mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 28bba2c293
			
		
	
	
		28bba2c293
		
	
	
	
	
		
			
			fsnotify_mmap_perm() requires a byte offset for the file about to be
mmap'ed.  But it is called from vm_mmap_pgoff(), which has a page offset. 
Previously the conversion was done incorrectly so let's fix it, being
careful not to overflow on 32-bit platforms.
Discovered during code review.
Link: https://lkml.kernel.org/r/20251003155238.2147410-1-ryan.roberts@arm.com
Fixes: 066e053fe2 ("fsnotify: add pre-content hooks on mmap()")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Kiryl Shutsemau <kas@kernel.org>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1346 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1346 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/elf-randomize.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/processor.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/page_idle.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <kunit/visibility.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "swap.h"
 | |
| 
 | |
| /**
 | |
|  * kfree_const - conditionally free memory
 | |
|  * @x: pointer to the memory
 | |
|  *
 | |
|  * Function calls kfree only if @x is not in .rodata section.
 | |
|  */
 | |
| void kfree_const(const void *x)
 | |
| {
 | |
| 	if (!is_kernel_rodata((unsigned long)x))
 | |
| 		kfree(x);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree_const);
 | |
| 
 | |
| /**
 | |
|  * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated.
 | |
|  * @s: The data to copy
 | |
|  * @len: The size of the data, not including the NUL terminator
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Return: newly allocated copy of @s with NUL-termination or %NULL in
 | |
|  * case of error
 | |
|  */
 | |
| static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 | |
| {
 | |
| 	char *buf;
 | |
| 
 | |
| 	/* '+1' for the NUL terminator */
 | |
| 	buf = kmalloc_track_caller(len + 1, gfp);
 | |
| 	if (!buf)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memcpy(buf, s, len);
 | |
| 	/* Ensure the buf is always NUL-terminated, regardless of @s. */
 | |
| 	buf[len] = '\0';
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kstrdup - allocate space for and copy an existing string
 | |
|  * @s: the string to duplicate
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Return: newly allocated copy of @s or %NULL in case of error
 | |
|  */
 | |
| noinline
 | |
| char *kstrdup(const char *s, gfp_t gfp)
 | |
| {
 | |
| 	return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(kstrdup);
 | |
| 
 | |
| /**
 | |
|  * kstrdup_const - conditionally duplicate an existing const string
 | |
|  * @s: the string to duplicate
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
 | |
|  * must not be passed to krealloc().
 | |
|  *
 | |
|  * Return: source string if it is in .rodata section otherwise
 | |
|  * fallback to kstrdup.
 | |
|  */
 | |
| const char *kstrdup_const(const char *s, gfp_t gfp)
 | |
| {
 | |
| 	if (is_kernel_rodata((unsigned long)s))
 | |
| 		return s;
 | |
| 
 | |
| 	return kstrdup(s, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(kstrdup_const);
 | |
| 
 | |
| /**
 | |
|  * kstrndup - allocate space for and copy an existing string
 | |
|  * @s: the string to duplicate
 | |
|  * @max: read at most @max chars from @s
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Note: Use kmemdup_nul() instead if the size is known exactly.
 | |
|  *
 | |
|  * Return: newly allocated copy of @s or %NULL in case of error
 | |
|  */
 | |
| char *kstrndup(const char *s, size_t max, gfp_t gfp)
 | |
| {
 | |
| 	return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(kstrndup);
 | |
| 
 | |
| /**
 | |
|  * kmemdup - duplicate region of memory
 | |
|  *
 | |
|  * @src: memory region to duplicate
 | |
|  * @len: memory region length
 | |
|  * @gfp: GFP mask to use
 | |
|  *
 | |
|  * Return: newly allocated copy of @src or %NULL in case of error,
 | |
|  * result is physically contiguous. Use kfree() to free.
 | |
|  */
 | |
| void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
 | |
| 	if (p)
 | |
| 		memcpy(p, src, len);
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(kmemdup_noprof);
 | |
| 
 | |
| /**
 | |
|  * kmemdup_array - duplicate a given array.
 | |
|  *
 | |
|  * @src: array to duplicate.
 | |
|  * @count: number of elements to duplicate from array.
 | |
|  * @element_size: size of each element of array.
 | |
|  * @gfp: GFP mask to use.
 | |
|  *
 | |
|  * Return: duplicated array of @src or %NULL in case of error,
 | |
|  * result is physically contiguous. Use kfree() to free.
 | |
|  */
 | |
| void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
 | |
| {
 | |
| 	return kmemdup(src, size_mul(element_size, count), gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemdup_array);
 | |
| 
 | |
| /**
 | |
|  * kvmemdup - duplicate region of memory
 | |
|  *
 | |
|  * @src: memory region to duplicate
 | |
|  * @len: memory region length
 | |
|  * @gfp: GFP mask to use
 | |
|  *
 | |
|  * Return: newly allocated copy of @src or %NULL in case of error,
 | |
|  * result may be not physically contiguous. Use kvfree() to free.
