mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 01:59:51 +02:00 
			
		
		
		
	Correct several typos found in comments across various files in the kernel/time directory. No functional changes are introduced by these corrections. Signed-off-by: Haofeng Li <lihaofeng@kylinos.cn> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			1529 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1529 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0+
 | 
						|
/*
 | 
						|
 * This file contains the functions which manage clocksource drivers.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/prandom.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
 | 
						|
#include "tick-internal.h"
 | 
						|
#include "timekeeping_internal.h"
 | 
						|
 | 
						|
static void clocksource_enqueue(struct clocksource *cs);
 | 
						|
 | 
						|
static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
 | 
						|
{
 | 
						|
	u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta);
 | 
						|
 | 
						|
	if (likely(delta < cs->max_cycles))
 | 
						|
		return clocksource_cyc2ns(delta, cs->mult, cs->shift);
 | 
						|
 | 
						|
	return mul_u64_u32_shr(delta, cs->mult, cs->shift);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
 | 
						|
 * @mult:	pointer to mult variable
 | 
						|
 * @shift:	pointer to shift variable
 | 
						|
 * @from:	frequency to convert from
 | 
						|
 * @to:		frequency to convert to
 | 
						|
 * @maxsec:	guaranteed runtime conversion range in seconds
 | 
						|
 *
 | 
						|
 * The function evaluates the shift/mult pair for the scaled math
 | 
						|
 * operations of clocksources and clockevents.
 | 
						|
 *
 | 
						|
 * @to and @from are frequency values in HZ. For clock sources @to is
 | 
						|
 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
 | 
						|
 * event @to is the counter frequency and @from is NSEC_PER_SEC.
 | 
						|
 *
 | 
						|
 * The @maxsec conversion range argument controls the time frame in
 | 
						|
 * seconds which must be covered by the runtime conversion with the
 | 
						|
 * calculated mult and shift factors. This guarantees that no 64bit
 | 
						|
 * overflow happens when the input value of the conversion is
 | 
						|
 * multiplied with the calculated mult factor. Larger ranges may
 | 
						|
 * reduce the conversion accuracy by choosing smaller mult and shift
 | 
						|
 * factors.
 | 
						|
 */
 | 
						|
void
 | 
						|
clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
 | 
						|
{
 | 
						|
	u64 tmp;
 | 
						|
	u32 sft, sftacc= 32;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate the shift factor which is limiting the conversion
 | 
						|
	 * range:
 | 
						|
	 */
 | 
						|
	tmp = ((u64)maxsec * from) >> 32;
 | 
						|
	while (tmp) {
 | 
						|
		tmp >>=1;
 | 
						|
		sftacc--;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the conversion shift/mult pair which has the best
 | 
						|
	 * accuracy and fits the maxsec conversion range:
 | 
						|
	 */
 | 
						|
	for (sft = 32; sft > 0; sft--) {
 | 
						|
		tmp = (u64) to << sft;
 | 
						|
		tmp += from / 2;
 | 
						|
		do_div(tmp, from);
 | 
						|
		if ((tmp >> sftacc) == 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	*mult = tmp;
 | 
						|
	*shift = sft;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
 | 
						|
 | 
						|
/*[Clocksource internal variables]---------
 | 
						|
 * curr_clocksource:
 | 
						|
 *	currently selected clocksource.
 | 
						|
 * suspend_clocksource:
 | 
						|
 *	used to calculate the suspend time.
 | 
						|
 * clocksource_list:
 | 
						|
 *	linked list with the registered clocksources
 | 
						|
 * clocksource_mutex:
 | 
						|
 *	protects manipulations to curr_clocksource and the clocksource_list
 | 
						|
 * override_name:
 | 
						|
 *	Name of the user-specified clocksource.
 | 
						|
 */
 | 
						|
static struct clocksource *curr_clocksource;
 | 
						|
static struct clocksource *suspend_clocksource;
 | 
						|
static LIST_HEAD(clocksource_list);
 | 
						|
static DEFINE_MUTEX(clocksource_mutex);
 | 
						|
static char override_name[CS_NAME_LEN];
 | 
						|
static int finished_booting;
 | 
						|
static u64 suspend_start;
 | 
						|
 | 
						|
/*
 | 
						|
 * Interval: 0.5sec.
 | 
						|
 */
 | 
						|
#define WATCHDOG_INTERVAL (HZ >> 1)
 | 
						|
#define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
 | 
						|
 | 
						|
/*
 | 
						|
 * Threshold: 0.0312s, when doubled: 0.0625s.
 | 
						|
 */
 | 
						|
#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum permissible delay between two readouts of the watchdog
 | 
						|
 * clocksource surrounding a read of the clocksource being validated.
 | 
						|
 * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
 | 
						|
 * a lower bound for cs->uncertainty_margin values when registering clocks.
 | 
						|
 *
 | 
						|
 * The default of 500 parts per million is based on NTP's limits.
 | 
						|
 * If a clocksource is good enough for NTP, it is good enough for us!
 | 
						|
 *
 | 
						|
 * In other words, by default, even if a clocksource is extremely
 | 
						|
 * precise (for example, with a sub-nanosecond period), the maximum
 | 
						|
 * permissible skew between the clocksource watchdog and the clocksource
 | 
						|
 * under test is not permitted to go below the 500ppm minimum defined
 | 
						|
 * by MAX_SKEW_USEC.  This 500ppm minimum may be overridden using the
 | 
						|
 * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
 | 
						|
#define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
 | 
						|
#else
 | 
						|
#define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Default for maximum permissible skew when cs->uncertainty_margin is
 | 
						|
 * not specified, and the lower bound even when cs->uncertainty_margin
 | 
						|
 * is specified.  This is also the default that is used when registering
 | 
						|
 * clocks with unspecified cs->uncertainty_margin, so this macro is used
 | 
						|
 * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
 | 
						|
 */
 | 
						|
#define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
 | 
						|
 | 
						|
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 | 
						|
static void clocksource_watchdog_work(struct work_struct *work);
 | 
						|
static void clocksource_select(void);
 | 
						|
 | 
						|
static LIST_HEAD(watchdog_list);
 | 
						|
static struct clocksource *watchdog;
 | 
						|
static struct timer_list watchdog_timer;
 | 
						|
static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 | 
						|
static DEFINE_SPINLOCK(watchdog_lock);
 | 
						|
static int watchdog_running;
 | 
						|
static atomic_t watchdog_reset_pending;
 | 
						|
static int64_t watchdog_max_interval;
 | 
						|
 | 
						|
static inline void clocksource_watchdog_lock(unsigned long *flags)
 | 
						|
{
 | 
						|
	spin_lock_irqsave(&watchdog_lock, *flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline void clocksource_watchdog_unlock(unsigned long *flags)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&watchdog_lock, *flags);
 | 
						|
}
 | 
						|
 | 
						|
static int clocksource_watchdog_kthread(void *data);
 | 
						|
 | 
						|
static void clocksource_watchdog_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We cannot directly run clocksource_watchdog_kthread() here, because
 | 
						|
	 * clocksource_select() calls timekeeping_notify() which uses
 | 
						|
	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
 | 
						|
	 * lock inversions wrt CPU hotplug.
