mirror of
https://github.com/torvalds/linux.git
synced 2025-10-29 15:56:19 +02:00
Drop the value-mask decomposition technique and adopt straightforward long-multiplication with a twist: when LSB(a) is uncertain, find the two partial products (for LSB(a) = known 0 and LSB(a) = known 1) and take a union. Experiment shows that applying this technique in long multiplication improves the precision in a significant number of cases (at the cost of losing precision in a relatively lower number of cases). Signed-off-by: Nandakumar Edamana <nandakumar@nandakumar.co.in> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Tested-by: Harishankar Vishwanathan <harishankar.vishwanathan@gmail.com> Reviewed-by: Harishankar Vishwanathan <harishankar.vishwanathan@gmail.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20250826034524.2159515-1-nandakumar@nandakumar.co.in
255 lines
5.9 KiB
C
255 lines
5.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* tnum: tracked (or tristate) numbers
|
|
*
|
|
* A tnum tracks knowledge about the bits of a value. Each bit can be either
|
|
* known (0 or 1), or unknown (x). Arithmetic operations on tnums will
|
|
* propagate the unknown bits such that the tnum result represents all the
|
|
* possible results for possible values of the operands.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/tnum.h>
|
|
|
|
#define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m}
|
|
/* A completely unknown value */
|
|
const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
|
|
|
|
struct tnum tnum_const(u64 value)
|
|
{
|
|
return TNUM(value, 0);
|
|
}
|
|
|
|
struct tnum tnum_range(u64 min, u64 max)
|
|
{
|
|
u64 chi = min ^ max, delta;
|
|
u8 bits = fls64(chi);
|
|
|
|
/* special case, needed because 1ULL << 64 is undefined */
|
|
if (bits > 63)
|
|
return tnum_unknown;
|
|
/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
|
|
* if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
|
|
* constant min (since min == max).
|
|
*/
|
|
delta = (1ULL << bits) - 1;
|
|
return TNUM(min & ~delta, delta);
|
|
}
|
|
|
|
struct tnum tnum_lshift(struct tnum a, u8 shift)
|
|
{
|
|
return TNUM(a.value << shift, a.mask << shift);
|
|
}
|
|
|
|
struct tnum tnum_rshift(struct tnum a, u8 shift)
|
|
{
|
|
return TNUM(a.value >> shift, a.mask >> shift);
|
|
}
|
|
|
|
struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
|
|
{
|
|
/* if a.value is negative, arithmetic shifting by minimum shift
|
|
* will have larger negative offset compared to more shifting.
|
|
* If a.value is nonnegative, arithmetic shifting by minimum shift
|
|
* will have larger positive offset compare to more shifting.
|
|
*/
|
|
if (insn_bitness == 32)
|
|
return TNUM((u32)(((s32)a.value) >> min_shift),
|
|
(u32)(((s32)a.mask) >> min_shift));
|
|
else
|
|
return TNUM((s64)a.value >> min_shift,
|
|
(s64)a.mask >> min_shift);
|
|
}
|
|
|
|
struct tnum tnum_add(struct tnum a, struct tnum b)
|
|
{
|
|
u64 sm, sv, sigma, chi, mu;
|
|
|
|
sm = a.mask + b.mask;
|
|
sv = a.value + b.value;
|
|
sigma = sm + sv;
|
|
chi = sigma ^ sv;
|
|
mu = chi | a.mask | b.mask;
|
|
return TNUM(sv & ~mu, mu);
|
|
}
|
|
|
|
struct tnum tnum_sub(struct tnum a, struct tnum b)
|
|
{
|
|
u64 dv, alpha, beta, chi, mu;
|
|
|
|
dv = a.value - b.value;
|
|
alpha = dv + a.mask;
|
|
beta = dv - b.mask;
|
|
chi = alpha ^ beta;
|
|
mu = chi | a.mask | b.mask;
|
|
return TNUM(dv & ~mu, mu);
|
|
}
|
|
|
|
struct tnum tnum_neg(struct tnum a)
|
|
{
|
|
return tnum_sub(TNUM(0, 0), a);
|
|
}
|
|
|
|
struct tnum tnum_and(struct tnum a, struct tnum b)
|
|
{
|
|
u64 alpha, beta, v;
|
|
|
|
alpha = a.value | a.mask;
|
|
beta = b.value | b.mask;
|
|
v = a.value & b.value;
|
|
return TNUM(v, alpha & beta & ~v);
|
|
}
|
|
|
|
struct tnum tnum_or(struct tnum a, struct tnum b)
|
|
{
|
|
u64 v, mu;
|
|
|
|
v = a.value | b.value;
|
|
mu = a.mask | b.mask;
|
|
return TNUM(v, mu & ~v);
|
|
}
|
|
|
|
struct tnum tnum_xor(struct tnum a, struct tnum b)
|
|
{
|
|
u64 v, mu;
|
|
|
|
v = a.value ^ b.value;
|
|
mu = a.mask | b.mask;
|
|
return TNUM(v & ~mu, mu);
|
|
}
|
|
|
|
/* Perform long multiplication, iterating through the bits in a using rshift:
|
|
* - if LSB(a) is a known 0, keep current accumulator
|
|
* - if LSB(a) is a known 1, add b to current accumulator
|
|
* - if LSB(a) is unknown, take a union of the above cases.