 | |
|  */
 | |
| void *kvmemdup(const void *src, size_t len, gfp_t gfp)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	p = kvmalloc(len, gfp);
 | |
| 	if (p)
 | |
| 		memcpy(p, src, len);
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(kvmemdup);
 | |
| 
 | |
| /**
 | |
|  * kmemdup_nul - Create a NUL-terminated string from unterminated data
 | |
|  * @s: The data to stringify
 | |
|  * @len: The size of the data
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Return: newly allocated copy of @s with NUL-termination or %NULL in
 | |
|  * case of error
 | |
|  */
 | |
| char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 | |
| {
 | |
| 	return s ? __kmemdup_nul(s, len, gfp) : NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(kmemdup_nul);
 | |
| 
 | |
| static kmem_buckets *user_buckets __ro_after_init;
 | |
| 
 | |
| static int __init init_user_buckets(void)
 | |
| {
 | |
| 	user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(init_user_buckets);
 | |
| 
 | |
| /**
 | |
|  * memdup_user - duplicate memory region from user space
 | |
|  *
 | |
|  * @src: source address in user space
 | |
|  * @len: number of bytes to copy
 | |
|  *
 | |
|  * Return: an ERR_PTR() on failure.  Result is physically
 | |
|  * contiguous, to be freed by kfree().
 | |
|  */
 | |
| void *memdup_user(const void __user *src, size_t len)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (copy_from_user(p, src, len)) {
 | |
| 		kfree(p);
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(memdup_user);
 | |
| 
 | |
| /**
 | |
|  * vmemdup_user - duplicate memory region from user space
 | |
|  *
 | |
|  * @src: source address in user space
 | |
|  * @len: number of bytes to copy
 | |
|  *
 | |
|  * Return: an ERR_PTR() on failure.  Result may be not
 | |
|  * physically contiguous.  Use kvfree() to free.
 | |
|  */
 | |
| void *vmemdup_user(const void __user *src, size_t len)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (copy_from_user(p, src, len)) {
 | |
| 		kvfree(p);
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(vmemdup_user);
 | |
| 
 | |
| /**
 | |
|  * strndup_user - duplicate an existing string from user space
 | |
|  * @s: The string to duplicate
 | |
|  * @n: Maximum number of bytes to copy, including the trailing NUL.
 | |
|  *
 | |
|  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
 | |
|  */
 | |
| char *strndup_user(const char __user *s, long n)
 | |
| {
 | |
| 	char *p;
 | |
| 	long length;
 | |
| 
 | |
| 	length = strnlen_user(s, n);
 | |
| 
 | |
| 	if (!length)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	if (length > n)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	p = memdup_user(s, length);
 | |
| 
 | |
| 	if (IS_ERR(p))
 | |
| 		return p;
 | |
| 
 | |
| 	p[length - 1] = '\0';
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(strndup_user);
 | |
| 
 | |
| /**
 | |
|  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 | |
|  *
 | |
|  * @src: source address in user space
 | |
|  * @len: number of bytes to copy
 | |
|  *
 | |
|  * Return: an ERR_PTR() on failure.
 | |
|  */
 | |
| void *memdup_user_nul(const void __user *src, size_t len)
 | |
| {
 | |
| 	char *p;
 | |
| 
 | |
| 	p = kmem_buckets_alloc_track_caller(user_buckets, len + 1, GFP_USER | __GFP_NOWARN);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (copy_from_user(p, src, len)) {
 | |
| 		kfree(p);
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 	p[len] = '\0';
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(memdup_user_nul);
 | |
| 
 | |
| /* Check if the vma is being used as a stack by this task */
 | |
| int vma_is_stack_for_current(const struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct task_struct * __maybe_unused t = current;
 | |
| 
 | |
| 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Change backing file, only valid to use during initial VMA setup.
 | |
|  */
 | |
| void vma_set_file(struct vm_area_struct *vma, struct file *file)
 | |
| {
 | |
| 	/* Changing an anonymous vma with this is illegal */
 | |
| 	get_file(file);
 | |
| 	swap(vma->vm_file, file);
 | |
| 	fput(file);
 | |
| }
 | |
| EXPORT_SYMBOL(vma_set_file);
 | |
| 
 | |
| #ifndef STACK_RND_MASK
 | |
| #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
 | |
| #endif
 | |
| 
 | |
| unsigned long randomize_stack_top(unsigned long stack_top)
 | |
| {
 | |
| 	unsigned long random_variable = 0;
 | |
| 
 | |
| 	if (current->flags & PF_RANDOMIZE) {
 | |
| 		random_variable = get_random_long();
 | |
| 		random_variable &= STACK_RND_MASK;
 | |
| 		random_variable <<= PAGE_SHIFT;
 | |
| 	}
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	return PAGE_ALIGN(stack_top) + random_variable;
 | |
| #else
 | |
| 	return PAGE_ALIGN(stack_top) - random_variable;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * randomize_page - Generate a random, page aligned address
 | |
|  * @start:	The smallest acceptable address the caller will take.
 | |
|  * @range:	The size of the area, starting at @start, within which the
 | |
|  *		random address must fall.
 | |
|  *
 | |
|  * If @start + @range would overflow, @range is capped.
 | |
|  *
 | |
|  * NOTE: Historical use of randomize_range, which this replaces, presumed that
 | |
|  * @start was already page aligned.  We now align it regardless.
 | |
|  *
 | |
|  * Return: A page aligned address within [start, start + range).  On error,
 | |
|  * @start is returned.