 | 
						|
	 *
 | 
						|
	 * Also, we only ever run this work once or twice during the lifetime
 | 
						|
	 * of the kernel, so there is no point in creating a more permanent
 | 
						|
	 * kthread for this.
 | 
						|
	 *
 | 
						|
	 * If kthread_run fails the next watchdog scan over the
 | 
						|
	 * watchdog_list will find the unstable clock again.
 | 
						|
	 */
 | 
						|
	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_change_rating(struct clocksource *cs, int rating)
 | 
						|
{
 | 
						|
	list_del(&cs->list);
 | 
						|
	cs->rating = rating;
 | 
						|
	clocksource_enqueue(cs);
 | 
						|
}
 | 
						|
 | 
						|
static void __clocksource_unstable(struct clocksource *cs)
 | 
						|
{
 | 
						|
	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 | 
						|
	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the clocksource is registered clocksource_watchdog_kthread() will
 | 
						|
	 * re-rate and re-select.
 | 
						|
	 */
 | 
						|
	if (list_empty(&cs->list)) {
 | 
						|
		cs->rating = 0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cs->mark_unstable)
 | 
						|
		cs->mark_unstable(cs);
 | 
						|
 | 
						|
	/* kick clocksource_watchdog_kthread() */
 | 
						|
	if (finished_booting)
 | 
						|
		schedule_work(&watchdog_work);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 | 
						|
 * @cs:		clocksource to be marked unstable
 | 
						|
 *
 | 
						|
 * This function is called by the x86 TSC code to mark clocksources as unstable;
 | 
						|
 * it defers demotion and re-selection to a kthread.
 | 
						|
 */
 | 
						|
void clocksource_mark_unstable(struct clocksource *cs)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&watchdog_lock, flags);
 | 
						|
	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 | 
						|
		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 | 
						|
			list_add(&cs->wd_list, &watchdog_list);
 | 
						|
		__clocksource_unstable(cs);
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&watchdog_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static int verify_n_cpus = 8;
 | 
						|
module_param(verify_n_cpus, int, 0644);
 | 
						|
 | 
						|
enum wd_read_status {
 | 
						|
	WD_READ_SUCCESS,
 | 
						|
	WD_READ_UNSTABLE,
 | 
						|
	WD_READ_SKIP
 | 
						|
};
 | 
						|
 | 
						|
static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
 | 
						|
{
 | 
						|
	int64_t md = 2 * watchdog->uncertainty_margin;
 | 
						|
	unsigned int nretries, max_retries;
 | 
						|
	int64_t wd_delay, wd_seq_delay;
 | 
						|
	u64 wd_end, wd_end2;
 | 
						|
 | 
						|
	max_retries = clocksource_get_max_watchdog_retry();
 | 
						|
	for (nretries = 0; nretries <= max_retries; nretries++) {
 | 
						|
		local_irq_disable();
 | 
						|
		*wdnow = watchdog->read(watchdog);
 | 
						|
		*csnow = cs->read(cs);
 | 
						|
		wd_end = watchdog->read(watchdog);
 | 
						|
		wd_end2 = watchdog->read(watchdog);
 | 
						|
		local_irq_enable();
 | 
						|
 | 
						|
		wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
 | 
						|
		if (wd_delay <= md + cs->uncertainty_margin) {
 | 
						|
			if (nretries > 1 && nretries >= max_retries) {
 | 
						|
				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
 | 
						|
					smp_processor_id(), watchdog->name, nretries);
 | 
						|
			}
 | 
						|
			return WD_READ_SUCCESS;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Now compute delay in consecutive watchdog read to see if
 | 
						|
		 * there is too much external interferences that cause
 | 
						|
		 * significant delay in reading both clocksource and watchdog.
 | 
						|
		 *
 | 
						|
		 * If consecutive WD read-back delay > md, report
 | 
						|
		 * system busy, reinit the watchdog and skip the current
 | 
						|
		 * watchdog test.
 | 
						|
		 */
 | 
						|
		wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
 | 
						|
		if (wd_seq_delay > md)
 | 
						|
			goto skip_test;
 | 
						|
	}
 | 
						|
 | 
						|
	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
 | 
						|
		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
 | 
						|
	return WD_READ_UNSTABLE;
 | 
						|
 | 
						|
skip_test:
 | 
						|
	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
 | 
						|
		smp_processor_id(), watchdog->name, wd_seq_delay);
 | 
						|
	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
 | 
						|
		cs->name, wd_delay);
 | 
						|
	return WD_READ_SKIP;
 | 
						|
}
 | 
						|
 | 
						|
static u64 csnow_mid;
 | 
						|
static cpumask_t cpus_ahead;
 | 
						|
static cpumask_t cpus_behind;
 | 
						|
static cpumask_t cpus_chosen;
 | 
						|
 | 
						|
static void clocksource_verify_choose_cpus(void)
 | 
						|
{
 | 
						|
	int cpu, i, n = verify_n_cpus;
 | 
						|
 | 
						|
	if (n < 0 || n >= num_online_cpus()) {
 | 
						|
		/* Check all of the CPUs. */
 | 
						|
		cpumask_copy(&cpus_chosen, cpu_online_mask);
 | 
						|
		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If no checking desired, or no other CPU to check, leave. */
 | 
						|
	cpumask_clear(&cpus_chosen);
 | 
						|
	if (n == 0 || num_online_cpus() <= 1)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Make sure to select at least one CPU other than the current CPU. */
 | 
						|
	cpu = cpumask_any_but(cpu_online_mask, smp_processor_id());
 | 
						|
	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 | 
						|
		return;
 | 
						|
	cpumask_set_cpu(cpu, &cpus_chosen);
 | 
						|
 | 
						|
	/* Force a sane value for the boot parameter. */
 | 
						|
	if (n > nr_cpu_ids)
 | 
						|
		n = nr_cpu_ids;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Randomly select the specified number of CPUs.  If the same
 | 
						|
	 * CPU is selected multiple times, that CPU is checked only once,
 | 
						|
	 * and no replacement CPU is selected.  This gracefully handles
 | 
						|
	 * situations where verify_n_cpus is greater than the number of
 | 
						|
	 * CPUs that are currently online.
