mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 0409819a00
			
		
	
	
		0409819a00
		
	
	
	
	
		
			
			Currently if a user enqueue a work item using schedule_delayed_work() the used wq is "system_wq" (per-cpu wq) while queue_delayed_work() use WORK_CPU_UNBOUND (used when a cpu is not specified). The same applies to schedule_work() that is using system_wq and queue_work(), that makes use again of WORK_CPU_UNBOUND. This lack of consistentcy cannot be addressed without refactoring the API. system_unbound_wq should be the default workqueue so as not to enforce locality constraints for random work whenever it's not required. Adding system_dfl_wq to encourage its use when unbound work should be used. queue_work() / queue_delayed_work() / mod_delayed_work() will now use the new unbound wq: whether the user still use the old wq a warn will be printed along with a wq redirect to the new one. The old system_unbound_wq will be kept for a few release cycles. Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Marco Crivellari <marco.crivellari@suse.com> Link: https://lore.kernel.org/r/20250905085309.94596-3-marco.crivellari@suse.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
		
			
				
	
	
		
			1016 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1016 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/llist.h>
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/bpf_mem_alloc.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <asm/local.h>
 | |
| 
 | |
| /* Any context (including NMI) BPF specific memory allocator.
 | |
|  *
 | |
|  * Tracing BPF programs can attach to kprobe and fentry. Hence they
 | |
|  * run in unknown context where calling plain kmalloc() might not be safe.
 | |
|  *
 | |
|  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
 | |
|  * Refill this cache asynchronously from irq_work.
 | |
|  *
 | |
|  * CPU_0 buckets
 | |
|  * 16 32 64 96 128 196 256 512 1024 2048 4096
 | |
|  * ...
 | |
|  * CPU_N buckets
 | |
|  * 16 32 64 96 128 196 256 512 1024 2048 4096
 | |
|  *
 | |
|  * The buckets are prefilled at the start.
 | |
|  * BPF programs always run with migration disabled.
 | |
|  * It's safe to allocate from cache of the current cpu with irqs disabled.
 | |
|  * Free-ing is always done into bucket of the current cpu as well.
 | |
|  * irq_work trims extra free elements from buckets with kfree
 | |
|  * and refills them with kmalloc, so global kmalloc logic takes care
 | |
|  * of freeing objects allocated by one cpu and freed on another.
 | |
|  *
 | |
|  * Every allocated objected is padded with extra 8 bytes that contains
 | |
|  * struct llist_node.
 | |
|  */
 | |
| #define LLIST_NODE_SZ sizeof(struct llist_node)
 | |
| 
 | |
| #define BPF_MEM_ALLOC_SIZE_MAX 4096
 | |
| 
 | |
| /* similar to kmalloc, but sizeof == 8 bucket is gone */
 | |
| static u8 size_index[24] __ro_after_init = {
 | |
| 	3,	/* 8 */
 | |
| 	3,	/* 16 */
 | |
| 	4,	/* 24 */
 | |
| 	4,	/* 32 */
 | |
| 	5,	/* 40 */
 | |
| 	5,	/* 48 */
 | |
| 	5,	/* 56 */
 | |
| 	5,	/* 64 */
 | |
| 	1,	/* 72 */
 | |
| 	1,	/* 80 */
 | |
| 	1,	/* 88 */
 | |
| 	1,	/* 96 */
 | |
| 	6,	/* 104 */
 | |
| 	6,	/* 112 */
 | |
| 	6,	/* 120 */
 | |
| 	6,	/* 128 */
 | |
| 	2,	/* 136 */
 | |
| 	2,	/* 144 */
 | |
| 	2,	/* 152 */
 | |
| 	2,	/* 160 */
 | |
| 	2,	/* 168 */
 | |
| 	2,	/* 176 */
 | |
| 	2,	/* 184 */
 | |
| 	2	/* 192 */
 | |
| };
 | |
| 
 | |
| static int bpf_mem_cache_idx(size_t size)
 | |
| {
 | |
| 	if (!size || size > BPF_MEM_ALLOC_SIZE_MAX)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (size <= 192)
 | |
| 		return size_index[(size - 1) / 8] - 1;
 | |
| 
 | |
| 	return fls(size - 1) - 2;
 | |
| }
 | |
| 
 | |
| #define NUM_CACHES 11
 | |
| 
 | |
| struct bpf_mem_cache {
 | |
| 	/* per-cpu list of free objects of size 'unit_size'.
 | |
| 	 * All accesses are done with interrupts disabled and 'active' counter
 | |
| 	 * protection with __llist_add() and __llist_del_first().