 | |
|  */
 | |
| unsigned long randomize_page(unsigned long start, unsigned long range)
 | |
| {
 | |
| 	if (!PAGE_ALIGNED(start)) {
 | |
| 		range -= PAGE_ALIGN(start) - start;
 | |
| 		start = PAGE_ALIGN(start);
 | |
| 	}
 | |
| 
 | |
| 	if (start > ULONG_MAX - range)
 | |
| 		range = ULONG_MAX - start;
 | |
| 
 | |
| 	range >>= PAGE_SHIFT;
 | |
| 
 | |
| 	if (range == 0)
 | |
| 		return start;
 | |
| 
 | |
| 	return start + (get_random_long() % range << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
 | |
| unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
 | |
| {
 | |
| 	/* Is the current task 32bit ? */
 | |
| 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
 | |
| 		return randomize_page(mm->brk, SZ_32M);
 | |
| 
 | |
| 	return randomize_page(mm->brk, SZ_1G);
 | |
| }
 | |
| 
 | |
| unsigned long arch_mmap_rnd(void)
 | |
| {
 | |
| 	unsigned long rnd;
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 | |
| 	if (is_compat_task())
 | |
| 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
 | |
| 	else
 | |
| #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
 | |
| 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
 | |
| 
 | |
| 	return rnd << PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static int mmap_is_legacy(const struct rlimit *rlim_stack)
 | |
| {
 | |
| 	if (current->personality & ADDR_COMPAT_LAYOUT)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* On parisc the stack always grows up - so a unlimited stack should
 | |
| 	 * not be an indicator to use the legacy memory layout. */
 | |
| 	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
 | |
| 		!IS_ENABLED(CONFIG_STACK_GROWSUP))
 | |
| 		return 1;
 | |
| 
 | |
| 	return sysctl_legacy_va_layout;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Leave enough space between the mmap area and the stack to honour ulimit in
 | |
|  * the face of randomisation.
 | |
|  */
 | |
| #define MIN_GAP		(SZ_128M)
 | |
| #define MAX_GAP		(STACK_TOP / 6 * 5)
 | |
| 
 | |
| static unsigned long mmap_base(const unsigned long rnd, const struct rlimit *rlim_stack)
 | |
| {
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	/*
 | |
| 	 * For an upwards growing stack the calculation is much simpler.
 | |
| 	 * Memory for the maximum stack size is reserved at the top of the
 | |
| 	 * task. mmap_base starts directly below the stack and grows
 | |
| 	 * downwards.
 | |
| 	 */
 | |
| 	return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
 | |
| #else
 | |
| 	unsigned long gap = rlim_stack->rlim_cur;
 | |
| 	unsigned long pad = stack_guard_gap;
 | |
| 
 | |
| 	/* Account for stack randomization if necessary */
 | |
| 	if (current->flags & PF_RANDOMIZE)
 | |
| 		pad += (STACK_RND_MASK << PAGE_SHIFT);
 | |
| 
 | |
| 	/* Values close to RLIM_INFINITY can overflow. */
 | |
| 	if (gap + pad > gap)
 | |
| 		gap += pad;
 | |
| 
 | |
| 	if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
 | |
| 		gap = MIN_GAP;
 | |
| 	else if (gap > MAX_GAP)
 | |
| 		gap = MAX_GAP;
 | |
| 
 | |
| 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void arch_pick_mmap_layout(struct mm_struct *mm, const struct rlimit *rlim_stack)
 | |
| {
 | |
| 	unsigned long random_factor = 0UL;
 | |
| 
 | |
| 	if (current->flags & PF_RANDOMIZE)
 | |
| 		random_factor = arch_mmap_rnd();
 | |
| 
 | |
| 	if (mmap_is_legacy(rlim_stack)) {
 | |
| 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
 | |
| 		mm_flags_clear(MMF_TOPDOWN, mm);
 | |
| 	} else {
 | |
| 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
 | |
| 		mm_flags_set(MMF_TOPDOWN, mm);
 | |
| 	}
 | |
| }
 | |
| #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 | |
| void arch_pick_mmap_layout(struct mm_struct *mm, const struct rlimit *rlim_stack)
 | |
| {
 | |
| 	mm->mmap_base = TASK_UNMAPPED_BASE;
 | |
| 	mm_flags_clear(MMF_TOPDOWN, mm);
 | |
| }
 | |
| #endif
 | |
| #ifdef CONFIG_MMU
 | |
| EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * __account_locked_vm - account locked pages to an mm's locked_vm
 | |
|  * @mm:          mm to account against
 | |
|  * @pages:       number of pages to account
 | |
|  * @inc:         %true if @pages should be considered positive, %false if not
 | |
|  * @task:        task used to check RLIMIT_MEMLOCK
 | |
|  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
 | |
|  *
 | |
|  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
 | |
|  * that mmap_lock is held as writer.
 | |
|  *
 | |
|  * Return:
 | |
|  * * 0       on success
 | |
|  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 | |
|  */
 | |
| int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
 | |
| 			const struct task_struct *task, bool bypass_rlim)
 | |
| {
 | |
| 	unsigned long locked_vm, limit;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mmap_assert_write_locked(mm);
 | |
| 
 | |
| 	locked_vm = mm->locked_vm;
 | |
| 	if (inc) {
 | |
| 		if (!bypass_rlim) {
 | |
| 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 | |
| 			if (locked_vm + pages > limit)
 | |
| 				ret = -ENOMEM;
 | |
| 		}
 | |
| 		if (!ret)
 | |
| 			mm->locked_vm = locked_vm + pages;
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(pages > locked_vm);
 | |
| 		mm->locked_vm = locked_vm - pages;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
 | |
| 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
 | |
| 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
 | |
| 		 ret ? " - exceeded" : "");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__account_locked_vm);
 | |
| 
 | |
| /**
 | |
|  * account_locked_vm - account locked pages to an mm's locked_vm
 | |
|  * @mm:          mm to account against, may be NULL
 | |
|  * @pages:       number of pages to account
 | |
|  * @inc:         %true if @pages should be considered positive, %false if not
 | |
|  *
 | |
|  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
 | |
|  *
 | |
|  * Return:
 | |
|  * * 0       on success, or if mm is NULL
 | |
|  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 | |
|  */
 | |
| int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (pages == 0 || !mm)
 | |
| 		return 0;
 | |
| 
 | |
| 	mmap_write_lock(mm);
 | |
| 	ret = __account_locked_vm(mm, pages, inc, current,
 | |
| 				  capable(CAP_IPC_LOCK));
 | |
| 	mmap_write_unlock(mm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(account_locked_vm);
 | |
| 
 | |
| unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot,
 | |
| 	unsigned long flag, unsigned long pgoff)
 | |
| {
 | |
| 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 | |
| 	unsigned long ret;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long populate;
 | |
| 	LIST_HEAD(uf);
 | |
| 
 | |
| 	ret = security_mmap_file(file, prot, flag);
 | |
| 	if (!ret)
 | |
| 		ret = fsnotify_mmap_perm(file, prot, off, len);
 | |
| 	if (!ret) {
 | |
| 		if (mmap_write_lock_killable(mm))
 | |
| 			return -EINTR;
 | |
| 		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
 | |
| 			      &uf);
 | |
| 		mmap_write_unlock(mm);
 | |
| 		userfaultfd_unmap_complete(mm, &uf);
 | |
| 		if (populate)
 | |
| 			mm_populate(ret, populate);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a userland memory mapping into the current process address space. See
 | |
|  * the comment for do_mmap() for more details on this operation in general.