 | 
						|
	 */
 | 
						|
	for (i = 1; i < n; i++) {
 | 
						|
		cpu = cpumask_random(cpu_online_mask);
 | 
						|
		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
 | 
						|
			cpumask_set_cpu(cpu, &cpus_chosen);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Don't verify ourselves. */
 | 
						|
	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_verify_one_cpu(void *csin)
 | 
						|
{
 | 
						|
	struct clocksource *cs = (struct clocksource *)csin;
 | 
						|
 | 
						|
	csnow_mid = cs->read(cs);
 | 
						|
}
 | 
						|
 | 
						|
void clocksource_verify_percpu(struct clocksource *cs)
 | 
						|
{
 | 
						|
	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
 | 
						|
	u64 csnow_begin, csnow_end;
 | 
						|
	int cpu, testcpu;
 | 
						|
	s64 delta;
 | 
						|
 | 
						|
	if (verify_n_cpus == 0)
 | 
						|
		return;
 | 
						|
	cpumask_clear(&cpus_ahead);
 | 
						|
	cpumask_clear(&cpus_behind);
 | 
						|
	cpus_read_lock();
 | 
						|
	migrate_disable();
 | 
						|
	clocksource_verify_choose_cpus();
 | 
						|
	if (cpumask_empty(&cpus_chosen)) {
 | 
						|
		migrate_enable();
 | 
						|
		cpus_read_unlock();
 | 
						|
		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	testcpu = smp_processor_id();
 | 
						|
	pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n",
 | 
						|
		cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
 | 
						|
	preempt_disable();
 | 
						|
	for_each_cpu(cpu, &cpus_chosen) {
 | 
						|
		if (cpu == testcpu)
 | 
						|
			continue;
 | 
						|
		csnow_begin = cs->read(cs);
 | 
						|
		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
 | 
						|
		csnow_end = cs->read(cs);
 | 
						|
		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
 | 
						|
		if (delta < 0)
 | 
						|
			cpumask_set_cpu(cpu, &cpus_behind);
 | 
						|
		delta = (csnow_end - csnow_mid) & cs->mask;
 | 
						|
		if (delta < 0)
 | 
						|
			cpumask_set_cpu(cpu, &cpus_ahead);
 | 
						|
		cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
 | 
						|
		if (cs_nsec > cs_nsec_max)
 | 
						|
			cs_nsec_max = cs_nsec;
 | 
						|
		if (cs_nsec < cs_nsec_min)
 | 
						|
			cs_nsec_min = cs_nsec;
 | 
						|
	}
 | 
						|
	preempt_enable();
 | 
						|
	migrate_enable();
 | 
						|
	cpus_read_unlock();
 | 
						|
	if (!cpumask_empty(&cpus_ahead))
 | 
						|
		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
 | 
						|
			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
 | 
						|
	if (!cpumask_empty(&cpus_behind))
 | 
						|
		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
 | 
						|
			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
 | 
						|
	pr_info("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
 | 
						|
		testcpu, cs_nsec_min, cs_nsec_max, cs->name);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
 | 
						|
 | 
						|
static inline void clocksource_reset_watchdog(void)
 | 
						|
{
 | 
						|
	struct clocksource *cs;
 | 
						|
 | 
						|
	list_for_each_entry(cs, &watchdog_list, wd_list)
 | 
						|
		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void clocksource_watchdog(struct timer_list *unused)
 | 
						|
{
 | 
						|
	int64_t wd_nsec, cs_nsec, interval;
 | 
						|
	u64 csnow, wdnow, cslast, wdlast;
 | 
						|
	int next_cpu, reset_pending;
 | 
						|
	struct clocksource *cs;
 | 
						|
	enum wd_read_status read_ret;
 | 
						|
	unsigned long extra_wait = 0;
 | 
						|
	u32 md;
 | 
						|
 | 
						|
	spin_lock(&watchdog_lock);
 | 
						|
	if (!watchdog_running)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	reset_pending = atomic_read(&watchdog_reset_pending);
 | 
						|
 | 
						|
	list_for_each_entry(cs, &watchdog_list, wd_list) {
 | 
						|
 | 
						|
		/* Clocksource already marked unstable? */
 | 
						|
		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 | 
						|
			if (finished_booting)
 | 
						|
				schedule_work(&watchdog_work);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
 | 
						|
 | 
						|
		if (read_ret == WD_READ_UNSTABLE) {
 | 
						|
			/* Clock readout unreliable, so give it up. */
 | 
						|
			__clocksource_unstable(cs);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When WD_READ_SKIP is returned, it means the system is likely
 | 
						|
		 * under very heavy load, where the latency of reading
 | 
						|
		 * watchdog/clocksource is very big, and affect the accuracy of
 | 
						|
		 * watchdog check. So give system some space and suspend the
 | 
						|
		 * watchdog check for 5 minutes.
 | 
						|
		 */
 | 
						|
		if (read_ret == WD_READ_SKIP) {
 | 
						|
			/*
 | 
						|
			 * As the watchdog timer will be suspended, and
 | 
						|
			 * cs->last could keep unchanged for 5 minutes, reset
 | 
						|
			 * the counters.
 | 
						|
			 */
 | 
						|
			clocksource_reset_watchdog();
 | 
						|
			extra_wait = HZ * 300;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Clocksource initialized ? */
 | 
						|
		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 | 
						|
		    atomic_read(&watchdog_reset_pending)) {
 | 
						|
			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 | 
						|
			cs->wd_last = wdnow;
 | 
						|
			cs->cs_last = csnow;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
 | 
						|
		cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
 | 
						|
		wdlast = cs->wd_last; /* save these in case we print them */
 | 
						|
		cslast = cs->cs_last;
 | 
						|
		cs->cs_last = csnow;
 | 
						|
		cs->wd_last = wdnow;
 | 
						|
 | 
						|
		if (atomic_read(&watchdog_reset_pending))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The processing of timer softirqs can get delayed (usually
 | 
						|
		 * on account of ksoftirqd not getting to run in a timely
 | 
						|
		 * manner), which causes the watchdog interval to stretch.
 | 
						|
		 * Skew detection may fail for longer watchdog intervals
 | 
						|
		 * on account of fixed margins being used.
 | 
						|
		 * Some clocksources, e.g. acpi_pm, cannot tolerate
 | 
						|
		 * watchdog intervals longer than a few seconds.
 | 
						|
		 */
 | 
						|
		interval = max(cs_nsec, wd_nsec);
 | 
						|
		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
 | 
						|
			if (system_state > SYSTEM_SCHEDULING &&
 | 
						|
			    interval > 2 * watchdog_max_interval) {
 | 
						|
				watchdog_max_interval = interval;
 | 
						|
				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
 | 
						|
					cs_nsec, wd_nsec);
 | 
						|
			}
 | 
						|
			watchdog_timer.expires = jiffies;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Check the deviation from the watchdog clocksource. */
 | 
						|
		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
 | 
						|
		if (abs(cs_nsec - wd_nsec) > md) {
 | 
						|
			s64 cs_wd_msec;
 | 
						|
			s64 wd_msec;
 | 
						|
			u32 wd_rem;
 | 
						|
 | 
						|
			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 | 
						|
				smp_processor_id(), cs->name);
 | 
						|
			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
 | 
						|
				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
 | 
						|
			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
 | 
						|
				cs->name, cs_nsec, csnow, cslast, cs->mask);
 | 
						|
			cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
 | 
						|
			wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
 | 
						|
			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
 | 
						|
				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
 | 
						|
			if (curr_clocksource == cs)
 | 
						|
				pr_warn("                      '%s' is current clocksource.\n", cs->name);
 | 
						|
			else if (curr_clocksource)
 | 
						|
				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
 | 
						|
			else
 | 
						|
				pr_warn("                      No current clocksource.\n");
 | 
						|
			__clocksource_unstable(cs);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (cs == curr_clocksource && cs->tick_stable)
 | 
						|
			cs->tick_stable(cs);
 | 
						|
 | 
						|
		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 | 
						|
		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 | 
						|
		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 | 
						|
			/* Mark it valid for high-res. */
 | 
						|
			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * clocksource_done_booting() will sort it if
 | 
						|
			 * finished_booting is not set yet.
