mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 2ccd48ce35
			
		
	
	
		2ccd48ce35
		
	
	
	
	
		
			
			In pcpu_map_pages(), if __pcpu_map_pages() fails on a CPU, we call __pcpu_unmap_pages() to clean up mappings on all CPUs where mappings were created, but not on the CPU where __pcpu_map_pages() fails. __pcpu_map_pages() and __pcpu_unmap_pages() are wrappers around vmap_pages_range_noflush() and vunmap_range_noflush(). All other callers of vmap_pages_range_noflush() call vunmap_range_noflush() when mapping fails, except pcpu_map_pages(). The reason could be that partial mappings may be left behind from a failed mapping attempt. Call __pcpu_unmap_pages() for the failed CPU as well in pcpu_map_pages(). This was found by code inspection, no failures or bugs were observed. Link: https://lkml.kernel.org/r/20240311194346.2291333-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Dennis Zhou <dennis@kernel.org> Cc: Christoph Lameter (Ampere) <cl@linux.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			410 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			410 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * mm/percpu-vm.c - vmalloc area based chunk allocation
 | |
|  *
 | |
|  * Copyright (C) 2010		SUSE Linux Products GmbH
 | |
|  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
 | |
|  *
 | |
|  * Chunks are mapped into vmalloc areas and populated page by page.
 | |
|  * This is the default chunk allocator.
 | |
|  */
 | |
| #include "internal.h"
 | |
| 
 | |
| static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
 | |
| 				    unsigned int cpu, int page_idx)
 | |
| {
 | |
| 	/* must not be used on pre-mapped chunk */
 | |
| 	WARN_ON(chunk->immutable);
 | |
| 
 | |
| 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_get_pages - get temp pages array
 | |
|  *
 | |
|  * Returns pointer to array of pointers to struct page which can be indexed
 | |
|  * with pcpu_page_idx().  Note that there is only one array and accesses
 | |
|  * should be serialized by pcpu_alloc_mutex.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Pointer to temp pages array on success.
 | |
|  */
 | |
| static struct page **pcpu_get_pages(void)
 | |
| {
 | |
| 	static struct page **pages;
 | |
| 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
 | |
| 
 | |
| 	lockdep_assert_held(&pcpu_alloc_mutex);
 | |
| 
 | |
| 	if (!pages)
 | |
| 		pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_pages - free pages which were allocated for @chunk
 | |
|  * @chunk: chunk pages were allocated for
 | |
|  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 | |
|  * @page_start: page index of the first page to be freed
 | |
|  * @page_end: page index of the last page to be freed + 1
 | |
|  *
 | |
|  * Free pages [@page_start and @page_end) in @pages for all units.
 | |
|  * The pages were allocated for @chunk.
 | |
|  */
 | |
| static void pcpu_free_pages(struct pcpu_chunk *chunk,
 | |
| 			    struct page **pages, int page_start, int page_end)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = page_start; i < page_end; i++) {
 | |
| 			struct page *page = pages[pcpu_page_idx(cpu, i)];
 | |
| 
 | |
| 			if (page)
 | |
| 				__free_page(page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_alloc_pages - allocates pages for @chunk
 | |
|  * @chunk: target chunk
 | |
|  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 | |
|  * @page_start: page index of the first page to be allocated
 | |
|  * @page_end: page index of the last page to be allocated + 1
 | |
|  * @gfp: allocation flags passed to the underlying allocator
 | |
|  *
 | |
|  * Allocate pages [@page_start,@page_end) into @pages for all units.
 | |
|  * The allocation is for @chunk.  Percpu core doesn't care about the
 | |
|  * content of @pages and will pass it verbatim to pcpu_map_pages().
 | |
|  */
 | |
| static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
 | |
| 			    struct page **pages, int page_start, int page_end,
 | |
| 			    gfp_t gfp)
 | |
| {
 | |
| 	unsigned int cpu, tcpu;
 | |
| 	int i;
 | |
| 
 | |
| 	gfp |= __GFP_HIGHMEM;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = page_start; i < page_end; i++) {
 | |
| 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
 | |
| 
 | |
| 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
 | |
| 			if (!*pagep)
 | |
| 				goto err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	while (--i >= page_start)
 | |
| 		__free_page(pages[pcpu_page_idx(cpu, i)]);
 | |
| 
 | |
| 	for_each_possible_cpu(tcpu) {
 | |
| 		if (tcpu == cpu)
 | |
| 			break;
 | |
| 		for (i = page_start; i < page_end; i++)
 | |
| 			__free_page(pages[pcpu_page_idx(tcpu, i)]);
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_pre_unmap_flush - flush cache prior to unmapping
 | |
|  * @chunk: chunk the regions to be flushed belongs to
 | |
