mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 8f0fdbd4a0
			
		
	
	
		8f0fdbd4a0
		
	
	
	
	
		
			
			The is_prs_invalid helper function is redundant as it serves a similar purpose to is_partition_invalid. It can be fully replaced by the existing is_partition_invalid function, so this patch removes the is_prs_invalid helper. Signed-off-by: Chen Ridong <chenridong@huawei.com> Acked-by: Waiman Long <longman@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org>
		
			
				
	
	
		
			4455 lines
		
	
	
	
		
			125 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4455 lines
		
	
	
	
		
			125 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  kernel/cpuset.c
 | |
|  *
 | |
|  *  Processor and Memory placement constraints for sets of tasks.
 | |
|  *
 | |
|  *  Copyright (C) 2003 BULL SA.
 | |
|  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
 | |
|  *  Copyright (C) 2006 Google, Inc
 | |
|  *
 | |
|  *  Portions derived from Patrick Mochel's sysfs code.
 | |
|  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 | |
|  *
 | |
|  *  2003-10-10 Written by Simon Derr.
 | |
|  *  2003-10-22 Updates by Stephen Hemminger.
 | |
|  *  2004 May-July Rework by Paul Jackson.
 | |
|  *  2006 Rework by Paul Menage to use generic cgroups
 | |
|  *  2008 Rework of the scheduler domains and CPU hotplug handling
 | |
|  *       by Max Krasnyansky
 | |
|  *
 | |
|  *  This file is subject to the terms and conditions of the GNU General Public
 | |
|  *  License.  See the file COPYING in the main directory of the Linux
 | |
|  *  distribution for more details.
 | |
|  */
 | |
| #include "cpuset-internal.h"
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/deadline.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/sched/isolation.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/task_work.h>
 | |
| 
 | |
| DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
 | |
| DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
 | |
| 
 | |
| /*
 | |
|  * There could be abnormal cpuset configurations for cpu or memory
 | |
|  * node binding, add this key to provide a quick low-cost judgment
 | |
|  * of the situation.
 | |
|  */
 | |
| DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
 | |
| 
 | |
| static const char * const perr_strings[] = {
 | |
| 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
 | |
| 	[PERR_INVPARENT] = "Parent is an invalid partition root",
 | |
| 	[PERR_NOTPART]   = "Parent is not a partition root",
 | |
| 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
 | |
| 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
 | |
| 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
 | |
| 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
 | |
| 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
 | |
| 	[PERR_ACCESS]    = "Enable partition not permitted",
 | |
| 	[PERR_REMOTE]    = "Have remote partition underneath",
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * For local partitions, update to subpartitions_cpus & isolated_cpus is done
 | |
|  * in update_parent_effective_cpumask(). For remote partitions, it is done in
 | |
|  * the remote_partition_*() and remote_cpus_update() helpers.
 | |
|  */
 | |
| /*
 | |
|  * Exclusive CPUs distributed out to local or remote sub-partitions of
 | |
|  * top_cpuset
 | |
|  */
 | |
| static cpumask_var_t	subpartitions_cpus;
 | |
| 
 | |
| /*
 | |
|  * Exclusive CPUs in isolated partitions
 | |
|  */
 | |
| static cpumask_var_t	isolated_cpus;
 | |
| 
 | |
| /*
 | |
|  * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
 | |
|  */
 | |
| static cpumask_var_t	boot_hk_cpus;
 | |
| static bool		have_boot_isolcpus;
 | |
| 
 | |
| /* List of remote partition root children */
 | |
| static struct list_head remote_children;
 | |
| 
 | |
| /*
 | |
|  * A flag to force sched domain rebuild at the end of an operation.
 | |
|  * It can be set in
 | |
|  *  - update_partition_sd_lb()
 | |
|  *  - update_cpumasks_hier()
 | |
|  *  - cpuset_update_flag()
 | |
|  *  - cpuset_hotplug_update_tasks()
 | |
|  *  - cpuset_handle_hotplug()
 | |
|  *
 | |
|  * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
 | |
|  *
 | |
|  * Note that update_relax_domain_level() in cpuset-v1.c can still call
 | |
|  * rebuild_sched_domains_locked() directly without using this flag.
 | |
|  */
 | |
| static bool force_sd_rebuild;
 | |
| 
 | |
| /*
 | |
|  * Partition root states:
 | |
|  *
 | |
|  *   0 - member (not a partition root)
 | |
|  *   1 - partition root
 | |
|  *   2 - partition root without load balancing (isolated)
 | |
|  *  -1 - invalid partition root
 | |
|  *  -2 - invalid isolated partition root
 | |
|  *
 | |
|  *  There are 2 types of partitions - local or remote. Local partitions are
 | |
|  *  those whose parents are partition root themselves. Setting of
 | |
|  *  cpuset.cpus.exclusive are optional in setting up local partitions.
 | |
|  *  Remote partitions are those whose parents are not partition roots. Passing
 | |
|  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
 | |
|  *  nodes are mandatory in creating a remote partition.
 | |
|  *
 | |
|  *  For simplicity, a local partition can be created under a local or remote
 | |
|  *  partition but a remote partition cannot have any partition root in its
 | |
|  *  ancestor chain except the cgroup root.
 | |
|  */
 | |
| #define PRS_MEMBER		0
 | |
| #define PRS_ROOT		1
 | |
| #define PRS_ISOLATED		2
 | |
| #define PRS_INVALID_ROOT	-1
 | |
| #define PRS_INVALID_ISOLATED	-2
 | |
| 
 | |
| /*
 | |
|  * Temporary cpumasks for working with partitions that are passed among
 | |
|  * functions to avoid memory allocation in inner functions.
 | |
|  */
 | |
| struct tmpmasks {
 | |
| 	cpumask_var_t addmask, delmask;	/* For partition root */
 | |
| 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
 | |
| };
 | |
| 
 | |
| void inc_dl_tasks_cs(struct task_struct *p)
 | |
| {
 | |
| 	struct cpuset *cs = task_cs(p);
 | |
| 
 | |
| 	cs->nr_deadline_tasks++;
 | |
| }
 | |
| 
 | |
| void dec_dl_tasks_cs(struct task_struct *p)
 | |
| {
 | |
| 	struct cpuset *cs = task_cs(p);
 | |
| 
 | |
| 	cs->nr_deadline_tasks--;
 | |
| }
 | |
| 
 | |
| static inline bool is_partition_valid(const struct cpuset *cs)
 | |
| {
 | |
| 	return cs->partition_root_state > 0;
 | |
| }
 | |
| 
 | |
| static inline bool is_partition_invalid(const struct cpuset *cs)
 | |
| {
 | |
| 	return cs->partition_root_state < 0;
 | |
| }
 | |
| 
 | |
| static inline bool cs_is_member(const struct cpuset *cs)
 | |
| {
 | |
| 	return cs->partition_root_state == PRS_MEMBER;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callers should hold callback_lock to modify partition_root_state.
 | |
|  */
 | |
| static inline void make_partition_invalid(struct cpuset *cs)
 | |
| {
 | |
| 	if (cs->partition_root_state > 0)
 | |
| 		cs->partition_root_state = -cs->partition_root_state;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send notification event of whenever partition_root_state changes.
 | |
|  */
 | |
| static inline void notify_partition_change(struct cpuset *cs, int old_prs)
 | |
| {
 | |
| 	if (old_prs == cs->partition_root_state)
 | |
| 		return;
 | |
| 	cgroup_file_notify(&cs->partition_file);
 | |
| 
 | |
| 	/* Reset prs_err if not invalid */
 | |
| 	if (is_partition_valid(cs))
 | |
| 		WRITE_ONCE(cs->prs_err, PERR_NONE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
 | |
|  * using cpu_online_mask as much as possible. An active CPU is always an online
 | |
|  * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
 | |
|  * during hotplug operations. A CPU is marked active at the last stage of CPU
 | |
|  * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
 | |
|  * will be called to update the sched domains so that the scheduler can move
 | |
|  * a normal task to a newly active CPU or remove tasks away from a newly
 | |
|  * inactivated CPU. The online bit is set much earlier in the CPU bringup
 | |
|  * process and cleared much later in CPU teardown.
 | |
|  *
 | |
|  * If cpu_online_mask is used while a hotunplug operation is happening in
 | |
|  * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
 | |
|  */
 | |
| static struct cpuset top_cpuset = {
 | |
| 	.flags = BIT(CS_CPU_EXCLUSIVE) |
 | |
| 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
 | |
| 	.partition_root_state = PRS_ROOT,
 | |
| 	.relax_domain_level = -1,
 | |
| 	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * There are two global locks guarding cpuset structures - cpuset_mutex and
 | |
|  * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
 | |
|  * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
 | |
|  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
 | |
|  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
 | |
|  * correctness.
 | |
|  *
 | |
|  * A task must hold both locks to modify cpusets.  If a task holds
 | |
|  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
 | |
|  * also acquire callback_lock and be able to modify cpusets.  It can perform
 | |
|  * various checks on the cpuset structure first, knowing nothing will change.
 | |
|  * It can also allocate memory while just holding cpuset_mutex.  While it is
 | |
|  * performing these checks, various callback routines can briefly acquire
 | |
|  * callback_lock to query cpusets.  Once it is ready to make the changes, it
 | |
|  * takes callback_lock, blocking everyone else.
 | |
|  *
 | |
|  * Calls to the kernel memory allocator can not be made while holding
 | |
|  * callback_lock, as that would risk double tripping on callback_lock
 | |
|  * from one of the callbacks into the cpuset code from within
 | |
|  * __alloc_pages().
 | |
|  *
 | |
|  * If a task is only holding callback_lock, then it has read-only
 | |
|  * access to cpusets.
 | |
|  *
 | |
|  * Now, the task_struct fields mems_allowed and mempolicy may be changed
 | |
|  * by other task, we use alloc_lock in the task_struct fields to protect
 | |
|  * them.
 | |
|  *
 | |
|  * The cpuset_common_seq_show() handlers only hold callback_lock across
 | |
|  * small pieces of code, such as when reading out possibly multi-word
 | |
|  * cpumasks and nodemasks.
 | |
|  */
 | |
| 
 | |
| static DEFINE_MUTEX(cpuset_mutex);
 | |
| 
 | |
| /**
 | |
|  * cpuset_lock - Acquire the global cpuset mutex
 | |
|  *
 | |
|  * This locks the global cpuset mutex to prevent modifications to cpuset
 | |
|  * hierarchy and configurations. This helper is not enough to make modification.
 | |
|  */
 | |
| void cpuset_lock(void)
 | |
| {
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| void cpuset_unlock(void)
 | |
| {
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_full_lock - Acquire full protection for cpuset modification
 | |
|  *
 | |
|  * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
 | |
|  * to safely modify cpuset data.
 | |
|  */
 | |
| void cpuset_full_lock(void)
 | |
| {
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| void cpuset_full_unlock(void)
 | |
| {
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| 
 | |
| static DEFINE_SPINLOCK(callback_lock);
 | |
| 
 | |
| void cpuset_callback_lock_irq(void)
 | |
| {
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| }
 | |
| 
 | |
| void cpuset_callback_unlock_irq(void)
 | |
| {
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| }
 | |
| 
 | |
| static struct workqueue_struct *cpuset_migrate_mm_wq;
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 | |
| 
 | |
| static inline void check_insane_mems_config(nodemask_t *nodes)
 | |
| {
 | |
| 	if (!cpusets_insane_config() &&
 | |
| 		movable_only_nodes(nodes)) {
 | |
| 		static_branch_enable_cpuslocked(&cpusets_insane_config_key);
 | |
| 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
 | |
| 			"Cpuset allocations might fail even with a lot of memory available.\n",
 | |
| 			nodemask_pr_args(nodes));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * decrease cs->attach_in_progress.
 | |
|  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
 | |
|  */
 | |
| static inline void dec_attach_in_progress_locked(struct cpuset *cs)
 | |
| {
 | |
| 	lockdep_assert_held(&cpuset_mutex);
 | |
| 
 | |
| 	cs->attach_in_progress--;
 | |
| 	if (!cs->attach_in_progress)
 | |
| 		wake_up(&cpuset_attach_wq);
 | |
| }
 | |
| 
 | |
| static inline void dec_attach_in_progress(struct cpuset *cs)
 | |
| {
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	dec_attach_in_progress_locked(cs);
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| static inline bool cpuset_v2(void)
 | |
| {
 | |
| 	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
 | |
| 		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 | |
|  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 | |
|  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 | |
|  * With v2 behavior, "cpus" and "mems" are always what the users have
 | |
|  * requested and won't be changed by hotplug events. Only the effective
 | |
|  * cpus or mems will be affected.
 | |
|  */
 | |
| static inline bool is_in_v2_mode(void)
 | |
| {
 | |
| 	return cpuset_v2() ||
 | |
| 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * partition_is_populated - check if partition has tasks
 | |
|  * @cs: partition root to be checked
 | |
|  * @excluded_child: a child cpuset to be excluded in task checking
 | |
|  * Return: true if there are tasks, false otherwise
 | |
|  *
 | |
|  * It is assumed that @cs is a valid partition root. @excluded_child should
 | |
|  * be non-NULL when this cpuset is going to become a partition itself.
 | |
|  */
 | |
| static inline bool partition_is_populated(struct cpuset *cs,
 | |
| 					  struct cpuset *excluded_child)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *child;
 | |
| 
 | |
| 	if (cs->css.cgroup->nr_populated_csets)
 | |
| 		return true;
 | |
| 	if (!excluded_child && !cs->nr_subparts)
 | |
| 		return cgroup_is_populated(cs->css.cgroup);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_child(child, css, cs) {
 | |
| 		if (child == excluded_child)
 | |
| 			continue;
 | |
| 		if (is_partition_valid(child))
 | |
| 			continue;
 | |
| 		if (cgroup_is_populated(child->css.cgroup)) {
 | |
| 			rcu_read_unlock();
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return in pmask the portion of a task's cpusets's cpus_allowed that
 | |
|  * are online and are capable of running the task.  If none are found,
 | |
|  * walk up the cpuset hierarchy until we find one that does have some
 | |
|  * appropriate cpus.
 | |
|  *
 | |
|  * One way or another, we guarantee to return some non-empty subset
 | |
|  * of cpu_active_mask.
 | |
|  *
 | |
|  * Call with callback_lock or cpuset_mutex held.
 | |
|  */
 | |
| static void guarantee_active_cpus(struct task_struct *tsk,
 | |
| 				  struct cpumask *pmask)
 | |
| {
 | |
| 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
 | |
| 	struct cpuset *cs;
 | |
| 
 | |
| 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
 | |
| 		cpumask_copy(pmask, cpu_active_mask);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cs = task_cs(tsk);
 | |
| 
 | |
| 	while (!cpumask_intersects(cs->effective_cpus, pmask))
 | |
| 		cs = parent_cs(cs);
 | |
| 
 | |
| 	cpumask_and(pmask, pmask, cs->effective_cpus);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return in *pmask the portion of a cpusets's mems_allowed that
 | |
|  * are online, with memory.  If none are online with memory, walk
 | |
|  * up the cpuset hierarchy until we find one that does have some
 | |
|  * online mems.  The top cpuset always has some mems online.
 | |
|  *
 | |
|  * One way or another, we guarantee to return some non-empty subset
 | |
|  * of node_states[N_MEMORY].
 | |
|  *
 | |
|  * Call with callback_lock or cpuset_mutex held.
 | |
|  */
 | |
| static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 | |
| {
 | |
| 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 | |
| 		cs = parent_cs(cs);
 | |
| 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_cpumasks - Allocate an array of cpumask variables
 | |
|  * @pmasks: Pointer to array of cpumask_var_t pointers
 | |
|  * @size: Number of cpumasks to allocate
 | |
|  * Return: 0 if successful, -ENOMEM otherwise.
 | |
|  *
 | |
|  * Allocates @size cpumasks and initializes them to empty. Returns 0 on
 | |
|  * success, -ENOMEM on allocation failure. On failure, any previously
 | |
|  * allocated cpumasks are freed.
 | |
|  */
 | |
| static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
 | |
| 			while (--i >= 0)
 | |
| 				free_cpumask_var(*pmasks[i]);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
 | |
|  * @tmp: Pointer to tmpmasks structure to populate
 | |
|  * Return: 0 on success, -ENOMEM on allocation failure
 | |
|  */
 | |
| static inline int alloc_tmpmasks(struct tmpmasks *tmp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
 | |
| 	 * Note: Array size must match actual number of masks (3)
 | |
| 	 */
 | |
| 	cpumask_var_t *pmask[3] = {
 | |
| 		&tmp->new_cpus,
 | |
| 		&tmp->addmask,
 | |
| 		&tmp->delmask
 | |
| 	};
 | |
| 
 | |
| 	return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_tmpmasks - free cpumasks in a tmpmasks structure
 | |
|  * @tmp: the tmpmasks structure pointer
 | |
|  */
 | |
| static inline void free_tmpmasks(struct tmpmasks *tmp)
 | |
| {
 | |
| 	if (!tmp)
 | |
| 		return;
 | |
| 
 | |
| 	free_cpumask_var(tmp->new_cpus);
 | |
| 	free_cpumask_var(tmp->addmask);
 | |
| 	free_cpumask_var(tmp->delmask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
 | |
|  * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
 | |
|  *
 | |
|  * Creates a new cpuset by either:
 | |
|  * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
 | |
|  * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
 | |
|  *
 | |
|  * Return: Pointer to newly allocated cpuset on success, NULL on failure
 | |
|  */
 | |
| static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
 | |
| {
 | |
| 	struct cpuset *trial;
 | |
| 
 | |
| 	/* Allocate base structure */
 | |
| 	trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
 | |
| 		     kzalloc(sizeof(*cs), GFP_KERNEL);
 | |
| 	if (!trial)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Setup cpumask pointer array */
 | |
| 	cpumask_var_t *pmask[4] = {
 | |
| 		&trial->cpus_allowed,
 | |
| 		&trial->effective_cpus,
 | |
| 		&trial->effective_xcpus,
 | |
| 		&trial->exclusive_cpus
 | |
| 	};
 | |
| 
 | |
| 	if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
