linux/mm/mincore.c
Kairui Song f28124617f mm, swap: use unified helper for swap cache look up
The swap cache lookup helper swap_cache_get_folio currently does readahead
updates as well, so callers that are not doing swapin from any VMA or
mapping are forced to reuse filemap helpers instead, and have to access
the swap cache space directly.

So decouple readahead update with swap cache lookup.  Move the readahead
update part into a standalone helper.  Let the caller call the readahead
update helper if they do readahead.  And convert all swap cache lookups to
use swap_cache_get_folio.

After this commit, there are only three special cases for accessing swap
cache space now: huge memory splitting, migration, and shmem replacing,
because they need to lock the XArray.  The following commits will wrap
their accesses to the swap cache too, with special helpers.

And worth noting, currently dropbehind is not supported for anon folio,
and we will never see a dropbehind folio in swap cache.  The unified
helper can be updated later to handle that.

While at it, add proper kernedoc for touched helpers.

No functional change.

Link: https://lkml.kernel.org/r/20250916160100.31545-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-09-21 14:22:22 -07:00

330 lines
8.3 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/mincore.c
*
* Copyright (C) 1994-2006 Linus Torvalds
*/
/*
* The mincore() system call.
*/
#include <linux/pagemap.h>
#include <linux/gfp.h>
#include <linux/pagewalk.h>
#include <linux/mman.h>
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/shmem_fs.h>
#include <linux/hugetlb.h>
#include <linux/pgtable.h>
#include <linux/uaccess.h>
#include "swap.h"
#include "internal.h"
static int mincore_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
#ifdef CONFIG_HUGETLB_PAGE
unsigned char present;
unsigned char *vec = walk->private;
spinlock_t *ptl;
ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
/*
* Hugepages under user process are always in RAM and never
* swapped out, but theoretically it needs to be checked.
*/
present = pte && !huge_pte_none_mostly(huge_ptep_get(walk->mm, addr, pte));
for (; addr != end; vec++, addr += PAGE_SIZE)
*vec = present;
walk->private = vec;
spin_unlock(ptl);
#else
BUG();
#endif
return 0;
}
static unsigned char mincore_swap(swp_entry_t entry, bool shmem)
{
struct swap_info_struct *si;
struct folio *folio = NULL;
unsigned char present = 0;
if (!IS_ENABLED(CONFIG_SWAP)) {
WARN_ON(1);
return 0;
}
/*
* Shmem mapping may contain swapin error entries, which are
* absent. Page table may contain migration or hwpoison
* entries which are always uptodate.
*/
if (non_swap_entry(entry))
return !shmem;
/*
* Shmem mapping lookup is lockless, so we need to grab the swap
* device. mincore page table walk locks the PTL, and the swap
* device is stable, avoid touching the si for better performance.
*/
if (shmem) {
si = get_swap_device(entry);
if (!si)
return 0;
}
folio = swap_cache_get_folio(entry);
if (shmem)
put_swap_device(si);
/* The swap cache space contains either folio, shadow or NULL */
if (folio && !xa_is_value(folio)) {
present = folio_test_uptodate(folio);
folio_put(folio);
}
return present;
}
/*
* Later we can get more picky about what "in core" means precisely.
* For now, simply check to see if the page is in the page cache,
* and is up to date; i.e. that no page-in operation would be required
* at this time if an application were to map and access this page.
*/
static unsigned char mincore_page(struct address_space *mapping, pgoff_t index)
{
unsigned char present = 0;
struct folio *folio;
/*
* When tmpfs swaps out a page from a file, any process mapping that
* file will not get a swp_entry_t in its pte, but rather it is like
* any other file mapping (ie. marked !present and faulted in with
* tmpfs's .fault). So swapped out tmpfs mappings are tested here.
*/
folio = filemap_get_entry(mapping, index);
if (folio) {
if (xa_is_value(folio)) {
if (shmem_mapping(mapping))
return mincore_swap(radix_to_swp_entry(folio),
true);
else
return 0;
}
present = folio_test_uptodate(folio);
folio_put(folio);
}
return present;
}
static int __mincore_unmapped_range(unsigned long addr, unsigned long end,
struct vm_area_struct *vma, unsigned char *vec)
{
unsigned long nr = (end - addr) >> PAGE_SHIFT;
int i;
if (vma->vm_file) {
pgoff_t pgoff;
pgoff = linear_page_index(vma, addr);
for (i = 0; i < nr; i++, pgoff++)
vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff);
} else {
for (i = 0; i < nr; i++)
vec[i] = 0;
}
return nr;
}
static int mincore_unmapped_range(unsigned long addr, unsigned long end,