 | 
						|
			 */
 | 
						|
			if (!finished_booting)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If this is not the current clocksource let
 | 
						|
			 * the watchdog thread reselect it. Due to the
 | 
						|
			 * change to high res this clocksource might
 | 
						|
			 * be preferred now. If it is the current
 | 
						|
			 * clocksource let the tick code know about
 | 
						|
			 * that change.
 | 
						|
			 */
 | 
						|
			if (cs != curr_clocksource) {
 | 
						|
				cs->flags |= CLOCK_SOURCE_RESELECT;
 | 
						|
				schedule_work(&watchdog_work);
 | 
						|
			} else {
 | 
						|
				tick_clock_notify();
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only clear the watchdog_reset_pending, when we did a
 | 
						|
	 * full cycle through all clocksources.
 | 
						|
	 */
 | 
						|
	if (reset_pending)
 | 
						|
		atomic_dec(&watchdog_reset_pending);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Cycle through CPUs to check if the CPUs stay synchronized
 | 
						|
	 * to each other.
 | 
						|
	 */
 | 
						|
	next_cpu = cpumask_next_wrap(raw_smp_processor_id(), cpu_online_mask);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Arm timer if not already pending: could race with concurrent
 | 
						|
	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
 | 
						|
	 */
 | 
						|
	if (!timer_pending(&watchdog_timer)) {
 | 
						|
		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
 | 
						|
		add_timer_on(&watchdog_timer, next_cpu);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock(&watchdog_lock);
 | 
						|
}
 | 
						|
 | 
						|
static inline void clocksource_start_watchdog(void)
 | 
						|
{
 | 
						|
	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 | 
						|
		return;
 | 
						|
	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 | 
						|
	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 | 
						|
	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 | 
						|
	watchdog_running = 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline void clocksource_stop_watchdog(void)
 | 
						|
{
 | 
						|
	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 | 
						|
		return;
 | 
						|
	timer_delete(&watchdog_timer);
 | 
						|
	watchdog_running = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_resume_watchdog(void)
 | 
						|
{
 | 
						|
	atomic_inc(&watchdog_reset_pending);
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_enqueue_watchdog(struct clocksource *cs)
 | 
						|
{
 | 
						|
	INIT_LIST_HEAD(&cs->wd_list);
 | 
						|
 | 
						|
	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 | 
						|
		/* cs is a clocksource to be watched. */
 | 
						|
		list_add(&cs->wd_list, &watchdog_list);
 | 
						|
		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 | 
						|
	} else {
 | 
						|
		/* cs is a watchdog. */
 | 
						|
		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 | 
						|
			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_select_watchdog(bool fallback)
 | 
						|
{
 | 
						|
	struct clocksource *cs, *old_wd;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&watchdog_lock, flags);
 | 
						|
	/* save current watchdog */
 | 
						|
	old_wd = watchdog;
 | 
						|
	if (fallback)
 | 
						|
		watchdog = NULL;
 | 
						|
 | 
						|
	list_for_each_entry(cs, &clocksource_list, list) {
 | 
						|
		/* cs is a clocksource to be watched. */
 | 
						|
		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Skip current if we were requested for a fallback. */
 | 
						|
		if (fallback && cs == old_wd)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Pick the best watchdog. */
 | 
						|
		if (!watchdog || cs->rating > watchdog->rating)
 | 
						|
			watchdog = cs;
 | 
						|
	}
 | 
						|
	/* If we failed to find a fallback restore the old one. */
 | 
						|
	if (!watchdog)
 | 
						|
		watchdog = old_wd;
 | 
						|
 | 
						|
	/* If we changed the watchdog we need to reset cycles. */
 | 
						|
	if (watchdog != old_wd)
 | 
						|
		clocksource_reset_watchdog();
 | 
						|
 | 
						|
	/* Check if the watchdog timer needs to be started. */
 | 
						|
	clocksource_start_watchdog();
 | 
						|
	spin_unlock_irqrestore(&watchdog_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_dequeue_watchdog(struct clocksource *cs)
 | 
						|
{
 | 
						|
	if (cs != watchdog) {
 | 
						|
		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 | 
						|
			/* cs is a watched clocksource. */
 | 
						|
			list_del_init(&cs->wd_list);
 | 
						|
			/* Check if the watchdog timer needs to be stopped. */
 | 
						|
			clocksource_stop_watchdog();
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __clocksource_watchdog_kthread(void)
 | 
						|
{
 | 
						|
	struct clocksource *cs, *tmp;
 | 
						|
	unsigned long flags;
 | 
						|
	int select = 0;
 | 
						|
 | 
						|
	/* Do any required per-CPU skew verification. */
 | 
						|
	if (curr_clocksource &&
 | 
						|
	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
 | 
						|
	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
 | 
						|
		clocksource_verify_percpu(curr_clocksource);
 | 
						|
 | 
						|
	spin_lock_irqsave(&watchdog_lock, flags);
 | 
						|
	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 | 
						|
		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 | 
						|
			list_del_init(&cs->wd_list);
 | 
						|
			clocksource_change_rating(cs, 0);
 | 
						|
			select = 1;
 | 
						|
		}
 | 
						|
		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 | 
						|
			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 | 
						|
			select = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* Check if the watchdog timer needs to be stopped. */
 | 
						|
	clocksource_stop_watchdog();
 | 
						|
	spin_unlock_irqrestore(&watchdog_lock, flags);
 | 
						|
 | 
						|
	return select;
 | 
						|
}
 | 
						|
 | 
						|
static int clocksource_watchdog_kthread(void *data)
 | 
						|
{
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
	if (__clocksource_watchdog_kthread())
 | 
						|
		clocksource_select();
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool clocksource_is_watchdog(struct clocksource *cs)
 | 
						|
{
 | 
						|
	return cs == watchdog;
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 | 
						|
 | 
						|
static void clocksource_enqueue_watchdog(struct clocksource *cs)
 | 
						|
{
 | 
						|
	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 | 
						|
		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_select_watchdog(bool fallback) { }
 | 
						|
static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 | 
						|
static inline void clocksource_resume_watchdog(void) { }
 | 
						|
static inline int __clocksource_watchdog_kthread(void) { return 0; }
 | 
						|
static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 | 
						|
void clocksource_mark_unstable(struct clocksource *cs) { }
 | 
						|
 | 
						|
static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 | 
						|
static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 | 
						|
 | 
						|
#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 | 
						|
 | 
						|
static bool clocksource_is_suspend(struct clocksource *cs)
 | 
						|
{
 | 
						|
	return cs == suspend_clocksource;
 | 
						|
}
 | 
						|
 | 
						|
static void __clocksource_suspend_select(struct clocksource *cs)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Skip the clocksource which will be stopped in suspend state.