 | |
| 		kfree(trial);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy masks if duplicating */
 | |
| 	if (cs) {
 | |
| 		cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 | |
| 		cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 | |
| 		cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
 | |
| 		cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
 | |
| 	}
 | |
| 
 | |
| 	return trial;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_cpuset - free the cpuset
 | |
|  * @cs: the cpuset to be freed
 | |
|  */
 | |
| static inline void free_cpuset(struct cpuset *cs)
 | |
| {
 | |
| 	free_cpumask_var(cs->cpus_allowed);
 | |
| 	free_cpumask_var(cs->effective_cpus);
 | |
| 	free_cpumask_var(cs->effective_xcpus);
 | |
| 	free_cpumask_var(cs->exclusive_cpus);
 | |
| 	kfree(cs);
 | |
| }
 | |
| 
 | |
| /* Return user specified exclusive CPUs */
 | |
| static inline struct cpumask *user_xcpus(struct cpuset *cs)
 | |
| {
 | |
| 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
 | |
| 						 : cs->exclusive_cpus;
 | |
| }
 | |
| 
 | |
| static inline bool xcpus_empty(struct cpuset *cs)
 | |
| {
 | |
| 	return cpumask_empty(cs->cpus_allowed) &&
 | |
| 	       cpumask_empty(cs->exclusive_cpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpusets_are_exclusive() - check if two cpusets are exclusive
 | |
|  *
 | |
|  * Return true if exclusive, false if not
 | |
|  */
 | |
| static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
 | |
| {
 | |
| 	struct cpumask *xcpus1 = user_xcpus(cs1);
 | |
| 	struct cpumask *xcpus2 = user_xcpus(cs2);
 | |
| 
 | |
| 	if (cpumask_intersects(xcpus1, xcpus2))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
 | |
|  * @cs1: first cpuset to check
 | |
|  * @cs2: second cpuset to check
 | |
|  *
 | |
|  * Returns: true if CPU exclusivity conflict exists, false otherwise
 | |
|  *
 | |
|  * Conflict detection rules:
 | |
|  * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
 | |
|  * 2. exclusive_cpus masks cannot intersect between cpusets
 | |
|  * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
 | |
|  */
 | |
| static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
 | |
| {
 | |
| 	/* If either cpuset is exclusive, check if they are mutually exclusive */
 | |
| 	if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
 | |
| 		return !cpusets_are_exclusive(cs1, cs2);
 | |
| 
 | |
| 	/* Exclusive_cpus cannot intersect */
 | |
| 	if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
 | |
| 		return true;
 | |
| 
 | |
| 	/* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
 | |
| 	if (!cpumask_empty(cs1->cpus_allowed) &&
 | |
| 	    cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!cpumask_empty(cs2->cpus_allowed) &&
 | |
| 	    cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
 | |
| {
 | |
| 	if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
 | |
| 		return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * validate_change() - Used to validate that any proposed cpuset change
 | |
|  *		       follows the structural rules for cpusets.
 | |
|  *
 | |
|  * If we replaced the flag and mask values of the current cpuset
 | |
|  * (cur) with those values in the trial cpuset (trial), would
 | |
|  * our various subset and exclusive rules still be valid?  Presumes
 | |
|  * cpuset_mutex held.
 | |
|  *
 | |
|  * 'cur' is the address of an actual, in-use cpuset.  Operations
 | |
|  * such as list traversal that depend on the actual address of the
 | |
|  * cpuset in the list must use cur below, not trial.
 | |
|  *
 | |
|  * 'trial' is the address of bulk structure copy of cur, with
 | |
|  * perhaps one or more of the fields cpus_allowed, mems_allowed,
 | |
|  * or flags changed to new, trial values.
 | |
|  *
 | |
|  * Return 0 if valid, -errno if not.
 | |
|  */
 | |
| 
 | |
| static int validate_change(struct cpuset *cur, struct cpuset *trial)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *c, *par;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	if (!is_in_v2_mode())
 | |
| 		ret = cpuset1_validate_change(cur, trial);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Remaining checks don't apply to root cpuset */
 | |
| 	if (cur == &top_cpuset)
 | |
| 		goto out;
 | |
| 
 | |
| 	par = parent_cs(cur);
 | |
| 
 | |
| 	/*
 | |
| 	 * Cpusets with tasks - existing or newly being attached - can't
 | |
| 	 * be changed to have empty cpus_allowed or mems_allowed.
 | |
| 	 */
 | |
| 	ret = -ENOSPC;
 | |
| 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 | |
| 		if (!cpumask_empty(cur->cpus_allowed) &&
 | |
| 		    cpumask_empty(trial->cpus_allowed))
 | |
| 			goto out;
 | |
| 		if (!nodes_empty(cur->mems_allowed) &&
 | |
| 		    nodes_empty(trial->mems_allowed))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
 | |
| 	 * tasks. This check is not done when scheduling is disabled as the
 | |
| 	 * users should know what they are doing.
 | |
| 	 *
 | |
| 	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
 | |
| 	 * cpus_allowed.
 | |
| 	 *
 | |
| 	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
 | |
| 	 * for non-isolated partition root. At this point, the target
 | |
| 	 * effective_cpus isn't computed yet. user_xcpus() is the best
 | |
| 	 * approximation.
 | |
| 	 *
 | |
| 	 * TBD: May need to precompute the real effective_cpus here in case
 | |
| 	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
 | |
| 	 * becomes an issue.
 | |
| 	 */
 | |
| 	ret = -EBUSY;
 | |
| 	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
 | |
| 	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If either I or some sibling (!= me) is exclusive, we can't
 | |
| 	 * overlap. exclusive_cpus cannot overlap with each other if set.
 | |
| 	 */
 | |
| 	ret = -EINVAL;
 | |
| 	cpuset_for_each_child(c, css, par) {
 | |
| 		if (c == cur)
 | |
| 			continue;
 | |
| 		if (cpus_excl_conflict(trial, c))
 | |
| 			goto out;
 | |
| 		if (mems_excl_conflict(trial, c))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * Helper routine for generate_sched_domains().
 | |
|  * Do cpusets a, b have overlapping effective cpus_allowed masks?
 | |
|  */
 | |
| static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 | |
| {
 | |
| 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 | |
| }
 | |
| 
 | |
| static void
 | |
| update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 | |
| {
 | |
| 	if (dattr->relax_domain_level < c->relax_domain_level)
 | |
| 		dattr->relax_domain_level = c->relax_domain_level;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 | |
| 				    struct cpuset *root_cs)
 | |
| {
 | |
| 	struct cpuset *cp;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 | |
| 		/* skip the whole subtree if @cp doesn't have any CPU */
 | |
| 		if (cpumask_empty(cp->cpus_allowed)) {
 | |
| 			pos_css = css_rightmost_descendant(pos_css);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (is_sched_load_balance(cp))
 | |
| 			update_domain_attr(dattr, cp);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* Must be called with cpuset_mutex held.  */
 | |
| static inline int nr_cpusets(void)
 | |
| {
 | |
| 	/* jump label reference count + the top-level cpuset */
 | |
| 	return static_key_count(&cpusets_enabled_key.key) + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * generate_sched_domains()
 | |
|  *
 | |
|  * This function builds a partial partition of the systems CPUs
 | |
|  * A 'partial partition' is a set of non-overlapping subsets whose
 | |
|  * union is a subset of that set.
 | |
|  * The output of this function needs to be passed to kernel/sched/core.c
 | |
|  * partition_sched_domains() routine, which will rebuild the scheduler's
 | |
|  * load balancing domains (sched domains) as specified by that partial
 | |
|  * partition.
 | |
|  *
 | |
|  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 | |
|  * for a background explanation of this.
 | |
|  *
 | |
|  * Does not return errors, on the theory that the callers of this
 | |
|  * routine would rather not worry about failures to rebuild sched
 | |
|  * domains when operating in the severe memory shortage situations
 | |
|  * that could cause allocation failures below.
 | |
|  *
 | |
|  * Must be called with cpuset_mutex held.
 | |
|  *
 | |
|  * The three key local variables below are:
 | |
|  *    cp - cpuset pointer, used (together with pos_css) to perform a
 | |
|  *	   top-down scan of all cpusets. For our purposes, rebuilding
 | |
|  *	   the schedulers sched domains, we can ignore !is_sched_load_
 | |
|  *	   balance cpusets.
 | |
|  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 | |
|  *	   that need to be load balanced, for convenient iterative
 | |
|  *	   access by the subsequent code that finds the best partition,
 | |
|  *	   i.e the set of domains (subsets) of CPUs such that the
 | |
|  *	   cpus_allowed of every cpuset marked is_sched_load_balance
 | |
|  *	   is a subset of one of these domains, while there are as
 | |
|  *	   many such domains as possible, each as small as possible.
 | |
|  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 | |
|  *	   the kernel/sched/core.c routine partition_sched_domains() in a
 | |
|  *	   convenient format, that can be easily compared to the prior
 | |
|  *	   value to determine what partition elements (sched domains)
 | |
|  *	   were changed (added or removed.)
 | |
|  *
 | |
|  * Finding the best partition (set of domains):
 | |
|  *	The double nested loops below over i, j scan over the load
 | |
|  *	balanced cpusets (using the array of cpuset pointers in csa[])
 | |
|  *	looking for pairs of cpusets that have overlapping cpus_allowed
 | |
|  *	and merging them using a union-find algorithm.
 | |
|  *
 | |
|  *	The union of the cpus_allowed masks from the set of all cpusets
 | |
|  *	having the same root then form the one element of the partition
 | |
|  *	(one sched domain) to be passed to partition_sched_domains().
 | |
|  *
 | |
|  */
 | |
| static int generate_sched_domains(cpumask_var_t **domains,
 | |
| 			struct sched_domain_attr **attributes)
 | |
| {
 | |
| 	struct cpuset *cp;	/* top-down scan of cpusets */
 | |
| 	struct cpuset **csa;	/* array of all cpuset ptrs */
 | |
| 	int csn;		/* how many cpuset ptrs in csa so far */
 | |
| 	int i, j;		/* indices for partition finding loops */
 | |
| 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
 | |
| 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
 | |
| 	int ndoms = 0;		/* number of sched domains in result */
 | |
| 	int nslot;		/* next empty doms[] struct cpumask slot */
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
 | |
| 	bool cgrpv2 = cpuset_v2();
 | |
| 	int nslot_update;
 | |
| 
 | |
| 	doms = NULL;
 | |
| 	dattr = NULL;
 | |
| 	csa = NULL;
 | |
| 
 | |
| 	/* Special case for the 99% of systems with one, full, sched domain */
 | |
| 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
 | |
| single_root_domain:
 | |
| 		ndoms = 1;
 | |
| 		doms = alloc_sched_domains(ndoms);
 | |
| 		if (!doms)
 | |
| 			goto done;
 | |
| 
 | |
| 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 | |
| 		if (dattr) {
 | |
| 			*dattr = SD_ATTR_INIT;
 | |
| 			update_domain_attr_tree(dattr, &top_cpuset);
 | |
| 		}
 | |
| 		cpumask_and(doms[0], top_cpuset.effective_cpus,
 | |
| 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
 | |
| 
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 | |
| 	if (!csa)
 | |
| 		goto done;
 | |
| 	csn = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (root_load_balance)
 | |
| 		csa[csn++] = &top_cpuset;
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 | |
| 		if (cp == &top_cpuset)
 | |
| 			continue;
 | |
| 
 | |
| 		if (cgrpv2)
 | |
| 			goto v2;
 | |
| 
 | |
| 		/*
 | |
| 		 * v1:
 | |
| 		 * Continue traversing beyond @cp iff @cp has some CPUs and
 | |
| 		 * isn't load balancing.  The former is obvious.  The
 | |
| 		 * latter: All child cpusets contain a subset of the
 | |
| 		 * parent's cpus, so just skip them, and then we call
 | |
| 		 * update_domain_attr_tree() to calc relax_domain_level of
 | |
| 		 * the corresponding sched domain.
 | |
| 		 */
 | |
| 		if (!cpumask_empty(cp->cpus_allowed) &&
 | |
| 		    !(is_sched_load_balance(cp) &&
 | |
| 		      cpumask_intersects(cp->cpus_allowed,
 | |
| 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
 | |
| 			continue;
 | |
| 
 | |
| 		if (is_sched_load_balance(cp) &&
 | |
| 		    !cpumask_empty(cp->effective_cpus))
 | |
| 			csa[csn++] = cp;
 | |
| 
 | |
| 		/* skip @cp's subtree */
 | |
| 		pos_css = css_rightmost_descendant(pos_css);
 | |
| 		continue;
 | |
| 
 | |
| v2:
 | |
| 		/*
 | |
| 		 * Only valid partition roots that are not isolated and with
 | |
| 		 * non-empty effective_cpus will be saved into csn[].
 | |
| 		 */
 | |
| 		if ((cp->partition_root_state == PRS_ROOT) &&
 | |
| 		    !cpumask_empty(cp->effective_cpus))
 | |
| 			csa[csn++] = cp;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip @cp's subtree if not a partition root and has no
 | |
| 		 * exclusive CPUs to be granted to child cpusets.
 | |
| 		 */
 | |
| 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
 | |
| 			pos_css = css_rightmost_descendant(pos_css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are only isolated partitions underneath the cgroup root,
 | |
| 	 * we can optimize out unneeded sched domains scanning.
 | |
| 	 */
 | |
| 	if (root_load_balance && (csn == 1))
 | |
| 		goto single_root_domain;
 | |
| 
 | |
| 	for (i = 0; i < csn; i++)
 | |
| 		uf_node_init(&csa[i]->node);
 | |
| 
 | |
| 	/* Merge overlapping cpusets */
 | |
| 	for (i = 0; i < csn; i++) {
 | |
| 		for (j = i + 1; j < csn; j++) {
 | |
| 			if (cpusets_overlap(csa[i], csa[j])) {
 | |
| 				/*
 | |
| 				 * Cgroup v2 shouldn't pass down overlapping
 | |
| 				 * partition root cpusets.
 | |
| 				 */
 | |
| 				WARN_ON_ONCE(cgrpv2);
 | |
| 				uf_union(&csa[i]->node, &csa[j]->node);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Count the total number of domains */
 | |
| 	for (i = 0; i < csn; i++) {
 | |
| 		if (uf_find(&csa[i]->node) == &csa[i]->node)
 | |
| 			ndoms++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we know how many domains to create.
 | |
| 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 | |
| 	 */
 | |
| 	doms = alloc_sched_domains(ndoms);
 | |
| 	if (!doms)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * The rest of the code, including the scheduler, can deal with
 | |
| 	 * dattr==NULL case. No need to abort if alloc fails.
 | |
| 	 */
 | |
| 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 | |
| 			      GFP_KERNEL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Cgroup v2 doesn't support domain attributes, just set all of them
 | |
| 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
 | |
| 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
 | |
| 	 */
 | |
| 	if (cgrpv2) {
 | |
| 		for (i = 0; i < ndoms; i++) {
 | |
| 			/*
 | |
| 			 * The top cpuset may contain some boot time isolated
 | |
| 			 * CPUs that need to be excluded from the sched domain.
 | |
| 			 */
 | |
| 			if (csa[i] == &top_cpuset)
 | |
| 				cpumask_and(doms[i], csa[i]->effective_cpus,
 | |
| 					    housekeeping_cpumask(HK_TYPE_DOMAIN));
 | |
| 			else
 | |
| 				cpumask_copy(doms[i], csa[i]->effective_cpus);
 | |
| 			if (dattr)
 | |
| 				dattr[i] = SD_ATTR_INIT;
 | |
| 		}
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	for (nslot = 0, i = 0; i < csn; i++) {
 | |
| 		nslot_update = 0;
 | |
| 		for (j = i; j < csn; j++) {
 | |
| 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
 | |
| 				struct cpumask *dp = doms[nslot];
 | |
| 
 | |
| 				if (i == j) {
 | |
| 					nslot_update = 1;
 | |
| 					cpumask_clear(dp);
 | |
| 					if (dattr)
 | |
| 						*(dattr + nslot) = SD_ATTR_INIT;
 | |
| 				}
 | |
| 				cpumask_or(dp, dp, csa[j]->effective_cpus);
 | |
| 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
 | |
| 				if (dattr)
 | |
| 					update_domain_attr_tree(dattr + nslot, csa[j]);
 | |
| 			}
 | |
| 		}
 | |
| 		if (nslot_update)
 | |
| 			nslot++;
 | |
| 	}
 | |
| 	BUG_ON(nslot != ndoms);
 | |
| 
 | |
| done:
 | |
| 	kfree(csa);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fallback to the default domain if kmalloc() failed.
 | |
| 	 * See comments in partition_sched_domains().
 | |
| 	 */
 | |
| 	if (doms == NULL)
 | |
| 		ndoms = 1;
 | |
| 
 | |
| 	*domains    = doms;
 | |
| 	*attributes = dattr;
 | |
| 	return ndoms;
 | |
| }
 | |
| 
 | |
| static void dl_update_tasks_root_domain(struct cpuset *cs)
 | |
| {
 | |
| 	struct css_task_iter it;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	if (cs->nr_deadline_tasks == 0)
 | |
| 		return;
 | |
| 
 | |
| 	css_task_iter_start(&cs->css, 0, &it);
 | |
| 
 | |
| 	while ((task = css_task_iter_next(&it)))
 | |
| 		dl_add_task_root_domain(task);
 | |
| 
 | |
| 	css_task_iter_end(&it);
 | |
| }
 | |
| 
 | |
| void dl_rebuild_rd_accounting(void)
 | |
| {
 | |
| 	struct cpuset *cs = NULL;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 	int cpu;
 | |
| 	u64 cookie = ++dl_cookie;
 | |
| 
 | |
| 	lockdep_assert_held(&cpuset_mutex);
 | |
| 	lockdep_assert_cpus_held();
 | |
| 	lockdep_assert_held(&sched_domains_mutex);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (dl_bw_visited(cpu, cookie))
 | |
| 			continue;
 | |
| 
 | |
| 		dl_clear_root_domain_cpu(cpu);
 | |
| 	}
 | |
| 
 | |
| 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 | |
| 
 | |
| 		if (cpumask_empty(cs->effective_cpus)) {
 | |
| 			pos_css = css_rightmost_descendant(pos_css);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		css_get(&cs->css);
 | |
| 
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		dl_update_tasks_root_domain(cs);
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css_put(&cs->css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rebuild scheduler domains.
 | |
|  *
 | |
|  * If the flag 'sched_load_balance' of any cpuset with non-empty
 | |
|  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 | |
|  * which has that flag enabled, or if any cpuset with a non-empty
 | |
|  * 'cpus' is removed, then call this routine to rebuild the
 | |
|  * scheduler's dynamic sched domains.
 | |
|  *
 | |
|  * Call with cpuset_mutex held.  Takes cpus_read_lock().
 | |
|  */
 | |
| void rebuild_sched_domains_locked(void)
 | |
| {
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 	struct sched_domain_attr *attr;
 | |
| 	cpumask_var_t *doms;
 | |