|  * @page_start: page index of the first page to be flushed
 | |
|  * @page_end: page index of the last page to be flushed + 1
 | |
|  *
 | |
|  * Pages in [@page_start,@page_end) of @chunk are about to be
 | |
|  * unmapped.  Flush cache.  As each flushing trial can be very
 | |
|  * expensive, issue flush on the whole region at once rather than
 | |
|  * doing it for each cpu.  This could be an overkill but is more
 | |
|  * scalable.
 | |
|  */
 | |
| static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
 | |
| 				 int page_start, int page_end)
 | |
| {
 | |
| 	flush_cache_vunmap(
 | |
| 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 | |
| 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 | |
| }
 | |
| 
 | |
| static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
 | |
| {
 | |
| 	vunmap_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @pages: pages array which can be used to pass information to free
 | |
|  * @page_start: page index of the first page to unmap
 | |
|  * @page_end: page index of the last page to unmap + 1
 | |
|  *
 | |
|  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 | |
|  * Corresponding elements in @pages were cleared by the caller and can
 | |
|  * be used to carry information to pcpu_free_pages() which will be
 | |
|  * called after all unmaps are finished.  The caller should call
 | |
|  * proper pre/post flush functions.
 | |
|  */
 | |
| static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
 | |
| 			     struct page **pages, int page_start, int page_end)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = page_start; i < page_end; i++) {
 | |
| 			struct page *page;
 | |
| 
 | |
| 			page = pcpu_chunk_page(chunk, cpu, i);
 | |
| 			WARN_ON(!page);
 | |
| 			pages[pcpu_page_idx(cpu, i)] = page;
 | |
| 		}
 | |
| 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 | |
| 				   page_end - page_start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 | |
|  * @chunk: pcpu_chunk the regions to be flushed belong to
 | |
|  * @page_start: page index of the first page to be flushed
 | |
|  * @page_end: page index of the last page to be flushed + 1
 | |
|  *
 | |
|  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 | |
|  * TLB for the regions.  This can be skipped if the area is to be
 | |
|  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 | |
|  *
 | |
|  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 | |
|  * for the whole region.
 | |
|  */
 | |
| static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
 | |
| 				      int page_start, int page_end)
 | |
| {
 | |
| 	flush_tlb_kernel_range(
 | |
| 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 | |
| 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 | |
| }
 | |
| 
 | |
| static int __pcpu_map_pages(unsigned long addr, struct page **pages,
 | |
| 			    int nr_pages)
 | |
| {
 | |
| 	return vmap_pages_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT),
 | |
| 					PAGE_KERNEL, pages, PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_map_pages - map pages into a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @pages: pages array containing pages to be mapped
 | |
|  * @page_start: page index of the first page to map
 | |
|  * @page_end: page index of the last page to map + 1
 | |
|  *
 | |
|  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 | |
|  * caller is responsible for calling pcpu_post_map_flush() after all
 | |
|  * mappings are complete.
 | |
|  *
 | |
|  * This function is responsible for setting up whatever is necessary for
 | |
|  * reverse lookup (addr -> chunk).
 | |
|  */
 | |
| static int pcpu_map_pages(struct pcpu_chunk *chunk,
 | |
| 			  struct page **pages, int page_start, int page_end)
 | |
| {
 | |
| 	unsigned int cpu, tcpu;
 | |
| 	int i, err;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 | |
| 				       &pages[pcpu_page_idx(cpu, page_start)],
 | |
| 				       page_end - page_start);
 | |
| 		if (err < 0)
 | |
| 			goto err;
 | |
| 
 | |
| 		for (i = page_start; i < page_end; i++)
 | |
| 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
 | |
| 					    chunk);
 | |
| 	}
 | |
| 	return 0;
 | |
| err:
 | |
| 	for_each_possible_cpu(tcpu) {
 | |
| 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
 | |
| 				   page_end - page_start);
 | |
| 		if (tcpu == cpu)
 | |
| 			break;
 | |
| 	}
 | |
| 	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_post_map_flush - flush cache after mapping
 | |
|  * @chunk: pcpu_chunk the regions to be flushed belong to
 | |
|  * @page_start: page index of the first page to be flushed
 | |
|  * @page_end: page index of the last page to be flushed + 1
 | |
|  *
 | |
|  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 | |
|  * cache.
 | |
|  *
 | |
|  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 | |
|  * for the whole region.