 | 
						|
	 */
 | 
						|
	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The nonstop clocksource can be selected as the suspend clocksource to
 | 
						|
	 * calculate the suspend time, so it should not supply suspend/resume
 | 
						|
	 * interfaces to suspend the nonstop clocksource when system suspends.
 | 
						|
	 */
 | 
						|
	if (cs->suspend || cs->resume) {
 | 
						|
		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 | 
						|
			cs->name);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Pick the best rating. */
 | 
						|
	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 | 
						|
		suspend_clocksource = cs;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_suspend_select - Select the best clocksource for suspend timing
 | 
						|
 * @fallback:	if select a fallback clocksource
 | 
						|
 */
 | 
						|
static void clocksource_suspend_select(bool fallback)
 | 
						|
{
 | 
						|
	struct clocksource *cs, *old_suspend;
 | 
						|
 | 
						|
	old_suspend = suspend_clocksource;
 | 
						|
	if (fallback)
 | 
						|
		suspend_clocksource = NULL;
 | 
						|
 | 
						|
	list_for_each_entry(cs, &clocksource_list, list) {
 | 
						|
		/* Skip current if we were requested for a fallback. */
 | 
						|
		if (fallback && cs == old_suspend)
 | 
						|
			continue;
 | 
						|
 | 
						|
		__clocksource_suspend_select(cs);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_start_suspend_timing - Start measuring the suspend timing
 | 
						|
 * @cs:			current clocksource from timekeeping
 | 
						|
 * @start_cycles:	current cycles from timekeeping
 | 
						|
 *
 | 
						|
 * This function will save the start cycle values of suspend timer to calculate
 | 
						|
 * the suspend time when resuming system.
 | 
						|
 *
 | 
						|
 * This function is called late in the suspend process from timekeeping_suspend(),
 | 
						|
 * that means processes are frozen, non-boot cpus and interrupts are disabled
 | 
						|
 * now. It is therefore possible to start the suspend timer without taking the
 | 
						|
 * clocksource mutex.
 | 
						|
 */
 | 
						|
void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 | 
						|
{
 | 
						|
	if (!suspend_clocksource)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If current clocksource is the suspend timer, we should use the
 | 
						|
	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
 | 
						|
	 * from suspend timer.
 | 
						|
	 */
 | 
						|
	if (clocksource_is_suspend(cs)) {
 | 
						|
		suspend_start = start_cycles;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (suspend_clocksource->enable &&
 | 
						|
	    suspend_clocksource->enable(suspend_clocksource)) {
 | 
						|
		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	suspend_start = suspend_clocksource->read(suspend_clocksource);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 | 
						|
 * @cs:		current clocksource from timekeeping
 | 
						|
 * @cycle_now:	current cycles from timekeeping
 | 
						|
 *
 | 
						|
 * This function will calculate the suspend time from suspend timer.
 | 
						|
 *
 | 
						|
 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 | 
						|
 *
 | 
						|
 * This function is called early in the resume process from timekeeping_resume(),
 | 
						|
 * that means there is only one cpu, no processes are running and the interrupts
 | 
						|
 * are disabled. It is therefore possible to stop the suspend timer without
 | 
						|
 * taking the clocksource mutex.
 | 
						|
 */
 | 
						|
u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 | 
						|
{
 | 
						|
	u64 now, nsec = 0;
 | 
						|
 | 
						|
	if (!suspend_clocksource)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If current clocksource is the suspend timer, we should use the
 | 
						|
	 * tkr_mono.cycle_last value from timekeeping as current cycle to
 | 
						|
	 * avoid same reading from suspend timer.
 | 
						|
	 */
 | 
						|
	if (clocksource_is_suspend(cs))
 | 
						|
		now = cycle_now;
 | 
						|
	else
 | 
						|
		now = suspend_clocksource->read(suspend_clocksource);
 | 
						|
 | 
						|
	if (now > suspend_start)
 | 
						|
		nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Disable the suspend timer to save power if current clocksource is
 | 
						|
	 * not the suspend timer.
 | 
						|
	 */
 | 
						|
	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 | 
						|
		suspend_clocksource->disable(suspend_clocksource);
 | 
						|
 | 
						|
	return nsec;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_suspend - suspend the clocksource(s)
 | 
						|
 */
 | 
						|
void clocksource_suspend(void)
 | 
						|
{
 | 
						|
	struct clocksource *cs;
 | 
						|
 | 
						|
	list_for_each_entry_reverse(cs, &clocksource_list, list)
 | 
						|
		if (cs->suspend)
 | 
						|
			cs->suspend(cs);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_resume - resume the clocksource(s)
 | 
						|
 */
 | 
						|
void clocksource_resume(void)
 | 
						|
{
 | 
						|
	struct clocksource *cs;
 | 
						|
 | 
						|
	list_for_each_entry(cs, &clocksource_list, list)
 | 
						|
		if (cs->resume)
 | 
						|
			cs->resume(cs);
 | 
						|
 | 
						|
	clocksource_resume_watchdog();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_touch_watchdog - Update watchdog
 | 
						|
 *
 | 
						|
 * Update the watchdog after exception contexts such as kgdb so as not
 | 
						|
 * to incorrectly trip the watchdog. This might fail when the kernel
 | 
						|
 * was stopped in code which holds watchdog_lock.
 | 
						|
 */
 | 
						|
void clocksource_touch_watchdog(void)
 | 
						|
{
 | 
						|
	clocksource_resume_watchdog();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_max_adjustment- Returns max adjustment amount
 | 
						|
 * @cs:         Pointer to clocksource
 | 
						|
 *
 | 
						|
 */
 | 
						|
static u32 clocksource_max_adjustment(struct clocksource *cs)
 | 
						|
{
 | 
						|
	u64 ret;
 | 
						|
	/*
 | 
						|
	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 | 
						|
	 */
 | 
						|
	ret = (u64)cs->mult * 11;
 | 
						|
	do_div(ret,100);
 | 
						|
	return (u32)ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 | 
						|
 * @mult:	cycle to nanosecond multiplier
 | 
						|
 * @shift:	cycle to nanosecond divisor (power of two)
 | 
						|
 * @maxadj:	maximum adjustment value to mult (~11%)
 | 
						|
 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 | 
						|
 * @max_cyc:	maximum cycle value before potential overflow (does not include
 | 
						|
 *		any safety margin)
 | 
						|
 *
 | 
						|
 * NOTE: This function includes a safety margin of 50%, in other words, we
 | 
						|
 * return half the number of nanoseconds the hardware counter can technically
 | 
						|
 * cover. This is done so that we can potentially detect problems caused by
 | 
						|
 * delayed timers or bad hardware, which might result in time intervals that
 | 
						|
 * are larger than what the math used can handle without overflows.