| 	struct cpuset *cs;
 | |
| 	int ndoms;
 | |
| 
 | |
| 	lockdep_assert_cpus_held();
 | |
| 	lockdep_assert_held(&cpuset_mutex);
 | |
| 	force_sd_rebuild = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have raced with CPU hotplug, return early to avoid
 | |
| 	 * passing doms with offlined cpu to partition_sched_domains().
 | |
| 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
 | |
| 	 *
 | |
| 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
 | |
| 	 * should be the same as the active CPUs, so checking only top_cpuset
 | |
| 	 * is enough to detect racing CPU offlines.
 | |
| 	 */
 | |
| 	if (cpumask_empty(subpartitions_cpus) &&
 | |
| 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * With subpartition CPUs, however, the effective CPUs of a partition
 | |
| 	 * root should be only a subset of the active CPUs.  Since a CPU in any
 | |
| 	 * partition root could be offlined, all must be checked.
 | |
| 	 */
 | |
| 	if (!cpumask_empty(subpartitions_cpus)) {
 | |
| 		rcu_read_lock();
 | |
| 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 | |
| 			if (!is_partition_valid(cs)) {
 | |
| 				pos_css = css_rightmost_descendant(pos_css);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!cpumask_subset(cs->effective_cpus,
 | |
| 					    cpu_active_mask)) {
 | |
| 				rcu_read_unlock();
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/* Generate domain masks and attrs */
 | |
| 	ndoms = generate_sched_domains(&doms, &attr);
 | |
| 
 | |
| 	/* Have scheduler rebuild the domains */
 | |
| 	partition_sched_domains(ndoms, doms, attr);
 | |
| }
 | |
| #else /* !CONFIG_SMP */
 | |
| void rebuild_sched_domains_locked(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static void rebuild_sched_domains_cpuslocked(void)
 | |
| {
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	rebuild_sched_domains_locked();
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| void rebuild_sched_domains(void)
 | |
| {
 | |
| 	cpus_read_lock();
 | |
| 	rebuild_sched_domains_cpuslocked();
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| 
 | |
| void cpuset_reset_sched_domains(void)
 | |
| {
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	partition_sched_domains(1, NULL, NULL);
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 | |
|  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 | |
|  * @new_cpus: the temp variable for the new effective_cpus mask
 | |
|  *
 | |
|  * Iterate through each task of @cs updating its cpus_allowed to the
 | |
|  * effective cpuset's.  As this function is called with cpuset_mutex held,
 | |
|  * cpuset membership stays stable.
 | |
|  *
 | |
|  * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
 | |
|  * to make sure all offline CPUs are also included as hotplug code won't
 | |
|  * update cpumasks for tasks in top_cpuset.
 | |
|  *
 | |
|  * As task_cpu_possible_mask() can be task dependent in arm64, we have to
 | |
|  * do cpu masking per task instead of doing it once for all.
 | |
|  */
 | |
| void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
 | |
| {
 | |
| 	struct css_task_iter it;
 | |
| 	struct task_struct *task;
 | |
| 	bool top_cs = cs == &top_cpuset;
 | |
| 
 | |
| 	css_task_iter_start(&cs->css, 0, &it);
 | |
| 	while ((task = css_task_iter_next(&it))) {
 | |
| 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
 | |
| 
 | |
| 		if (top_cs) {
 | |
| 			/*
 | |
| 			 * PF_NO_SETAFFINITY tasks are ignored.
 | |
| 			 * All per cpu kthreads should have PF_NO_SETAFFINITY
 | |
| 			 * flag set, see kthread_set_per_cpu().
 | |
| 			 */
 | |
| 			if (task->flags & PF_NO_SETAFFINITY)
 | |
| 				continue;
 | |
| 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
 | |
| 		} else {
 | |
| 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
 | |
| 		}
 | |
| 		set_cpus_allowed_ptr(task, new_cpus);
 | |
| 	}
 | |
| 	css_task_iter_end(&it);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
 | |
|  * @new_cpus: the temp variable for the new effective_cpus mask
 | |
|  * @cs: the cpuset the need to recompute the new effective_cpus mask
 | |
|  * @parent: the parent cpuset
 | |
|  *
 | |
|  * The result is valid only if the given cpuset isn't a partition root.
 | |
|  */
 | |
| static void compute_effective_cpumask(struct cpumask *new_cpus,
 | |
| 				      struct cpuset *cs, struct cpuset *parent)
 | |
| {
 | |
| 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commands for update_parent_effective_cpumask
 | |
|  */
 | |
| enum partition_cmd {
 | |
| 	partcmd_enable,		/* Enable partition root	  */
 | |
| 	partcmd_enablei,	/* Enable isolated partition root */
 | |
| 	partcmd_disable,	/* Disable partition root	  */
 | |
| 	partcmd_update,		/* Update parent's effective_cpus */
 | |
| 	partcmd_invalidate,	/* Make partition invalid	  */
 | |
| };
 | |
| 
 | |
| static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
 | |
| 				    struct tmpmasks *tmp);
 | |
| 
 | |
| /*
 | |
|  * Update partition exclusive flag
 | |
|  *
 | |
|  * Return: 0 if successful, an error code otherwise
 | |
|  */
 | |
| static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
 | |
| {
 | |
| 	bool exclusive = (new_prs > PRS_MEMBER);
 | |
| 
 | |
| 	if (exclusive && !is_cpu_exclusive(cs)) {
 | |
| 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
 | |
| 			return PERR_NOTEXCL;
 | |
| 	} else if (!exclusive && is_cpu_exclusive(cs)) {
 | |
| 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
 | |
| 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update partition load balance flag and/or rebuild sched domain
 | |
|  *
 | |
|  * Changing load balance flag will automatically call
 | |
|  * rebuild_sched_domains_locked().
 | |
|  * This function is for cgroup v2 only.
 | |
|  */
 | |
| static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
 | |
| {
 | |
| 	int new_prs = cs->partition_root_state;
 | |
| 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
 | |
| 	bool new_lb;
 | |
| 
 | |
| 	/*
 | |
| 	 * If cs is not a valid partition root, the load balance state
 | |
| 	 * will follow its parent.
 | |
| 	 */
 | |
| 	if (new_prs > 0) {
 | |
| 		new_lb = (new_prs != PRS_ISOLATED);
 | |
| 	} else {
 | |
| 		new_lb = is_sched_load_balance(parent_cs(cs));
 | |
| 	}
 | |
| 	if (new_lb != !!is_sched_load_balance(cs)) {
 | |
| 		rebuild_domains = true;
 | |
| 		if (new_lb)
 | |
| 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 | |
| 		else
 | |
| 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 | |
| 	}
 | |
| 
 | |
| 	if (rebuild_domains)
 | |
| 		cpuset_force_rebuild();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
 | |
|  */
 | |
| static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
 | |
| 			      struct cpumask *xcpus)
 | |
| {
 | |
| 	/*
 | |
| 	 * A populated partition (cs or parent) can't have empty effective_cpus
 | |
| 	 */
 | |
| 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
 | |
| 		partition_is_populated(parent, cs)) ||
 | |
| 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
 | |
| 		partition_is_populated(cs, NULL));
 | |
| }
 | |
| 
 | |
| static void reset_partition_data(struct cpuset *cs)
 | |
| {
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 
 | |
| 	if (!cpuset_v2())
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_assert_held(&callback_lock);
 | |
| 
 | |
| 	cs->nr_subparts = 0;
 | |
| 	if (cpumask_empty(cs->exclusive_cpus)) {
 | |
| 		cpumask_clear(cs->effective_xcpus);
 | |
| 		if (is_cpu_exclusive(cs))
 | |
| 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 | |
| 	}
 | |
| 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
 | |
| 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * isolated_cpus_update - Update the isolated_cpus mask
 | |
|  * @old_prs: old partition_root_state
 | |
|  * @new_prs: new partition_root_state
 | |
|  * @xcpus: exclusive CPUs with state change
 | |
|  */
 | |
| static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
 | |
| {
 | |
| 	WARN_ON_ONCE(old_prs == new_prs);
 | |
| 	if (new_prs == PRS_ISOLATED)
 | |
| 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
 | |
| 	else
 | |
| 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * partition_xcpus_add - Add new exclusive CPUs to partition
 | |
|  * @new_prs: new partition_root_state
 | |
|  * @parent: parent cpuset
 | |
|  * @xcpus: exclusive CPUs to be added
 | |
|  * Return: true if isolated_cpus modified, false otherwise
 | |
|  *
 | |
|  * Remote partition if parent == NULL
 | |
|  */
 | |
| static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
 | |
| 				struct cpumask *xcpus)
 | |
| {
 | |
| 	bool isolcpus_updated;
 | |
| 
 | |
| 	WARN_ON_ONCE(new_prs < 0);
 | |
| 	lockdep_assert_held(&callback_lock);
 | |
| 	if (!parent)
 | |
| 		parent = &top_cpuset;
 | |
| 
 | |
| 
 | |
| 	if (parent == &top_cpuset)
 | |
| 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
 | |
| 
 | |
| 	isolcpus_updated = (new_prs != parent->partition_root_state);
 | |
| 	if (isolcpus_updated)
 | |
| 		isolated_cpus_update(parent->partition_root_state, new_prs,
 | |
| 				     xcpus);
 | |
| 
 | |
| 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
 | |
| 	return isolcpus_updated;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * partition_xcpus_del - Remove exclusive CPUs from partition
 | |
|  * @old_prs: old partition_root_state
 | |
|  * @parent: parent cpuset
 | |
|  * @xcpus: exclusive CPUs to be removed
 | |
|  * Return: true if isolated_cpus modified, false otherwise
 | |
|  *
 | |
|  * Remote partition if parent == NULL
 | |
|  */
 | |
| static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
 | |
| 				struct cpumask *xcpus)
 | |
| {
 | |
| 	bool isolcpus_updated;
 | |
| 
 | |
| 	WARN_ON_ONCE(old_prs < 0);
 | |
| 	lockdep_assert_held(&callback_lock);
 | |
| 	if (!parent)
 | |
| 		parent = &top_cpuset;
 | |
| 
 | |
| 	if (parent == &top_cpuset)
 | |
| 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
 | |
| 
 | |
| 	isolcpus_updated = (old_prs != parent->partition_root_state);
 | |
| 	if (isolcpus_updated)
 | |
| 		isolated_cpus_update(old_prs, parent->partition_root_state,
 | |
| 				     xcpus);
 | |
| 
 | |
| 	cpumask_and(xcpus, xcpus, cpu_active_mask);
 | |
| 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
 | |
| 	return isolcpus_updated;
 | |
| }
 | |
| 
 | |
| static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_cpus_held();
 | |
| 
 | |
| 	if (!isolcpus_updated)
 | |
| 		return;
 | |
| 
 | |
| 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
 | |
| 	WARN_ON_ONCE(ret < 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
 | |
|  * @cpu: the CPU number to be checked
 | |
|  * Return: true if CPU is used in an isolated partition, false otherwise
 | |
|  */
 | |
| bool cpuset_cpu_is_isolated(int cpu)
 | |
| {
 | |
| 	return cpumask_test_cpu(cpu, isolated_cpus);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
 | |
| 
 | |
| /**
 | |
|  * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
 | |
|  * @parent: Parent cpuset containing all siblings
 | |
|  * @cs: Current cpuset (will be skipped)
 | |
|  * @excpus:  exclusive effective CPU mask to modify
 | |
|  *
 | |
|  * This function ensures the given @excpus mask doesn't include any CPUs that
 | |
|  * are exclusively allocated to sibling cpusets. It walks through all siblings
 | |
|  * of @cs under @parent and removes their exclusive CPUs from @excpus.
 | |
|  */
 | |
| static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
 | |
| 					struct cpumask *excpus)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *sibling;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	if (cpumask_empty(excpus))
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Exclude exclusive CPUs from siblings
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_child(sibling, css, parent) {
 | |
| 		if (sibling == cs)
 | |
| 			continue;
 | |
| 
 | |
| 		if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
 | |
| 			cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
 | |
| 			retval++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
 | |
| 			cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
 | |
| 			retval++;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compute_excpus - compute effective exclusive CPUs
 | |
|  * @cs: cpuset
 | |
|  * @xcpus: effective exclusive CPUs value to be set
 | |
|  * Return: 0 if there is no sibling conflict, > 0 otherwise
 | |
|  *
 | |
|  * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
 | |
|  * and exclude their exclusive_cpus or effective_xcpus as well.
 | |
|  */
 | |
| static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
 | |
| {
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 
 | |
| 	cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
 | |
| 
 | |
| 	if (!cpumask_empty(cs->exclusive_cpus))
 | |
| 		return 0;
 | |
| 
 | |
| 	return rm_siblings_excl_cpus(parent, cs, excpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
 | |
|  * @trialcs: The trial cpuset containing the proposed new configuration
 | |
|  * @cs: The original cpuset that the trial configuration is based on
 | |
|  * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
 | |
|  *
 | |
|  * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
 | |
|  * the real cs.
 | |
|  */
 | |
| static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
 | |
| {
 | |
| 	struct cpuset *parent = parent_cs(trialcs);
 | |
| 	struct cpumask *excpus = trialcs->effective_xcpus;
 | |
| 
 | |
| 	/* trialcs is member, cpuset.cpus has no impact to excpus */
 | |
| 	if (cs_is_member(cs))
 | |
| 		cpumask_and(excpus, trialcs->exclusive_cpus,
 | |
| 				parent->effective_xcpus);
 | |
| 	else
 | |
| 		cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
 | |
| 
 | |
| 	return rm_siblings_excl_cpus(parent, cs, excpus);
 | |
| }
 | |
| 
 | |
| static inline bool is_remote_partition(struct cpuset *cs)
 | |
| {
 | |
| 	return !list_empty(&cs->remote_sibling);
 | |
| }
 | |
| 
 | |
| static inline bool is_local_partition(struct cpuset *cs)
 | |
| {
 | |
| 	return is_partition_valid(cs) && !is_remote_partition(cs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remote_partition_enable - Enable current cpuset as a remote partition root
 | |
|  * @cs: the cpuset to update
 | |
|  * @new_prs: new partition_root_state
 | |
|  * @tmp: temporary masks
 | |
|  * Return: 0 if successful, errcode if error
 | |
|  *
 | |
|  * Enable the current cpuset to become a remote partition root taking CPUs
 | |
|  * directly from the top cpuset. cpuset_mutex must be held by the caller.
 | |
|  */
 | |
| static int remote_partition_enable(struct cpuset *cs, int new_prs,
 | |
| 				   struct tmpmasks *tmp)
 | |
| {
 | |
| 	bool isolcpus_updated;
 | |
| 
 | |
| 	/*
 | |
| 	 * The user must have sysadmin privilege.
 | |
| 	 */
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return PERR_ACCESS;
 | |
| 
 | |
| 	/*
 | |
| 	 * The requested exclusive_cpus must not be allocated to other
 | |
| 	 * partitions and it can't use up all the root's effective_cpus.
 | |
| 	 *
 | |
| 	 * The effective_xcpus mask can contain offline CPUs, but there must
 | |
| 	 * be at least one or more online CPUs present before it can be enabled.
 | |
| 	 *
 | |
| 	 * Note that creating a remote partition with any local partition root
 | |
| 	 * above it or remote partition root underneath it is not allowed.
 | |
| 	 */
 | |
| 	compute_excpus(cs, tmp->new_cpus);
 | |
| 	WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
 | |
| 	if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
 | |
| 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
 | |
| 		return PERR_INVCPUS;
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
 | |
| 	list_add(&cs->remote_sibling, &remote_children);
 | |
| 	cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 	update_unbound_workqueue_cpumask(isolcpus_updated);
 | |
| 	cpuset_force_rebuild();
 | |
| 	cs->prs_err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
 | |
| 	 */
 | |
| 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
 | |
| 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remote_partition_disable - Remove current cpuset from remote partition list
 | |
|  * @cs: the cpuset to update
 | |
|  * @tmp: temporary masks
 | |
|  *
 | |
|  * The effective_cpus is also updated.
 | |
|  *
 | |
|  * cpuset_mutex must be held by the caller.
 | |
|  */
 | |
| static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
 | |
| {
 | |
| 	bool isolcpus_updated;
 | |
| 
 | |
| 	WARN_ON_ONCE(!is_remote_partition(cs));
 | |
| 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	list_del_init(&cs->remote_sibling);
 | |
| 	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
 | |
| 					       NULL, cs->effective_xcpus);
 | |
| 	if (cs->prs_err)
 | |
| 		cs->partition_root_state = -cs->partition_root_state;
 | |
| 	else
 | |
| 		cs->partition_root_state = PRS_MEMBER;
 | |
| 
 | |
| 	/* effective_xcpus may need to be changed */
 | |
| 	compute_excpus(cs, cs->effective_xcpus);
 | |
| 	reset_partition_data(cs);
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 	update_unbound_workqueue_cpumask(isolcpus_updated);
 | |
| 	cpuset_force_rebuild();
 | |
| 
 | |
| 	/*
 | |
| 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
 | |
| 	 */
 | |
| 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
 | |
| 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remote_cpus_update - cpus_exclusive change of remote partition
 | |
|  * @cs: the cpuset to be updated
 | |
|  * @xcpus: the new exclusive_cpus mask, if non-NULL
 | |
|  * @excpus: the new effective_xcpus mask
 | |
|  * @tmp: temporary masks
 | |
|  *
 | |
|  * top_cpuset and subpartitions_cpus will be updated or partition can be
 | |
|  * invalidated.
 | |
|  */
 | |
| static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
 | |
| 			       struct cpumask *excpus, struct tmpmasks *tmp)
 | |
| {
 | |
| 	bool adding, deleting;
 | |
| 	int prs = cs->partition_root_state;
 | |
| 	int isolcpus_updated = 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
 | |
| 
 | |
| 	if (cpumask_empty(excpus)) {
 | |
| 		cs->prs_err = PERR_CPUSEMPTY;
 | |
| 		goto invalidate;
 | |
| 	}
 | |
| 
 | |
| 	adding   = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
 | |
| 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
 | |
| 
 | |
| 	/*
 | |
| 	 * Additions of remote CPUs is only allowed if those CPUs are
 | |
| 	 * not allocated to other partitions and there are effective_cpus
 | |