 | |
| 	 */
 | |
| 	struct llist_head free_llist;
 | |
| 	local_t active;
 | |
| 
 | |
| 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
 | |
| 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
 | |
| 	 * fail. When 'active' is busy the unit_free() will add an object to
 | |
| 	 * free_llist_extra.
 | |
| 	 */
 | |
| 	struct llist_head free_llist_extra;
 | |
| 
 | |
| 	struct irq_work refill_work;
 | |
| 	struct obj_cgroup *objcg;
 | |
| 	int unit_size;
 | |
| 	/* count of objects in free_llist */
 | |
| 	int free_cnt;
 | |
| 	int low_watermark, high_watermark, batch;
 | |
| 	int percpu_size;
 | |
| 	bool draining;
 | |
| 	struct bpf_mem_cache *tgt;
 | |
| 
 | |
| 	/* list of objects to be freed after RCU GP */
 | |
| 	struct llist_head free_by_rcu;
 | |
| 	struct llist_node *free_by_rcu_tail;
 | |
| 	struct llist_head waiting_for_gp;
 | |
| 	struct llist_node *waiting_for_gp_tail;
 | |
| 	struct rcu_head rcu;
 | |
| 	atomic_t call_rcu_in_progress;
 | |
| 	struct llist_head free_llist_extra_rcu;
 | |
| 
 | |
| 	/* list of objects to be freed after RCU tasks trace GP */
 | |
| 	struct llist_head free_by_rcu_ttrace;
 | |
| 	struct llist_head waiting_for_gp_ttrace;
 | |
| 	struct rcu_head rcu_ttrace;
 | |
| 	atomic_t call_rcu_ttrace_in_progress;
 | |
| };
 | |
| 
 | |
| struct bpf_mem_caches {
 | |
| 	struct bpf_mem_cache cache[NUM_CACHES];
 | |
| };
 | |
| 
 | |
| static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
 | |
| 
 | |
| static struct llist_node notrace *__llist_del_first(struct llist_head *head)
 | |
| {
 | |
| 	struct llist_node *entry, *next;
 | |
| 
 | |
| 	entry = head->first;
 | |
| 	if (!entry)
 | |
| 		return NULL;
 | |
| 	next = entry->next;
 | |
| 	head->first = next;
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
 | |
| {
 | |
| 	if (c->percpu_size) {
 | |
| 		void __percpu **obj = kmalloc_node(c->percpu_size, flags, node);
 | |
| 		void __percpu *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
 | |
| 
 | |
| 		if (!obj || !pptr) {
 | |
| 			free_percpu(pptr);
 | |
| 			kfree(obj);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		obj[1] = pptr;
 | |
| 		return obj;
 | |
| 	}
 | |
| 
 | |
| 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
 | |
| {
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (c->objcg)
 | |
| 		return get_mem_cgroup_from_objcg(c->objcg);
 | |
| 	return root_mem_cgroup;
 | |
| #else
 | |
| 	return NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 | |
| 		/* In RT irq_work runs in per-cpu kthread, so disable
 | |
| 		 * interrupts to avoid preemption and interrupts and
 | |
| 		 * reduce the chance of bpf prog executing on this cpu
 | |
| 		 * when active counter is busy.
 | |
| 		 */
 | |
| 		local_irq_save(*flags);
 | |
| 	/* alloc_bulk runs from irq_work which will not preempt a bpf
 | |
| 	 * program that does unit_alloc/unit_free since IRQs are
 | |
| 	 * disabled there. There is no race to increment 'active'
 | |
| 	 * counter. It protects free_llist from corruption in case NMI
 | |
| 	 * bpf prog preempted this loop.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
 | |
| }
 | |
| 
 | |
| static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
 | |
| {
 | |
| 	local_dec(&c->active);
 | |
| 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 | |
| 		local_irq_restore(*flags);
 | |
| }
 | |
| 
 | |
| static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	inc_active(c, &flags);
 | |
| 	__llist_add(obj, &c->free_llist);
 | |
| 	c->free_cnt++;
 | |
| 	dec_active(c, &flags);
 | |
| }
 | |
| 
 | |
| /* Mostly runs from irq_work except __init phase. */
 | |
| static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = NULL, *old_memcg;
 | |
| 	gfp_t gfp;
 | |
| 	void *obj;
 | |
| 	int i;
 | |
| 
 | |
| 	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
 | |
| 	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
 | |
| 
 | |
| 	for (i = 0; i < cnt; i++) {
 | |
| 		/*
 | |
| 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
 | |
| 		 * done only by one CPU == current CPU. Other CPUs might
 | |
| 		 * llist_add() and llist_del_all() in parallel.