|
|
*
|
|
* For example:
|
|
*
|
|
* acc_0: acc_1:
|
|
*
|
|
* 11 * -> 11 * -> 11 * -> union(0011, 1001) == x0x1
|
|
* x1 01 11
|
|
* ------ ------ ------
|
|
* 11 11 11
|
|
* xx 00 11
|
|
* ------ ------ ------
|
|
* ???? 0011 1001
|
|
*/
|
|
struct tnum tnum_mul(struct tnum a, struct tnum b)
|
|
{
|
|
struct tnum acc = TNUM(0, 0);
|
|
|
|
while (a.value || a.mask) {
|
|
/* LSB of tnum a is a certain 1 */
|
|
if (a.value & 1)
|
|
acc = tnum_add(acc, b);
|
|
/* LSB of tnum a is uncertain */
|
|
else if (a.mask & 1) {
|
|
/* acc = tnum_union(acc_0, acc_1), where acc_0 and
|
|
* acc_1 are partial accumulators for cases
|
|
* LSB(a) = certain 0 and LSB(a) = certain 1.
|
|
* acc_0 = acc + 0 * b = acc.
|
|
* acc_1 = acc + 1 * b = tnum_add(acc, b).
|
|
*/
|
|
|
|
acc = tnum_union(acc, tnum_add(acc, b));
|
|
}
|
|
/* Note: no case for LSB is certain 0 */
|
|
a = tnum_rshift(a, 1);
|
|
b = tnum_lshift(b, 1);
|
|
}
|
|
return acc;
|
|
}
|
|
|
|
bool tnum_overlap(struct tnum a, struct tnum b)
|
|
{
|
|
u64 mu;
|
|
|
|
mu = ~a.mask & ~b.mask;
|
|
return (a.value & mu) == (b.value & mu);
|
|
}
|
|
|
|
/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
|
|
* a 'known 0' - this will return a 'known 1' for that bit.
|
|
*/
|
|
struct tnum tnum_intersect(struct tnum a, struct tnum b)
|
|
{
|
|
u64 v, mu;
|
|
|
|
v = a.value | b.value;
|
|
mu = a.mask & b.mask;
|
|
return TNUM(v & ~mu, mu);
|
|
}
|
|
|
|
/* Returns a tnum with the uncertainty from both a and b, and in addition, new
|
|
* uncertainty at any position that a and b disagree. This represents a
|
|
* superset of the union of the concrete sets of both a and b. Despite the
|
|
* overapproximation, it is optimal.
|
|
*/
|
|
struct tnum tnum_union(struct tnum a, struct tnum b)
|
|
{
|
|
u64 v = a.value & b.value;
|
|
u64 mu = (a.value ^ b.value) | a.mask | b.mask;
|
|
|
|
return TNUM(v & ~mu, mu);
|
|
}
|
|
|
|
struct tnum tnum_cast(struct tnum a, u8 size)
|
|
{
|
|
a.value &= (1ULL << (size * 8)) - 1;
|
|
a.mask &= (1ULL << (size * 8)) - 1;
|
|
return a;
|
|
}
|
|
|
|
bool tnum_is_aligned(struct tnum a, u64 size)
|
|
{
|
|
if (!size)
|
|
return true;
|
|
return !((a.value | a.mask) & (size - 1));
|
|
}
|
|
|
|
bool tnum_in(struct tnum a, struct tnum b)
|
|
{
|
|
if (b.mask & ~a.mask)
|
|
return false;
|
|
b.value &= ~a.mask;
|
|
return a.value == b.value;
|
|
}
|
|
|
|
int tnum_sbin(char *str, size_t size, struct tnum a)
|
|
{
|
|
size_t n;
|
|
|
|
for (n = 64; n; n--) {
|
|
if (n < size) {
|
|
if (a.mask & 1)
|
|
str[n - 1] = 'x';
|
|
else if (a.value & 1)
|
|
str[n - 1] = '1';
|
|
else
|
|
str[n - 1] = '0';
|
|
}
|
|
a.mask >>= 1;
|
|
a.value >>= 1;
|
|
}
|
|
str[min(size - 1, (size_t)64)] = 0;
|
|
return 64;
|
|
}
|
|
|
|
struct tnum tnum_subreg(struct tnum a)
|
|
{
|
|
return tnum_cast(a, 4);
|
|
}
|
|
|
|
struct tnum tnum_clear_subreg(struct tnum a)
|
|
{
|
|
return tnum_lshift(tnum_rshift(a, 32), 32);
|
|
}
|
|
|
|
struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg)
|
|
{
|
|
return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg));
|
|
}
|
|
|
|
struct tnum tnum_const_subreg(struct tnum a, u32 value)
|
|
{
|
|
return tnum_with_subreg(a, tnum_const(value));
|
|
}
|