 | |
|  *
 | |
|  * This differs from do_mmap() in that:
 | |
|  *
 | |
|  * a. An offset parameter is provided rather than pgoff, which is both checked
 | |
|  *    for overflow and page alignment.
 | |
|  * b. mmap locking is performed on the caller's behalf.
 | |
|  * c. Userfaultfd unmap events and memory population are handled.
 | |
|  *
 | |
|  * This means that this function performs essentially the same work as if
 | |
|  * userland were invoking mmap (2).
 | |
|  *
 | |
|  * Returns either an error, or the address at which the requested mapping has
 | |
|  * been performed.
 | |
|  */
 | |
| unsigned long vm_mmap(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot,
 | |
| 	unsigned long flag, unsigned long offset)
 | |
| {
 | |
| 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
 | |
| 		return -EINVAL;
 | |
| 	if (unlikely(offset_in_page(offset)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 | |
| }
 | |
| EXPORT_SYMBOL(vm_mmap);
 | |
| 
 | |
| /**
 | |
|  * __vmalloc_array - allocate memory for a virtually contiguous array.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 	return __vmalloc_noprof(bytes, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(__vmalloc_array_noprof);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_array - allocate memory for a virtually contiguous array.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  */
 | |
| void *vmalloc_array_noprof(size_t n, size_t size)
 | |
| {
 | |
| 	return __vmalloc_array_noprof(n, size, GFP_KERNEL);
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_array_noprof);
 | |
| 
 | |
| /**
 | |
|  * __vcalloc - allocate and zero memory for a virtually contiguous array.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
 | |
| }
 | |
| EXPORT_SYMBOL(__vcalloc_noprof);
 | |
| 
 | |
| /**
 | |
|  * vcalloc - allocate and zero memory for a virtually contiguous array.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  */
 | |
| void *vcalloc_noprof(size_t n, size_t size)
 | |
| {
 | |
| 	return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
 | |
| }
 | |
| EXPORT_SYMBOL(vcalloc_noprof);
 | |
| 
 | |
| struct anon_vma *folio_anon_vma(const struct folio *folio)
 | |
| {
 | |
| 	unsigned long mapping = (unsigned long)folio->mapping;
 | |
| 
 | |
| 	if ((mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
 | |
| 		return NULL;
 | |
| 	return (void *)(mapping - FOLIO_MAPPING_ANON);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_mapping - Find the mapping where this folio is stored.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * For folios which are in the page cache, return the mapping that this
 | |
|  * page belongs to.  Folios in the swap cache return the swap mapping
 | |
|  * this page is stored in (which is different from the mapping for the
 | |
|  * swap file or swap device where the data is stored).
 | |
|  *
 | |
|  * You can call this for folios which aren't in the swap cache or page
 | |
|  * cache and it will return NULL.
 | |
|  */
 | |
| struct address_space *folio_mapping(const struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 
 | |
| 	/* This happens if someone calls flush_dcache_page on slab page */
 | |
| 	if (unlikely(folio_test_slab(folio)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (unlikely(folio_test_swapcache(folio)))
 | |
| 		return swap_address_space(folio->swap);
 | |
| 
 | |
| 	mapping = folio->mapping;
 | |
| 	if ((unsigned long)mapping & FOLIO_MAPPING_FLAGS)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return mapping;
 | |
| }
 | |
| EXPORT_SYMBOL(folio_mapping);
 | |
| 
 | |
| /**
 | |
|  * folio_copy - Copy the contents of one folio to another.
 | |
|  * @dst: Folio to copy to.
 | |
|  * @src: Folio to copy from.
 | |
|  *
 | |
|  * The bytes in the folio represented by @src are copied to @dst.
 | |
|  * Assumes the caller has validated that @dst is at least as large as @src.
 | |
|  * Can be called in atomic context for order-0 folios, but if the folio is
 | |
|  * larger, it may sleep.