 | |
| 		 */
 | |
| 		obj = llist_del_first(&c->free_by_rcu_ttrace);
 | |
| 		if (!obj)
 | |
| 			break;
 | |
| 		add_obj_to_free_list(c, obj);
 | |
| 	}
 | |
| 	if (i >= cnt)
 | |
| 		return;
 | |
| 
 | |
| 	for (; i < cnt; i++) {
 | |
| 		obj = llist_del_first(&c->waiting_for_gp_ttrace);
 | |
| 		if (!obj)
 | |
| 			break;
 | |
| 		add_obj_to_free_list(c, obj);
 | |
| 	}
 | |
| 	if (i >= cnt)
 | |
| 		return;
 | |
| 
 | |
| 	memcg = get_memcg(c);
 | |
| 	old_memcg = set_active_memcg(memcg);
 | |
| 	for (; i < cnt; i++) {
 | |
| 		/* Allocate, but don't deplete atomic reserves that typical
 | |
| 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
 | |
| 		 * will allocate from the current numa node which is what we
 | |
| 		 * want here.
 | |
| 		 */
 | |
| 		obj = __alloc(c, node, gfp);
 | |
| 		if (!obj)
 | |
| 			break;
 | |
| 		add_obj_to_free_list(c, obj);
 | |
| 	}
 | |
| 	set_active_memcg(old_memcg);
 | |
| 	mem_cgroup_put(memcg);
 | |
| }
 | |
| 
 | |
| static void free_one(void *obj, bool percpu)
 | |
| {
 | |
| 	if (percpu)
 | |
| 		free_percpu(((void __percpu **)obj)[1]);
 | |
| 
 | |
| 	kfree(obj);
 | |
| }
 | |
| 
 | |
| static int free_all(struct llist_node *llnode, bool percpu)
 | |
| {
 | |
| 	struct llist_node *pos, *t;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	llist_for_each_safe(pos, t, llnode) {
 | |
| 		free_one(pos, percpu);
 | |
| 		cnt++;
 | |
| 	}
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| static void __free_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
 | |
| 
 | |
| 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
 | |
| 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
 | |
| }
 | |
| 
 | |
| static void __free_rcu_tasks_trace(struct rcu_head *head)
 | |
| {
 | |
| 	/* If RCU Tasks Trace grace period implies RCU grace period,
 | |
| 	 * there is no need to invoke call_rcu().
 | |
| 	 */
 | |
| 	if (rcu_trace_implies_rcu_gp())
 | |
| 		__free_rcu(head);
 | |
| 	else
 | |
| 		call_rcu(head, __free_rcu);
 | |
| }
 | |
| 
 | |
| static void enque_to_free(struct bpf_mem_cache *c, void *obj)
 | |
| {
 | |
| 	struct llist_node *llnode = obj;
 | |
| 
 | |
| 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
 | |
| 	 * Nothing races to add to free_by_rcu_ttrace list.
 | |
| 	 */
 | |
| 	llist_add(llnode, &c->free_by_rcu_ttrace);
 | |
| }
 | |
| 
 | |
| static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	struct llist_node *llnode, *t;
 | |
| 
 | |
| 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
 | |
| 		if (unlikely(READ_ONCE(c->draining))) {
 | |
| 			llnode = llist_del_all(&c->free_by_rcu_ttrace);
 | |
| 			free_all(llnode, !!c->percpu_size);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
 | |
| 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
 | |
| 		llist_add(llnode, &c->waiting_for_gp_ttrace);
 | |
| 
 | |
| 	if (unlikely(READ_ONCE(c->draining))) {
 | |
| 		__free_rcu(&c->rcu_ttrace);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
 | |
| 	 * If RCU Tasks Trace grace period implies RCU grace period, free
 | |
| 	 * these elements directly, else use call_rcu() to wait for normal
 | |
| 	 * progs to finish and finally do free_one() on each element.