| 	 * left in the top cpuset.
 | |
| 	 */
 | |
| 	if (adding) {
 | |
| 		WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
 | |
| 		if (!capable(CAP_SYS_ADMIN))
 | |
| 			cs->prs_err = PERR_ACCESS;
 | |
| 		else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
 | |
| 			 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
 | |
| 			cs->prs_err = PERR_NOCPUS;
 | |
| 		if (cs->prs_err)
 | |
| 			goto invalidate;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	if (adding)
 | |
| 		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
 | |
| 	if (deleting)
 | |
| 		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
 | |
| 	/*
 | |
| 	 * Need to update effective_xcpus and exclusive_cpus now as
 | |
| 	 * update_sibling_cpumasks() below may iterate back to the same cs.
 | |
| 	 */
 | |
| 	cpumask_copy(cs->effective_xcpus, excpus);
 | |
| 	if (xcpus)
 | |
| 		cpumask_copy(cs->exclusive_cpus, xcpus);
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 	update_unbound_workqueue_cpumask(isolcpus_updated);
 | |
| 	if (adding || deleting)
 | |
| 		cpuset_force_rebuild();
 | |
| 
 | |
| 	/*
 | |
| 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
 | |
| 	 */
 | |
| 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
 | |
| 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
 | |
| 	return;
 | |
| 
 | |
| invalidate:
 | |
| 	remote_partition_disable(cs, tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
 | |
|  * @prstate: partition root state to be checked
 | |
|  * @new_cpus: cpu mask
 | |
|  * Return: true if there is conflict, false otherwise
 | |
|  *
 | |
|  * CPUs outside of boot_hk_cpus, if defined, can only be used in an
 | |
|  * isolated partition.
 | |
|  */
 | |
| static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
 | |
| {
 | |
| 	if (!have_boot_isolcpus)
 | |
| 		return false;
 | |
| 
 | |
| 	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
 | |
|  * @cs:      The cpuset that requests change in partition root state
 | |
|  * @cmd:     Partition root state change command
 | |
|  * @newmask: Optional new cpumask for partcmd_update
 | |
|  * @tmp:     Temporary addmask and delmask
 | |
|  * Return:   0 or a partition root state error code
 | |
|  *
 | |
|  * For partcmd_enable*, the cpuset is being transformed from a non-partition
 | |
|  * root to a partition root. The effective_xcpus (cpus_allowed if
 | |
|  * effective_xcpus not set) mask of the given cpuset will be taken away from
 | |
|  * parent's effective_cpus. The function will return 0 if all the CPUs listed
 | |
|  * in effective_xcpus can be granted or an error code will be returned.
 | |
|  *
 | |
|  * For partcmd_disable, the cpuset is being transformed from a partition
 | |
|  * root back to a non-partition root. Any CPUs in effective_xcpus will be
 | |
|  * given back to parent's effective_cpus. 0 will always be returned.
 | |
|  *
 | |
|  * For partcmd_update, if the optional newmask is specified, the cpu list is
 | |
|  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
 | |
|  * assumed to remain the same. The cpuset should either be a valid or invalid
 | |
|  * partition root. The partition root state may change from valid to invalid
 | |
|  * or vice versa. An error code will be returned if transitioning from
 | |
|  * invalid to valid violates the exclusivity rule.
 | |
|  *
 | |
|  * For partcmd_invalidate, the current partition will be made invalid.
 | |
|  *
 | |
|  * The partcmd_enable* and partcmd_disable commands are used by
 | |
|  * update_prstate(). An error code may be returned and the caller will check
 | |
|  * for error.
 | |
|  *
 | |
|  * The partcmd_update command is used by update_cpumasks_hier() with newmask
 | |
|  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
 | |
|  * by update_cpumask() with NULL newmask. In both cases, the callers won't
 | |
|  * check for error and so partition_root_state and prs_err will be updated
 | |
|  * directly.
 | |
|  */
 | |
| static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
 | |
| 					   struct cpumask *newmask,
 | |
| 					   struct tmpmasks *tmp)
 | |
| {
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 	int adding;	/* Adding cpus to parent's effective_cpus	*/
 | |
| 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
 | |
| 	int old_prs, new_prs;
 | |
| 	int part_error = PERR_NONE;	/* Partition error? */
 | |
| 	int subparts_delta = 0;
 | |
| 	int isolcpus_updated = 0;
 | |
| 	struct cpumask *xcpus = user_xcpus(cs);
 | |
| 	bool nocpu;
 | |
| 
 | |
| 	lockdep_assert_held(&cpuset_mutex);
 | |
| 	WARN_ON_ONCE(is_remote_partition(cs));	/* For local partition only */
 | |
| 
 | |
| 	/*
 | |
| 	 * new_prs will only be changed for the partcmd_update and
 | |
| 	 * partcmd_invalidate commands.
 | |
| 	 */
 | |
| 	adding = deleting = false;
 | |
| 	old_prs = new_prs = cs->partition_root_state;
 | |
| 
 | |
| 	if (cmd == partcmd_invalidate) {
 | |
| 		if (is_partition_invalid(cs))
 | |
| 			return 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Make the current partition invalid.
 | |
| 		 */
 | |
| 		if (is_partition_valid(parent))
 | |
| 			adding = cpumask_and(tmp->addmask,
 | |
| 					     xcpus, parent->effective_xcpus);
 | |
| 		if (old_prs > 0) {
 | |
| 			new_prs = -old_prs;
 | |
| 			subparts_delta--;
 | |
| 		}
 | |
| 		goto write_error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The parent must be a partition root.
 | |
| 	 * The new cpumask, if present, or the current cpus_allowed must
 | |
| 	 * not be empty.
 | |
| 	 */
 | |
| 	if (!is_partition_valid(parent)) {
 | |
| 		return is_partition_invalid(parent)
 | |
| 		       ? PERR_INVPARENT : PERR_NOTPART;
 | |
| 	}
 | |
| 	if (!newmask && xcpus_empty(cs))
 | |
| 		return PERR_CPUSEMPTY;
 | |
| 
 | |
| 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
 | |
| 
 | |
| 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
 | |
| 		/*
 | |
| 		 * Need to call compute_excpus() in case
 | |
| 		 * exclusive_cpus not set. Sibling conflict should only happen
 | |
| 		 * if exclusive_cpus isn't set.
 | |
| 		 */
 | |
| 		xcpus = tmp->delmask;
 | |
| 		if (compute_excpus(cs, xcpus))
 | |
| 			WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
 | |
| 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
 | |
| 
 | |
| 		/*
 | |
| 		 * Enabling partition root is not allowed if its
 | |
| 		 * effective_xcpus is empty.
 | |
| 		 */
 | |
| 		if (cpumask_empty(xcpus))
 | |
| 			return PERR_INVCPUS;
 | |
| 
 | |
| 		if (prstate_housekeeping_conflict(new_prs, xcpus))
 | |
| 			return PERR_HKEEPING;
 | |
| 
 | |
| 		if (tasks_nocpu_error(parent, cs, xcpus))
 | |
| 			return PERR_NOCPUS;
 | |
| 
 | |
| 		/*
 | |
| 		 * This function will only be called when all the preliminary
 | |
| 		 * checks have passed. At this point, the following condition
 | |
| 		 * should hold.
 | |
| 		 *
 | |
| 		 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
 | |
| 		 *
 | |
| 		 * Warn if it is not the case.
 | |
| 		 */
 | |
| 		cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
 | |
| 		WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
 | |
| 
 | |
| 		deleting = true;
 | |
| 		subparts_delta++;
 | |
| 	} else if (cmd == partcmd_disable) {
 | |
| 		/*
 | |
| 		 * May need to add cpus back to parent's effective_cpus
 | |
| 		 * (and maybe removed from subpartitions_cpus/isolated_cpus)
 | |
| 		 * for valid partition root. xcpus may contain CPUs that
 | |
| 		 * shouldn't be removed from the two global cpumasks.
 | |
| 		 */
 | |
| 		if (is_partition_valid(cs)) {
 | |
| 			cpumask_copy(tmp->addmask, cs->effective_xcpus);
 | |
| 			adding = true;
 | |
| 			subparts_delta--;
 | |
| 		}
 | |
| 		new_prs = PRS_MEMBER;
 | |
| 	} else if (newmask) {
 | |
| 		/*
 | |
| 		 * Empty cpumask is not allowed
 | |
| 		 */
 | |
| 		if (cpumask_empty(newmask)) {
 | |
| 			part_error = PERR_CPUSEMPTY;
 | |
| 			goto write_error;
 | |
| 		}
 | |
| 
 | |
| 		/* Check newmask again, whether cpus are available for parent/cs */
 | |
| 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
 | |
| 
 | |
| 		/*
 | |
| 		 * partcmd_update with newmask:
 | |
| 		 *
 | |
| 		 * Compute add/delete mask to/from effective_cpus
 | |
| 		 *
 | |
| 		 * For valid partition:
 | |
| 		 *   addmask = exclusive_cpus & ~newmask
 | |
| 		 *			      & parent->effective_xcpus
 | |
| 		 *   delmask = newmask & ~exclusive_cpus
 | |
| 		 *		       & parent->effective_xcpus
 | |
| 		 *
 | |
| 		 * For invalid partition:
 | |
| 		 *   delmask = newmask & parent->effective_xcpus
 | |
| 		 */
 | |
| 		if (is_partition_invalid(cs)) {
 | |
| 			adding = false;
 | |
| 			deleting = cpumask_and(tmp->delmask,
 | |
| 					newmask, parent->effective_xcpus);
 | |
| 		} else {
 | |
| 			cpumask_andnot(tmp->addmask, xcpus, newmask);
 | |
| 			adding = cpumask_and(tmp->addmask, tmp->addmask,
 | |
| 					     parent->effective_xcpus);
 | |
| 
 | |
| 			cpumask_andnot(tmp->delmask, newmask, xcpus);
 | |
| 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
 | |
| 					       parent->effective_xcpus);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * The new CPUs to be removed from parent's effective CPUs
 | |
| 		 * must be present.
 | |
| 		 */
 | |
| 		if (deleting) {
 | |
| 			cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
 | |
| 			WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make partition invalid if parent's effective_cpus could
 | |
| 		 * become empty and there are tasks in the parent.
 | |
| 		 */
 | |
| 		if (nocpu && (!adding ||
 | |
| 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
 | |
| 			part_error = PERR_NOCPUS;
 | |
| 			deleting = false;
 | |
| 			adding = cpumask_and(tmp->addmask,
 | |
| 					     xcpus, parent->effective_xcpus);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * partcmd_update w/o newmask
 | |
| 		 *
 | |
| 		 * delmask = effective_xcpus & parent->effective_cpus
 | |
| 		 *
 | |
| 		 * This can be called from:
 | |
| 		 * 1) update_cpumasks_hier()
 | |
| 		 * 2) cpuset_hotplug_update_tasks()
 | |
| 		 *
 | |
| 		 * Check to see if it can be transitioned from valid to
 | |
| 		 * invalid partition or vice versa.
 | |
| 		 *
 | |
| 		 * A partition error happens when parent has tasks and all
 | |
| 		 * its effective CPUs will have to be distributed out.
 | |
| 		 */
 | |
| 		if (nocpu) {
 | |
| 			part_error = PERR_NOCPUS;
 | |
| 			if (is_partition_valid(cs))
 | |
| 				adding = cpumask_and(tmp->addmask,
 | |
| 						xcpus, parent->effective_xcpus);
 | |
| 		} else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
 | |
| 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
 | |
| 			struct cgroup_subsys_state *css;
 | |
| 			struct cpuset *child;
 | |
| 			bool exclusive = true;
 | |
| 
 | |
| 			/*
 | |
| 			 * Convert invalid partition to valid has to
 | |
| 			 * pass the cpu exclusivity test.
 | |
| 			 */
 | |
| 			rcu_read_lock();
 | |
| 			cpuset_for_each_child(child, css, parent) {
 | |
| 				if (child == cs)
 | |
| 					continue;
 | |
| 				if (!cpusets_are_exclusive(cs, child)) {
 | |
| 					exclusive = false;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			rcu_read_unlock();
 | |
| 			if (exclusive)
 | |
| 				deleting = cpumask_and(tmp->delmask,
 | |
| 						xcpus, parent->effective_cpus);
 | |
| 			else
 | |
| 				part_error = PERR_NOTEXCL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| write_error:
 | |
| 	if (part_error)
 | |
| 		WRITE_ONCE(cs->prs_err, part_error);
 | |
| 
 | |
| 	if (cmd == partcmd_update) {
 | |
| 		/*
 | |
| 		 * Check for possible transition between valid and invalid
 | |
| 		 * partition root.
 | |
| 		 */
 | |
| 		switch (cs->partition_root_state) {
 | |
| 		case PRS_ROOT:
 | |
| 		case PRS_ISOLATED:
 | |
| 			if (part_error) {
 | |
| 				new_prs = -old_prs;
 | |
| 				subparts_delta--;
 | |
| 			}
 | |
| 			break;
 | |
| 		case PRS_INVALID_ROOT:
 | |
| 		case PRS_INVALID_ISOLATED:
 | |
| 			if (!part_error) {
 | |
| 				new_prs = -old_prs;
 | |
| 				subparts_delta++;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!adding && !deleting && (new_prs == old_prs))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Transitioning between invalid to valid or vice versa may require
 | |
| 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
 | |
| 	 * validate_change() has already been successfully called and
 | |
| 	 * CPU lists in cs haven't been updated yet. So defer it to later.
 | |
| 	 */
 | |
| 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
 | |
| 		int err = update_partition_exclusive_flag(cs, new_prs);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
 | |
| 	 * only).
 | |
| 	 *
 | |
| 	 * Newly added CPUs will be removed from effective_cpus and
 | |
| 	 * newly deleted ones will be added back to effective_cpus.
 | |
| 	 */
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	if (old_prs != new_prs) {
 | |
| 		cs->partition_root_state = new_prs;
 | |
| 		if (new_prs <= 0)
 | |
| 			cs->nr_subparts = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Adding to parent's effective_cpus means deletion CPUs from cs
 | |
| 	 * and vice versa.
 | |
| 	 */
 | |
| 	if (adding)
 | |
| 		isolcpus_updated += partition_xcpus_del(old_prs, parent,
 | |
| 							tmp->addmask);
 | |
| 	if (deleting)
 | |
| 		isolcpus_updated += partition_xcpus_add(new_prs, parent,
 | |
| 							tmp->delmask);
 | |
| 
 | |
| 	if (is_partition_valid(parent)) {
 | |
| 		parent->nr_subparts += subparts_delta;
 | |
| 		WARN_ON_ONCE(parent->nr_subparts < 0);
 | |
| 	}
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 	update_unbound_workqueue_cpumask(isolcpus_updated);
 | |
| 
 | |
| 	if ((old_prs != new_prs) && (cmd == partcmd_update))
 | |
| 		update_partition_exclusive_flag(cs, new_prs);
 | |
| 
 | |
| 	if (adding || deleting) {
 | |
| 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
 | |
| 		update_sibling_cpumasks(parent, cs, tmp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For partcmd_update without newmask, it is being called from
 | |
| 	 * cpuset_handle_hotplug(). Update the load balance flag and
 | |
| 	 * scheduling domain accordingly.
 | |
| 	 */
 | |
| 	if ((cmd == partcmd_update) && !newmask)
 | |
| 		update_partition_sd_lb(cs, old_prs);
 | |
| 
 | |
| 	notify_partition_change(cs, old_prs);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * compute_partition_effective_cpumask - compute effective_cpus for partition
 | |
|  * @cs: partition root cpuset
 | |
|  * @new_ecpus: previously computed effective_cpus to be updated
 | |
|  *
 | |
|  * Compute the effective_cpus of a partition root by scanning effective_xcpus
 | |
|  * of child partition roots and excluding their effective_xcpus.
 | |
|  *
 | |
|  * This has the side effect of invalidating valid child partition roots,
 | |
|  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
 | |
|  * or update_cpumasks_hier() where parent and children are modified
 | |
|  * successively, we don't need to call update_parent_effective_cpumask()
 | |
|  * and the child's effective_cpus will be updated in later iterations.
 | |
|  *
 | |
|  * Note that rcu_read_lock() is assumed to be held.
 | |
|  */
 | |
| static void compute_partition_effective_cpumask(struct cpuset *cs,
 | |
| 						struct cpumask *new_ecpus)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *child;
 | |
| 	bool populated = partition_is_populated(cs, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check child partition roots to see if they should be
 | |
| 	 * invalidated when
 | |
| 	 *  1) child effective_xcpus not a subset of new
 | |
| 	 *     excluisve_cpus
 | |
| 	 *  2) All the effective_cpus will be used up and cp
 | |
| 	 *     has tasks
 | |
| 	 */
 | |
| 	compute_excpus(cs, new_ecpus);
 | |
| 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_child(child, css, cs) {
 | |
| 		if (!is_partition_valid(child))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * There shouldn't be a remote partition underneath another
 | |
| 		 * partition root.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(is_remote_partition(child));
 | |
| 		child->prs_err = 0;
 | |
| 		if (!cpumask_subset(child->effective_xcpus,
 | |
| 				    cs->effective_xcpus))
 | |
| 			child->prs_err = PERR_INVCPUS;
 | |
| 		else if (populated &&
 | |
| 			 cpumask_subset(new_ecpus, child->effective_xcpus))
 | |
| 			child->prs_err = PERR_NOCPUS;
 | |
| 
 | |
| 		if (child->prs_err) {
 | |
| 			int old_prs = child->partition_root_state;
 | |
| 
 | |
| 			/*
 | |
| 			 * Invalidate child partition
 | |
| 			 */
 | |
| 			spin_lock_irq(&callback_lock);
 | |
| 			make_partition_invalid(child);
 | |
| 			cs->nr_subparts--;
 | |
| 			child->nr_subparts = 0;
 | |
| 			spin_unlock_irq(&callback_lock);
 | |
| 			notify_partition_change(child, old_prs);
 | |
| 			continue;
 | |
| 		}
 | |
| 		cpumask_andnot(new_ecpus, new_ecpus,
 | |
| 			       child->effective_xcpus);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 | |
|  * @cs:  the cpuset to consider
 | |
|  * @tmp: temp variables for calculating effective_cpus & partition setup
 | |
|  * @force: don't skip any descendant cpusets if set
 | |
|  *
 | |
|  * When configured cpumask is changed, the effective cpumasks of this cpuset
 | |
|  * and all its descendants need to be updated.
 | |
|  *
 | |
|  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
 | |
|  *
 | |
|  * Called with cpuset_mutex held
 | |
|  */
 | |
| static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
 | |
| 				 bool force)
 | |
| {
 | |
| 	struct cpuset *cp;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 	bool need_rebuild_sched_domains = false;
 | |
| 	int old_prs, new_prs;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
 | |
| 		struct cpuset *parent = parent_cs(cp);
 | |
| 		bool remote = is_remote_partition(cp);
 | |
| 		bool update_parent = false;
 | |
| 
 | |
| 		old_prs = new_prs = cp->partition_root_state;
 | |
| 
 | |
| 		/*
 | |
| 		 * For child remote partition root (!= cs), we need to call
 | |
| 		 * remote_cpus_update() if effective_xcpus will be changed.
 | |
| 		 * Otherwise, we can skip the whole subtree.
 | |
| 		 *
 | |
| 		 * remote_cpus_update() will reuse tmp->new_cpus only after
 | |
| 		 * its value is being processed.
 | |
| 		 */
 | |
| 		if (remote && (cp != cs)) {
 | |
| 			compute_excpus(cp, tmp->new_cpus);
 | |
| 			if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
 | |
| 				pos_css = css_rightmost_descendant(pos_css);
 | |
| 				continue;
 | |
| 			}
