			  &sq_array_offset);
 | |
| 	if (size == SIZE_MAX)
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	memset(&rd, 0, sizeof(rd));
 | |
| 	rd.size = PAGE_ALIGN(size);
 | |
| 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
 | |
| 		rd.user_addr = p->cq_off.user_addr;
 | |
| 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
 | |
| 	}
 | |
| 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
 | |
| 
 | |
| 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
 | |
| 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
 | |
| 	rings->sq_ring_mask = p->sq_entries - 1;
 | |
| 	rings->cq_ring_mask = p->cq_entries - 1;
 | |
| 	rings->sq_ring_entries = p->sq_entries;
 | |
| 	rings->cq_ring_entries = p->cq_entries;
 | |
| 
 | |
| 	if (p->flags & IORING_SETUP_SQE128)
 | |
| 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
 | |
| 	else
 | |
| 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
 | |
| 	if (size == SIZE_MAX) {
 | |
| 		io_rings_free(ctx);
 | |
| 		return -EOVERFLOW;
 | |
| 	}
 | |
| 
 | |
| 	memset(&rd, 0, sizeof(rd));
 | |
| 	rd.size = PAGE_ALIGN(size);
 | |
| 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
 | |
| 		rd.user_addr = p->sq_off.user_addr;
 | |
| 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
 | |
| 	}
 | |
| 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
 | |
| 	if (ret) {
 | |
| 		io_rings_free(ctx);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_uring_install_fd(struct file *file)
 | |
| {
 | |
| 	int fd;
 | |
| 
 | |
| 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
 | |
| 	if (fd < 0)
 | |
| 		return fd;
 | |
| 	fd_install(fd, file);
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an anonymous fd, this is what constitutes the application
 | |
|  * visible backing of an io_uring instance. The application mmaps this
 | |
|  * fd to gain access to the SQ/CQ ring details.
 | |
|  */
 | |
| static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
 | |
| {
 | |
| 	/* Create a new inode so that the LSM can block the creation.  */
 | |
| 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
 | |
| 					 O_RDWR | O_CLOEXEC, NULL);
 | |
| }
 | |
| 
 | |
| static int io_uring_sanitise_params(struct io_uring_params *p)
 | |
| {
 | |
| 	unsigned flags = p->flags;
 | |
| 
 | |
| 	/* There is no way to mmap rings without a real fd */
 | |
| 	if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
 | |
| 	    !(flags & IORING_SETUP_NO_MMAP))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & IORING_SETUP_SQPOLL) {
 | |
| 		/* IPI related flags don't make sense with SQPOLL */
 | |
| 		if (flags & (IORING_SETUP_COOP_TASKRUN |
 | |
| 			     IORING_SETUP_TASKRUN_FLAG |
 | |
| 			     IORING_SETUP_DEFER_TASKRUN))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & IORING_SETUP_TASKRUN_FLAG) {
 | |
| 		if (!(flags & (IORING_SETUP_COOP_TASKRUN |
 | |
| 			       IORING_SETUP_DEFER_TASKRUN)))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* HYBRID_IOPOLL only valid with IOPOLL */
 | |
| 	if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * For DEFER_TASKRUN we require the completion task to be the same as
 | |
| 	 * the submission task. This implies that there is only one submitter.
 | |
| 	 */
 | |
| 	if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
 | |
| 	    !(flags & IORING_SETUP_SINGLE_ISSUER))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Nonsensical to ask for CQE32 and mixed CQE support, it's not
 | |
| 	 * supported to post 16b CQEs on a ring setup with CQE32.
 | |
| 	 */
 | |
| 	if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) ==
 | |
| 	    (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
 | |
| {
 | |
| 	if (!entries)
 | |
| 		return -EINVAL;
 | |
| 	if (entries > IORING_MAX_ENTRIES) {
 | |
| 		if (!(p->flags & IORING_SETUP_CLAMP))
 | |
| 			return -EINVAL;
 | |
| 		entries = IORING_MAX_ENTRIES;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use twice as many entries for the CQ ring. It's possible for the
 | |
| 	 * application to drive a higher depth than the size of the SQ ring,
 | |
| 	 * since the sqes are only used at submission time. This allows for
 | |
| 	 * some flexibility in overcommitting a bit. If the application has
 | |
| 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
 | |
| 	 * of CQ ring entries manually.
 | |
| 	 */
 | |
| 	p->sq_entries = roundup_pow_of_two(entries);
 | |
| 	if (p->flags & IORING_SETUP_CQSIZE) {
 | |
| 		/*
 | |
| 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
 | |
| 		 * to a power-of-two, if it isn't already. We do NOT impose
 | |
| 		 * any cq vs sq ring sizing.