 | |
| 	 */
 | |
| 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
 | |
| }
 | |
| 
 | |
| static void free_bulk(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	struct bpf_mem_cache *tgt = c->tgt;
 | |
| 	struct llist_node *llnode, *t;
 | |
| 	unsigned long flags;
 | |
| 	int cnt;
 | |
| 
 | |
| 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
 | |
| 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
 | |
| 
 | |
| 	do {
 | |
| 		inc_active(c, &flags);
 | |
| 		llnode = __llist_del_first(&c->free_llist);
 | |
| 		if (llnode)
 | |
| 			cnt = --c->free_cnt;
 | |
| 		else
 | |
| 			cnt = 0;
 | |
| 		dec_active(c, &flags);
 | |
| 		if (llnode)
 | |
| 			enque_to_free(tgt, llnode);
 | |
| 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
 | |
| 
 | |
| 	/* and drain free_llist_extra */
 | |
| 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
 | |
| 		enque_to_free(tgt, llnode);
 | |
| 	do_call_rcu_ttrace(tgt);
 | |
| }
 | |
| 
 | |
| static void __free_by_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
 | |
| 	struct bpf_mem_cache *tgt = c->tgt;
 | |
| 	struct llist_node *llnode;
 | |
| 
 | |
| 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
 | |
| 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
 | |
| 
 | |
| 	llnode = llist_del_all(&c->waiting_for_gp);
 | |
| 	if (!llnode)
 | |
| 		goto out;
 | |
| 
 | |
| 	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
 | |
| 
 | |
| 	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
 | |
| 	do_call_rcu_ttrace(tgt);
 | |
| out:
 | |
| 	atomic_set(&c->call_rcu_in_progress, 0);
 | |
| }
 | |
| 
 | |
| static void check_free_by_rcu(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	struct llist_node *llnode, *t;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* drain free_llist_extra_rcu */
 | |
| 	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
 | |
| 		inc_active(c, &flags);
 | |
| 		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
 | |
| 			if (__llist_add(llnode, &c->free_by_rcu))
 | |
| 				c->free_by_rcu_tail = llnode;
 | |
| 		dec_active(c, &flags);
 | |
| 	}
 | |
| 
 | |
| 	if (llist_empty(&c->free_by_rcu))
 | |
| 		return;
 | |
| 
 | |
| 	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
 | |
| 		/*
 | |
| 		 * Instead of kmalloc-ing new rcu_head and triggering 10k
 | |
| 		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
 | |
| 		 * the overload just ask RCU to hurry up. There could be many
 | |
| 		 * objects in free_by_rcu list.
 | |
| 		 * This hint reduces memory consumption for an artificial
 | |
| 		 * benchmark from 2 Gbyte to 150 Mbyte.
 | |
| 		 */
 | |
| 		rcu_request_urgent_qs_task(current);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
 | |
| 
 | |
| 	inc_active(c, &flags);
 | |
| 	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
 | |
| 	c->waiting_for_gp_tail = c->free_by_rcu_tail;
 | |
| 	dec_active(c, &flags);
 | |
| 
 | |
| 	if (unlikely(READ_ONCE(c->draining))) {
 | |
| 		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
 | |
| 		atomic_set(&c->call_rcu_in_progress, 0);
 | |
| 	} else {
 | |
| 		call_rcu_hurry(&c->rcu, __free_by_rcu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bpf_mem_refill(struct irq_work *work)
 | |
| {
 | |
| 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
 | |
| 	int cnt;
 | |
| 
 | |
| 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
 | |
| 	cnt = c->free_cnt;
 | |
| 	if (cnt < c->low_watermark)
 | |
| 		/* irq_work runs on this cpu and kmalloc will allocate
 | |
| 		 * from the current numa node which is what we want here.
 | |
| 		 */
 | |
| 		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
 | |
| 	else if (cnt > c->high_watermark)
 | |
| 		free_bulk(c);
 | |
| 
 | |
| 	check_free_by_rcu(c);
 | |
| }
 | |
| 
 | |
| static void notrace irq_work_raise(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	irq_work_queue(&c->refill_work);
 | |
| }
 | |
| 
 | |
| /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
 | |
|  * the freelist cache will be elem_size * 64 (or less) on each cpu.
 | |
|  *
 | |
|  * For bpf programs that don't have statically known allocation sizes and
 | |
|  * assuming (low_mark + high_mark) / 2 as an average number of elements per
 | |
|  * bucket and all buckets are used the total amount of memory in freelists
 | |
|  * on each cpu will be:
 | |
|  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
 | |
|  * == ~ 116 Kbyte using below heuristic.
 | |
|  * Initialized, but unused bpf allocator (not bpf map specific one) will
 | |
|  * consume ~ 11 Kbyte per cpu.
 | |
|  * Typical case will be between 11K and 116K closer to 11K.
 | |
|  * bpf progs can and should share bpf_mem_cache when possible.
 | |
|  *
 | |
|  * Percpu allocation is typically rare. To avoid potential unnecessary large
 | |
|  * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
 | |
|  */
 | |
| static void init_refill_work(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	init_irq_work(&c->refill_work, bpf_mem_refill);
 | |
| 	if (c->percpu_size) {
 | |
| 		c->low_watermark = 1;
 | |
| 		c->high_watermark = 3;
 | |
| 	} else if (c->unit_size <= 256) {
 | |
| 		c->low_watermark = 32;
 | |
| 		c->high_watermark = 96;
 | |
| 	} else {
 | |
| 		/* When page_size == 4k, order-0 cache will have low_mark == 2
 | |
| 		 * and high_mark == 6 with batch alloc of 3 individual pages at
 | |
| 		 * a time.