 | |
|  */
 | |
| void folio_copy(struct folio *dst, struct folio *src)
 | |
| {
 | |
| 	long i = 0;
 | |
| 	long nr = folio_nr_pages(src);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		copy_highpage(folio_page(dst, i), folio_page(src, i));
 | |
| 		if (++i == nr)
 | |
| 			break;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(folio_copy);
 | |
| 
 | |
| int folio_mc_copy(struct folio *dst, struct folio *src)
 | |
| {
 | |
| 	long nr = folio_nr_pages(src);
 | |
| 	long i = 0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
 | |
| 			return -EHWPOISON;
 | |
| 		if (++i == nr)
 | |
| 			break;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(folio_mc_copy);
 | |
| 
 | |
| int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 | |
| static int sysctl_overcommit_ratio __read_mostly = 50;
 | |
| static unsigned long sysctl_overcommit_kbytes __read_mostly;
 | |
| int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 | |
| unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 | |
| unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| 
 | |
| static int overcommit_ratio_handler(const struct ctl_table *table, int write,
 | |
| 				void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		sysctl_overcommit_kbytes = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sync_overcommit_as(struct work_struct *dummy)
 | |
| {
 | |
| 	percpu_counter_sync(&vm_committed_as);
 | |
| }
 | |
| 
 | |
| static int overcommit_policy_handler(const struct ctl_table *table, int write,
 | |
| 				void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	struct ctl_table t;
 | |
| 	int new_policy = -1;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * The deviation of sync_overcommit_as could be big with loose policy
 | |
| 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
 | |
| 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
 | |
| 	 * with the strict "NEVER", and to avoid possible race condition (even
 | |
| 	 * though user usually won't too frequently do the switching to policy
 | |
| 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
 | |
| 	 *	1. changing the batch
 | |
| 	 *	2. sync percpu count on each CPU
 | |
| 	 *	3. switch the policy
 | |
| 	 */
 | |
| 	if (write) {
 | |
| 		t = *table;
 | |
| 		t.data = &new_policy;
 | |
| 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 | |
| 		if (ret || new_policy == -1)
 | |
| 			return ret;
 | |
| 
 | |
| 		mm_compute_batch(new_policy);
 | |
| 		if (new_policy == OVERCOMMIT_NEVER)
 | |
| 			schedule_on_each_cpu(sync_overcommit_as);
 | |
| 		sysctl_overcommit_memory = new_policy;
 | |
| 	} else {
 | |
| 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int overcommit_kbytes_handler(const struct ctl_table *table, int write,
 | |
| 				void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		sysctl_overcommit_ratio = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct ctl_table util_sysctl_table[] = {
 | |
| 	{
 | |
| 		.procname	= "overcommit_memory",
 | |
| 		.data		= &sysctl_overcommit_memory,
 | |
| 		.maxlen		= sizeof(sysctl_overcommit_memory),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= overcommit_policy_handler,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_TWO,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "overcommit_ratio",
 | |
| 		.data		= &sysctl_overcommit_ratio,
 | |
| 		.maxlen		= sizeof(sysctl_overcommit_ratio),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= overcommit_ratio_handler,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "overcommit_kbytes",
 | |
| 		.data		= &sysctl_overcommit_kbytes,
 | |
| 		.maxlen		= sizeof(sysctl_overcommit_kbytes),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= overcommit_kbytes_handler,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "user_reserve_kbytes",
 | |
| 		.data		= &sysctl_user_reserve_kbytes,
 | |
| 		.maxlen		= sizeof(sysctl_user_reserve_kbytes),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_doulongvec_minmax,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "admin_reserve_kbytes",
 | |
| 		.data		= &sysctl_admin_reserve_kbytes,
 | |
| 		.maxlen		= sizeof(sysctl_admin_reserve_kbytes),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_doulongvec_minmax,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init init_vm_util_sysctls(void)
 | |
| {
 | |
| 	register_sysctl_init("vm", util_sysctl_table);
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(init_vm_util_sysctls);
 | |
| #endif /* CONFIG_SYSCTL */
 | |
| 
 | |
| /*
 | |
|  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 | |
|  */
 | |
| unsigned long vm_commit_limit(void)
 | |
| {
 | |
| 	unsigned long allowed;
 | |
| 
 | |
| 	if (sysctl_overcommit_kbytes)
 | |
| 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 | |
| 	else
 | |
| 		allowed = ((totalram_pages() - hugetlb_total_pages())
 | |
| 			   * sysctl_overcommit_ratio / 100);
 | |
| 	allowed += total_swap_pages;
 | |
| 
 | |
| 	return allowed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure vm_committed_as in one cacheline and not cacheline shared with
 | |
|  * other variables. It can be updated by several CPUs frequently.
 | |
|  */
 | |
| struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 | |
| 
 | |
| /*
 | |
|  * The global memory commitment made in the system can be a metric
 | |
|  * that can be used to drive ballooning decisions when Linux is hosted
 | |
|  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 | |
|  * balancing memory across competing virtual machines that are hosted.
 | |
|  * Several metrics drive this policy engine including the guest reported
 | |
|  * memory commitment.
 | |
|  *
 | |
|  * The time cost of this is very low for small platforms, and for big
 | |
|  * platform like a 2S/36C/72T Skylake server, in worst case where
 | |
|  * vm_committed_as's spinlock is under severe contention, the time cost
 | |
|  * could be about 30~40 microseconds.
 | |
|  */
 | |
| unsigned long vm_memory_committed(void)
 | |
| {
 | |
| 	return percpu_counter_sum_positive(&vm_committed_as);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vm_memory_committed);
 | |
| 
 | |
| /*
 | |
|  * Check that a process has enough memory to allocate a new virtual
 | |
|  * mapping. 0 means there is enough memory for the allocation to
 | |
|  * succeed and -ENOMEM implies there is not.
 | |
|  *
 | |
|  * We currently support three overcommit policies, which are set via the
 | |
|  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
 | |
|  *
 | |
|  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 | |
|  * Additional code 2002 Jul 20 by Robert Love.
 | |
|  *
 | |
|  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 | |
|  *
 | |
|  * Note this is a helper function intended to be used by LSMs which
 | |
|  * wish to use this logic.