 | |
| 			rcu_read_unlock();
 | |
| 			remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
 | |
| 			rcu_read_lock();
 | |
| 
 | |
| 			/* Remote partition may be invalidated */
 | |
| 			new_prs = cp->partition_root_state;
 | |
| 			remote = (new_prs == old_prs);
 | |
| 		}
 | |
| 
 | |
| 		if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
 | |
| 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
 | |
| 		else
 | |
| 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
 | |
| 
 | |
| 		if (remote)
 | |
| 			goto get_css;	/* Ready to update cpuset data */
 | |
| 
 | |
| 		/*
 | |
| 		 * A partition with no effective_cpus is allowed as long as
 | |
| 		 * there is no task associated with it. Call
 | |
| 		 * update_parent_effective_cpumask() to check it.
 | |
| 		 */
 | |
| 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
 | |
| 			update_parent = true;
 | |
| 			goto update_parent_effective;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If it becomes empty, inherit the effective mask of the
 | |
| 		 * parent, which is guaranteed to have some CPUs unless
 | |
| 		 * it is a partition root that has explicitly distributed
 | |
| 		 * out all its CPUs.
 | |
| 		 */
 | |
| 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
 | |
| 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip the whole subtree if
 | |
| 		 * 1) the cpumask remains the same,
 | |
| 		 * 2) has no partition root state,
 | |
| 		 * 3) force flag not set, and
 | |
| 		 * 4) for v2 load balance state same as its parent.
 | |
| 		 */
 | |
| 		if (!cp->partition_root_state && !force &&
 | |
| 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
 | |
| 		    (!cpuset_v2() ||
 | |
| 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
 | |
| 			pos_css = css_rightmost_descendant(pos_css);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| update_parent_effective:
 | |
| 		/*
 | |
| 		 * update_parent_effective_cpumask() should have been called
 | |
| 		 * for cs already in update_cpumask(). We should also call
 | |
| 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
 | |
| 		 * cpuset if the parent's effective_cpus changes.
 | |
| 		 */
 | |
| 		if ((cp != cs) && old_prs) {
 | |
| 			switch (parent->partition_root_state) {
 | |
| 			case PRS_ROOT:
 | |
| 			case PRS_ISOLATED:
 | |
| 				update_parent = true;
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				/*
 | |
| 				 * When parent is not a partition root or is
 | |
| 				 * invalid, child partition roots become
 | |
| 				 * invalid too.
 | |
| 				 */
 | |
| 				if (is_partition_valid(cp))
 | |
| 					new_prs = -cp->partition_root_state;
 | |
| 				WRITE_ONCE(cp->prs_err,
 | |
| 					   is_partition_invalid(parent)
 | |
| 					   ? PERR_INVPARENT : PERR_NOTPART);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| get_css:
 | |
| 		if (!css_tryget_online(&cp->css))
 | |
| 			continue;
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (update_parent) {
 | |
| 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
 | |
| 			/*
 | |
| 			 * The cpuset partition_root_state may become
 | |
| 			 * invalid. Capture it.
 | |
| 			 */
 | |
| 			new_prs = cp->partition_root_state;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irq(&callback_lock);
 | |
| 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
 | |
| 		cp->partition_root_state = new_prs;
 | |
| 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
 | |
| 			compute_excpus(cp, cp->effective_xcpus);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure effective_xcpus is properly set for a valid
 | |
| 		 * partition root.
 | |
| 		 */
 | |
| 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
 | |
| 			cpumask_and(cp->effective_xcpus,
 | |
| 				    cp->cpus_allowed, parent->effective_xcpus);
 | |
| 		else if (new_prs < 0)
 | |
| 			reset_partition_data(cp);
 | |
| 		spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 		notify_partition_change(cp, old_prs);
 | |
| 
 | |
| 		WARN_ON(!is_in_v2_mode() &&
 | |
| 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
 | |
| 
 | |
| 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
 | |
| 
 | |
| 		/*
 | |
| 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
 | |
| 		 * from parent if current cpuset isn't a valid partition root
 | |
| 		 * and their load balance states differ.
 | |
| 		 */
 | |
| 		if (cpuset_v2() && !is_partition_valid(cp) &&
 | |
| 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
 | |
| 			if (is_sched_load_balance(parent))
 | |
| 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
 | |
| 			else
 | |
| 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * On legacy hierarchy, if the effective cpumask of any non-
 | |
| 		 * empty cpuset is changed, we need to rebuild sched domains.
 | |
| 		 * On default hierarchy, the cpuset needs to be a partition
 | |
| 		 * root as well.
 | |
| 		 */
 | |
| 		if (!cpumask_empty(cp->cpus_allowed) &&
 | |
| 		    is_sched_load_balance(cp) &&
 | |
| 		   (!cpuset_v2() || is_partition_valid(cp)))
 | |
| 			need_rebuild_sched_domains = true;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css_put(&cp->css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (need_rebuild_sched_domains)
 | |
| 		cpuset_force_rebuild();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sibling_cpumasks - Update siblings cpumasks
 | |
|  * @parent:  Parent cpuset
 | |
|  * @cs:      Current cpuset
 | |
|  * @tmp:     Temp variables
 | |
|  */
 | |
| static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
 | |
| 				    struct tmpmasks *tmp)
 | |
| {
 | |
| 	struct cpuset *sibling;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	lockdep_assert_held(&cpuset_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check all its siblings and call update_cpumasks_hier()
 | |
| 	 * if their effective_cpus will need to be changed.
 | |
| 	 *
 | |
| 	 * It is possible a change in parent's effective_cpus
 | |
| 	 * due to a change in a child partition's effective_xcpus will impact
 | |
| 	 * its siblings even if they do not inherit parent's effective_cpus
 | |
| 	 * directly.
 | |
| 	 *
 | |
| 	 * The update_cpumasks_hier() function may sleep. So we have to
 | |
| 	 * release the RCU read lock before calling it.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_child(sibling, pos_css, parent) {
 | |
| 		if (sibling == cs)
 | |
| 			continue;
 | |
| 		if (!is_partition_valid(sibling)) {
 | |
| 			compute_effective_cpumask(tmp->new_cpus, sibling,
 | |
| 						  parent);
 | |
| 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
 | |
| 				continue;
 | |
| 		} else if (is_remote_partition(sibling)) {
 | |
| 			/*
 | |
| 			 * Change in a sibling cpuset won't affect a remote
 | |
| 			 * partition root.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!css_tryget_online(&sibling->css))
 | |
| 			continue;
 | |
| 
 | |
| 		rcu_read_unlock();
 | |
| 		update_cpumasks_hier(sibling, tmp, false);
 | |
| 		rcu_read_lock();
 | |
| 		css_put(&sibling->css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = cpulist_parse(buf, out_mask);
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 	if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * validate_partition - Validate a cpuset partition configuration
 | |
|  * @cs: The cpuset to validate
 | |
|  * @trialcs: The trial cpuset containing proposed configuration changes
 | |
|  *
 | |
|  * If any validation check fails, the appropriate error code is set in the
 | |
|  * cpuset's prs_err field.
 | |
|  *
 | |
|  * Return: PRS error code (0 if valid, non-zero error code if invalid)
 | |
|  */
 | |
| static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
 | |
| {
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 
 | |
| 	if (cs_is_member(trialcs))
 | |
| 		return PERR_NONE;
 | |
| 
 | |
| 	if (cpumask_empty(trialcs->effective_xcpus))
 | |
| 		return PERR_INVCPUS;
 | |
| 
 | |
| 	if (prstate_housekeeping_conflict(trialcs->partition_root_state,
 | |
| 					  trialcs->effective_xcpus))
 | |
| 		return PERR_HKEEPING;
 | |
| 
 | |
| 	if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
 | |
| 		return PERR_NOCPUS;
 | |
| 
 | |
| 	return PERR_NONE;
 | |
| }
 | |
| 
 | |
| static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
 | |
| 					struct tmpmasks *tmp)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 
 | |
| 	retval = validate_change(cs, trialcs);
 | |
| 
 | |
| 	if ((retval == -EINVAL) && cpuset_v2()) {
 | |
| 		struct cgroup_subsys_state *css;
 | |
| 		struct cpuset *cp;
 | |
| 
 | |
| 		/*
 | |
| 		 * The -EINVAL error code indicates that partition sibling
 | |
| 		 * CPU exclusivity rule has been violated. We still allow
 | |
| 		 * the cpumask change to proceed while invalidating the
 | |
| 		 * partition. However, any conflicting sibling partitions
 | |
| 		 * have to be marked as invalid too.
 | |
| 		 */
 | |
| 		trialcs->prs_err = PERR_NOTEXCL;
 | |
| 		rcu_read_lock();
 | |
| 		cpuset_for_each_child(cp, css, parent) {
 | |
| 			struct cpumask *xcpus = user_xcpus(trialcs);
 | |
| 
 | |
| 			if (is_partition_valid(cp) &&
 | |
| 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
 | |
| 				rcu_read_unlock();
 | |
| 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
 | |
| 				rcu_read_lock();
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 		retval = 0;
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * partition_cpus_change - Handle partition state changes due to CPU mask updates
 | |
|  * @cs: The target cpuset being modified
 | |
|  * @trialcs: The trial cpuset containing proposed configuration changes
 | |
|  * @tmp: Temporary masks for intermediate calculations
 | |
|  *
 | |
|  * This function handles partition state transitions triggered by CPU mask changes.
 | |
|  * CPU modifications may cause a partition to be disabled or require state updates.
 | |
|  */
 | |
| static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
 | |
| 					struct tmpmasks *tmp)
 | |
| {
 | |
| 	enum prs_errcode prs_err;
 | |
| 
 | |
| 	if (cs_is_member(cs))
 | |
| 		return;
 | |
| 
 | |
| 	prs_err = validate_partition(cs, trialcs);
 | |
| 	if (prs_err)
 | |
| 		trialcs->prs_err = cs->prs_err = prs_err;
 | |
| 
 | |
| 	if (is_remote_partition(cs)) {
 | |
| 		if (trialcs->prs_err)
 | |
| 			remote_partition_disable(cs, tmp);
 | |
| 		else
 | |
| 			remote_cpus_update(cs, trialcs->exclusive_cpus,
 | |
| 					   trialcs->effective_xcpus, tmp);
 | |
| 	} else {
 | |
| 		if (trialcs->prs_err)
 | |
| 			update_parent_effective_cpumask(cs, partcmd_invalidate,
 | |
| 							NULL, tmp);
 | |
| 		else
 | |
| 			update_parent_effective_cpumask(cs, partcmd_update,
 | |
| 							trialcs->effective_xcpus, tmp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 | |
|  * @cs: the cpuset to consider
 | |
|  * @trialcs: trial cpuset
 | |
|  * @buf: buffer of cpu numbers written to this cpuset
 | |
|  */
 | |
| static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 | |
| 			  const char *buf)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct tmpmasks tmp;
 | |
| 	bool force = false;
 | |
| 	int old_prs = cs->partition_root_state;
 | |
| 
 | |
| 	retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	/* Nothing to do if the cpus didn't change */
 | |
| 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (alloc_tmpmasks(&tmp))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	compute_trialcs_excpus(trialcs, cs);
 | |
| 	trialcs->prs_err = PERR_NONE;
 | |
| 
 | |
| 	retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check all the descendants in update_cpumasks_hier() if
 | |
| 	 * effective_xcpus is to be changed.
 | |
| 	 */
 | |
| 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
 | |
| 
 | |
| 	partition_cpus_change(cs, trialcs, &tmp);
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 | |
| 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
 | |
| 	if ((old_prs > 0) && !is_partition_valid(cs))
 | |
| 		reset_partition_data(cs);
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 	/* effective_cpus/effective_xcpus will be updated here */
 | |
| 	update_cpumasks_hier(cs, &tmp, force);
 | |
| 
 | |
| 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
 | |
| 	if (cs->partition_root_state)
 | |
| 		update_partition_sd_lb(cs, old_prs);
 | |
| out_free:
 | |
| 	free_tmpmasks(&tmp);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
 | |
|  * @cs: the cpuset to consider
 | |
|  * @trialcs: trial cpuset
 | |
|  * @buf: buffer of cpu numbers written to this cpuset
 | |
|  *
 | |
|  * The tasks' cpumask will be updated if cs is a valid partition root.
 | |
|  */
 | |
| static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 | |
| 				    const char *buf)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct tmpmasks tmp;
 | |
| 	bool force = false;
 | |
| 	int old_prs = cs->partition_root_state;
 | |
| 
 | |
| 	retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	/* Nothing to do if the CPUs didn't change */
 | |
| 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reject the change if there is exclusive CPUs conflict with
 | |
| 	 * the siblings.
 | |
| 	 */
 | |
| 	if (compute_trialcs_excpus(trialcs, cs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check all the descendants in update_cpumasks_hier() if
 | |
| 	 * effective_xcpus is to be changed.
 | |
| 	 */
 | |
| 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
 | |
| 
 | |
| 	retval = validate_change(cs, trialcs);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	if (alloc_tmpmasks(&tmp))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	trialcs->prs_err = PERR_NONE;
 | |
| 	partition_cpus_change(cs, trialcs, &tmp);
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
 | |
| 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
 | |
| 	if ((old_prs > 0) && !is_partition_valid(cs))
 | |
| 		reset_partition_data(cs);
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
 | |
| 	 * of the subtree when it is a valid partition root or effective_xcpus
 | |
| 	 * is updated.
 | |
| 	 */
 | |
| 	if (is_partition_valid(cs) || force)
 | |
| 		update_cpumasks_hier(cs, &tmp, force);
 | |
| 
 | |
| 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
 | |
| 	if (cs->partition_root_state)
 | |
| 		update_partition_sd_lb(cs, old_prs);
 | |
| 
 | |
| 	free_tmpmasks(&tmp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate memory region from one set of nodes to another.  This is
 | |
|  * performed asynchronously as it can be called from process migration path
 | |
|  * holding locks involved in process management.  All mm migrations are
 | |
|  * performed in the queued order and can be waited for by flushing
 | |
|  * cpuset_migrate_mm_wq.
 | |
|  */
 | |
| 
 | |
| struct cpuset_migrate_mm_work {
 | |
| 	struct work_struct	work;
 | |
| 	struct mm_struct	*mm;
 | |
| 	nodemask_t		from;
 | |
| 	nodemask_t		to;
 | |
| };
 | |
| 
 | |
| static void cpuset_migrate_mm_workfn(struct work_struct *work)
 | |
| {
 | |
| 	struct cpuset_migrate_mm_work *mwork =
 | |
| 		container_of(work, struct cpuset_migrate_mm_work, work);
 | |
| 
 | |
| 	/* on a wq worker, no need to worry about %current's mems_allowed */
 | |
| 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
 | |
| 	mmput(mwork->mm);
 | |
| 	kfree(mwork);
 | |
| }
 | |
| 
 | |
| static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 | |
| 							const nodemask_t *to)
 | |
| {
 | |
| 	struct cpuset_migrate_mm_work *mwork;
 | |
| 
 | |
| 	if (nodes_equal(*from, *to)) {
 | |
| 		mmput(mm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
 | |
| 	if (mwork) {
 | |
| 		mwork->mm = mm;
 | |
| 		mwork->from = *from;
 | |
| 		mwork->to = *to;
 | |
| 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
 | |
| 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
 | |
| 	} else {
 | |
| 		mmput(mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void flush_migrate_mm_task_workfn(struct callback_head *head)
 | |
| {
 | |
| 	flush_workqueue(cpuset_migrate_mm_wq);
 | |
| 	kfree(head);
 | |
| }
 | |
| 
 | |
| static void schedule_flush_migrate_mm(void)
 | |
| {
 | |
| 	struct callback_head *flush_cb;
 | |
| 
 | |
| 	flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
 | |
| 	if (!flush_cb)
 | |
| 		return;
 | |
| 
 | |
| 	init_task_work(flush_cb, flush_migrate_mm_task_workfn);
 | |
| 
 | |
| 	if (task_work_add(current, flush_cb, TWA_RESUME))
 | |
| 		kfree(flush_cb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 | |
|  * @tsk: the task to change
 | |
|  * @newmems: new nodes that the task will be set
 | |
|  *
 | |
|  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 | |
|  * and rebind an eventual tasks' mempolicy. If the task is allocating in
 | |
|  * parallel, it might temporarily see an empty intersection, which results in
 | |
|  * a seqlock check and retry before OOM or allocation failure.
 | |
|  */
 | |
| static void cpuset_change_task_nodemask(struct task_struct *tsk,
 | |
| 					nodemask_t *newmems)
 | |
| {
 | |
| 	task_lock(tsk);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	write_seqcount_begin(&tsk->mems_allowed_seq);
 | |
| 
 | |
| 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
 | |
| 	mpol_rebind_task(tsk, newmems);
 | |
| 	tsk->mems_allowed = *newmems;
 | |
| 
 | |
| 	write_seqcount_end(&tsk->mems_allowed_seq);
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	task_unlock(tsk);
 | |
| }
 | |
| 
 | |
| static void *cpuset_being_rebound;
 | |
| 
 | |
| /**
 | |
|  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 | |
|  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 | |
|  *
 | |
|  * Iterate through each task of @cs updating its mems_allowed to the
 | |
|  * effective cpuset's.  As this function is called with cpuset_mutex held,
 | |
|  * cpuset membership stays stable.
 | |
|  */
 | |
| void cpuset_update_tasks_nodemask(struct cpuset *cs)
 | |
| {
 | |
| 	static nodemask_t newmems;	/* protected by cpuset_mutex */
 | |
| 	struct css_task_iter it;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
 | |
| 
 | |
| 	guarantee_online_mems(cs, &newmems);
 | |
| 
 | |
| 	/*
 | |
| 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
 | |
| 	 * take while holding tasklist_lock.  Forks can happen - the
 | |
| 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
 | |
| 	 * and rebind their vma mempolicies too.  Because we still hold
 | |
| 	 * the global cpuset_mutex, we know that no other rebind effort
 | |
| 	 * will be contending for the global variable cpuset_being_rebound.