 | 
						|
 */
 | 
						|
u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 | 
						|
{
 | 
						|
	u64 max_nsecs, max_cycles;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate the maximum number of cycles that we can pass to the
 | 
						|
	 * cyc2ns() function without overflowing a 64-bit result.
 | 
						|
	 */
 | 
						|
	max_cycles = ULLONG_MAX;
 | 
						|
	do_div(max_cycles, mult+maxadj);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The actual maximum number of cycles we can defer the clocksource is
 | 
						|
	 * determined by the minimum of max_cycles and mask.
 | 
						|
	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 | 
						|
	 * too long if there's a large negative adjustment.
 | 
						|
	 */
 | 
						|
	max_cycles = min(max_cycles, mask);
 | 
						|
	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 | 
						|
 | 
						|
	/* return the max_cycles value as well if requested */
 | 
						|
	if (max_cyc)
 | 
						|
		*max_cyc = max_cycles;
 | 
						|
 | 
						|
	/* Return 50% of the actual maximum, so we can detect bad values */
 | 
						|
	max_nsecs >>= 1;
 | 
						|
 | 
						|
	return max_nsecs;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 | 
						|
 * @cs:         Pointer to clocksource to be updated
 | 
						|
 *
 | 
						|
 */
 | 
						|
static inline void clocksource_update_max_deferment(struct clocksource *cs)
 | 
						|
{
 | 
						|
	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 | 
						|
						cs->maxadj, cs->mask,
 | 
						|
						&cs->max_cycles);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Threshold for detecting negative motion in clocksource_delta().
 | 
						|
	 *
 | 
						|
	 * Allow for 0.875 of the counter width so that overly long idle
 | 
						|
	 * sleeps, which go slightly over mask/2, do not trigger the
 | 
						|
	 * negative motion detection.
 | 
						|
	 */
 | 
						|
	cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3);
 | 
						|
}
 | 
						|
 | 
						|
static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 | 
						|
{
 | 
						|
	struct clocksource *cs;
 | 
						|
 | 
						|
	if (!finished_booting || list_empty(&clocksource_list))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We pick the clocksource with the highest rating. If oneshot
 | 
						|
	 * mode is active, we pick the highres valid clocksource with
 | 
						|
	 * the best rating.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(cs, &clocksource_list, list) {
 | 
						|
		if (skipcur && cs == curr_clocksource)
 | 
						|
			continue;
 | 
						|
		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 | 
						|
			continue;
 | 
						|
		return cs;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void __clocksource_select(bool skipcur)
 | 
						|
{
 | 
						|
	bool oneshot = tick_oneshot_mode_active();
 | 
						|
	struct clocksource *best, *cs;
 | 
						|
 | 
						|
	/* Find the best suitable clocksource */
 | 
						|
	best = clocksource_find_best(oneshot, skipcur);
 | 
						|
	if (!best)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!strlen(override_name))
 | 
						|
		goto found;
 | 
						|
 | 
						|
	/* Check for the override clocksource. */
 | 
						|
	list_for_each_entry(cs, &clocksource_list, list) {
 | 
						|
		if (skipcur && cs == curr_clocksource)
 | 
						|
			continue;
 | 
						|
		if (strcmp(cs->name, override_name) != 0)
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * Check to make sure we don't switch to a non-highres
 | 
						|
		 * capable clocksource if the tick code is in oneshot
 | 
						|
		 * mode (highres or nohz)
 | 
						|
		 */
 | 
						|
		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 | 
						|
			/* Override clocksource cannot be used. */
 | 
						|
			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 | 
						|
				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 | 
						|
					cs->name);
 | 
						|
				override_name[0] = 0;
 | 
						|
			} else {
 | 
						|
				/*
 | 
						|
				 * The override cannot be currently verified.
 | 
						|
				 * Deferring to let the watchdog check.
 | 
						|
				 */
 | 
						|
				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 | 
						|
					cs->name);
 | 
						|
			}
 | 
						|
		} else
 | 
						|
			/* Override clocksource can be used. */
 | 
						|
			best = cs;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
found:
 | 
						|
	if (curr_clocksource != best && !timekeeping_notify(best)) {
 | 
						|
		pr_info("Switched to clocksource %s\n", best->name);
 | 
						|
		curr_clocksource = best;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_select - Select the best clocksource available
 | 
						|
 *
 | 
						|
 * Private function. Must hold clocksource_mutex when called.
 | 
						|
 *
 | 
						|
 * Select the clocksource with the best rating, or the clocksource,
 | 
						|
 * which is selected by userspace override.
 | 
						|
 */
 | 
						|
static void clocksource_select(void)
 | 
						|
{
 | 
						|
	__clocksource_select(false);
 | 
						|
}
 | 
						|
 | 
						|
static void clocksource_select_fallback(void)
 | 
						|
{
 | 
						|
	__clocksource_select(true);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * clocksource_done_booting - Called near the end of core bootup
 | 
						|
 *
 | 
						|
 * Hack to avoid lots of clocksource churn at boot time.
 | 
						|
 * We use fs_initcall because we want this to start before
 | 
						|
 * device_initcall but after subsys_initcall.
 | 
						|
 */
 | 
						|
static int __init clocksource_done_booting(void)
 | 
						|
{
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
	curr_clocksource = clocksource_default_clock();
 | 
						|
	finished_booting = 1;
 | 
						|
	/*
 | 
						|
	 * Run the watchdog first to eliminate unstable clock sources
 | 
						|
	 */
 | 
						|
	__clocksource_watchdog_kthread();
 | 
						|
	clocksource_select();
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
fs_initcall(clocksource_done_booting);
 | 
						|
 | 
						|
/*
 | 
						|
 * Enqueue the clocksource sorted by rating
 | 
						|
 */
 | 
						|
static void clocksource_enqueue(struct clocksource *cs)
 | 
						|
{
 | 
						|
	struct list_head *entry = &clocksource_list;
 | 
						|
	struct clocksource *tmp;
 | 
						|
 | 
						|
	list_for_each_entry(tmp, &clocksource_list, list) {
 | 
						|
		/* Keep track of the place, where to insert */
 | 
						|
		if (tmp->rating < cs->rating)
 | 
						|
			break;
 | 
						|
		entry = &tmp->list;
 | 
						|
	}
 | 
						|
	list_add(&cs->list, entry);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __clocksource_update_freq_scale - Used update clocksource with new freq
 | 
						|
 * @cs:		clocksource to be registered
 | 
						|
 * @scale:	Scale factor multiplied against freq to get clocksource hz
 | 
						|
 * @freq:	clocksource frequency (cycles per second) divided by scale
 | 
						|
 *
 | 
						|
 * This should only be called from the clocksource->enable() method.