 | |
| 		 */
 | |
| 		if (!p->cq_entries)
 | |
| 			return -EINVAL;
 | |
| 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
 | |
| 			if (!(p->flags & IORING_SETUP_CLAMP))
 | |
| 				return -EINVAL;
 | |
| 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
 | |
| 		}
 | |
| 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
 | |
| 		if (p->cq_entries < p->sq_entries)
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		p->cq_entries = 2 * p->sq_entries;
 | |
| 	}
 | |
| 
 | |
| 	p->sq_off.head = offsetof(struct io_rings, sq.head);
 | |
| 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
 | |
| 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
 | |
| 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
 | |
| 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
 | |
| 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
 | |
| 	p->sq_off.resv1 = 0;
 | |
| 	if (!(p->flags & IORING_SETUP_NO_MMAP))
 | |
| 		p->sq_off.user_addr = 0;
 | |
| 
 | |
| 	p->cq_off.head = offsetof(struct io_rings, cq.head);
 | |
| 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
 | |
| 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
 | |
| 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
 | |
| 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
 | |
| 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
 | |
| 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
 | |
| 	p->cq_off.resv1 = 0;
 | |
| 	if (!(p->flags & IORING_SETUP_NO_MMAP))
 | |
| 		p->cq_off.user_addr = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
 | |
| 				  struct io_uring_params __user *params)
 | |
| {
 | |
| 	struct io_ring_ctx *ctx;
 | |
| 	struct io_uring_task *tctx;
 | |
| 	struct file *file;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = io_uring_sanitise_params(p);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = io_uring_fill_params(entries, p);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	ctx = io_ring_ctx_alloc(p);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->clockid = CLOCK_MONOTONIC;
 | |
| 	ctx->clock_offset = 0;
 | |
| 
 | |
| 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
 | |
| 		static_branch_inc(&io_key_has_sqarray);
 | |
| 
 | |
| 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
 | |
| 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
 | |
| 	    !(ctx->flags & IORING_SETUP_SQPOLL))
 | |
| 		ctx->task_complete = true;
 | |
| 
 | |
| 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
 | |
| 		ctx->lockless_cq = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
 | |
| 	 * purposes, see io_activate_pollwq()
 | |
| 	 */
 | |
| 	if (!ctx->task_complete)
 | |
| 		ctx->poll_activated = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
 | |
| 	 * space applications don't need to do io completion events
 | |
| 	 * polling again, they can rely on io_sq_thread to do polling
 | |
| 	 * work, which can reduce cpu usage and uring_lock contention.
 | |
| 	 */
 | |
| 	if (ctx->flags & IORING_SETUP_IOPOLL &&
 | |
| 	    !(ctx->flags & IORING_SETUP_SQPOLL))
 | |
| 		ctx->syscall_iopoll = 1;
 | |
| 
 | |
| 	ctx->compat = in_compat_syscall();
 | |
| 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
 | |
| 		ctx->user = get_uid(current_user());
 | |
| 
 | |
| 	/*
 | |
| 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
 | |
| 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
 | |
| 	 */
 | |
| 	if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
 | |
| 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
 | |
| 	else
 | |
| 		ctx->notify_method = TWA_SIGNAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is just grabbed for accounting purposes. When a process exits,
 | |
| 	 * the mm is exited and dropped before the files, hence we need to hang
 | |
| 	 * on to this mm purely for the purposes of being able to unaccount
 | |
| 	 * memory (locked/pinned vm). It's not used for anything else.
 | |
| 	 */
 | |
| 	mmgrab(current->mm);
 | |
| 	ctx->mm_account = current->mm;
 | |
| 
 | |
| 	ret = io_allocate_scq_urings(ctx, p);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
 | |
| 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
 | |
| 
 | |
| 	ret = io_sq_offload_create(ctx, p);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	p->features = IORING_FEAT_FLAGS;
 | |
| 
 | |
| 	if (copy_to_user(params, p, sizeof(*p))) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
 | |
| 	    && !(ctx->flags & IORING_SETUP_R_DISABLED)) {
 | |
| 		/*
 | |
| 		 * Unlike io_register_enable_rings(), don't need WRITE_ONCE()
 | |
| 		 * since ctx isn't yet accessible from other tasks
 | |
| 		 */
 | |
| 		ctx->submitter_task = get_task_struct(current);
 | |
| 	}
 | |
| 
 | |
| 	file = io_uring_get_file(ctx);
 | |
| 	if (IS_ERR(file)) {
 | |
| 		ret = PTR_ERR(file);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	ret = __io_uring_add_tctx_node(ctx);
 | |
| 	if (ret)
 | |
| 		goto err_fput;
 | |
| 	tctx = current->io_uring;
 | |
| 
 | |
| 	/*
 | |
| 	 * Install ring fd as the very last thing, so we don't risk someone
 | |
| 	 * having closed it before we finish setup
 | |
| 	 */
 | |
| 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
 | |
| 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
 | |
| 	else
 | |
| 		ret = io_uring_install_fd(file);
 | |
| 	if (ret < 0)
 | |
| 		goto err_fput;
 | |
| 
 | |
| 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
 | |
| 	return ret;
 | |
| err:
 | |
| 	io_ring_ctx_wait_and_kill(ctx);
 | |
| 	return ret;
 | |
| err_fput:
 | |
| 	fput(file);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up an aio uring context, and returns the fd. Applications asks for a
 | |
|  * ring size, we return the actual sq/cq ring sizes (among other things) in the
 | |
|  * params structure passed in.