 | |
| 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
 | |
| 	 * is idempotent.  Also migrate pages in each mm to new nodes.
 | |
| 	 */
 | |
| 	css_task_iter_start(&cs->css, 0, &it);
 | |
| 	while ((task = css_task_iter_next(&it))) {
 | |
| 		struct mm_struct *mm;
 | |
| 		bool migrate;
 | |
| 
 | |
| 		cpuset_change_task_nodemask(task, &newmems);
 | |
| 
 | |
| 		mm = get_task_mm(task);
 | |
| 		if (!mm)
 | |
| 			continue;
 | |
| 
 | |
| 		migrate = is_memory_migrate(cs);
 | |
| 
 | |
| 		mpol_rebind_mm(mm, &cs->mems_allowed);
 | |
| 		if (migrate)
 | |
| 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
 | |
| 		else
 | |
| 			mmput(mm);
 | |
| 	}
 | |
| 	css_task_iter_end(&it);
 | |
| 
 | |
| 	/*
 | |
| 	 * All the tasks' nodemasks have been updated, update
 | |
| 	 * cs->old_mems_allowed.
 | |
| 	 */
 | |
| 	cs->old_mems_allowed = newmems;
 | |
| 
 | |
| 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
 | |
| 	cpuset_being_rebound = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 | |
|  * @cs: the cpuset to consider
 | |
|  * @new_mems: a temp variable for calculating new effective_mems
 | |
|  *
 | |
|  * When configured nodemask is changed, the effective nodemasks of this cpuset
 | |
|  * and all its descendants need to be updated.
 | |
|  *
 | |
|  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
 | |
|  *
 | |
|  * Called with cpuset_mutex held
 | |
|  */
 | |
| static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
 | |
| {
 | |
| 	struct cpuset *cp;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
 | |
| 		struct cpuset *parent = parent_cs(cp);
 | |
| 
 | |
| 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
 | |
| 
 | |
| 		/*
 | |
| 		 * If it becomes empty, inherit the effective mask of the
 | |
| 		 * parent, which is guaranteed to have some MEMs.
 | |
| 		 */
 | |
| 		if (is_in_v2_mode() && nodes_empty(*new_mems))
 | |
| 			*new_mems = parent->effective_mems;
 | |
| 
 | |
| 		/* Skip the whole subtree if the nodemask remains the same. */
 | |
| 		if (nodes_equal(*new_mems, cp->effective_mems)) {
 | |
| 			pos_css = css_rightmost_descendant(pos_css);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!css_tryget_online(&cp->css))
 | |
| 			continue;
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		spin_lock_irq(&callback_lock);
 | |
| 		cp->effective_mems = *new_mems;
 | |
| 		spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 		WARN_ON(!is_in_v2_mode() &&
 | |
| 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
 | |
| 
 | |
| 		cpuset_update_tasks_nodemask(cp);
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css_put(&cp->css);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle user request to change the 'mems' memory placement
 | |
|  * of a cpuset.  Needs to validate the request, update the
 | |
|  * cpusets mems_allowed, and for each task in the cpuset,
 | |
|  * update mems_allowed and rebind task's mempolicy and any vma
 | |
|  * mempolicies and if the cpuset is marked 'memory_migrate',
 | |
|  * migrate the tasks pages to the new memory.
 | |
|  *
 | |
|  * Call with cpuset_mutex held. May take callback_lock during call.
 | |
|  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 | |
|  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
 | |
|  * their mempolicies to the cpusets new mems_allowed.
 | |
|  */
 | |
| static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
 | |
| 			   const char *buf)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
 | |
| 	 * The validate_change() call ensures that cpusets with tasks have memory.
 | |
| 	 */
 | |
| 	retval = nodelist_parse(buf, trialcs->mems_allowed);
 | |
| 	if (retval < 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (!nodes_subset(trialcs->mems_allowed,
 | |
| 			  top_cpuset.mems_allowed)) {
 | |
| 		retval = -EINVAL;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
 | |
| 		retval = 0;		/* Too easy - nothing to do */
 | |
| 		goto done;
 | |
| 	}
 | |
| 	retval = validate_change(cs, trialcs);
 | |
| 	if (retval < 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	check_insane_mems_config(&trialcs->mems_allowed);
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	cs->mems_allowed = trialcs->mems_allowed;
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 	/* use trialcs->mems_allowed as a temp variable */
 | |
| 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
 | |
| done:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| bool current_cpuset_is_being_rebound(void)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ret = task_cs(current) == cpuset_being_rebound;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
 | |
|  * bit:		the bit to update (see cpuset_flagbits_t)
 | |
|  * cs:		the cpuset to update
 | |
|  * turning_on: 	whether the flag is being set or cleared
 | |
|  *
 | |
|  * Call with cpuset_mutex held.
 | |
|  */
 | |
| 
 | |
| int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
 | |
| 		       int turning_on)
 | |
| {
 | |
| 	struct cpuset *trialcs;
 | |
| 	int balance_flag_changed;
 | |
| 	int spread_flag_changed;
 | |
| 	int err;
 | |
| 
 | |
| 	trialcs = dup_or_alloc_cpuset(cs);
 | |
| 	if (!trialcs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (turning_on)
 | |
| 		set_bit(bit, &trialcs->flags);
 | |
| 	else
 | |
| 		clear_bit(bit, &trialcs->flags);
 | |
| 
 | |
| 	err = validate_change(cs, trialcs);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	balance_flag_changed = (is_sched_load_balance(cs) !=
 | |
| 				is_sched_load_balance(trialcs));
 | |
| 
 | |
| 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
 | |
| 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	cs->flags = trialcs->flags;
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
 | |
| 		if (cpuset_v2())
 | |
| 			cpuset_force_rebuild();
 | |
| 		else
 | |
| 			rebuild_sched_domains_locked();
 | |
| 	}
 | |
| 
 | |
| 	if (spread_flag_changed)
 | |
| 		cpuset1_update_tasks_flags(cs);
 | |
| out:
 | |
| 	free_cpuset(trialcs);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_prstate - update partition_root_state
 | |
|  * @cs: the cpuset to update
 | |
|  * @new_prs: new partition root state
 | |
|  * Return: 0 if successful, != 0 if error
 | |
|  *
 | |
|  * Call with cpuset_mutex held.
 | |
|  */
 | |
| static int update_prstate(struct cpuset *cs, int new_prs)
 | |
| {
 | |
| 	int err = PERR_NONE, old_prs = cs->partition_root_state;
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 	struct tmpmasks tmpmask;
 | |
| 	bool isolcpus_updated = false;
 | |
| 
 | |
| 	if (old_prs == new_prs)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Treat a previously invalid partition root as if it is a "member".
 | |
| 	 */
 | |
| 	if (new_prs && is_partition_invalid(cs))
 | |
| 		old_prs = PRS_MEMBER;
 | |
| 
 | |
| 	if (alloc_tmpmasks(&tmpmask))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = update_partition_exclusive_flag(cs, new_prs);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!old_prs) {
 | |
| 		/*
 | |
| 		 * cpus_allowed and exclusive_cpus cannot be both empty.
 | |
| 		 */
 | |
| 		if (xcpus_empty(cs)) {
 | |
| 			err = PERR_CPUSEMPTY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't support the creation of a new local partition with
 | |
| 		 * a remote partition underneath it. This unsupported
 | |
| 		 * setting can happen only if parent is the top_cpuset because
 | |
| 		 * a remote partition cannot be created underneath an existing
 | |
| 		 * local or remote partition.
 | |
| 		 */
 | |
| 		if ((parent == &top_cpuset) &&
 | |
| 		    cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
 | |
| 			err = PERR_REMOTE;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If parent is valid partition, enable local partiion.
 | |
| 		 * Otherwise, enable a remote partition.
 | |
| 		 */
 | |
| 		if (is_partition_valid(parent)) {
 | |
| 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
 | |
| 					       ? partcmd_enable : partcmd_enablei;
 | |
| 
 | |
| 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
 | |
| 		} else {
 | |
| 			err = remote_partition_enable(cs, new_prs, &tmpmask);
 | |
| 		}
 | |
| 	} else if (old_prs && new_prs) {
 | |
| 		/*
 | |
| 		 * A change in load balance state only, no change in cpumasks.
 | |
| 		 * Need to update isolated_cpus.
 | |
| 		 */
 | |
| 		isolcpus_updated = true;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Switching back to member is always allowed even if it
 | |
| 		 * disables child partitions.
 | |
| 		 */
 | |
| 		if (is_remote_partition(cs))
 | |
| 			remote_partition_disable(cs, &tmpmask);
 | |
| 		else
 | |
| 			update_parent_effective_cpumask(cs, partcmd_disable,
 | |
| 							NULL, &tmpmask);
 | |
| 
 | |
| 		/*
 | |
| 		 * Invalidation of child partitions will be done in
 | |
| 		 * update_cpumasks_hier().
 | |
| 		 */
 | |
| 	}
 | |
| out:
 | |
| 	/*
 | |
| 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
 | |
| 	 * happens.
 | |
| 	 */
 | |
| 	if (err) {
 | |
| 		new_prs = -new_prs;
 | |
| 		update_partition_exclusive_flag(cs, new_prs);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	cs->partition_root_state = new_prs;
 | |
| 	WRITE_ONCE(cs->prs_err, err);
 | |
| 	if (!is_partition_valid(cs))
 | |
| 		reset_partition_data(cs);
 | |
| 	else if (isolcpus_updated)
 | |
| 		isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 	update_unbound_workqueue_cpumask(isolcpus_updated);
 | |
| 
 | |
| 	/* Force update if switching back to member & update effective_xcpus */
 | |
| 	update_cpumasks_hier(cs, &tmpmask, !new_prs);
 | |
| 
 | |
| 	/* A newly created partition must have effective_xcpus set */
 | |
| 	WARN_ON_ONCE(!old_prs && (new_prs > 0)
 | |
| 			      && cpumask_empty(cs->effective_xcpus));
 | |
| 
 | |
| 	/* Update sched domains and load balance flag */
 | |
| 	update_partition_sd_lb(cs, old_prs);
 | |
| 
 | |
| 	notify_partition_change(cs, old_prs);
 | |
| 	if (force_sd_rebuild)
 | |
| 		rebuild_sched_domains_locked();
 | |
| 	free_tmpmasks(&tmpmask);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cpuset *cpuset_attach_old_cs;
 | |
| 
 | |
| /*
 | |
|  * Check to see if a cpuset can accept a new task
 | |
|  * For v1, cpus_allowed and mems_allowed can't be empty.
 | |
|  * For v2, effective_cpus can't be empty.
 | |
|  * Note that in v1, effective_cpus = cpus_allowed.
 | |
|  */
 | |
| static int cpuset_can_attach_check(struct cpuset *cs)
 | |
| {
 | |
| 	if (cpumask_empty(cs->effective_cpus) ||
 | |
| 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
 | |
| 		return -ENOSPC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void reset_migrate_dl_data(struct cpuset *cs)
 | |
| {
 | |
| 	cs->nr_migrate_dl_tasks = 0;
 | |
| 	cs->sum_migrate_dl_bw = 0;
 | |
| }
 | |
| 
 | |
| /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
 | |
| static int cpuset_can_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *cs, *oldcs;
 | |
| 	struct task_struct *task;
 | |
| 	bool cpus_updated, mems_updated;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* used later by cpuset_attach() */
 | |
| 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
 | |
| 	oldcs = cpuset_attach_old_cs;
 | |
| 	cs = css_cs(css);
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/* Check to see if task is allowed in the cpuset */
 | |
| 	ret = cpuset_can_attach_check(cs);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
 | |
| 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
 | |
| 
 | |
| 	cgroup_taskset_for_each(task, css, tset) {
 | |
| 		ret = task_can_attach(task);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip rights over task check in v2 when nothing changes,
 | |
| 		 * migration permission derives from hierarchy ownership in
 | |
| 		 * cgroup_procs_write_permission()).
 | |
| 		 */
 | |
| 		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
 | |
| 			ret = security_task_setscheduler(task);
 | |
| 			if (ret)
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (dl_task(task)) {
 | |
| 			cs->nr_migrate_dl_tasks++;
 | |
| 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!cs->nr_migrate_dl_tasks)
 | |
| 		goto out_success;
 | |
| 
 | |
| 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
 | |
| 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
 | |
| 
 | |
| 		if (unlikely(cpu >= nr_cpu_ids)) {
 | |
| 			reset_migrate_dl_data(cs);
 | |
| 			ret = -EINVAL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
 | |
| 		if (ret) {
 | |
| 			reset_migrate_dl_data(cs);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_success:
 | |
| 	/*
 | |
| 	 * Mark attach is in progress.  This makes validate_change() fail
 | |
| 	 * changes which zero cpus/mems_allowed.
 | |
| 	 */
 | |
| 	cs->attach_in_progress++;
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cpuset_cancel_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *cs;
 | |
| 
 | |
| 	cgroup_taskset_first(tset, &css);
 | |
| 	cs = css_cs(css);
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	dec_attach_in_progress_locked(cs);
 | |
| 
 | |
| 	if (cs->nr_migrate_dl_tasks) {
 | |
| 		int cpu = cpumask_any(cs->effective_cpus);
 | |
| 
 | |
| 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
 | |
| 		reset_migrate_dl_data(cs);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
 | |
|  * but we can't allocate it dynamically there.  Define it global and
 | |
|  * allocate from cpuset_init().
 | |
|  */
 | |
| static cpumask_var_t cpus_attach;
 | |
| static nodemask_t cpuset_attach_nodemask_to;
 | |
| 
 | |
| static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
 | |
| {
 | |
| 	lockdep_assert_held(&cpuset_mutex);
 | |
| 
 | |
| 	if (cs != &top_cpuset)
 | |
| 		guarantee_active_cpus(task, cpus_attach);
 | |
| 	else
 | |
| 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
 | |
| 			       subpartitions_cpus);
 | |
| 	/*
 | |
| 	 * can_attach beforehand should guarantee that this doesn't
 | |
| 	 * fail.  TODO: have a better way to handle failure here
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
 | |
| 
 | |
| 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
 | |
| 	cpuset1_update_task_spread_flags(cs, task);
 | |
| }
 | |
| 
 | |
| static void cpuset_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct task_struct *leader;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *cs;
 | |
| 	struct cpuset *oldcs = cpuset_attach_old_cs;
 | |
| 	bool cpus_updated, mems_updated;
 | |
| 	bool queue_task_work = false;
 | |
| 
 | |
| 	cgroup_taskset_first(tset, &css);
 | |
| 	cs = css_cs(css);
 | |
| 
 | |
| 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	cpus_updated = !cpumask_equal(cs->effective_cpus,
 | |
| 				      oldcs->effective_cpus);
 | |
| 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
 | |
| 
 | |
| 	/*
 | |
| 	 * In the default hierarchy, enabling cpuset in the child cgroups
 | |
| 	 * will trigger a number of cpuset_attach() calls with no change
 | |
| 	 * in effective cpus and mems. In that case, we can optimize out
 | |
| 	 * by skipping the task iteration and update.
 | |
| 	 */
 | |
| 	if (cpuset_v2() && !cpus_updated && !mems_updated) {
 | |
| 		cpuset_attach_nodemask_to = cs->effective_mems;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
 | |
| 
 | |
| 	cgroup_taskset_for_each(task, css, tset)
 | |
| 		cpuset_attach_task(cs, task);
 | |
| 
 | |
| 	/*
 | |
| 	 * Change mm for all threadgroup leaders. This is expensive and may
 | |
| 	 * sleep and should be moved outside migration path proper. Skip it
 | |
| 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
 | |
| 	 * not set.
 | |
| 	 */
 | |
| 	cpuset_attach_nodemask_to = cs->effective_mems;
 | |
| 	if (!is_memory_migrate(cs) && !mems_updated)
 | |
| 		goto out;
 | |
| 
 | |
| 	cgroup_taskset_for_each_leader(leader, css, tset) {
 | |
| 		struct mm_struct *mm = get_task_mm(leader);
 | |
| 
 | |
| 		if (mm) {
 | |
| 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
 | |
| 
 | |
| 			/*
 | |
| 			 * old_mems_allowed is the same with mems_allowed
 | |
| 			 * here, except if this task is being moved
 | |
| 			 * automatically due to hotplug.  In that case
 | |
| 			 * @mems_allowed has been updated and is empty, so
 | |
| 			 * @old_mems_allowed is the right nodesets that we
 | |
| 			 * migrate mm from.
 | |
| 			 */
 | |
| 			if (is_memory_migrate(cs)) {
 | |
| 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
 | |
| 						  &cpuset_attach_nodemask_to);
 | |
| 				queue_task_work = true;
 | |
| 			} else
 | |
| 				mmput(mm);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (queue_task_work)
 | |
| 		schedule_flush_migrate_mm();
 | |
| 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
 | |
| 
 | |
| 	if (cs->nr_migrate_dl_tasks) {
 | |
| 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
 | |
| 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
 | |
| 		reset_migrate_dl_data(cs);
 | |
| 	}
 | |
| 
 | |
| 	dec_attach_in_progress_locked(cs);
 | |
| 
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common handling for a write to a "cpus" or "mems" file.
 | |
|  */
 | |
| ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
 | |
| 				    char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(of_css(of));
 | |
| 	struct cpuset *trialcs;
 | |
| 	int retval = -ENODEV;
 | |
| 
 | |
| 	/* root is read-only */
 | |
| 	if (cs == &top_cpuset)
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	cpuset_full_lock();
 | |
| 	if (!is_cpuset_online(cs))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	trialcs = dup_or_alloc_cpuset(cs);
 | |
| 	if (!trialcs) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	switch (of_cft(of)->private) {
 | |
| 	case FILE_CPULIST:
 | |
| 		retval = update_cpumask(cs, trialcs, buf);
 | |
| 		break;
 | |
| 	case FILE_EXCLUSIVE_CPULIST:
 | |
| 		retval = update_exclusive_cpumask(cs, trialcs, buf);
 | |
| 		break;
 | |
| 	case FILE_MEMLIST:
 | |
| 		retval = update_nodemask(cs, trialcs, buf);
 | |
| 		break;
 | |
| 	default:
 | |
| 		retval = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	free_cpuset(trialcs);
 | |
| 	if (force_sd_rebuild)
 | |
| 		rebuild_sched_domains_locked();
 | |
| out_unlock:
 | |
| 	cpuset_full_unlock();
 | |
| 	if (of_cft(of)->private == FILE_MEMLIST)
 | |
| 		schedule_flush_migrate_mm();
 | |
| 	return retval ?: nbytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These ascii lists should be read in a single call, by using a user
 | |