 | 
						|
 *
 | 
						|
 * This *SHOULD NOT* be called directly! Please use the
 | 
						|
 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 | 
						|
 * functions.
 | 
						|
 */
 | 
						|
void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 | 
						|
{
 | 
						|
	u64 sec;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Default clocksources are *special* and self-define their mult/shift.
 | 
						|
	 * But, you're not special, so you should specify a freq value.
 | 
						|
	 */
 | 
						|
	if (freq) {
 | 
						|
		/*
 | 
						|
		 * Calc the maximum number of seconds which we can run before
 | 
						|
		 * wrapping around. For clocksources which have a mask > 32-bit
 | 
						|
		 * we need to limit the max sleep time to have a good
 | 
						|
		 * conversion precision. 10 minutes is still a reasonable
 | 
						|
		 * amount. That results in a shift value of 24 for a
 | 
						|
		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 | 
						|
		 * ~ 0.06ppm granularity for NTP.
 | 
						|
		 */
 | 
						|
		sec = cs->mask;
 | 
						|
		do_div(sec, freq);
 | 
						|
		do_div(sec, scale);
 | 
						|
		if (!sec)
 | 
						|
			sec = 1;
 | 
						|
		else if (sec > 600 && cs->mask > UINT_MAX)
 | 
						|
			sec = 600;
 | 
						|
 | 
						|
		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 | 
						|
				       NSEC_PER_SEC / scale, sec * scale);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the uncertainty margin is not specified, calculate it.  If
 | 
						|
	 * both scale and freq are non-zero, calculate the clock period, but
 | 
						|
	 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
 | 
						|
	 * However, if either of scale or freq is zero, be very conservative
 | 
						|
	 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
 | 
						|
	 * for the uncertainty margin.  Allow stupidly small uncertainty
 | 
						|
	 * margins to be specified by the caller for testing purposes,
 | 
						|
	 * but warn to discourage production use of this capability.
 | 
						|
	 *
 | 
						|
	 * Bottom line:  The sum of the uncertainty margins of the
 | 
						|
	 * watchdog clocksource and the clocksource under test will be at
 | 
						|
	 * least 500ppm by default.  For more information, please see the
 | 
						|
	 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
 | 
						|
	 */
 | 
						|
	if (scale && freq && !cs->uncertainty_margin) {
 | 
						|
		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
 | 
						|
		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
 | 
						|
			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
 | 
						|
	} else if (!cs->uncertainty_margin) {
 | 
						|
		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
 | 
						|
	}
 | 
						|
	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure clocksources that have large 'mult' values don't overflow
 | 
						|
	 * when adjusted.
 | 
						|
	 */
 | 
						|
	cs->maxadj = clocksource_max_adjustment(cs);
 | 
						|
	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 | 
						|
		|| (cs->mult - cs->maxadj > cs->mult))) {
 | 
						|
		cs->mult >>= 1;
 | 
						|
		cs->shift--;
 | 
						|
		cs->maxadj = clocksource_max_adjustment(cs);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only warn for *special* clocksources that self-define
 | 
						|
	 * their mult/shift values and don't specify a freq.
 | 
						|
	 */
 | 
						|
	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 | 
						|
		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 | 
						|
		cs->name);
 | 
						|
 | 
						|
	clocksource_update_max_deferment(cs);
 | 
						|
 | 
						|
	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 | 
						|
		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 | 
						|
 | 
						|
/**
 | 
						|
 * __clocksource_register_scale - Used to install new clocksources
 | 
						|
 * @cs:		clocksource to be registered
 | 
						|
 * @scale:	Scale factor multiplied against freq to get clocksource hz
 | 
						|
 * @freq:	clocksource frequency (cycles per second) divided by scale
 | 
						|
 *
 | 
						|
 * Returns -EBUSY if registration fails, zero otherwise.
 | 
						|
 *
 | 
						|
 * This *SHOULD NOT* be called directly! Please use the
 | 
						|
 * clocksource_register_hz() or clocksource_register_khz helper functions.
 | 
						|
 */
 | 
						|
int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	clocksource_arch_init(cs);
 | 
						|
 | 
						|
	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
 | 
						|
		cs->id = CSID_GENERIC;
 | 
						|
	if (cs->vdso_clock_mode < 0 ||
 | 
						|
	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
 | 
						|
		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
 | 
						|
			cs->name, cs->vdso_clock_mode);
 | 
						|
		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initialize mult/shift and max_idle_ns */
 | 
						|
	__clocksource_update_freq_scale(cs, scale, freq);
 | 
						|
 | 
						|
	/* Add clocksource to the clocksource list */
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
 | 
						|
	clocksource_watchdog_lock(&flags);
 | 
						|
	clocksource_enqueue(cs);
 | 
						|
	clocksource_enqueue_watchdog(cs);
 | 
						|
	clocksource_watchdog_unlock(&flags);
 | 
						|
 | 
						|
	clocksource_select();
 | 
						|
	clocksource_select_watchdog(false);
 | 
						|
	__clocksource_suspend_select(cs);
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 | 
						|
 | 
						|
/*
 | 
						|
 * Unbind clocksource @cs. Called with clocksource_mutex held
 | 
						|
 */
 | 
						|
static int clocksource_unbind(struct clocksource *cs)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (clocksource_is_watchdog(cs)) {
 | 
						|
		/* Select and try to install a replacement watchdog. */
 | 
						|
		clocksource_select_watchdog(true);
 | 
						|
		if (clocksource_is_watchdog(cs))
 | 
						|
			return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cs == curr_clocksource) {
 | 
						|
		/* Select and try to install a replacement clock source */
 | 
						|
		clocksource_select_fallback();
 | 
						|
		if (curr_clocksource == cs)
 | 
						|
			return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	if (clocksource_is_suspend(cs)) {
 | 
						|
		/*
 | 
						|
		 * Select and try to install a replacement suspend clocksource.
 | 
						|
		 * If no replacement suspend clocksource, we will just let the
 | 
						|
		 * clocksource go and have no suspend clocksource.
 | 
						|
		 */
 | 
						|
		clocksource_suspend_select(true);
 | 
						|
	}
 | 
						|
 | 
						|
	clocksource_watchdog_lock(&flags);
 | 
						|
	clocksource_dequeue_watchdog(cs);
 | 
						|
	list_del_init(&cs->list);
 | 
						|
	clocksource_watchdog_unlock(&flags);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clocksource_unregister - remove a registered clocksource
 | 
						|
 * @cs:	clocksource to be unregistered
 | 
						|
 */
 | 
						|
int clocksource_unregister(struct clocksource *cs)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
	if (!list_empty(&cs->list))
 | 
						|
		ret = clocksource_unbind(cs);
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(clocksource_unregister);
 | 
						|
 | 
						|
#ifdef CONFIG_SYSFS
 | 
						|
/**
 | 
						|
 * current_clocksource_show - sysfs interface for current clocksource
 | 
						|
 * @dev:	unused
 | 
						|
 * @attr:	unused
 | 
						|
 * @buf:	char buffer to be filled with clocksource list
 | 
						|
 *
 | 
						|
 * Provides sysfs interface for listing current clocksource.