 | |
|  */
 | |
| int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin)
 | |
| {
 | |
| 	long allowed;
 | |
| 	unsigned long bytes_failed;
 | |
| 
 | |
| 	vm_acct_memory(pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sometimes we want to use more memory than we have
 | |
| 	 */
 | |
| 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 | |
| 		if (pages > totalram_pages() + total_swap_pages)
 | |
| 			goto error;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	allowed = vm_commit_limit();
 | |
| 	/*
 | |
| 	 * Reserve some for root
 | |
| 	 */
 | |
| 	if (!cap_sys_admin)
 | |
| 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't let a single process grow so big a user can't recover
 | |
| 	 */
 | |
| 	if (mm) {
 | |
| 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 		allowed -= min_t(long, mm->total_vm / 32, reserve);
 | |
| 	}
 | |
| 
 | |
| 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 | |
| 		return 0;
 | |
| error:
 | |
| 	bytes_failed = pages << PAGE_SHIFT;
 | |
| 	pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
 | |
| 			    __func__, current->pid, current->comm, bytes_failed);
 | |
| 	vm_unacct_memory(pages);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_cmdline() - copy the cmdline value to a buffer.
 | |
|  * @task:     the task whose cmdline value to copy.
 | |
|  * @buffer:   the buffer to copy to.
 | |
|  * @buflen:   the length of the buffer. Larger cmdline values are truncated
 | |
|  *            to this length.
 | |
|  *
 | |
|  * Return: the size of the cmdline field copied. Note that the copy does
 | |
|  * not guarantee an ending NULL byte.
 | |
|  */
 | |
| int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 | |
| {
 | |
| 	int res = 0;
 | |
| 	unsigned int len;
 | |
| 	struct mm_struct *mm = get_task_mm(task);
 | |
| 	unsigned long arg_start, arg_end, env_start, env_end;
 | |
| 	if (!mm)
 | |
| 		goto out;
 | |
| 	if (!mm->arg_end)
 | |
| 		goto out_mm;	/* Shh! No looking before we're done */
 | |
| 
 | |
| 	spin_lock(&mm->arg_lock);
 | |
| 	arg_start = mm->arg_start;
 | |
| 	arg_end = mm->arg_end;
 | |
| 	env_start = mm->env_start;
 | |
| 	env_end = mm->env_end;
 | |
| 	spin_unlock(&mm->arg_lock);
 | |
| 
 | |
| 	len = arg_end - arg_start;
 | |
| 
 | |
| 	if (len > buflen)
 | |
| 		len = buflen;
 | |
| 
 | |
| 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the nul at the end of args has been overwritten, then
 | |
| 	 * assume application is using setproctitle(3).
 | |
| 	 */
 | |
| 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 | |
| 		len = strnlen(buffer, res);
 | |
| 		if (len < res) {
 | |
| 			res = len;
 | |
| 		} else {
 | |
| 			len = env_end - env_start;
 | |
| 			if (len > buflen - res)
 | |
| 				len = buflen - res;
 | |
| 			res += access_process_vm(task, env_start,
 | |
| 						 buffer+res, len,
 | |
| 						 FOLL_FORCE);
 | |
| 			res = strnlen(buffer, res);
 | |
| 		}
 | |
| 	}
 | |
| out_mm:
 | |
| 	mmput(mm);
 | |
| out:
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| int __weak memcmp_pages(struct page *page1, struct page *page2)
 | |
| {
 | |
| 	char *addr1, *addr2;
 | |
| 	int ret;
 | |
| 
 | |
| 	addr1 = kmap_local_page(page1);
 | |
| 	addr2 = kmap_local_page(page2);
 | |
| 	ret = memcmp(addr1, addr2, PAGE_SIZE);
 | |
| 	kunmap_local(addr2);
 | |
| 	kunmap_local(addr1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| /**
 | |
|  * mem_dump_obj - Print available provenance information
 | |
|  * @object: object for which to find provenance information.
 | |
|  *
 | |
|  * This function uses pr_cont(), so that the caller is expected to have
 | |
|  * printed out whatever preamble is appropriate.  The provenance information
 | |
|  * depends on the type of object and on how much debugging is enabled.
 | |
|  * For example, for a slab-cache object, the slab name is printed, and,
 | |
|  * if available, the return address and stack trace from the allocation
 | |
|  * and last free path of that object.
 | |
|  */
 | |
| void mem_dump_obj(void *object)
 | |
| {
 | |
| 	const char *type;
 | |
| 
 | |
| 	if (kmem_dump_obj(object))
 | |
| 		return;
 | |
| 
 | |
| 	if (vmalloc_dump_obj(object))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_vmalloc_addr(object))
 | |
| 		type = "vmalloc memory";
 | |
| 	else if (virt_addr_valid(object))
 | |
| 		type = "non-slab/vmalloc memory";
 | |
| 	else if (object == NULL)
 | |
| 		type = "NULL pointer";
 | |
| 	else if (object == ZERO_SIZE_PTR)
 | |
| 		type = "zero-size pointer";
 | |
| 	else
 | |
| 		type = "non-paged memory";
 | |
| 
 | |
| 	pr_cont(" %s\n", type);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mem_dump_obj);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A driver might set a page logically offline -- PageOffline() -- and
 | |
|  * turn the page inaccessible in the hypervisor; after that, access to page
 | |
|  * content can be fatal.
 | |
|  *
 | |
|  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
 | |
|  * pages after checking PageOffline(); however, these PFN walkers can race
 | |
|  * with drivers that set PageOffline().
 | |
|  *
 | |
|  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
 | |
|  * synchronize with such drivers, achieving that a page cannot be set
 | |
|  * PageOffline() while frozen.