|  * buffer large enough to hold the entire map.  If read in smaller
 | |
|  * chunks, there is no guarantee of atomicity.  Since the display format
 | |
|  * used, list of ranges of sequential numbers, is variable length,
 | |
|  * and since these maps can change value dynamically, one could read
 | |
|  * gibberish by doing partial reads while a list was changing.
 | |
|  */
 | |
| int cpuset_common_seq_show(struct seq_file *sf, void *v)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(seq_css(sf));
 | |
| 	cpuset_filetype_t type = seq_cft(sf)->private;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case FILE_CPULIST:
 | |
| 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
 | |
| 		break;
 | |
| 	case FILE_MEMLIST:
 | |
| 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
 | |
| 		break;
 | |
| 	case FILE_EFFECTIVE_CPULIST:
 | |
| 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
 | |
| 		break;
 | |
| 	case FILE_EFFECTIVE_MEMLIST:
 | |
| 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
 | |
| 		break;
 | |
| 	case FILE_EXCLUSIVE_CPULIST:
 | |
| 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
 | |
| 		break;
 | |
| 	case FILE_EFFECTIVE_XCPULIST:
 | |
| 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
 | |
| 		break;
 | |
| 	case FILE_SUBPARTS_CPULIST:
 | |
| 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
 | |
| 		break;
 | |
| 	case FILE_ISOLATED_CPULIST:
 | |
| 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cpuset_partition_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(seq_css(seq));
 | |
| 	const char *err, *type = NULL;
 | |
| 
 | |
| 	switch (cs->partition_root_state) {
 | |
| 	case PRS_ROOT:
 | |
| 		seq_puts(seq, "root\n");
 | |
| 		break;
 | |
| 	case PRS_ISOLATED:
 | |
| 		seq_puts(seq, "isolated\n");
 | |
| 		break;
 | |
| 	case PRS_MEMBER:
 | |
| 		seq_puts(seq, "member\n");
 | |
| 		break;
 | |
| 	case PRS_INVALID_ROOT:
 | |
| 		type = "root";
 | |
| 		fallthrough;
 | |
| 	case PRS_INVALID_ISOLATED:
 | |
| 		if (!type)
 | |
| 			type = "isolated";
 | |
| 		err = perr_strings[READ_ONCE(cs->prs_err)];
 | |
| 		if (err)
 | |
| 			seq_printf(seq, "%s invalid (%s)\n", type, err);
 | |
| 		else
 | |
| 			seq_printf(seq, "%s invalid\n", type);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
 | |
| 				     size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(of_css(of));
 | |
| 	int val;
 | |
| 	int retval = -ENODEV;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 
 | |
| 	if (!strcmp(buf, "root"))
 | |
| 		val = PRS_ROOT;
 | |
| 	else if (!strcmp(buf, "member"))
 | |
| 		val = PRS_MEMBER;
 | |
| 	else if (!strcmp(buf, "isolated"))
 | |
| 		val = PRS_ISOLATED;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpuset_full_lock();
 | |
| 	if (is_cpuset_online(cs))
 | |
| 		retval = update_prstate(cs, val);
 | |
| 	cpuset_full_unlock();
 | |
| 	return retval ?: nbytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is currently a minimal set for the default hierarchy. It can be
 | |
|  * expanded later on by migrating more features and control files from v1.
 | |
|  */
 | |
| static struct cftype dfl_files[] = {
 | |
| 	{
 | |
| 		.name = "cpus",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.write = cpuset_write_resmask,
 | |
| 		.max_write_len = (100U + 6 * NR_CPUS),
 | |
| 		.private = FILE_CPULIST,
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "mems",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.write = cpuset_write_resmask,
 | |
| 		.max_write_len = (100U + 6 * MAX_NUMNODES),
 | |
| 		.private = FILE_MEMLIST,
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cpus.effective",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.private = FILE_EFFECTIVE_CPULIST,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "mems.effective",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.private = FILE_EFFECTIVE_MEMLIST,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cpus.partition",
 | |
| 		.seq_show = cpuset_partition_show,
 | |
| 		.write = cpuset_partition_write,
 | |
| 		.private = FILE_PARTITION_ROOT,
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct cpuset, partition_file),
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cpus.exclusive",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.write = cpuset_write_resmask,
 | |
| 		.max_write_len = (100U + 6 * NR_CPUS),
 | |
| 		.private = FILE_EXCLUSIVE_CPULIST,
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cpus.exclusive.effective",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.private = FILE_EFFECTIVE_XCPULIST,
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cpus.subpartitions",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.private = FILE_SUBPARTS_CPULIST,
 | |
| 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
 | |
| 	},
 | |
| 
 | |
| 	{
 | |
| 		.name = "cpus.isolated",
 | |
| 		.seq_show = cpuset_common_seq_show,
 | |
| 		.private = FILE_ISOLATED_CPULIST,
 | |
| 		.flags = CFTYPE_ONLY_ON_ROOT,
 | |
| 	},
 | |
| 
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * cpuset_css_alloc - Allocate a cpuset css
 | |
|  * @parent_css: Parent css of the control group that the new cpuset will be
 | |
|  *              part of
 | |
|  * Return: cpuset css on success, -ENOMEM on failure.
 | |
|  *
 | |
|  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
 | |
|  * top cpuset css otherwise.
 | |
|  */
 | |
| static struct cgroup_subsys_state *
 | |
| cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
 | |
| {
 | |
| 	struct cpuset *cs;
 | |
| 
 | |
| 	if (!parent_css)
 | |
| 		return &top_cpuset.css;
 | |
| 
 | |
| 	cs = dup_or_alloc_cpuset(NULL);
 | |
| 	if (!cs)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 | |
| 	fmeter_init(&cs->fmeter);
 | |
| 	cs->relax_domain_level = -1;
 | |
| 	INIT_LIST_HEAD(&cs->remote_sibling);
 | |
| 
 | |
| 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
 | |
| 	if (cpuset_v2())
 | |
| 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
 | |
| 
 | |
| 	return &cs->css;
 | |
| }
 | |
| 
 | |
| static int cpuset_css_online(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 	struct cpuset *parent = parent_cs(cs);
 | |
| 	struct cpuset *tmp_cs;
 | |
| 	struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		return 0;
 | |
| 
 | |
| 	cpuset_full_lock();
 | |
| 	if (is_spread_page(parent))
 | |
| 		set_bit(CS_SPREAD_PAGE, &cs->flags);
 | |
| 	if (is_spread_slab(parent))
 | |
| 		set_bit(CS_SPREAD_SLAB, &cs->flags);
 | |
| 	/*
 | |
| 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
 | |
| 	 */
 | |
| 	if (cpuset_v2() && !is_sched_load_balance(parent))
 | |
| 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 | |
| 
 | |
| 	cpuset_inc();
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	if (is_in_v2_mode()) {
 | |
| 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
 | |
| 		cs->effective_mems = parent->effective_mems;
 | |
| 	}
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
 | |
| 	 * set.  This flag handling is implemented in cgroup core for
 | |
| 	 * historical reasons - the flag may be specified during mount.
 | |
| 	 *
 | |
| 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
 | |
| 	 * refuse to clone the configuration - thereby refusing the task to
 | |
| 	 * be entered, and as a result refusing the sys_unshare() or
 | |
| 	 * clone() which initiated it.  If this becomes a problem for some
 | |
| 	 * users who wish to allow that scenario, then this could be
 | |
| 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
 | |
| 	 * (and likewise for mems) to the new cgroup.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
 | |
| 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	cs->mems_allowed = parent->mems_allowed;
 | |
| 	cs->effective_mems = parent->mems_allowed;
 | |
| 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
 | |
| 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| out_unlock:
 | |
| 	cpuset_full_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the cpuset being removed has its flag 'sched_load_balance'
 | |
|  * enabled, then simulate turning sched_load_balance off, which
 | |
|  * will call rebuild_sched_domains_locked(). That is not needed
 | |
|  * in the default hierarchy where only changes in partition
 | |
|  * will cause repartitioning.
 | |
|  */
 | |
| static void cpuset_css_offline(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 
 | |
| 	cpuset_full_lock();
 | |
| 	if (!cpuset_v2() && is_sched_load_balance(cs))
 | |
| 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
 | |
| 
 | |
| 	cpuset_dec();
 | |
| 	cpuset_full_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
 | |
|  * changing it back to member to free its exclusive CPUs back to the pool to
 | |
|  * be used by other online cpusets.
 | |
|  */
 | |
| static void cpuset_css_killed(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 
 | |
| 	cpuset_full_lock();
 | |
| 	/* Reset valid partition back to member */
 | |
| 	if (is_partition_valid(cs))
 | |
| 		update_prstate(cs, PRS_MEMBER);
 | |
| 	cpuset_full_unlock();
 | |
| }
 | |
| 
 | |
| static void cpuset_css_free(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(css);
 | |
| 
 | |
| 	free_cpuset(cs);
 | |
| }
 | |
| 
 | |
| static void cpuset_bind(struct cgroup_subsys_state *root_css)
 | |
| {
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 
 | |
| 	if (is_in_v2_mode()) {
 | |
| 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
 | |
| 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
 | |
| 		top_cpuset.mems_allowed = node_possible_map;
 | |
| 	} else {
 | |
| 		cpumask_copy(top_cpuset.cpus_allowed,
 | |
| 			     top_cpuset.effective_cpus);
 | |
| 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In case the child is cloned into a cpuset different from its parent,
 | |
|  * additional checks are done to see if the move is allowed.
 | |
|  */
 | |
| static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
 | |
| 	bool same_cs;
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	same_cs = (cs == task_cs(current));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (same_cs)
 | |
| 		return 0;
 | |
| 
 | |
| 	lockdep_assert_held(&cgroup_mutex);
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/* Check to see if task is allowed in the cpuset */
 | |
| 	ret = cpuset_can_attach_check(cs);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = task_can_attach(task);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = security_task_setscheduler(task);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark attach is in progress.  This makes validate_change() fail
 | |
| 	 * changes which zero cpus/mems_allowed.
 | |
| 	 */
 | |
| 	cs->attach_in_progress++;
 | |
| out_unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
 | |
| {
 | |
| 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
 | |
| 	bool same_cs;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	same_cs = (cs == task_cs(current));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (same_cs)
 | |
| 		return;
 | |
| 
 | |
| 	dec_attach_in_progress(cs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure the new task conform to the current state of its parent,
 | |
|  * which could have been changed by cpuset just after it inherits the
 | |
|  * state from the parent and before it sits on the cgroup's task list.
 | |
|  */
 | |
| static void cpuset_fork(struct task_struct *task)
 | |
| {
 | |
| 	struct cpuset *cs;
 | |
| 	bool same_cs;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cs = task_cs(task);
 | |
| 	same_cs = (cs == task_cs(current));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (same_cs) {
 | |
| 		if (cs == &top_cpuset)
 | |
| 			return;
 | |
| 
 | |
| 		set_cpus_allowed_ptr(task, current->cpus_ptr);
 | |
| 		task->mems_allowed = current->mems_allowed;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* CLONE_INTO_CGROUP */
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
 | |
| 	cpuset_attach_task(cs, task);
 | |
| 
 | |
| 	dec_attach_in_progress_locked(cs);
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys cpuset_cgrp_subsys = {
 | |
| 	.css_alloc	= cpuset_css_alloc,
 | |
| 	.css_online	= cpuset_css_online,
 | |
| 	.css_offline	= cpuset_css_offline,
 | |
| 	.css_killed	= cpuset_css_killed,
 | |
| 	.css_free	= cpuset_css_free,
 | |
| 	.can_attach	= cpuset_can_attach,
 | |
| 	.cancel_attach	= cpuset_cancel_attach,
 | |
| 	.attach		= cpuset_attach,
 | |
| 	.bind		= cpuset_bind,
 | |
| 	.can_fork	= cpuset_can_fork,
 | |
| 	.cancel_fork	= cpuset_cancel_fork,
 | |
| 	.fork		= cpuset_fork,
 | |
| #ifdef CONFIG_CPUSETS_V1
 | |
| 	.legacy_cftypes	= cpuset1_files,
 | |
| #endif
 | |
| 	.dfl_cftypes	= dfl_files,
 | |
| 	.early_init	= true,
 | |
| 	.threaded	= true,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * cpuset_init - initialize cpusets at system boot
 | |
|  *
 | |
|  * Description: Initialize top_cpuset
 | |
|  **/
 | |
| 
 | |
| int __init cpuset_init(void)
 | |
| {
 | |
| 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
 | |
| 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
 | |
| 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
 | |
| 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
 | |
| 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
 | |
| 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
 | |
| 
 | |
| 	cpumask_setall(top_cpuset.cpus_allowed);
 | |
| 	nodes_setall(top_cpuset.mems_allowed);
 | |
| 	cpumask_setall(top_cpuset.effective_cpus);
 | |
| 	cpumask_setall(top_cpuset.effective_xcpus);
 | |
| 	cpumask_setall(top_cpuset.exclusive_cpus);
 | |
| 	nodes_setall(top_cpuset.effective_mems);
 | |
| 
 | |
| 	fmeter_init(&top_cpuset.fmeter);
 | |
| 	INIT_LIST_HEAD(&remote_children);
 | |
| 
 | |
| 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
 | |
| 
 | |
| 	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
 | |
| 	if (have_boot_isolcpus) {
 | |
| 		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
 | |
| 		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
 | |
| 		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| hotplug_update_tasks(struct cpuset *cs,
 | |
| 		     struct cpumask *new_cpus, nodemask_t *new_mems,
 | |
| 		     bool cpus_updated, bool mems_updated)
 | |
| {
 | |
| 	/* A partition root is allowed to have empty effective cpus */
 | |
| 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
 | |
| 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
 | |
| 	if (nodes_empty(*new_mems))
 | |
| 		*new_mems = parent_cs(cs)->effective_mems;
 | |
| 
 | |
| 	spin_lock_irq(&callback_lock);
 | |
| 	cpumask_copy(cs->effective_cpus, new_cpus);
 | |
| 	cs->effective_mems = *new_mems;
 | |
| 	spin_unlock_irq(&callback_lock);
 | |
| 
 | |
| 	if (cpus_updated)
 | |
| 		cpuset_update_tasks_cpumask(cs, new_cpus);
 | |
| 	if (mems_updated)
 | |
| 		cpuset_update_tasks_nodemask(cs);
 | |
| }
 | |
| 
 | |
| void cpuset_force_rebuild(void)
 | |
| {
 | |
| 	force_sd_rebuild = true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
 | |
|  * @cs: cpuset in interest
 | |
|  * @tmp: the tmpmasks structure pointer
 | |
|  *
 | |
|  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 | |
|  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 | |
|  * all its tasks are moved to the nearest ancestor with both resources.
 | |
|  */
 | |
| static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
 | |
| {
 | |
| 	static cpumask_t new_cpus;
 | |
| 	static nodemask_t new_mems;
 | |
| 	bool cpus_updated;
 | |
| 	bool mems_updated;
 | |
| 	bool remote;
 | |
| 	int partcmd = -1;
 | |
| 	struct cpuset *parent;
 | |
| retry:
 | |
| 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
 | |
| 
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have raced with task attaching. We wait until attaching
 | |
| 	 * is finished, so we won't attach a task to an empty cpuset.
 | |
| 	 */
 | |
| 	if (cs->attach_in_progress) {
 | |
| 		mutex_unlock(&cpuset_mutex);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	parent = parent_cs(cs);
 | |
| 	compute_effective_cpumask(&new_cpus, cs, parent);
 | |
| 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
 | |
| 
 | |
| 	if (!tmp || !cs->partition_root_state)
 | |
| 		goto update_tasks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute effective_cpus for valid partition root, may invalidate
 | |
| 	 * child partition roots if necessary.
 | |
| 	 */
 | |
| 	remote = is_remote_partition(cs);
 | |
| 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
 | |
| 		compute_partition_effective_cpumask(cs, &new_cpus);
 | |
| 
 | |
| 	if (remote && cpumask_empty(&new_cpus) &&
 | |
| 	    partition_is_populated(cs, NULL)) {
 | |
| 		cs->prs_err = PERR_HOTPLUG;
 | |
| 		remote_partition_disable(cs, tmp);
 | |
| 		compute_effective_cpumask(&new_cpus, cs, parent);
 | |
| 		remote = false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Force the partition to become invalid if either one of
 | |
| 	 * the following conditions hold:
 | |
| 	 * 1) empty effective cpus but not valid empty partition.
 | |
| 	 * 2) parent is invalid or doesn't grant any cpus to child
 | |
| 	 *    partitions.
 | |
| 	 */
 | |
| 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
 | |
| 				tasks_nocpu_error(parent, cs, &new_cpus)))
 | |
| 		partcmd = partcmd_invalidate;
 | |
| 	/*
 | |
| 	 * On the other hand, an invalid partition root may be transitioned
 | |
| 	 * back to a regular one with a non-empty effective xcpus.
 | |
| 	 */
 | |
| 	else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
 | |
| 		 !cpumask_empty(cs->effective_xcpus))
 | |
| 		partcmd = partcmd_update;
 | |
| 
 | |
| 	if (partcmd >= 0) {
 | |
| 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
 | |
| 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
 | |
| 			compute_partition_effective_cpumask(cs, &new_cpus);
 | |
| 			cpuset_force_rebuild();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| update_tasks:
 | |
| 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
 | |
| 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
 | |
| 	if (!cpus_updated && !mems_updated)
 | |
| 		goto unlock;	/* Hotplug doesn't affect this cpuset */
 | |
| 
 | |
| 	if (mems_updated)
 | |
| 		check_insane_mems_config(&new_mems);
 | |
| 
 | |
| 	if (is_in_v2_mode())
 | |
| 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
 | |
| 				     cpus_updated, mems_updated);
 | |
| 	else
 | |
| 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
 | |