 | |
| 		 * 8k allocs and above low == 1, high == 3, batch == 1.
 | |
| 		 */
 | |
| 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
 | |
| 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
 | |
| 	}
 | |
| 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
 | |
| }
 | |
| 
 | |
| static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
 | |
| {
 | |
| 	int cnt = 1;
 | |
| 
 | |
| 	/* To avoid consuming memory, for non-percpu allocation, assume that
 | |
| 	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
 | |
| 	 * irq disabled region if unit size is less than or equal to 256.
 | |
| 	 * For all other cases, let us just do one allocation.
 | |
| 	 */
 | |
| 	if (!c->percpu_size && c->unit_size <= 256)
 | |
| 		cnt = 4;
 | |
| 	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
 | |
| }
 | |
| 
 | |
| /* When size != 0 bpf_mem_cache for each cpu.
 | |
|  * This is typical bpf hash map use case when all elements have equal size.
 | |
|  *
 | |
|  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
 | |
|  * kmalloc/kfree. Max allocation size is 4096 in this case.
 | |
|  * This is bpf_dynptr and bpf_kptr use case.
 | |
|  */
 | |
| int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
 | |
| {
 | |
| 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
 | |
| 	struct bpf_mem_cache *c; struct bpf_mem_cache __percpu *pc;
 | |
| 	struct obj_cgroup *objcg = NULL;
 | |
| 	int cpu, i, unit_size, percpu_size = 0;
 | |
| 
 | |
| 	if (percpu && size == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* room for llist_node and per-cpu pointer */
 | |
| 	if (percpu)
 | |
| 		percpu_size = LLIST_NODE_SZ + sizeof(void *);
 | |
| 	ma->percpu = percpu;
 | |
| 
 | |
| 	if (size) {
 | |
| 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
 | |
| 		if (!pc)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if (!percpu)
 | |
| 			size += LLIST_NODE_SZ; /* room for llist_node */
 | |
| 		unit_size = size;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 		if (memcg_bpf_enabled())
 | |
| 			objcg = get_obj_cgroup_from_current();
 | |
| #endif
 | |
| 		ma->objcg = objcg;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			c = per_cpu_ptr(pc, cpu);
 | |
| 			c->unit_size = unit_size;
 | |
| 			c->objcg = objcg;
 | |
| 			c->percpu_size = percpu_size;
 | |
| 			c->tgt = c;
 | |
| 			init_refill_work(c);
 | |
| 			prefill_mem_cache(c, cpu);
 | |
| 		}
 | |
| 		ma->cache = pc;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
 | |
| 	if (!pcc)
 | |
| 		return -ENOMEM;
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	objcg = get_obj_cgroup_from_current();
 | |
| #endif
 | |
| 	ma->objcg = objcg;
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		cc = per_cpu_ptr(pcc, cpu);
 | |
| 		for (i = 0; i < NUM_CACHES; i++) {
 | |
| 			c = &cc->cache[i];
 | |
| 			c->unit_size = sizes[i];
 | |
| 			c->objcg = objcg;
 | |
| 			c->percpu_size = percpu_size;
 | |
| 			c->tgt = c;
 | |
| 
 | |
| 			init_refill_work(c);
 | |
| 			prefill_mem_cache(c, cpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ma->caches = pcc;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
 | |
| {
 | |
| 	struct bpf_mem_caches __percpu *pcc;
 | |
| 
 | |
| 	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
 | |
| 	if (!pcc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ma->caches = pcc;
 | |
| 	ma->objcg = objcg;
 | |
| 	ma->percpu = true;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
 | |
| {
 | |
| 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc;
 | |
| 	int cpu, i, unit_size, percpu_size;
 | |
| 	struct obj_cgroup *objcg;
 | |
| 	struct bpf_mem_cache *c;
 | |
| 
 | |
| 	i = bpf_mem_cache_idx(size);
 | |
| 	if (i < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* room for llist_node and per-cpu pointer */
 | |
| 	percpu_size = LLIST_NODE_SZ + sizeof(void *);
 | |
| 
 | |
| 	unit_size = sizes[i];
 | |
| 	objcg = ma->objcg;
 | |
| 	pcc = ma->caches;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		cc = per_cpu_ptr(pcc, cpu);
 | |
| 		c = &cc->cache[i];
 | |
| 		if (c->unit_size)
 | |
| 			break;
 | |
| 
 | |
| 		c->unit_size = unit_size;
 | |
| 		c->objcg = objcg;
 | |
| 		c->percpu_size = percpu_size;
 | |
| 		c->tgt = c;
 | |
| 
 | |
| 		init_refill_work(c);
 | |
| 		prefill_mem_cache(c, cpu);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void drain_mem_cache(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	bool percpu = !!c->percpu_size;
 | |
| 
 | |
| 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
 | |
| 	 * bpf_mem_cache_free() for all remaining elements and they can be in
 | |
| 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
 | |
| 	 *
 | |
| 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
 | |
| 	 * on these lists, so it is safe to use __llist_del_all().