 | 
						|
 */
 | 
						|
static ssize_t current_clocksource_show(struct device *dev,
 | 
						|
					struct device_attribute *attr,
 | 
						|
					char *buf)
 | 
						|
{
 | 
						|
	ssize_t count = 0;
 | 
						|
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
	count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
 | 
						|
{
 | 
						|
	size_t ret = cnt;
 | 
						|
 | 
						|
	/* strings from sysfs write are not 0 terminated! */
 | 
						|
	if (!cnt || cnt >= CS_NAME_LEN)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* strip of \n: */
 | 
						|
	if (buf[cnt-1] == '\n')
 | 
						|
		cnt--;
 | 
						|
	if (cnt > 0)
 | 
						|
		memcpy(dst, buf, cnt);
 | 
						|
	dst[cnt] = 0;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * current_clocksource_store - interface for manually overriding clocksource
 | 
						|
 * @dev:	unused
 | 
						|
 * @attr:	unused
 | 
						|
 * @buf:	name of override clocksource
 | 
						|
 * @count:	length of buffer
 | 
						|
 *
 | 
						|
 * Takes input from sysfs interface for manually overriding the default
 | 
						|
 * clocksource selection.
 | 
						|
 */
 | 
						|
static ssize_t current_clocksource_store(struct device *dev,
 | 
						|
					 struct device_attribute *attr,
 | 
						|
					 const char *buf, size_t count)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
 | 
						|
	ret = sysfs_get_uname(buf, override_name, count);
 | 
						|
	if (ret >= 0)
 | 
						|
		clocksource_select();
 | 
						|
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
static DEVICE_ATTR_RW(current_clocksource);
 | 
						|
 | 
						|
/**
 | 
						|
 * unbind_clocksource_store - interface for manually unbinding clocksource
 | 
						|
 * @dev:	unused
 | 
						|
 * @attr:	unused
 | 
						|
 * @buf:	unused
 | 
						|
 * @count:	length of buffer
 | 
						|
 *
 | 
						|
 * Takes input from sysfs interface for manually unbinding a clocksource.
 | 
						|
 */
 | 
						|
static ssize_t unbind_clocksource_store(struct device *dev,
 | 
						|
					struct device_attribute *attr,
 | 
						|
					const char *buf, size_t count)
 | 
						|
{
 | 
						|
	struct clocksource *cs;
 | 
						|
	char name[CS_NAME_LEN];
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	ret = sysfs_get_uname(buf, name, count);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = -ENODEV;
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
	list_for_each_entry(cs, &clocksource_list, list) {
 | 
						|
		if (strcmp(cs->name, name))
 | 
						|
			continue;
 | 
						|
		ret = clocksource_unbind(cs);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
 | 
						|
	return ret ? ret : count;
 | 
						|
}
 | 
						|
static DEVICE_ATTR_WO(unbind_clocksource);
 | 
						|
 | 
						|
/**
 | 
						|
 * available_clocksource_show - sysfs interface for listing clocksource
 | 
						|
 * @dev:	unused
 | 
						|
 * @attr:	unused
 | 
						|
 * @buf:	char buffer to be filled with clocksource list
 | 
						|
 *
 | 
						|
 * Provides sysfs interface for listing registered clocksources
 | 
						|
 */
 | 
						|
static ssize_t available_clocksource_show(struct device *dev,
 | 
						|
					  struct device_attribute *attr,
 | 
						|
					  char *buf)
 | 
						|
{
 | 
						|
	struct clocksource *src;
 | 
						|
	ssize_t count = 0;
 | 
						|
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
	list_for_each_entry(src, &clocksource_list, list) {
 | 
						|
		/*
 | 
						|
		 * Don't show non-HRES clocksource if the tick code is
 | 
						|
		 * in one shot mode (highres=on or nohz=on)
 | 
						|
		 */
 | 
						|
		if (!tick_oneshot_mode_active() ||
 | 
						|
		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 | 
						|
			count += snprintf(buf + count,
 | 
						|
				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
 | 
						|
				  "%s ", src->name);
 | 
						|
	}
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
 | 
						|
	count += snprintf(buf + count,
 | 
						|
			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
static DEVICE_ATTR_RO(available_clocksource);
 | 
						|
 | 
						|
static struct attribute *clocksource_attrs[] = {
 | 
						|
	&dev_attr_current_clocksource.attr,
 | 
						|
	&dev_attr_unbind_clocksource.attr,
 | 
						|
	&dev_attr_available_clocksource.attr,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
ATTRIBUTE_GROUPS(clocksource);
 | 
						|
 | 
						|
static const struct bus_type clocksource_subsys = {
 | 
						|
	.name = "clocksource",
 | 
						|
	.dev_name = "clocksource",
 | 
						|
};
 | 
						|
 | 
						|
static struct device device_clocksource = {
 | 
						|
	.id	= 0,
 | 
						|
	.bus	= &clocksource_subsys,
 | 
						|
	.groups	= clocksource_groups,
 | 
						|
};
 | 
						|
 | 
						|
static int __init init_clocksource_sysfs(void)
 | 
						|
{
 | 
						|
	int error = subsys_system_register(&clocksource_subsys, NULL);
 | 
						|
 | 
						|
	if (!error)
 | 
						|
		error = device_register(&device_clocksource);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
device_initcall(init_clocksource_sysfs);
 | 
						|
#endif /* CONFIG_SYSFS */
 | 
						|
 | 
						|
/**
 | 
						|
 * boot_override_clocksource - boot clock override
 | 
						|
 * @str:	override name
 | 
						|
 *
 | 
						|
 * Takes a clocksource= boot argument and uses it
 | 
						|
 * as the clocksource override name.
 | 
						|
 */
 | 
						|
static int __init boot_override_clocksource(char* str)
 | 
						|
{
 | 
						|
	mutex_lock(&clocksource_mutex);
 | 
						|
	if (str)
 | 
						|
		strscpy(override_name, str);
 | 
						|
	mutex_unlock(&clocksource_mutex);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
__setup("clocksource=", boot_override_clocksource);
 | 
						|
 | 
						|
/**
 | 
						|
 * boot_override_clock - Compatibility layer for deprecated boot option
 | 
						|
 * @str:	override name
 | 
						|
 *
 | 
						|
 * DEPRECATED! Takes a clock= boot argument and uses it
 | 
						|
 * as the clocksource override name
 | 
						|
 */
 | 
						|
static int __init boot_override_clock(char* str)
 | 
						|
{
 | 
						|
	if (!strcmp(str, "pmtmr")) {
 | 
						|
		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
 | 
						|
		return boot_override_clocksource("acpi_pm");
 | 
						|
	}
 | 
						|
	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
 | 
						|
	return boot_override_clocksource(str);
 | 
						|
}
 | 
						|
 | 
						|
__setup("clock=", boot_override_clock);
 |