 | |
|  */
 | |
| static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
 | |
| 				int page_start, int page_end)
 | |
| {
 | |
| 	flush_cache_vmap(
 | |
| 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 | |
| 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 | |
|  * @chunk: chunk of interest
 | |
|  * @page_start: the start page
 | |
|  * @page_end: the end page
 | |
|  * @gfp: allocation flags passed to the underlying memory allocator
 | |
|  *
 | |
|  * For each cpu, populate and map pages [@page_start,@page_end) into
 | |
|  * @chunk.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
 | |
|  */
 | |
| static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
 | |
| 			       int page_start, int page_end, gfp_t gfp)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 
 | |
| 	pages = pcpu_get_pages();
 | |
| 	if (!pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
 | |
| 		pcpu_free_pages(chunk, pages, page_start, page_end);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	pcpu_post_map_flush(chunk, page_start, page_end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 | |
|  * @chunk: chunk to depopulate
 | |
|  * @page_start: the start page
 | |
|  * @page_end: the end page
 | |
|  *
 | |
|  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 | |
|  * from @chunk.
 | |
|  *
 | |
|  * Caller is required to call pcpu_post_unmap_tlb_flush() if not returning the
 | |
|  * region back to vmalloc() which will lazily flush the tlb.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * pcpu_alloc_mutex.
 | |
|  */
 | |
| static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
 | |
| 				  int page_start, int page_end)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * If control reaches here, there must have been at least one
 | |
| 	 * successful population attempt so the temp pages array must
 | |
| 	 * be available now.
 | |
| 	 */
 | |
| 	pages = pcpu_get_pages();
 | |
| 	BUG_ON(!pages);
 | |
| 
 | |
| 	/* unmap and free */
 | |
| 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
 | |
| 
 | |
| 	pcpu_unmap_pages(chunk, pages, page_start, page_end);
 | |
| 
 | |
| 	pcpu_free_pages(chunk, pages, page_start, page_end);
 | |
| }
 | |
| 
 | |
| static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	struct vm_struct **vms;
 | |
| 
 | |
| 	chunk = pcpu_alloc_chunk(gfp);
 | |
| 	if (!chunk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
 | |
| 				pcpu_nr_groups, pcpu_atom_size);
 | |
| 	if (!vms) {
 | |
| 		pcpu_free_chunk(chunk);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	chunk->data = vms;
 | |
| 	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
 | |
| 
 | |
| 	pcpu_stats_chunk_alloc();
 | |
| 	trace_percpu_create_chunk(chunk->base_addr);
 | |
| 
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	if (!chunk)
 | |
| 		return;
 | |
| 
 | |
| 	pcpu_stats_chunk_dealloc();
 | |
| 	trace_percpu_destroy_chunk(chunk->base_addr);
 | |
| 
 | |
| 	if (chunk->data)
 | |
| 		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
 | |
| 	pcpu_free_chunk(chunk);
 | |
| }
 | |
| 
 | |
| static struct page *pcpu_addr_to_page(void *addr)
 | |
| {
 | |
| 	return vmalloc_to_page(addr);
 | |
| }
 | |
| 
 | |
| static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
 | |
| {
 | |
| 	/* no extra restriction */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_should_reclaim_chunk - determine if a chunk should go into reclaim
 | |
|  * @chunk: chunk of interest
 | |
|  *
 | |
|  * This is the entry point for percpu reclaim.  If a chunk qualifies, it is then
 | |
|  * isolated and managed in separate lists at the back of pcpu_slot: sidelined
 | |
|  * and to_depopulate respectively.  The to_depopulate list holds chunks slated
 | |
|  * for depopulation.  They no longer contribute to pcpu_nr_empty_pop_pages once
 | |
|  * they are on this list.  Once depopulated, they are moved onto the sidelined
 | |
|  * list which enables them to be pulled back in for allocation if no other chunk
 | |
|  * can suffice the allocation.
 | |
|  */
 | |
| static bool pcpu_should_reclaim_chunk(struct pcpu_chunk *chunk)
 | |
| {
 | |
| 	/* do not reclaim either the first chunk or reserved chunk */
 | |
| 	if (chunk == pcpu_first_chunk || chunk == pcpu_reserved_chunk)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it is isolated, it may be on the sidelined list so move it back to
 | |
| 	 * the to_depopulate list.  If we hit at least 1/4 pages empty pages AND
 | |
| 	 * there is no system-wide shortage of empty pages aside from this
 | |
| 	 * chunk, move it to the to_depopulate list.
 | |
| 	 */
 | |
| 	return ((chunk->isolated && chunk->nr_empty_pop_pages) ||
 | |
| 		(pcpu_nr_empty_pop_pages >
 | |
| 		 (PCPU_EMPTY_POP_PAGES_HIGH + chunk->nr_empty_pop_pages) &&
 | |
| 		 chunk->nr_empty_pop_pages >= chunk->nr_pages / 4));
 | |
| }
 |