 | |
| 	 */
 | |
| 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
 | |
| 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
 | |
| 	free_all(__llist_del_all(&c->free_llist), percpu);
 | |
| 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
 | |
| 	free_all(__llist_del_all(&c->free_by_rcu), percpu);
 | |
| 	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
 | |
| 	free_all(llist_del_all(&c->waiting_for_gp), percpu);
 | |
| }
 | |
| 
 | |
| static void check_mem_cache(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->free_llist));
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
 | |
| 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
 | |
| }
 | |
| 
 | |
| static void check_leaked_objs(struct bpf_mem_alloc *ma)
 | |
| {
 | |
| 	struct bpf_mem_caches *cc;
 | |
| 	struct bpf_mem_cache *c;
 | |
| 	int cpu, i;
 | |
| 
 | |
| 	if (ma->cache) {
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			c = per_cpu_ptr(ma->cache, cpu);
 | |
| 			check_mem_cache(c);
 | |
| 		}
 | |
| 	}
 | |
| 	if (ma->caches) {
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			cc = per_cpu_ptr(ma->caches, cpu);
 | |
| 			for (i = 0; i < NUM_CACHES; i++) {
 | |
| 				c = &cc->cache[i];
 | |
| 				check_mem_cache(c);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
 | |
| {
 | |
| 	check_leaked_objs(ma);
 | |
| 	free_percpu(ma->cache);
 | |
| 	free_percpu(ma->caches);
 | |
| 	ma->cache = NULL;
 | |
| 	ma->caches = NULL;
 | |
| }
 | |
| 
 | |
| static void free_mem_alloc(struct bpf_mem_alloc *ma)
 | |
| {
 | |
| 	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
 | |
| 	 * might still execute. Wait for them.
 | |
| 	 *
 | |
| 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
 | |
| 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
 | |
| 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
 | |
| 	 * so if call_rcu(head, __free_rcu) is skipped due to
 | |
| 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
 | |
| 	 * using rcu_trace_implies_rcu_gp() as well.
 | |
| 	 */
 | |
| 	rcu_barrier(); /* wait for __free_by_rcu */
 | |
| 	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
 | |
| 	if (!rcu_trace_implies_rcu_gp())
 | |
| 		rcu_barrier();
 | |
| 	free_mem_alloc_no_barrier(ma);
 | |
| }
 | |
| 
 | |
| static void free_mem_alloc_deferred(struct work_struct *work)
 | |
| {
 | |
| 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
 | |
| 
 | |
| 	free_mem_alloc(ma);
 | |
| 	kfree(ma);
 | |
| }
 | |
| 
 | |
| static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
 | |
| {
 | |
| 	struct bpf_mem_alloc *copy;
 | |
| 
 | |
| 	if (!rcu_in_progress) {
 | |
| 		/* Fast path. No callbacks are pending, hence no need to do
 | |
| 		 * rcu_barrier-s.
 | |
| 		 */
 | |
| 		free_mem_alloc_no_barrier(ma);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
 | |
| 	if (!copy) {
 | |
| 		/* Slow path with inline barrier-s */
 | |
| 		free_mem_alloc(ma);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Defer barriers into worker to let the rest of map memory to be freed */
 | |
| 	memset(ma, 0, sizeof(*ma));
 | |
| 	INIT_WORK(©->work, free_mem_alloc_deferred);
 | |
| 	queue_work(system_dfl_wq, ©->work);
 | |
| }
 | |
| 
 | |
| void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
 | |
| {
 | |
| 	struct bpf_mem_caches *cc;
 | |
| 	struct bpf_mem_cache *c;
 | |
| 	int cpu, i, rcu_in_progress;
 | |
| 
 | |
| 	if (ma->cache) {
 | |
| 		rcu_in_progress = 0;
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			c = per_cpu_ptr(ma->cache, cpu);
 | |
| 			WRITE_ONCE(c->draining, true);
 | |
| 			irq_work_sync(&c->refill_work);
 | |
| 			drain_mem_cache(c);
 | |
| 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
 | |
| 			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
 | |
| 		}
 | |
| 		obj_cgroup_put(ma->objcg);
 | |
| 		destroy_mem_alloc(ma, rcu_in_progress);
 | |
| 	}
 | |
| 	if (ma->caches) {
 | |
| 		rcu_in_progress = 0;
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			cc = per_cpu_ptr(ma->caches, cpu);
 | |
| 			for (i = 0; i < NUM_CACHES; i++) {
 | |
| 				c = &cc->cache[i];
 | |
| 				WRITE_ONCE(c->draining, true);
 | |
| 				irq_work_sync(&c->refill_work);
 | |
| 				drain_mem_cache(c);
 | |
| 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
 | |
| 				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
 | |
| 			}
 | |
| 		}
 | |
| 		obj_cgroup_put(ma->objcg);
 | |
| 		destroy_mem_alloc(ma, rcu_in_progress);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* notrace is necessary here and in other functions to make sure
 | |
|  * bpf programs cannot attach to them and cause llist corruptions.