 | |
|  */
 | |
| static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
 | |
| {
 | |
| 	struct io_uring_params p;
 | |
| 	int i;
 | |
| 
 | |
| 	if (copy_from_user(&p, params, sizeof(p)))
 | |
| 		return -EFAULT;
 | |
| 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
 | |
| 		if (p.resv[i])
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (p.flags & ~IORING_SETUP_FLAGS)
 | |
| 		return -EINVAL;
 | |
| 	return io_uring_create(entries, &p, params);
 | |
| }
 | |
| 
 | |
| static inline int io_uring_allowed(void)
 | |
| {
 | |
| 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
 | |
| 	kgid_t io_uring_group;
 | |
| 
 | |
| 	if (disabled == 2)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
 | |
| 		goto allowed_lsm;
 | |
| 
 | |
| 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
 | |
| 	if (!gid_valid(io_uring_group))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!in_group_p(io_uring_group))
 | |
| 		return -EPERM;
 | |
| 
 | |
| allowed_lsm:
 | |
| 	return security_uring_allowed();
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(io_uring_setup, u32, entries,
 | |
| 		struct io_uring_params __user *, params)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = io_uring_allowed();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return io_uring_setup(entries, params);
 | |
| }
 | |
| 
 | |
| static int __init io_uring_init(void)
 | |
| {
 | |
| 	struct kmem_cache_args kmem_args = {
 | |
| 		.useroffset = offsetof(struct io_kiocb, cmd.data),
 | |
| 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
 | |
| 		.freeptr_offset = offsetof(struct io_kiocb, work),
 | |
| 		.use_freeptr_offset = true,
 | |
| 	};
 | |
| 
 | |
| #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
 | |
| 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
 | |
| 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
 | |
| } while (0)
 | |
| 
 | |
| #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
 | |
| 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
 | |
| #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
 | |
| 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
 | |
| 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
 | |
| 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
 | |
| 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
 | |
| 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
 | |
| 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
 | |
| 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
 | |
| 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
 | |
| 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
 | |
| 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
 | |
| 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
 | |
| 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
 | |
| 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
 | |
| 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
 | |
| 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
 | |
| 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
 | |
| 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
 | |
| 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
 | |
| 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
 | |
| 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
 | |
| 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
 | |
| 	BUILD_BUG_SQE_ELEM(44, __u8,   write_stream);
 | |
| 	BUILD_BUG_SQE_ELEM(45, __u8,   __pad4[0]);
 | |
| 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
 | |
| 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
 | |
| 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
 | |
| 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
 | |
| 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
 | |
| 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
 | |
| 		     sizeof(struct io_uring_rsrc_update));
 | |
| 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
 | |
| 		     sizeof(struct io_uring_rsrc_update2));
 | |
| 
 | |
| 	/* ->buf_index is u16 */
 | |
| 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
 | |
| 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
 | |
| 		     offsetof(struct io_uring_buf_ring, tail));
 | |
| 
 | |
| 	/* should fit into one byte */
 | |
| 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
 | |
| 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
 | |
| 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
 | |
| 
 | |
| 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
 | |
| 
 | |
| 	/* top 8bits are for internal use */
 | |
| 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
 | |
| 
 | |
| 	io_uring_optable_init();
 | |
| 
 | |
| 	/* imu->dir is u8 */
 | |
| 	BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow user copy in the per-command field, which starts after the
 | |
| 	 * file in io_kiocb and until the opcode field. The openat2 handling
 | |
| 	 * requires copying in user memory into the io_kiocb object in that
 | |
| 	 * range, and HARDENED_USERCOPY will complain if we haven't
 | |
| 	 * correctly annotated this range.
 | |
| 	 */
 | |
| 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
 | |
| 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
 | |
| 				SLAB_TYPESAFE_BY_RCU);
 | |
| 
 | |
| 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
 | |
| 	BUG_ON(!iou_wq);
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| };
 | |
| __initcall(io_uring_init);
 |