| 					    cpus_updated, mems_updated);
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
 | |
|  *
 | |
|  * This function is called after either CPU or memory configuration has
 | |
|  * changed and updates cpuset accordingly.  The top_cpuset is always
 | |
|  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 | |
|  * order to make cpusets transparent (of no affect) on systems that are
 | |
|  * actively using CPU hotplug but making no active use of cpusets.
 | |
|  *
 | |
|  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
 | |
|  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 | |
|  * all descendants.
 | |
|  *
 | |
|  * Note that CPU offlining during suspend is ignored.  We don't modify
 | |
|  * cpusets across suspend/resume cycles at all.
 | |
|  *
 | |
|  * CPU / memory hotplug is handled synchronously.
 | |
|  */
 | |
| static void cpuset_handle_hotplug(void)
 | |
| {
 | |
| 	static cpumask_t new_cpus;
 | |
| 	static nodemask_t new_mems;
 | |
| 	bool cpus_updated, mems_updated;
 | |
| 	bool on_dfl = is_in_v2_mode();
 | |
| 	struct tmpmasks tmp, *ptmp = NULL;
 | |
| 
 | |
| 	if (on_dfl && !alloc_tmpmasks(&tmp))
 | |
| 		ptmp = &tmp;
 | |
| 
 | |
| 	lockdep_assert_cpus_held();
 | |
| 	mutex_lock(&cpuset_mutex);
 | |
| 
 | |
| 	/* fetch the available cpus/mems and find out which changed how */
 | |
| 	cpumask_copy(&new_cpus, cpu_active_mask);
 | |
| 	new_mems = node_states[N_MEMORY];
 | |
| 
 | |
| 	/*
 | |
| 	 * If subpartitions_cpus is populated, it is likely that the check
 | |
| 	 * below will produce a false positive on cpus_updated when the cpu
 | |
| 	 * list isn't changed. It is extra work, but it is better to be safe.
 | |
| 	 */
 | |
| 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
 | |
| 		       !cpumask_empty(subpartitions_cpus);
 | |
| 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
 | |
| 
 | |
| 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
 | |
| 	if (cpus_updated) {
 | |
| 		cpuset_force_rebuild();
 | |
| 		spin_lock_irq(&callback_lock);
 | |
| 		if (!on_dfl)
 | |
| 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
 | |
| 		/*
 | |
| 		 * Make sure that CPUs allocated to child partitions
 | |
| 		 * do not show up in effective_cpus. If no CPU is left,
 | |
| 		 * we clear the subpartitions_cpus & let the child partitions
 | |
| 		 * fight for the CPUs again.
 | |
| 		 */
 | |
| 		if (!cpumask_empty(subpartitions_cpus)) {
 | |
| 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
 | |
| 				top_cpuset.nr_subparts = 0;
 | |
| 				cpumask_clear(subpartitions_cpus);
 | |
| 			} else {
 | |
| 				cpumask_andnot(&new_cpus, &new_cpus,
 | |
| 					       subpartitions_cpus);
 | |
| 			}
 | |
| 		}
 | |
| 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
 | |
| 		spin_unlock_irq(&callback_lock);
 | |
| 		/* we don't mess with cpumasks of tasks in top_cpuset */
 | |
| 	}
 | |
| 
 | |
| 	/* synchronize mems_allowed to N_MEMORY */
 | |
| 	if (mems_updated) {
 | |
| 		spin_lock_irq(&callback_lock);
 | |
| 		if (!on_dfl)
 | |
| 			top_cpuset.mems_allowed = new_mems;
 | |
| 		top_cpuset.effective_mems = new_mems;
 | |
| 		spin_unlock_irq(&callback_lock);
 | |
| 		cpuset_update_tasks_nodemask(&top_cpuset);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&cpuset_mutex);
 | |
| 
 | |
| 	/* if cpus or mems changed, we need to propagate to descendants */
 | |
| 	if (cpus_updated || mems_updated) {
 | |
| 		struct cpuset *cs;
 | |
| 		struct cgroup_subsys_state *pos_css;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 | |
| 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
 | |
| 				continue;
 | |
| 			rcu_read_unlock();
 | |
| 
 | |
| 			cpuset_hotplug_update_tasks(cs, ptmp);
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 			css_put(&cs->css);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/* rebuild sched domains if necessary */
 | |
| 	if (force_sd_rebuild)
 | |
| 		rebuild_sched_domains_cpuslocked();
 | |
| 
 | |
| 	free_tmpmasks(ptmp);
 | |
| }
 | |
| 
 | |
| void cpuset_update_active_cpus(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * We're inside cpu hotplug critical region which usually nests
 | |
| 	 * inside cgroup synchronization.  Bounce actual hotplug processing
 | |
| 	 * to a work item to avoid reverse locking order.
 | |
| 	 */
 | |
| 	cpuset_handle_hotplug();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 | |
|  * Call this routine anytime after node_states[N_MEMORY] changes.
 | |
|  * See cpuset_update_active_cpus() for CPU hotplug handling.
 | |
|  */
 | |
| static int cpuset_track_online_nodes(struct notifier_block *self,
 | |
| 				unsigned long action, void *arg)
 | |
| {
 | |
| 	cpuset_handle_hotplug();
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_init_smp - initialize cpus_allowed
 | |
|  *
 | |
|  * Description: Finish top cpuset after cpu, node maps are initialized
 | |
|  */
 | |
| void __init cpuset_init_smp(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * cpus_allowd/mems_allowed set to v2 values in the initial
 | |
| 	 * cpuset_bind() call will be reset to v1 values in another
 | |
| 	 * cpuset_bind() call when v1 cpuset is mounted.
 | |
| 	 */
 | |
| 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
 | |
| 
 | |
| 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
 | |
| 	top_cpuset.effective_mems = node_states[N_MEMORY];
 | |
| 
 | |
| 	hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
 | |
| 
 | |
| 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
 | |
| 	BUG_ON(!cpuset_migrate_mm_wq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 | |
|  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 | |
|  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
 | |
|  *
 | |
|  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
 | |
|  * attached to the specified @tsk.  Guaranteed to return some non-empty
 | |
|  * subset of cpu_active_mask, even if this means going outside the
 | |
|  * tasks cpuset, except when the task is in the top cpuset.
 | |
|  **/
 | |
| 
 | |
| void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct cpuset *cs;
 | |
| 
 | |
| 	spin_lock_irqsave(&callback_lock, flags);
 | |
| 
 | |
| 	cs = task_cs(tsk);
 | |
| 	if (cs != &top_cpuset)
 | |
| 		guarantee_active_cpus(tsk, pmask);
 | |
| 	/*
 | |
| 	 * Tasks in the top cpuset won't get update to their cpumasks
 | |
| 	 * when a hotplug online/offline event happens. So we include all
 | |
| 	 * offline cpus in the allowed cpu list.
 | |
| 	 */
 | |
| 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
 | |
| 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
 | |
| 
 | |
| 		/*
 | |
| 		 * We first exclude cpus allocated to partitions. If there is no
 | |
| 		 * allowable online cpu left, we fall back to all possible cpus.
 | |
| 		 */
 | |
| 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
 | |
| 		if (!cpumask_intersects(pmask, cpu_active_mask))
 | |
| 			cpumask_copy(pmask, possible_mask);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&callback_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
 | |
|  * @tsk: pointer to task_struct with which the scheduler is struggling
 | |
|  *
 | |
|  * Description: In the case that the scheduler cannot find an allowed cpu in
 | |
|  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
 | |
|  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
 | |
|  * which will not contain a sane cpumask during cases such as cpu hotplugging.
 | |
|  * This is the absolute last resort for the scheduler and it is only used if
 | |
|  * _every_ other avenue has been traveled.
 | |
|  *
 | |
|  * Returns true if the affinity of @tsk was changed, false otherwise.
 | |
|  **/
 | |
| 
 | |
| bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
 | |
| {
 | |
| 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
 | |
| 	const struct cpumask *cs_mask;
 | |
| 	bool changed = false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cs_mask = task_cs(tsk)->cpus_allowed;
 | |
| 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
 | |
| 		do_set_cpus_allowed(tsk, cs_mask);
 | |
| 		changed = true;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * We own tsk->cpus_allowed, nobody can change it under us.
 | |
| 	 *
 | |
| 	 * But we used cs && cs->cpus_allowed lockless and thus can
 | |
| 	 * race with cgroup_attach_task() or update_cpumask() and get
 | |
| 	 * the wrong tsk->cpus_allowed. However, both cases imply the
 | |
| 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
 | |
| 	 * which takes task_rq_lock().
 | |
| 	 *
 | |
| 	 * If we are called after it dropped the lock we must see all
 | |
| 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
 | |
| 	 * set any mask even if it is not right from task_cs() pov,
 | |
| 	 * the pending set_cpus_allowed_ptr() will fix things.
 | |
| 	 *
 | |
| 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
 | |
| 	 * if required.
 | |
| 	 */
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| void __init cpuset_init_current_mems_allowed(void)
 | |
| {
 | |
| 	nodes_setall(current->mems_allowed);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 | |
|  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 | |
|  *
 | |
|  * Description: Returns the nodemask_t mems_allowed of the cpuset
 | |
|  * attached to the specified @tsk.  Guaranteed to return some non-empty
 | |
|  * subset of node_states[N_MEMORY], even if this means going outside the
 | |
|  * tasks cpuset.
 | |
|  **/
 | |
| 
 | |
| nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
 | |
| {
 | |
| 	nodemask_t mask;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&callback_lock, flags);
 | |
| 	guarantee_online_mems(task_cs(tsk), &mask);
 | |
| 	spin_unlock_irqrestore(&callback_lock, flags);
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
 | |
|  * @nodemask: the nodemask to be checked
 | |
|  *
 | |
|  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
 | |
|  */
 | |
| int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
 | |
| {
 | |
| 	return nodes_intersects(*nodemask, current->mems_allowed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 | |
|  * mem_hardwall ancestor to the specified cpuset.  Call holding
 | |
|  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
 | |
|  * (an unusual configuration), then returns the root cpuset.
 | |
|  */
 | |
| static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
 | |
| {
 | |
| 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
 | |
| 		cs = parent_cs(cs);
 | |
| 	return cs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpuset_current_node_allowed - Can current task allocate on a memory node?
 | |
|  * @node: is this an allowed node?
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  *
 | |
|  * If we're in interrupt, yes, we can always allocate.  If @node is set in
 | |
|  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 | |
|  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 | |
|  * yes.  If current has access to memory reserves as an oom victim, yes.
 | |
|  * Otherwise, no.
 | |
|  *
 | |
|  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
 | |
|  * and do not allow allocations outside the current tasks cpuset
 | |
|  * unless the task has been OOM killed.
 | |
|  * GFP_KERNEL allocations are not so marked, so can escape to the
 | |
|  * nearest enclosing hardwalled ancestor cpuset.
 | |
|  *
 | |
|  * Scanning up parent cpusets requires callback_lock.  The
 | |
|  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 | |
|  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 | |
|  * current tasks mems_allowed came up empty on the first pass over
 | |
|  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 | |
|  * cpuset are short of memory, might require taking the callback_lock.
 | |
|  *
 | |
|  * The first call here from mm/page_alloc:get_page_from_freelist()
 | |
|  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 | |
|  * so no allocation on a node outside the cpuset is allowed (unless
 | |
|  * in interrupt, of course).
 | |
|  *
 | |
|  * The second pass through get_page_from_freelist() doesn't even call
 | |
|  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 | |
|  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 | |
|  * in alloc_flags.  That logic and the checks below have the combined
 | |
|  * affect that:
 | |
|  *	in_interrupt - any node ok (current task context irrelevant)
 | |
|  *	GFP_ATOMIC   - any node ok
 | |
|  *	tsk_is_oom_victim   - any node ok
 | |
|  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
 | |
|  *	GFP_USER     - only nodes in current tasks mems allowed ok.
 | |
|  */
 | |
| bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct cpuset *cs;		/* current cpuset ancestors */
 | |
| 	bool allowed;			/* is allocation in zone z allowed? */
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (in_interrupt())
 | |
| 		return true;
 | |
| 	if (node_isset(node, current->mems_allowed))
 | |
| 		return true;
 | |
| 	/*
 | |
| 	 * Allow tasks that have access to memory reserves because they have
 | |
| 	 * been OOM killed to get memory anywhere.
 | |
| 	 */
 | |
| 	if (unlikely(tsk_is_oom_victim(current)))
 | |
| 		return true;
 | |
| 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
 | |
| 		return false;
 | |
| 
 | |
| 	if (current->flags & PF_EXITING) /* Let dying task have memory */
 | |
| 		return true;
 | |
| 
 | |
| 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
 | |
| 	spin_lock_irqsave(&callback_lock, flags);
 | |
| 
 | |
| 	cs = nearest_hardwall_ancestor(task_cs(current));
 | |
| 	allowed = node_isset(node, cs->mems_allowed);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&callback_lock, flags);
 | |
| 	return allowed;
 | |
| }
 | |
| 
 | |
| bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct cpuset *cs;
 | |
| 	bool allowed;
 | |
| 
 | |
| 	/*
 | |
| 	 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
 | |
| 	 * and mems_allowed is likely to be empty even if we could get to it,
 | |
| 	 * so return true to avoid taking a global lock on the empty check.
 | |
| 	 */
 | |
| 	if (!cpuset_v2())
 | |
| 		return true;
 | |
| 
 | |
| 	css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
 | |
| 	if (!css)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Normally, accessing effective_mems would require the cpuset_mutex
 | |
| 	 * or callback_lock - but node_isset is atomic and the reference
 | |
| 	 * taken via cgroup_get_e_css is sufficient to protect css.
 | |
| 	 *
 | |
| 	 * Since this interface is intended for use by migration paths, we
 | |
| 	 * relax locking here to avoid taking global locks - while accepting
 | |
| 	 * there may be rare scenarios where the result may be innaccurate.
 | |
| 	 *
 | |
| 	 * Reclaim and migration are subject to these same race conditions, and
 | |
| 	 * cannot make strong isolation guarantees, so this is acceptable.
 | |
| 	 */
 | |
| 	cs = container_of(css, struct cpuset, css);
 | |
| 	allowed = node_isset(nid, cs->effective_mems);
 | |
| 	css_put(css);
 | |
| 	return allowed;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_spread_node() - On which node to begin search for a page
 | |
|  * @rotor: round robin rotor
 | |
|  *
 | |
|  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 | |
|  * tasks in a cpuset with is_spread_page or is_spread_slab set),
 | |
|  * and if the memory allocation used cpuset_mem_spread_node()
 | |
|  * to determine on which node to start looking, as it will for
 | |
|  * certain page cache or slab cache pages such as used for file
 | |
|  * system buffers and inode caches, then instead of starting on the
 | |
|  * local node to look for a free page, rather spread the starting
 | |
|  * node around the tasks mems_allowed nodes.
 | |
|  *
 | |
|  * We don't have to worry about the returned node being offline
 | |
|  * because "it can't happen", and even if it did, it would be ok.
 | |
|  *
 | |
|  * The routines calling guarantee_online_mems() are careful to
 | |
|  * only set nodes in task->mems_allowed that are online.  So it
 | |
|  * should not be possible for the following code to return an
 | |
|  * offline node.  But if it did, that would be ok, as this routine
 | |
|  * is not returning the node where the allocation must be, only
 | |
|  * the node where the search should start.  The zonelist passed to
 | |
|  * __alloc_pages() will include all nodes.  If the slab allocator
 | |
|  * is passed an offline node, it will fall back to the local node.
 | |
|  * See kmem_cache_alloc_node().
 | |
|  */
 | |
| static int cpuset_spread_node(int *rotor)
 | |
| {
 | |
| 	return *rotor = next_node_in(*rotor, current->mems_allowed);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_mem_spread_node() - On which node to begin search for a file page
 | |
|  */
 | |
| int cpuset_mem_spread_node(void)
 | |
| {
 | |
| 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
 | |
| 		current->cpuset_mem_spread_rotor =
 | |
| 			node_random(¤t->mems_allowed);
 | |
| 
 | |
| 	return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 | |
|  * @tsk1: pointer to task_struct of some task.
 | |
|  * @tsk2: pointer to task_struct of some other task.
 | |
|  *
 | |
|  * Description: Return true if @tsk1's mems_allowed intersects the
 | |
|  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 | |
|  * one of the task's memory usage might impact the memory available
 | |
|  * to the other.
 | |
|  **/
 | |
| 
 | |
| int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
 | |
| 				   const struct task_struct *tsk2)
 | |
| {
 | |
| 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
 | |
|  *
 | |
|  * Description: Prints current's name, cpuset name, and cached copy of its
 | |
|  * mems_allowed to the kernel log.
 | |
|  */
 | |
| void cpuset_print_current_mems_allowed(void)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	cgrp = task_cs(current)->css.cgroup;
 | |
| 	pr_cont(",cpuset=");
 | |
| 	pr_cont_cgroup_name(cgrp);
 | |
| 	pr_cont(",mems_allowed=%*pbl",
 | |
| 		nodemask_pr_args(¤t->mems_allowed));
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* Display task mems_allowed in /proc/<pid>/status file. */
 | |
| void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
 | |
| {
 | |
| 	seq_printf(m, "Mems_allowed:\t%*pb\n",
 | |
| 		   nodemask_pr_args(&task->mems_allowed));
 | |
| 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
 | |
| 		   nodemask_pr_args(&task->mems_allowed));
 | |
| }
 |