 | |
|  *
 | |
|  * page_offline_begin()/page_offline_end() is used by drivers that care about
 | |
|  * such races when setting a page PageOffline().
 | |
|  */
 | |
| static DECLARE_RWSEM(page_offline_rwsem);
 | |
| 
 | |
| void page_offline_freeze(void)
 | |
| {
 | |
| 	down_read(&page_offline_rwsem);
 | |
| }
 | |
| 
 | |
| void page_offline_thaw(void)
 | |
| {
 | |
| 	up_read(&page_offline_rwsem);
 | |
| }
 | |
| 
 | |
| void page_offline_begin(void)
 | |
| {
 | |
| 	down_write(&page_offline_rwsem);
 | |
| }
 | |
| EXPORT_SYMBOL(page_offline_begin);
 | |
| 
 | |
| void page_offline_end(void)
 | |
| {
 | |
| 	up_write(&page_offline_rwsem);
 | |
| }
 | |
| EXPORT_SYMBOL(page_offline_end);
 | |
| 
 | |
| #ifndef flush_dcache_folio
 | |
| void flush_dcache_folio(struct folio *folio)
 | |
| {
 | |
| 	long i, nr = folio_nr_pages(folio);
 | |
| 
 | |
| 	for (i = 0; i < nr; i++)
 | |
| 		flush_dcache_page(folio_page(folio, i));
 | |
| }
 | |
| EXPORT_SYMBOL(flush_dcache_folio);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * __compat_vma_mmap_prepare() - See description for compat_vma_mmap_prepare()
 | |
|  * for details. This is the same operation, only with a specific file operations
 | |
|  * struct which may or may not be the same as vma->vm_file->f_op.
 | |
|  * @f_op: The file operations whose .mmap_prepare() hook is specified.
 | |
|  * @file: The file which backs or will back the mapping.
 | |
|  * @vma: The VMA to apply the .mmap_prepare() hook to.
 | |
|  * Returns: 0 on success or error.
 | |
|  */
 | |
| int __compat_vma_mmap_prepare(const struct file_operations *f_op,
 | |
| 		struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct vm_area_desc desc = {
 | |
| 		.mm = vma->vm_mm,
 | |
| 		.file = file,
 | |
| 		.start = vma->vm_start,
 | |
| 		.end = vma->vm_end,
 | |
| 
 | |
| 		.pgoff = vma->vm_pgoff,
 | |
| 		.vm_file = vma->vm_file,
 | |
| 		.vm_flags = vma->vm_flags,
 | |
| 		.page_prot = vma->vm_page_prot,
 | |
| 	};
 | |
| 	int err;
 | |
| 
 | |
| 	err = f_op->mmap_prepare(&desc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	set_vma_from_desc(vma, &desc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__compat_vma_mmap_prepare);
 | |
| 
 | |
| /**
 | |
|  * compat_vma_mmap_prepare() - Apply the file's .mmap_prepare() hook to an
 | |
|  * existing VMA.
 | |
|  * @file: The file which possesss an f_op->mmap_prepare() hook.
 | |
|  * @vma: The VMA to apply the .mmap_prepare() hook to.
 | |
|  *
 | |
|  * Ordinarily, .mmap_prepare() is invoked directly upon mmap(). However, certain
 | |
|  * stacked filesystems invoke a nested mmap hook of an underlying file.
 | |
|  *
 | |
|  * Until all filesystems are converted to use .mmap_prepare(), we must be
 | |
|  * conservative and continue to invoke these stacked filesystems using the
 | |
|  * deprecated .mmap() hook.
 | |
|  *
 | |
|  * However we have a problem if the underlying file system possesses an
 | |
|  * .mmap_prepare() hook, as we are in a different context when we invoke the
 | |
|  * .mmap() hook, already having a VMA to deal with.
 | |
|  *
 | |
|  * compat_vma_mmap_prepare() is a compatibility function that takes VMA state,
 | |
|  * establishes a struct vm_area_desc descriptor, passes to the underlying
 | |
|  * .mmap_prepare() hook and applies any changes performed by it.
 | |
|  *
 | |
|  * Once the conversion of filesystems is complete this function will no longer
 | |
|  * be required and will be removed.
 | |
|  *
 | |
|  * Returns: 0 on success or error.
 | |
|  */
 | |
| int compat_vma_mmap_prepare(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	return __compat_vma_mmap_prepare(file->f_op, file, vma);
 | |
| }
 | |
| EXPORT_SYMBOL(compat_vma_mmap_prepare);
 | |
| 
 | |
| static void set_ps_flags(struct page_snapshot *ps, const struct folio *folio,
 | |
| 			 const struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only the first page of a high-order buddy page has PageBuddy() set.
 | |
| 	 * So we have to check manually whether this page is part of a high-
 | |
| 	 * order buddy page.
 | |
| 	 */
 | |
| 	if (PageBuddy(page))
 | |
| 		ps->flags |= PAGE_SNAPSHOT_PG_BUDDY;
 | |
| 	else if (page_count(page) == 0 && is_free_buddy_page(page))
 | |
| 		ps->flags |= PAGE_SNAPSHOT_PG_BUDDY;
 | |
| 
 | |
| 	if (folio_test_idle(folio))
 | |
| 		ps->flags |= PAGE_SNAPSHOT_PG_IDLE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * snapshot_page() - Create a snapshot of a struct page
 | |
|  * @ps: Pointer to a struct page_snapshot to store the page snapshot
 | |
|  * @page: The page to snapshot
 | |
|  *
 | |
|  * Create a snapshot of the page and store both its struct page and struct
 | |
|  * folio representations in @ps.