__always_unused int depth,
struct mm_walk *walk)
{
walk->private += __mincore_unmapped_range(addr, end,
walk->vma, walk->private);
return 0;
}
static int mincore_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
spinlock_t *ptl;
struct vm_area_struct *vma = walk->vma;
pte_t *ptep;
unsigned char *vec = walk->private;
int nr = (end - addr) >> PAGE_SHIFT;
int step, i;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
memset(vec, 1, nr);
spin_unlock(ptl);
goto out;
}
ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (!ptep) {
walk->action = ACTION_AGAIN;
return 0;
}
for (; addr != end; ptep += step, addr += step * PAGE_SIZE) {
pte_t pte = ptep_get(ptep);
step = 1;
/* We need to do cache lookup too for pte markers */
if (pte_none_mostly(pte))
__mincore_unmapped_range(addr, addr + PAGE_SIZE,
vma, vec);
else if (pte_present(pte)) {
unsigned int batch = pte_batch_hint(ptep, pte);
if (batch > 1) {
unsigned int max_nr = (end - addr) >> PAGE_SHIFT;
step = min_t(unsigned int, batch, max_nr);
}
for (i = 0; i < step; i++)
vec[i] = 1;
} else { /* pte is a swap entry */
*vec = mincore_swap(pte_to_swp_entry(pte), false);
}
vec += step;
}
pte_unmap_unlock(ptep - 1, ptl);
out:
walk->private += nr;
cond_resched();
return 0;
}
static inline bool can_do_mincore(struct vm_area_struct *vma)
{
if (vma_is_anonymous(vma))
return true;
if (!vma->vm_file)
return false;
/*
* Reveal pagecache information only for non-anonymous mappings that
* correspond to the files the calling process could (if tried) open
* for writing; otherwise we'd be including shared non-exclusive
* mappings, which opens a side channel.
*/
return inode_owner_or_capable(&nop_mnt_idmap,
file_inode(vma->vm_file)) ||
file_permission(vma->vm_file, MAY_WRITE) == 0;
}
static const struct mm_walk_ops mincore_walk_ops = {
.pmd_entry = mincore_pte_range,
.pte_hole = mincore_unmapped_range,
.hugetlb_entry = mincore_hugetlb,
.walk_lock = PGWALK_RDLOCK,
};
/*
* Do a chunk of "sys_mincore()". We've already checked
* all the arguments, we hold the mmap semaphore: we should
* just return the amount of info we're asked for.
*/
static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *vec)
{
struct vm_area_struct *vma;
unsigned long end;
int err;
vma = vma_lookup(current->mm, addr);
if (!vma)
return -ENOMEM;
end = min(vma->vm_end, addr + (pages << PAGE_SHIFT));
if (!can_do_mincore(vma)) {
unsigned long pages = DIV_ROUND_UP(end - addr, PAGE_SIZE);
memset(vec, 1, pages);
return pages;
}
err = walk_page_range(vma->vm_mm, addr, end, &mincore_walk_ops, vec);
if (err < 0)
return err;
return (end - addr) >> PAGE_SHIFT;
}
/*
* The mincore(2) system call.
*
* mincore() returns the memory residency status of the pages in the
* current process's address space specified by [addr, addr + len).
* The status is returned in a vector of bytes. The least significant
* bit of each byte is 1 if the referenced page is in memory, otherwise
* it is zero.
*
* Because the status of a page can change after mincore() checks it
* but before it returns to the application, the returned vector may
* contain stale information. Only locked pages are guaranteed to
* remain in memory.
*
* return values:
* zero - success
* -EFAULT - vec points to an illegal address
* -EINVAL - addr is not a multiple of PAGE_SIZE
* -ENOMEM - Addresses in the range [addr, addr + len] are
* invalid for the address space of this process, or
* specify one or more pages which are not currently
* mapped
* -EAGAIN - A kernel resource was temporarily unavailable.
*/
SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len,
unsigned char __user *, vec)
{
long retval;
unsigned long pages;
unsigned char *tmp;
start = untagged_addr(start);
/* Check the start address: needs to be page-aligned.. */
if (unlikely(start & ~PAGE_MASK))
return -EINVAL;
/* ..and we need to be passed a valid user-space range */
if (!access_ok((void __user *) start, len))
return -ENOMEM;
/* This also avoids any overflows on PAGE_ALIGN */
pages = len >> PAGE_SHIFT;
pages += (offset_in_page(len)) != 0;
if (!access_ok(vec, pages))
return -EFAULT;
tmp = (void *) __get_free_page(GFP_USER);
if (!tmp)
return -EAGAIN;
retval = 0;
while (pages) {
/*
* Do at most PAGE_SIZE entries per iteration, due to
* the temporary buffer size.
*/
mmap_read_lock(current->mm);
retval = do_mincore(start, min(pages, PAGE_SIZE), tmp);
mmap_read_unlock(current->mm);
if (retval <= 0)
break;
if (copy_to_user(vec, tmp, retval)) {
retval = -EFAULT;
break;
}
pages -= retval;
vec += retval;
start += retval << PAGE_SHIFT;
retval = 0;
}
free_page((unsigned long) tmp);
return retval;
}