 | |
|  */
 | |
| static void notrace *unit_alloc(struct bpf_mem_cache *c)
 | |
| {
 | |
| 	struct llist_node *llnode = NULL;
 | |
| 	unsigned long flags;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	/* Disable irqs to prevent the following race for majority of prog types:
 | |
| 	 * prog_A
 | |
| 	 *   bpf_mem_alloc
 | |
| 	 *      preemption or irq -> prog_B
 | |
| 	 *        bpf_mem_alloc
 | |
| 	 *
 | |
| 	 * but prog_B could be a perf_event NMI prog.
 | |
| 	 * Use per-cpu 'active' counter to order free_list access between
 | |
| 	 * unit_alloc/unit_free/bpf_mem_refill.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	if (local_inc_return(&c->active) == 1) {
 | |
| 		llnode = __llist_del_first(&c->free_llist);
 | |
| 		if (llnode) {
 | |
| 			cnt = --c->free_cnt;
 | |
| 			*(struct bpf_mem_cache **)llnode = c;
 | |
| 		}
 | |
| 	}
 | |
| 	local_dec(&c->active);
 | |
| 
 | |
| 	WARN_ON(cnt < 0);
 | |
| 
 | |
| 	if (cnt < c->low_watermark)
 | |
| 		irq_work_raise(c);
 | |
| 	/* Enable IRQ after the enqueue of irq work completes, so irq work
 | |
| 	 * will run after IRQ is enabled and free_llist may be refilled by
 | |
| 	 * irq work before other task preempts current task.
 | |
| 	 */
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return llnode;
 | |
| }
 | |
| 
 | |
| /* Though 'ptr' object could have been allocated on a different cpu
 | |
|  * add it to the free_llist of the current cpu.
 | |
|  * Let kfree() logic deal with it when it's later called from irq_work.
 | |
|  */
 | |
| static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
 | |
| {
 | |
| 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
 | |
| 	unsigned long flags;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remember bpf_mem_cache that allocated this object.
 | |
| 	 * The hint is not accurate.
 | |
| 	 */
 | |
| 	c->tgt = *(struct bpf_mem_cache **)llnode;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (local_inc_return(&c->active) == 1) {
 | |
| 		__llist_add(llnode, &c->free_llist);
 | |
| 		cnt = ++c->free_cnt;
 | |
| 	} else {
 | |
| 		/* unit_free() cannot fail. Therefore add an object to atomic
 | |
| 		 * llist. free_bulk() will drain it. Though free_llist_extra is
 | |
| 		 * a per-cpu list we have to use atomic llist_add here, since
 | |
| 		 * it also can be interrupted by bpf nmi prog that does another
 | |
| 		 * unit_free() into the same free_llist_extra.
 | |
| 		 */
 | |
| 		llist_add(llnode, &c->free_llist_extra);
 | |
| 	}
 | |
| 	local_dec(&c->active);
 | |
| 
 | |
| 	if (cnt > c->high_watermark)
 | |
| 		/* free few objects from current cpu into global kmalloc pool */
 | |
| 		irq_work_raise(c);
 | |
| 	/* Enable IRQ after irq_work_raise() completes, otherwise when current
 | |
| 	 * task is preempted by task which does unit_alloc(), unit_alloc() may
 | |
| 	 * return NULL unexpectedly because irq work is already pending but can
 | |
| 	 * not been triggered and free_llist can not be refilled timely.