 | |
|  *
 | |
|  * A snapshot is marked as "faithful" if the compound state of @page was
 | |
|  * stable and allowed safe reconstruction of the folio representation. In
 | |
|  * rare cases where this is not possible (e.g. due to folio splitting),
 | |
|  * snapshot_page() falls back to treating @page as a single page and the
 | |
|  * snapshot is marked as "unfaithful". The snapshot_page_is_faithful()
 | |
|  * helper can be used to check for this condition.
 | |
|  */
 | |
| void snapshot_page(struct page_snapshot *ps, const struct page *page)
 | |
| {
 | |
| 	unsigned long head, nr_pages = 1;
 | |
| 	struct folio *foliop;
 | |
| 	int loops = 5;
 | |
| 
 | |
| 	ps->pfn = page_to_pfn(page);
 | |
| 	ps->flags = PAGE_SNAPSHOT_FAITHFUL;
 | |
| 
 | |
| again:
 | |
| 	memset(&ps->folio_snapshot, 0, sizeof(struct folio));
 | |
| 	memcpy(&ps->page_snapshot, page, sizeof(*page));
 | |
| 	head = ps->page_snapshot.compound_head;
 | |
| 	if ((head & 1) == 0) {
 | |
| 		ps->idx = 0;
 | |
| 		foliop = (struct folio *)&ps->page_snapshot;
 | |
| 		if (!folio_test_large(foliop)) {
 | |
| 			set_ps_flags(ps, page_folio(page), page);
 | |
| 			memcpy(&ps->folio_snapshot, foliop,
 | |
| 			       sizeof(struct page));
 | |
| 			return;
 | |
| 		}
 | |
| 		foliop = (struct folio *)page;
 | |
| 	} else {
 | |
| 		foliop = (struct folio *)(head - 1);
 | |
| 		ps->idx = folio_page_idx(foliop, page);
 | |
| 	}
 | |
| 
 | |
| 	if (ps->idx < MAX_FOLIO_NR_PAGES) {
 | |
| 		memcpy(&ps->folio_snapshot, foliop, 2 * sizeof(struct page));
 | |
| 		nr_pages = folio_nr_pages(&ps->folio_snapshot);
 | |
| 		if (nr_pages > 1)
 | |
| 			memcpy(&ps->folio_snapshot.__page_2, &foliop->__page_2,
 | |
| 			       sizeof(struct page));
 | |
| 		set_ps_flags(ps, foliop, page);
 | |
| 	}
 | |
| 
 | |
| 	if (ps->idx > nr_pages) {
 | |
| 		if (loops-- > 0)
 | |
| 			goto again;
 | |
| 		clear_compound_head(&ps->page_snapshot);
 | |
| 		foliop = (struct folio *)&ps->page_snapshot;
 | |
| 		memcpy(&ps->folio_snapshot, foliop, sizeof(struct page));
 | |
| 		ps->flags = 0;
 | |
| 		ps->idx = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /**
 | |
|  * folio_pte_batch - detect a PTE batch for a large folio
 | |
|  * @folio: The large folio to detect a PTE batch for.
 | |
|  * @ptep: Page table pointer for the first entry.
 | |
|  * @pte: Page table entry for the first page.
 | |
|  * @max_nr: The maximum number of table entries to consider.
 | |
|  *
 | |
|  * This is a simplified variant of folio_pte_batch_flags().
 | |
|  *
 | |
|  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
 | |
|  * pages of the same large folio in a single VMA and a single page table.
 | |
|  *
 | |
|  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
 | |
|  * the accessed bit, writable bit, dirt-bit and soft-dirty bit.
 | |
|  *
 | |
|  * ptep must map any page of the folio. max_nr must be at least one and
 | |
|  * must be limited by the caller so scanning cannot exceed a single VMA and
 | |
|  * a single page table.
 | |
|  *
 | |
|  * Return: the number of table entries in the batch.
 | |
|  */
 | |
| unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte,
 | |
| 		unsigned int max_nr)
 | |
| {
 | |
| 	return folio_pte_batch_flags(folio, NULL, ptep, &pte, max_nr, 0);
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 | |
| /**
 | |
|  * page_range_contiguous - test whether the page range is contiguous
 | |
|  * @page: the start of the page range.
 | |
|  * @nr_pages: the number of pages in the range.
 | |
|  *
 | |
|  * Test whether the page range is contiguous, such that they can be iterated
 | |
|  * naively, corresponding to iterating a contiguous PFN range.
 | |
|  *
 | |
|  * This function should primarily only be used for debug checks, or when
 | |
|  * working with page ranges that are not naturally contiguous (e.g., pages
 | |
|  * within a folio are).
 | |
|  *
 | |
|  * Returns true if contiguous, otherwise false.
 | |
|  */
 | |
| bool page_range_contiguous(const struct page *page, unsigned long nr_pages)
 | |
| {
 | |
| 	const unsigned long start_pfn = page_to_pfn(page);
 | |
| 	const unsigned long end_pfn = start_pfn + nr_pages;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * The memmap is allocated per memory section, so no need to check
 | |
| 	 * within the first section. However, we need to check each other
 | |
| 	 * spanned memory section once, making sure the first page in a
 | |
| 	 * section could similarly be reached by just iterating pages.
 | |
| 	 */
 | |
| 	for (pfn = ALIGN(start_pfn, PAGES_PER_SECTION);
 | |
| 	     pfn < end_pfn; pfn += PAGES_PER_SECTION)
 | |
| 		if (unlikely(page + (pfn - start_pfn) != pfn_to_page(pfn)))
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL(page_range_contiguous);
 | |
| #endif
 |