 | |
| 	 */
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
 | |
| {
 | |
| 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	c->tgt = *(struct bpf_mem_cache **)llnode;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (local_inc_return(&c->active) == 1) {
 | |
| 		if (__llist_add(llnode, &c->free_by_rcu))
 | |
| 			c->free_by_rcu_tail = llnode;
 | |
| 	} else {
 | |
| 		llist_add(llnode, &c->free_llist_extra_rcu);
 | |
| 	}
 | |
| 	local_dec(&c->active);
 | |
| 
 | |
| 	if (!atomic_read(&c->call_rcu_in_progress))
 | |
| 		irq_work_raise(c);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Called from BPF program or from sys_bpf syscall.
 | |
|  * In both cases migration is disabled.
 | |
|  */
 | |
| void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
 | |
| {
 | |
| 	int idx;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!ma->percpu)
 | |
| 		size += LLIST_NODE_SZ;
 | |
| 	idx = bpf_mem_cache_idx(size);
 | |
| 	if (idx < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
 | |
| 	return !ret ? NULL : ret + LLIST_NODE_SZ;
 | |
| }
 | |
| 
 | |
| void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
 | |
| {
 | |
| 	struct bpf_mem_cache *c;
 | |
| 	int idx;
 | |
| 
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 
 | |
| 	c = *(void **)(ptr - LLIST_NODE_SZ);
 | |
| 	idx = bpf_mem_cache_idx(c->unit_size);
 | |
| 	if (WARN_ON_ONCE(idx < 0))
 | |
| 		return;
 | |
| 
 | |
| 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
 | |
| }
 | |
| 
 | |
| void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
 | |
| {
 | |
| 	struct bpf_mem_cache *c;
 | |
| 	int idx;
 | |
| 
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 
 | |
| 	c = *(void **)(ptr - LLIST_NODE_SZ);
 | |
| 	idx = bpf_mem_cache_idx(c->unit_size);
 | |
| 	if (WARN_ON_ONCE(idx < 0))
 | |
| 		return;
 | |
| 
 | |
| 	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
 | |
| }
 | |
| 
 | |
| void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = unit_alloc(this_cpu_ptr(ma->cache));
 | |
| 	return !ret ? NULL : ret + LLIST_NODE_SZ;
 | |
| }
 | |
| 
 | |
| void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
 | |
| {
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 
 | |
| 	unit_free(this_cpu_ptr(ma->cache), ptr);
 | |
| }
 | |
| 
 | |
| void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
 | |
| {
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 
 | |
| 	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
 | |
| }
 | |
| 
 | |
| /* Directly does a kfree() without putting 'ptr' back to the free_llist
 | |
|  * for reuse and without waiting for a rcu_tasks_trace gp.
 | |
|  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
 | |
|  * before calling bpf_mem_cache_raw_free().
 | |
|  * It could be used when the rcu_tasks_trace callback does not have
 | |
|  * a hold on the original bpf_mem_alloc object that allocated the
 | |
|  * 'ptr'. This should only be used in the uncommon code path.
 | |
|  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
 | |
|  * and may affect performance.
 | |
|  */
 | |
| void bpf_mem_cache_raw_free(void *ptr)
 | |
| {
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 
 | |
| 	kfree(ptr - LLIST_NODE_SZ);
 | |
| }
 | |
| 
 | |
| /* When flags == GFP_KERNEL, it signals that the caller will not cause
 | |
|  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
 | |
|  * kmalloc if the free_llist is empty.
 | |
|  */
 | |
| void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
 | |
| {
 | |
| 	struct bpf_mem_cache *c;
 | |
| 	void *ret;
 | |
| 
 | |
| 	c = this_cpu_ptr(ma->cache);
 | |
| 
 | |
| 	ret = unit_alloc(c);
 | |
| 	if (!ret && flags == GFP_KERNEL) {
 | |
| 		struct mem_cgroup *memcg, *old_memcg;
 | |
| 
 | |
| 		memcg = get_memcg(c);
 | |
| 		old_memcg = set_active_memcg(memcg);
 | |
| 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
 | |
| 		if (ret)
 | |
| 			*(struct bpf_mem_cache **)ret = c;
 | |
| 		set_active_memcg(old_memcg);
 | |
| 		mem_cgroup_put(memcg);
 | |
| 	}
 | |
| 
 | |
| 	return !ret ? NULL : ret + LLIST_NODE_SZ;
 | |
| }
 | |
| 
 | |
| int bpf_mem_alloc_check_size(bool percpu, size_t size)
 | |
| {
 | |
| 	/* The size of percpu allocation doesn't have LLIST_NODE_SZ overhead */
 | |
| 	if ((percpu && size > BPF_MEM_ALLOC_SIZE_MAX) ||
 | |
| 	    (!percpu && size > BPF_MEM_ALLOC_SIZE_MAX - LLIST_NODE_SZ))
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |