linux/net/ipv4/tcp_metrics.c
Linus Torvalds 07fdad3a93 Networking changes for 6.18.
Core & protocols
 ----------------
 
  - Improve drop account scalability on NUMA hosts for RAW and UDP sockets
    and the backlog, almost doubling the Pps capacity under DoS.
 
  - Optimize the UDP RX performance under stress, reducing contention,
    revisiting the binary layout of the involved data structs and
    implementing NUMA-aware locking. This improves UDP RX performance by
    an additional 50%, even more under extreme conditions.
 
  - Add support for PSP encryption of TCP connections; this mechanism has
    some similarities with IPsec and TLS, but offers superior HW offloads
    capabilities.
 
  - Ongoing work to support Accurate ECN for TCP. AccECN allows more than
    one congestion notification signal per RTT and is a building block for
    Low Latency, Low Loss, and Scalable Throughput (L4S).
 
  - Reorganize the TCP socket binary layout for data locality, reducing
    the number of touched cachelines in the fastpath.
 
  - Refactor skb deferral free to better scale on large multi-NUMA hosts,
    this improves TCP and UDP RX performances significantly on such HW.
 
  - Increase the default socket memory buffer limits from 256K to 4M to
    better fit modern link speeds.
 
  - Improve handling of setups with a large number of nexthop, making dump
    operating scaling linearly and avoiding unneeded synchronize_rcu() on
    delete.
 
  - Improve bridge handling of VLAN FDB, storing a single entry per bridge
    instead of one entry per port; this makes the dump order of magnitude
    faster on large switches.
 
  - Restore IP ID correctly for encapsulated packets at GSO segmentation
    time, allowing GRO to merge packets in more scenarios.
 
  - Improve netfilter matching performance on large sets.
 
  - Improve MPTCP receive path performance by leveraging recently
    introduced core infrastructure (skb deferral free) and adopting recent
    TCP autotuning changes.
 
  - Allow bridges to redirect to a backup port when the bridge port is
    administratively down.
 
  - Introduce MPTCP 'laminar' endpoint that con be used only once per
    connection and simplify common MPTCP setups.
 
  - Add RCU safety to dst->dev, closing a lot of possible races.
 
  - A significant crypto library API for SCTP, MPTCP and IPv6 SR, reducing
    code duplication.
 
  - Supports pulling data from an skb frag into the linear area of an XDP
    buffer.
 
 Things we sprinkled into general kernel code
 --------------------------------------------
 
  - Generate netlink documentation from YAML using an integrated
    YAML parser.
 
 Driver API
 ----------
 
  - Support using IPv6 Flow Label in Rx hash computation and RSS queue
    selection.
 
  - Introduce API for fetching the DMA device for a given queue, allowing
    TCP zerocopy RX on more H/W setups.
 
  - Make XDP helpers compatible with unreadable memory, allowing more
    easily building DevMem-enabled drivers with a unified XDP/skbs
    datapath.
 
  - Add a new dedicated ethtool callback enabling drivers to provide the
    number of RX rings directly, improving efficiency and clarity in RX
    ring queries and RSS configuration.
 
  - Introduce a burst period for the health reporter, allowing better
    handling of multiple errors due to the same root cause.
 
  - Support for DPLL phase offset exponential moving average, controlling
    the average smoothing factor.
 
 Device drivers
 --------------
 
  - Add a new Huawei driver for 3rd gen NIC (hinic3).
 
  - Add a new SpacemiT driver for K1 ethernet MAC.
 
  - Add a generic abstraction for shared memory communication devices
    (dibps)
 
  - Ethernet high-speed NICs:
    - nVidia/Mellanox:
      - Use multiple per-queue doorbell, to avoid MMIO contention issues
      - support adjacent functions, allowing them to delegate their
        SR-IOV VFs to sibling PFs
      - support RSS for IPSec offload
      - support exposing raw cycle counters in PTP and mlx5
      - support for disabling host PFs.
    - Intel (100G, ice, idpf):
      - ice: support for SRIOV VFs over an Active-Active link aggregate
      - ice: support for firmware logging via debugfs
      - ice: support for Earliest TxTime First (ETF) hardware offload
      - idpf: support basic XDP functionalities and XSk
    - Broadcom (bnxt):
      - support Hyper-V VF ID
      - dynamic SRIOV resource allocations for RoCE
    - Meta (fbnic):
      - support queue API, zero-copy Rx and Tx
      - support basic XDP functionalities
      - devlink health support for FW crashes and OTP mem corruptions
      - expand hardware stats coverage to FEC, PHY, and Pause
    - Wangxun:
      - support ethtool coalesce options
      - support for multiple RSS contexts
 
  - Ethernet virtual:
    - Macsec:
      - replace custom netlink attribute checks with policy-level checks
    - Bonding:
      - support aggregator selection based on port priority
    - Microsoft vNIC:
      - use page pool fragments for RX buffers instead of full pages to
        improve memory efficiency
 
  - Ethernet NICs consumer, and embedded:
    - Qualcomm: support Ethernet function for IPQ9574 SoC
    - Airoha: implement wlan offloading via NPU
    - Freescale
      - enetc: add NETC timer PTP driver and add PTP support
      - fec: enable the Jumbo frame support for i.MX8QM
    - Renesas (R-Car S4): support HW offloading for layer 2 switching
      - support for RZ/{T2H, N2H} SoCs
    - Cadence (macb): support TAPRIO traffic scheduling
    - TI:
      - support for Gigabit ICSS ethernet SoC (icssm-prueth)
    - Synopsys (stmmac): a lot of cleanups
 
  - Ethernet PHYs:
    - Support 10g-qxgmi phy-mode for AQR412C, Felix DSA and Lynx PCS
      driver
    - Support bcm63268 GPHY power control
    - Support for Micrel lan8842 PHY and PTP
    - Support for Aquantia AQR412 and AQR115
 
  - CAN:
    - a large CAN-XL preparation work
    - reorganize raw_sock and uniqframe struct to minimize memory usage
    - rcar_canfd: update the CAN-FD handling
 
  - WiFi:
    - extended Neighbor Awareness Networking (NAN) support
    - S1G channel representation cleanup
    - improve S1G support
 
  - WiFi drivers:
    - Intel (iwlwifi):
      - major refactor and cleanup
    - Broadcom (brcm80211):
      - support for AP isolation
    - RealTek (rtw88/89) rtw88/89:
      - preparation work for RTL8922DE support
    - MediaTek (mt76):
      - HW restart improvements
      - MLO support
    - Qualcomm/Atheros (ath10k_
      - GTK rekey fixes
 
  - Bluetooth drivers:
    - btusb: support for several new IDs for MT7925
    - btintel: support for BlazarIW core
    - btintel_pcie: support for _suspend() / _resume()
    - btintel_pcie: support for Scorpious, Panther Lake-H484 IDs
 
 Signed-off-by: Paolo Abeni <pabeni@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmjdBdsSHHBhYmVuaUBy
 ZWRoYXQuY29tAAoJECkkeY3MjxOkWnAP/2Jz0ExnYMDxLxkkKqMte+3JNeF/KNjB
 zVIslYN/5ekkd1TMXyDLFlWHqUOUMSF9+cK5ZRMHG6/lzOueSzFuuuDFsWs6Kf2f
 q7Q9MzlXhR9++YCsdES1uS5x3PPjMInzo2ZivMFa6fUDLLFSzeAOKL9k+RS0EggU
 VlXv2Wkm73R0O6KAssgDsHke9cnNz+F0DzhQ0S3qkyZF9tS5NrDeUl7fZ47XZgwb
 ZuXdEzKmTTepo2XvZGxJoF2D7nekWFlHhLjEPpDJtET19nwhukCry41/FplJwlKR
 dWsYkqLkrOEQKFQ+q++/5c3BgFOG+IrQLbP5bGQF1tZRMl4Dqp9PDxK5fKJfccbS
 0VY3Y2qWOSYejT2Ji2kEHR5E5rPyFm3Y5A4Rnpz0yEHj14vL2v4zf7CZRkCyyDfD
 doIZXFGkM0+N7QeXLEN833cje9zjaXuP9GAE+2bb+wAWAZAqof4KX8JgHh+y5Rwm
 pvUtvFxmEtntlMwNBap8aT3FquGtfZncU8pzAE5kvWjuMvyF0NVWiE5rB2kSQM/X
 NLmUdvDyjwwJqthXAJG0fl+a0mNJ/kOAqSOKJDJrfKDGWa+ovwY0iY06SpK0wIbO
 Wz7tpMk5MSlYXW8xWMlbyhvvU6T9xuoQ2KV4QTdMxc6Ir3sNX6YkQr+gjQjxB0gx
 ST2QF6lZeWFh
 =w2Kz
 -----END PGP SIGNATURE-----

Merge tag 'net-next-6.18' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Paolo Abeni:
 "Core & protocols:

   - Improve drop account scalability on NUMA hosts for RAW and UDP
     sockets and the backlog, almost doubling the Pps capacity under DoS

   - Optimize the UDP RX performance under stress, reducing contention,
     revisiting the binary layout of the involved data structs and
     implementing NUMA-aware locking. This improves UDP RX performance
     by an additional 50%, even more under extreme conditions

   - Add support for PSP encryption of TCP connections; this mechanism
     has some similarities with IPsec and TLS, but offers superior HW
     offloads capabilities

   - Ongoing work to support Accurate ECN for TCP. AccECN allows more
     than one congestion notification signal per RTT and is a building
     block for Low Latency, Low Loss, and Scalable Throughput (L4S)

   - Reorganize the TCP socket binary layout for data locality, reducing
     the number of touched cachelines in the fastpath

   - Refactor skb deferral free to better scale on large multi-NUMA
     hosts, this improves TCP and UDP RX performances significantly on
     such HW

   - Increase the default socket memory buffer limits from 256K to 4M to
     better fit modern link speeds

   - Improve handling of setups with a large number of nexthop, making
     dump operating scaling linearly and avoiding unneeded
     synchronize_rcu() on delete

   - Improve bridge handling of VLAN FDB, storing a single entry per
     bridge instead of one entry per port; this makes the dump order of
     magnitude faster on large switches

   - Restore IP ID correctly for encapsulated packets at GSO
     segmentation time, allowing GRO to merge packets in more scenarios

   - Improve netfilter matching performance on large sets

   - Improve MPTCP receive path performance by leveraging recently
     introduced core infrastructure (skb deferral free) and adopting
     recent TCP autotuning changes

   - Allow bridges to redirect to a backup port when the bridge port is
     administratively down

   - Introduce MPTCP 'laminar' endpoint that con be used only once per
     connection and simplify common MPTCP setups

   - Add RCU safety to dst->dev, closing a lot of possible races

   - A significant crypto library API for SCTP, MPTCP and IPv6 SR,
     reducing code duplication

   - Supports pulling data from an skb frag into the linear area of an
     XDP buffer

  Things we sprinkled into general kernel code:

   - Generate netlink documentation from YAML using an integrated YAML
     parser

  Driver API:

   - Support using IPv6 Flow Label in Rx hash computation and RSS queue
     selection

   - Introduce API for fetching the DMA device for a given queue,
     allowing TCP zerocopy RX on more H/W setups

   - Make XDP helpers compatible with unreadable memory, allowing more
     easily building DevMem-enabled drivers with a unified XDP/skbs
     datapath

   - Add a new dedicated ethtool callback enabling drivers to provide
     the number of RX rings directly, improving efficiency and clarity
     in RX ring queries and RSS configuration

   - Introduce a burst period for the health reporter, allowing better
     handling of multiple errors due to the same root cause

   - Support for DPLL phase offset exponential moving average,
     controlling the average smoothing factor

  Device drivers:

   - Add a new Huawei driver for 3rd gen NIC (hinic3)

   - Add a new SpacemiT driver for K1 ethernet MAC

   - Add a generic abstraction for shared memory communication
     devices (dibps)

   - Ethernet high-speed NICs:
      - nVidia/Mellanox:
         - Use multiple per-queue doorbell, to avoid MMIO contention
           issues
         - support adjacent functions, allowing them to delegate their
           SR-IOV VFs to sibling PFs
         - support RSS for IPSec offload
         - support exposing raw cycle counters in PTP and mlx5
         - support for disabling host PFs.
      - Intel (100G, ice, idpf):
         - ice: support for SRIOV VFs over an Active-Active link
           aggregate
         - ice: support for firmware logging via debugfs
         - ice: support for Earliest TxTime First (ETF) hardware offload
         - idpf: support basic XDP functionalities and XSk
      - Broadcom (bnxt):
         - support Hyper-V VF ID
         - dynamic SRIOV resource allocations for RoCE
      - Meta (fbnic):
         - support queue API, zero-copy Rx and Tx
         - support basic XDP functionalities
         - devlink health support for FW crashes and OTP mem corruptions
         - expand hardware stats coverage to FEC, PHY, and Pause
      - Wangxun:
         - support ethtool coalesce options
         - support for multiple RSS contexts

   - Ethernet virtual:
      - Macsec:
         - replace custom netlink attribute checks with policy-level
           checks
      - Bonding:
         - support aggregator selection based on port priority
      - Microsoft vNIC:
         - use page pool fragments for RX buffers instead of full pages
           to improve memory efficiency

   - Ethernet NICs consumer, and embedded:
      - Qualcomm: support Ethernet function for IPQ9574 SoC
      - Airoha: implement wlan offloading via NPU
      - Freescale
         - enetc: add NETC timer PTP driver and add PTP support
         - fec: enable the Jumbo frame support for i.MX8QM
      - Renesas (R-Car S4):
         - support HW offloading for layer 2 switching
         - support for RZ/{T2H, N2H} SoCs
      - Cadence (macb): support TAPRIO traffic scheduling
      - TI:
         - support for Gigabit ICSS ethernet SoC (icssm-prueth)
      - Synopsys (stmmac): a lot of cleanups

   - Ethernet PHYs:
      - Support 10g-qxgmi phy-mode for AQR412C, Felix DSA and Lynx PCS
        driver
      - Support bcm63268 GPHY power control
      - Support for Micrel lan8842 PHY and PTP
      - Support for Aquantia AQR412 and AQR115

   - CAN:
      - a large CAN-XL preparation work
      - reorganize raw_sock and uniqframe struct to minimize memory
        usage
      - rcar_canfd: update the CAN-FD handling

   - WiFi:
      - extended Neighbor Awareness Networking (NAN) support
      - S1G channel representation cleanup
      - improve S1G support

   - WiFi drivers:
      - Intel (iwlwifi):
         - major refactor and cleanup
      - Broadcom (brcm80211):
         - support for AP isolation
      - RealTek (rtw88/89) rtw88/89:
         - preparation work for RTL8922DE support
      - MediaTek (mt76):
         - HW restart improvements
         - MLO support
      - Qualcomm/Atheros (ath10k):
         - GTK rekey fixes

   - Bluetooth drivers:
      - btusb: support for several new IDs for MT7925
      - btintel: support for BlazarIW core
      - btintel_pcie: support for _suspend() / _resume()
      - btintel_pcie: support for Scorpious, Panther Lake-H484 IDs"

* tag 'net-next-6.18' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1536 commits)
  net: stmmac: Add support for Allwinner A523 GMAC200
  dt-bindings: net: sun8i-emac: Add A523 GMAC200 compatible
  Revert "Documentation: net: add flow control guide and document ethtool API"
  octeontx2-pf: fix bitmap leak
  octeontx2-vf: fix bitmap leak
  net/mlx5e: Use extack in set rxfh callback
  net/mlx5e: Introduce mlx5e_rss_params for RSS configuration
  net/mlx5e: Introduce mlx5e_rss_init_params
  net/mlx5e: Remove unused mdev param from RSS indir init
  net/mlx5: Improve QoS error messages with actual depth values
  net/mlx5e: Prevent entering switchdev mode with inconsistent netns
  net/mlx5: HWS, Generalize complex matchers
  net/mlx5: Improve write-combining test reliability for ARM64 Grace CPUs
  selftests/net: add tcp_port_share to .gitignore
  Revert "net/mlx5e: Update and set Xon/Xoff upon MTU set"
  net: add NUMA awareness to skb_attempt_defer_free()
  net: use llist for sd->defer_list
  net: make softnet_data.defer_count an atomic
  selftests: drv-net: psp: add tests for destroying devices
  selftests: drv-net: psp: add test for auto-adjusting TCP MSS
  ...
2025-10-02 15:17:01 -07:00

1059 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/tcp.h>
#include <linux/hash.h>
#include <linux/tcp_metrics.h>
#include <linux/vmalloc.h>
#include <net/inet_connection_sock.h>
#include <net/net_namespace.h>
#include <net/request_sock.h>
#include <net/inetpeer.h>
#include <net/sock.h>
#include <net/ipv6.h>
#include <net/dst.h>
#include <net/tcp.h>
#include <net/genetlink.h>
static struct tcp_metrics_block *__tcp_get_metrics(const struct inetpeer_addr *saddr,
const struct inetpeer_addr *daddr,
struct net *net, unsigned int hash);
struct tcp_fastopen_metrics {
u16 mss;
u16 syn_loss:10, /* Recurring Fast Open SYN losses */
try_exp:2; /* Request w/ exp. option (once) */
unsigned long last_syn_loss; /* Last Fast Open SYN loss */
struct tcp_fastopen_cookie cookie;
};
/* TCP_METRIC_MAX includes 2 extra fields for userspace compatibility
* Kernel only stores RTT and RTTVAR in usec resolution
*/
#define TCP_METRIC_MAX_KERNEL (TCP_METRIC_MAX - 2)
struct tcp_metrics_block {
struct tcp_metrics_block __rcu *tcpm_next;
struct net *tcpm_net;
struct inetpeer_addr tcpm_saddr;
struct inetpeer_addr tcpm_daddr;
unsigned long tcpm_stamp;
u32 tcpm_lock;
u32 tcpm_vals[TCP_METRIC_MAX_KERNEL + 1];
struct tcp_fastopen_metrics tcpm_fastopen;
struct rcu_head rcu_head;
};
static inline struct net *tm_net(const struct tcp_metrics_block *tm)
{
/* Paired with the WRITE_ONCE() in tcpm_new() */
return READ_ONCE(tm->tcpm_net);
}
static bool tcp_metric_locked(struct tcp_metrics_block *tm,
enum tcp_metric_index idx)
{
/* Paired with WRITE_ONCE() in tcpm_suck_dst() */
return READ_ONCE(tm->tcpm_lock) & (1 << idx);
}
static u32 tcp_metric_get(const struct tcp_metrics_block *tm,
enum tcp_metric_index idx)
{
/* Paired with WRITE_ONCE() in tcp_metric_set() */
return READ_ONCE(tm->tcpm_vals[idx]);
}
static void tcp_metric_set(struct tcp_metrics_block *tm,
enum tcp_metric_index idx,
u32 val)
{
/* Paired with READ_ONCE() in tcp_metric_get() */
WRITE_ONCE(tm->tcpm_vals[idx], val);
}
static bool addr_same(const struct inetpeer_addr *a,
const struct inetpeer_addr *b)
{
return (a->family == b->family) && !inetpeer_addr_cmp(a, b);
}
struct tcpm_hash_bucket {
struct tcp_metrics_block __rcu *chain;
};
static struct tcpm_hash_bucket *tcp_metrics_hash __read_mostly;
static unsigned int tcp_metrics_hash_log __read_mostly;
static DEFINE_SPINLOCK(tcp_metrics_lock);
static DEFINE_SEQLOCK(fastopen_seqlock);
static void tcpm_suck_dst(struct tcp_metrics_block *tm,
const struct dst_entry *dst,
bool fastopen_clear)
{
u32 msval;
u32 val;
WRITE_ONCE(tm->tcpm_stamp, jiffies);
val = 0;
if (dst_metric_locked(dst, RTAX_RTT))
val |= 1 << TCP_METRIC_RTT;
if (dst_metric_locked(dst, RTAX_RTTVAR))
val |= 1 << TCP_METRIC_RTTVAR;
if (dst_metric_locked(dst, RTAX_SSTHRESH))
val |= 1 << TCP_METRIC_SSTHRESH;
if (dst_metric_locked(dst, RTAX_CWND))
val |= 1 << TCP_METRIC_CWND;
if (dst_metric_locked(dst, RTAX_REORDERING))
val |= 1 << TCP_METRIC_REORDERING;
/* Paired with READ_ONCE() in tcp_metric_locked() */
WRITE_ONCE(tm->tcpm_lock, val);
msval = dst_metric_raw(dst, RTAX_RTT);
tcp_metric_set(tm, TCP_METRIC_RTT, msval * USEC_PER_MSEC);
msval = dst_metric_raw(dst, RTAX_RTTVAR);
tcp_metric_set(tm, TCP_METRIC_RTTVAR, msval * USEC_PER_MSEC);
tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
dst_metric_raw(dst, RTAX_SSTHRESH));
tcp_metric_set(tm, TCP_METRIC_CWND,
dst_metric_raw(dst, RTAX_CWND));
tcp_metric_set(tm, TCP_METRIC_REORDERING,
dst_metric_raw(dst, RTAX_REORDERING));
if (fastopen_clear) {
write_seqlock(&fastopen_seqlock);
tm->tcpm_fastopen.mss = 0;
tm->tcpm_fastopen.syn_loss = 0;
tm->tcpm_fastopen.try_exp = 0;
tm->tcpm_fastopen.cookie.exp = false;
tm->tcpm_fastopen.cookie.len = 0;
write_sequnlock(&fastopen_seqlock);
}
}
#define TCP_METRICS_TIMEOUT (60 * 60 * HZ)
static void tcpm_check_stamp(struct tcp_metrics_block *tm,
const struct dst_entry *dst)
{
unsigned long limit;
if (!tm)
return;
limit = READ_ONCE(tm->tcpm_stamp) + TCP_METRICS_TIMEOUT;
if (unlikely(time_after(jiffies, limit)))
tcpm_suck_dst(tm, dst, false);
}
#define TCP_METRICS_RECLAIM_DEPTH 5
#define TCP_METRICS_RECLAIM_PTR (struct tcp_metrics_block *) 0x1UL
#define deref_locked(p) \
rcu_dereference_protected(p, lockdep_is_held(&tcp_metrics_lock))
static struct tcp_metrics_block *tcpm_new(struct dst_entry *dst,
struct inetpeer_addr *saddr,
struct inetpeer_addr *daddr,
unsigned int hash)
{
struct tcp_metrics_block *tm;
bool reclaim = false;
struct net *net;
spin_lock_bh(&tcp_metrics_lock);
net = dst_dev_net_rcu(dst);
/* While waiting for the spin-lock the cache might have been populated
* with this entry and so we have to check again.
*/
tm = __tcp_get_metrics(saddr, daddr, net, hash);
if (tm == TCP_METRICS_RECLAIM_PTR) {
reclaim = true;
tm = NULL;
}
if (tm) {
tcpm_check_stamp(tm, dst);
goto out_unlock;
}
if (unlikely(reclaim)) {
struct tcp_metrics_block *oldest;
oldest = deref_locked(tcp_metrics_hash[hash].chain);
for (tm = deref_locked(oldest->tcpm_next); tm;
tm = deref_locked(tm->tcpm_next)) {
if (time_before(READ_ONCE(tm->tcpm_stamp),
READ_ONCE(oldest->tcpm_stamp)))
oldest = tm;
}
tm = oldest;
} else {
tm = kzalloc(sizeof(*tm), GFP_ATOMIC);
if (!tm)
goto out_unlock;
}
/* Paired with the READ_ONCE() in tm_net() */
WRITE_ONCE(tm->tcpm_net, net);
tm->tcpm_saddr = *saddr;
tm->tcpm_daddr = *daddr;
tcpm_suck_dst(tm, dst, reclaim);
if (likely(!reclaim)) {
tm->tcpm_next = tcp_metrics_hash[hash].chain;
rcu_assign_pointer(tcp_metrics_hash[hash].chain, tm);
}
out_unlock:
spin_unlock_bh(&tcp_metrics_lock);
return tm;
}
static struct tcp_metrics_block *tcp_get_encode(struct tcp_metrics_block *tm, int depth)
{
if (tm)
return tm;
if (depth > TCP_METRICS_RECLAIM_DEPTH)
return TCP_METRICS_RECLAIM_PTR;
return NULL;
}
static struct tcp_metrics_block *__tcp_get_metrics(const struct inetpeer_addr *saddr,
const struct inetpeer_addr *daddr,
struct net *net, unsigned int hash)
{
struct tcp_metrics_block *tm;
int depth = 0;
for (tm = rcu_dereference(tcp_metrics_hash[hash].chain); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (addr_same(&tm->tcpm_saddr, saddr) &&
addr_same(&tm->tcpm_daddr, daddr) &&
net_eq(tm_net(tm), net))
break;
depth++;
}
return tcp_get_encode(tm, depth);
}
static struct tcp_metrics_block *__tcp_get_metrics_req(struct request_sock *req,
struct dst_entry *dst)
{
struct tcp_metrics_block *tm;
struct inetpeer_addr saddr, daddr;
unsigned int hash;
struct net *net;
saddr.family = req->rsk_ops->family;
daddr.family = req->rsk_ops->family;
switch (daddr.family) {
case AF_INET:
inetpeer_set_addr_v4(&saddr, inet_rsk(req)->ir_loc_addr);
inetpeer_set_addr_v4(&daddr, inet_rsk(req)->ir_rmt_addr);
hash = ipv4_addr_hash(inet_rsk(req)->ir_rmt_addr);
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
inetpeer_set_addr_v6(&saddr, &inet_rsk(req)->ir_v6_loc_addr);
inetpeer_set_addr_v6(&daddr, &inet_rsk(req)->ir_v6_rmt_addr);
hash = ipv6_addr_hash(&inet_rsk(req)->ir_v6_rmt_addr);
break;
#endif
default:
return NULL;
}
net = dst_dev_net_rcu(dst);
hash ^= net_hash_mix(net);
hash = hash_32(hash, tcp_metrics_hash_log);
for (tm = rcu_dereference(tcp_metrics_hash[hash].chain); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (addr_same(&tm->tcpm_saddr, &saddr) &&
addr_same(&tm->tcpm_daddr, &daddr) &&
net_eq(tm_net(tm), net))
break;
}
tcpm_check_stamp(tm, dst);
return tm;
}
static struct tcp_metrics_block *tcp_get_metrics(struct sock *sk,
struct dst_entry *dst,
bool create)
{
struct tcp_metrics_block *tm;
struct inetpeer_addr saddr, daddr;
unsigned int hash;
struct net *net;
if (sk->sk_family == AF_INET) {
inetpeer_set_addr_v4(&saddr, inet_sk(sk)->inet_saddr);
inetpeer_set_addr_v4(&daddr, inet_sk(sk)->inet_daddr);
hash = ipv4_addr_hash(inet_sk(sk)->inet_daddr);
}
#if IS_ENABLED(CONFIG_IPV6)
else if (sk->sk_family == AF_INET6) {
if (ipv6_addr_v4mapped(&sk->sk_v6_daddr)) {
inetpeer_set_addr_v4(&saddr, inet_sk(sk)->inet_saddr);
inetpeer_set_addr_v4(&daddr, inet_sk(sk)->inet_daddr);
hash = ipv4_addr_hash(inet_sk(sk)->inet_daddr);
} else {
inetpeer_set_addr_v6(&saddr, &sk->sk_v6_rcv_saddr);
inetpeer_set_addr_v6(&daddr, &sk->sk_v6_daddr);
hash = ipv6_addr_hash(&sk->sk_v6_daddr);
}
}
#endif
else
return NULL;
net = dst_dev_net_rcu(dst);
hash ^= net_hash_mix(net);
hash = hash_32(hash, tcp_metrics_hash_log);
tm = __tcp_get_metrics(&saddr, &daddr, net, hash);
if (tm == TCP_METRICS_RECLAIM_PTR)
tm = NULL;
if (!tm && create)
tm = tcpm_new(dst, &saddr, &daddr, hash);
else
tcpm_check_stamp(tm, dst);
return tm;
}
/* Save metrics learned by this TCP session. This function is called
* only, when TCP finishes successfully i.e. when it enters TIME-WAIT
* or goes from LAST-ACK to CLOSE.
*/
void tcp_update_metrics(struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
struct dst_entry *dst = __sk_dst_get(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct net *net = sock_net(sk);
struct tcp_metrics_block *tm;
unsigned long rtt;
u32 val;
int m;
sk_dst_confirm(sk);
if (READ_ONCE(net->ipv4.sysctl_tcp_nometrics_save) || !dst)
return;
rcu_read_lock();
if (icsk->icsk_backoff || !tp->srtt_us) {
/* This session failed to estimate rtt. Why?
* Probably, no packets returned in time. Reset our
* results.
*/
tm = tcp_get_metrics(sk, dst, false);
if (tm && !tcp_metric_locked(tm, TCP_METRIC_RTT))
tcp_metric_set(tm, TCP_METRIC_RTT, 0);
goto out_unlock;
} else
tm = tcp_get_metrics(sk, dst, true);
if (!tm)
goto out_unlock;
rtt = tcp_metric_get(tm, TCP_METRIC_RTT);
m = rtt - tp->srtt_us;
/* If newly calculated rtt larger than stored one, store new
* one. Otherwise, use EWMA. Remember, rtt overestimation is
* always better than underestimation.
*/
if (!tcp_metric_locked(tm, TCP_METRIC_RTT)) {
if (m <= 0)
rtt = tp->srtt_us;
else
rtt -= (m >> 3);
tcp_metric_set(tm, TCP_METRIC_RTT, rtt);
}
if (!tcp_metric_locked(tm, TCP_METRIC_RTTVAR)) {
unsigned long var;
if (m < 0)
m = -m;
/* Scale deviation to rttvar fixed point */
m >>= 1;
if (m < tp->mdev_us)
m = tp->mdev_us;
var = tcp_metric_get(tm, TCP_METRIC_RTTVAR);
if (m >= var)
var = m;
else
var -= (var - m) >> 2;
tcp_metric_set(tm, TCP_METRIC_RTTVAR, var);
}
if (tcp_in_initial_slowstart(tp)) {
/* Slow start still did not finish. */
if (!READ_ONCE(net->ipv4.sysctl_tcp_no_ssthresh_metrics_save) &&
!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
if (val && (tcp_snd_cwnd(tp) >> 1) > val)
tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
tcp_snd_cwnd(tp) >> 1);
}
if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
val = tcp_metric_get(tm, TCP_METRIC_CWND);
if (tcp_snd_cwnd(tp) > val)
tcp_metric_set(tm, TCP_METRIC_CWND,
tcp_snd_cwnd(tp));
}
} else if (!tcp_in_slow_start(tp) &&
icsk->icsk_ca_state == TCP_CA_Open) {
/* Cong. avoidance phase, cwnd is reliable. */
if (!READ_ONCE(net->ipv4.sysctl_tcp_no_ssthresh_metrics_save) &&
!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH))
tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
max(tcp_snd_cwnd(tp) >> 1, tp->snd_ssthresh));
if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
val = tcp_metric_get(tm, TCP_METRIC_CWND);
tcp_metric_set(tm, TCP_METRIC_CWND, (val + tcp_snd_cwnd(tp)) >> 1);
}
} else {
/* Else slow start did not finish, cwnd is non-sense,
* ssthresh may be also invalid.
*/
if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
val = tcp_metric_get(tm, TCP_METRIC_CWND);
tcp_metric_set(tm, TCP_METRIC_CWND,
(val + tp->snd_ssthresh) >> 1);
}
if (!READ_ONCE(net->ipv4.sysctl_tcp_no_ssthresh_metrics_save) &&
!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
if (val && tp->snd_ssthresh > val)
tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
tp->snd_ssthresh);
}
if (!tcp_metric_locked(tm, TCP_METRIC_REORDERING)) {
val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
if (val < tp->reordering &&
tp->reordering !=
READ_ONCE(net->ipv4.sysctl_tcp_reordering))
tcp_metric_set(tm, TCP_METRIC_REORDERING,
tp->reordering);
}
}
WRITE_ONCE(tm->tcpm_stamp, jiffies);
out_unlock:
rcu_read_unlock();
}
/* Initialize metrics on socket. */
void tcp_init_metrics(struct sock *sk)
{
struct dst_entry *dst = __sk_dst_get(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct net *net = sock_net(sk);
struct tcp_metrics_block *tm;
u32 val, crtt = 0; /* cached RTT scaled by 8 */
sk_dst_confirm(sk);
/* ssthresh may have been reduced unnecessarily during.
* 3WHS. Restore it back to its initial default.
*/
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
if (!dst)
goto reset;
rcu_read_lock();
tm = tcp_get_metrics(sk, dst, false);
if (!tm) {
rcu_read_unlock();
goto reset;
}
if (tcp_metric_locked(tm, TCP_METRIC_CWND))
tp->snd_cwnd_clamp = tcp_metric_get(tm, TCP_METRIC_CWND);
val = READ_ONCE(net->ipv4.sysctl_tcp_no_ssthresh_metrics_save) ?
0 : tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
if (val) {
tp->snd_ssthresh = val;
if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
tp->snd_ssthresh = tp->snd_cwnd_clamp;
}
val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
if (val && tp->reordering != val)
tp->reordering = val;
crtt = tcp_metric_get(tm, TCP_METRIC_RTT);
rcu_read_unlock();
reset:
/* The initial RTT measurement from the SYN/SYN-ACK is not ideal
* to seed the RTO for later data packets because SYN packets are
* small. Use the per-dst cached values to seed the RTO but keep
* the RTT estimator variables intact (e.g., srtt, mdev, rttvar).
* Later the RTO will be updated immediately upon obtaining the first
* data RTT sample (tcp_rtt_estimator()). Hence the cached RTT only
* influences the first RTO but not later RTT estimation.
*
* But if RTT is not available from the SYN (due to retransmits or
* syn cookies) or the cache, force a conservative 3secs timeout.
*
* A bit of theory. RTT is time passed after "normal" sized packet
* is sent until it is ACKed. In normal circumstances sending small
* packets force peer to delay ACKs and calculation is correct too.
* The algorithm is adaptive and, provided we follow specs, it
* NEVER underestimate RTT. BUT! If peer tries to make some clever
* tricks sort of "quick acks" for time long enough to decrease RTT
* to low value, and then abruptly stops to do it and starts to delay
* ACKs, wait for troubles.
*/
if (crtt > tp->srtt_us) {
/* Set RTO like tcp_rtt_estimator(), but from cached RTT. */
crtt /= 8 * USEC_PER_SEC / HZ;
inet_csk(sk)->icsk_rto = crtt + max(2 * crtt, tcp_rto_min(sk));
} else if (tp->srtt_us == 0) {
/* RFC6298: 5.7 We've failed to get a valid RTT sample from
* 3WHS. This is most likely due to retransmission,
* including spurious one. Reset the RTO back to 3secs
* from the more aggressive 1sec to avoid more spurious
* retransmission.
*/
tp->rttvar_us = jiffies_to_usecs(TCP_TIMEOUT_FALLBACK);
tp->mdev_us = tp->mdev_max_us = tp->rttvar_us;
inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
}
}
bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst)
{
struct tcp_metrics_block *tm;
bool ret;
if (!dst)
return false;
rcu_read_lock();
tm = __tcp_get_metrics_req(req, dst);
if (tm && tcp_metric_get(tm, TCP_METRIC_RTT))
ret = true;
else
ret = false;
rcu_read_unlock();
return ret;
}
void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
struct tcp_fastopen_cookie *cookie)
{
struct tcp_metrics_block *tm;
rcu_read_lock();
tm = tcp_get_metrics(sk, __sk_dst_get(sk), false);
if (tm) {
struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;
unsigned int seq;
do {
seq = read_seqbegin(&fastopen_seqlock);
if (tfom->mss)
*mss = tfom->mss;
*cookie = tfom->cookie;
if (cookie->len <= 0 && tfom->try_exp == 1)
cookie->exp = true;
} while (read_seqretry(&fastopen_seqlock, seq));
}
rcu_read_unlock();
}
void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
struct tcp_fastopen_cookie *cookie, bool syn_lost,
u16 try_exp)
{
struct dst_entry *dst = __sk_dst_get(sk);
struct tcp_metrics_block *tm;
if (!dst)
return;
rcu_read_lock();
tm = tcp_get_metrics(sk, dst, true);
if (tm) {
struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;
write_seqlock_bh(&fastopen_seqlock);
if (mss)
tfom->mss = mss;
if (cookie && cookie->len > 0)
tfom->cookie = *cookie;
else if (try_exp > tfom->try_exp &&
tfom->cookie.len <= 0 && !tfom->cookie.exp)
tfom->try_exp = try_exp;
if (syn_lost) {
++tfom->syn_loss;
tfom->last_syn_loss = jiffies;
} else
tfom->syn_loss = 0;
write_sequnlock_bh(&fastopen_seqlock);
}
rcu_read_unlock();
}
static struct genl_family tcp_metrics_nl_family;
static const struct nla_policy tcp_metrics_nl_policy[TCP_METRICS_ATTR_MAX + 1] = {
[TCP_METRICS_ATTR_ADDR_IPV4] = { .type = NLA_U32, },
[TCP_METRICS_ATTR_ADDR_IPV6] =
NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
[TCP_METRICS_ATTR_SADDR_IPV4] = { .type = NLA_U32, },
[TCP_METRICS_ATTR_SADDR_IPV6] =
NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
/* Following attributes are not received for GET/DEL,
* we keep them for reference
*/
#if 0
[TCP_METRICS_ATTR_AGE] = { .type = NLA_MSECS, },
[TCP_METRICS_ATTR_TW_TSVAL] = { .type = NLA_U32, },
[TCP_METRICS_ATTR_TW_TS_STAMP] = { .type = NLA_S32, },
[TCP_METRICS_ATTR_VALS] = { .type = NLA_NESTED, },
[TCP_METRICS_ATTR_FOPEN_MSS] = { .type = NLA_U16, },
[TCP_METRICS_ATTR_FOPEN_SYN_DROPS] = { .type = NLA_U16, },
[TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS] = { .type = NLA_MSECS, },
[TCP_METRICS_ATTR_FOPEN_COOKIE] = { .type = NLA_BINARY,
.len = TCP_FASTOPEN_COOKIE_MAX, },
#endif
};
/* Add attributes, caller cancels its header on failure */
static int tcp_metrics_fill_info(struct sk_buff *msg,
struct tcp_metrics_block *tm)
{
struct nlattr *nest;
int i;
switch (tm->tcpm_daddr.family) {
case AF_INET:
if (nla_put_in_addr(msg, TCP_METRICS_ATTR_ADDR_IPV4,
inetpeer_get_addr_v4(&tm->tcpm_daddr)) < 0)
goto nla_put_failure;
if (nla_put_in_addr(msg, TCP_METRICS_ATTR_SADDR_IPV4,
inetpeer_get_addr_v4(&tm->tcpm_saddr)) < 0)
goto nla_put_failure;
break;
case AF_INET6:
if (nla_put_in6_addr(msg, TCP_METRICS_ATTR_ADDR_IPV6,
inetpeer_get_addr_v6(&tm->tcpm_daddr)) < 0)
goto nla_put_failure;
if (nla_put_in6_addr(msg, TCP_METRICS_ATTR_SADDR_IPV6,
inetpeer_get_addr_v6(&tm->tcpm_saddr)) < 0)
goto nla_put_failure;
break;
default:
return -EAFNOSUPPORT;
}
if (nla_put_msecs(msg, TCP_METRICS_ATTR_AGE,
jiffies - READ_ONCE(tm->tcpm_stamp),
TCP_METRICS_ATTR_PAD) < 0)
goto nla_put_failure;
{
int n = 0;
nest = nla_nest_start_noflag(msg, TCP_METRICS_ATTR_VALS);
if (!nest)
goto nla_put_failure;
for (i = 0; i < TCP_METRIC_MAX_KERNEL + 1; i++) {
u32 val = tcp_metric_get(tm, i);
if (!val)
continue;
if (i == TCP_METRIC_RTT) {
if (nla_put_u32(msg, TCP_METRIC_RTT_US + 1,
val) < 0)
goto nla_put_failure;
n++;
val = max(val / 1000, 1U);
}
if (i == TCP_METRIC_RTTVAR) {
if (nla_put_u32(msg, TCP_METRIC_RTTVAR_US + 1,
val) < 0)
goto nla_put_failure;
n++;
val = max(val / 1000, 1U);
}
if (nla_put_u32(msg, i + 1, val) < 0)
goto nla_put_failure;
n++;
}
if (n)
nla_nest_end(msg, nest);
else
nla_nest_cancel(msg, nest);
}
{
struct tcp_fastopen_metrics tfom_copy[1], *tfom;
unsigned int seq;
do {
seq = read_seqbegin(&fastopen_seqlock);
tfom_copy[0] = tm->tcpm_fastopen;
} while (read_seqretry(&fastopen_seqlock, seq));
tfom = tfom_copy;
if (tfom->mss &&
nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_MSS,
tfom->mss) < 0)
goto nla_put_failure;
if (tfom->syn_loss &&
(nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROPS,
tfom->syn_loss) < 0 ||
nla_put_msecs(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS,
jiffies - tfom->last_syn_loss,
TCP_METRICS_ATTR_PAD) < 0))
goto nla_put_failure;
if (tfom->cookie.len > 0 &&
nla_put(msg, TCP_METRICS_ATTR_FOPEN_COOKIE,
tfom->cookie.len, tfom->cookie.val) < 0)
goto nla_put_failure;
}
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static int tcp_metrics_dump_info(struct sk_buff *skb,
struct netlink_callback *cb,
struct tcp_metrics_block *tm)
{
void *hdr;
hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
&tcp_metrics_nl_family, NLM_F_MULTI,
TCP_METRICS_CMD_GET);
if (!hdr)
return -EMSGSIZE;
if (tcp_metrics_fill_info(skb, tm) < 0)
goto nla_put_failure;
genlmsg_end(skb, hdr);
return 0;
nla_put_failure:
genlmsg_cancel(skb, hdr);
return -EMSGSIZE;
}
static int tcp_metrics_nl_dump(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
unsigned int max_rows = 1U << tcp_metrics_hash_log;
unsigned int row, s_row = cb->args[0];
int s_col = cb->args[1], col = s_col;
int res = 0;
for (row = s_row; row < max_rows; row++, s_col = 0) {
struct tcp_metrics_block *tm;
struct tcpm_hash_bucket *hb = tcp_metrics_hash + row;
rcu_read_lock();
for (col = 0, tm = rcu_dereference(hb->chain); tm;
tm = rcu_dereference(tm->tcpm_next), col++) {
if (!net_eq(tm_net(tm), net))
continue;
if (col < s_col)
continue;
res = tcp_metrics_dump_info(skb, cb, tm);
if (res < 0) {
rcu_read_unlock();
goto done;
}
}
rcu_read_unlock();
}
done:
cb->args[0] = row;
cb->args[1] = col;
return res;
}
static int __parse_nl_addr(struct genl_info *info, struct inetpeer_addr *addr,
unsigned int *hash, int optional, int v4, int v6)
{
struct nlattr *a;
a = info->attrs[v4];
if (a) {
inetpeer_set_addr_v4(addr, nla_get_in_addr(a));
if (hash)
*hash = ipv4_addr_hash(inetpeer_get_addr_v4(addr));
return 0;
}
a = info->attrs[v6];
if (a) {
struct in6_addr in6;
in6 = nla_get_in6_addr(a);
inetpeer_set_addr_v6(addr, &in6);
if (hash)
*hash = ipv6_addr_hash(inetpeer_get_addr_v6(addr));
return 0;
}
return optional ? 1 : -EAFNOSUPPORT;
}
static int parse_nl_addr(struct genl_info *info, struct inetpeer_addr *addr,
unsigned int *hash, int optional)
{
return __parse_nl_addr(info, addr, hash, optional,
TCP_METRICS_ATTR_ADDR_IPV4,
TCP_METRICS_ATTR_ADDR_IPV6);
}
static int parse_nl_saddr(struct genl_info *info, struct inetpeer_addr *addr)
{
return __parse_nl_addr(info, addr, NULL, 0,
TCP_METRICS_ATTR_SADDR_IPV4,
TCP_METRICS_ATTR_SADDR_IPV6);
}
static int tcp_metrics_nl_cmd_get(struct sk_buff *skb, struct genl_info *info)
{
struct tcp_metrics_block *tm;
struct inetpeer_addr saddr, daddr;
unsigned int hash;
struct sk_buff *msg;
struct net *net = genl_info_net(info);
void *reply;
int ret;
bool src = true;
ret = parse_nl_addr(info, &daddr, &hash, 0);
if (ret < 0)
return ret;
ret = parse_nl_saddr(info, &saddr);
if (ret < 0)
src = false;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
reply = genlmsg_put_reply(msg, info, &tcp_metrics_nl_family, 0,
info->genlhdr->cmd);
if (!reply)
goto nla_put_failure;
hash ^= net_hash_mix(net);
hash = hash_32(hash, tcp_metrics_hash_log);
ret = -ESRCH;
rcu_read_lock();
for (tm = rcu_dereference(tcp_metrics_hash[hash].chain); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (addr_same(&tm->tcpm_daddr, &daddr) &&
(!src || addr_same(&tm->tcpm_saddr, &saddr)) &&
net_eq(tm_net(tm), net)) {
ret = tcp_metrics_fill_info(msg, tm);
break;
}
}
rcu_read_unlock();
if (ret < 0)
goto out_free;
genlmsg_end(msg, reply);
return genlmsg_reply(msg, info);
nla_put_failure:
ret = -EMSGSIZE;
out_free:
nlmsg_free(msg);
return ret;
}
static void tcp_metrics_flush_all(struct net *net)
{
unsigned int max_rows = 1U << tcp_metrics_hash_log;
struct tcpm_hash_bucket *hb = tcp_metrics_hash;
struct tcp_metrics_block *tm;
unsigned int row;
for (row = 0; row < max_rows; row++, hb++) {
struct tcp_metrics_block __rcu **pp = &hb->chain;
bool match;
if (!rcu_access_pointer(*pp))
continue;
spin_lock_bh(&tcp_metrics_lock);
for (tm = deref_locked(*pp); tm; tm = deref_locked(*pp)) {
match = net ? net_eq(tm_net(tm), net) :
!check_net(tm_net(tm));
if (match) {
rcu_assign_pointer(*pp, tm->tcpm_next);
kfree_rcu(tm, rcu_head);
} else {
pp = &tm->tcpm_next;
}
}
spin_unlock_bh(&tcp_metrics_lock);
cond_resched();
}
}
static int tcp_metrics_nl_cmd_del(struct sk_buff *skb, struct genl_info *info)
{
struct tcpm_hash_bucket *hb;
struct tcp_metrics_block *tm;
struct tcp_metrics_block __rcu **pp;
struct inetpeer_addr saddr, daddr;
unsigned int hash;
struct net *net = genl_info_net(info);
int ret;
bool src = true, found = false;
ret = parse_nl_addr(info, &daddr, &hash, 1);
if (ret < 0)
return ret;
if (ret > 0) {
tcp_metrics_flush_all(net);
return 0;
}
ret = parse_nl_saddr(info, &saddr);
if (ret < 0)
src = false;
hash ^= net_hash_mix(net);
hash = hash_32(hash, tcp_metrics_hash_log);
hb = tcp_metrics_hash + hash;
pp = &hb->chain;
spin_lock_bh(&tcp_metrics_lock);
for (tm = deref_locked(*pp); tm; tm = deref_locked(*pp)) {
if (addr_same(&tm->tcpm_daddr, &daddr) &&
(!src || addr_same(&tm->tcpm_saddr, &saddr)) &&
net_eq(tm_net(tm), net)) {
rcu_assign_pointer(*pp, tm->tcpm_next);
kfree_rcu(tm, rcu_head);
found = true;
} else {
pp = &tm->tcpm_next;
}
}
spin_unlock_bh(&tcp_metrics_lock);
if (!found)
return -ESRCH;
return 0;
}
static const struct genl_small_ops tcp_metrics_nl_ops[] = {
{
.cmd = TCP_METRICS_CMD_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = tcp_metrics_nl_cmd_get,
.dumpit = tcp_metrics_nl_dump,
},
{
.cmd = TCP_METRICS_CMD_DEL,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = tcp_metrics_nl_cmd_del,
.flags = GENL_ADMIN_PERM,
},
};
static struct genl_family tcp_metrics_nl_family __ro_after_init = {
.hdrsize = 0,
.name = TCP_METRICS_GENL_NAME,
.version = TCP_METRICS_GENL_VERSION,
.maxattr = TCP_METRICS_ATTR_MAX,
.policy = tcp_metrics_nl_policy,
.netnsok = true,
.parallel_ops = true,
.module = THIS_MODULE,
.small_ops = tcp_metrics_nl_ops,
.n_small_ops = ARRAY_SIZE(tcp_metrics_nl_ops),
.resv_start_op = TCP_METRICS_CMD_DEL + 1,
};
static unsigned int tcpmhash_entries __initdata;
static int __init set_tcpmhash_entries(char *str)
{
ssize_t ret;
if (!str)
return 0;
ret = kstrtouint(str, 0, &tcpmhash_entries);
if (ret)
return 0;
return 1;
}
__setup("tcpmhash_entries=", set_tcpmhash_entries);
static void __init tcp_metrics_hash_alloc(void)
{
unsigned int slots = tcpmhash_entries;
size_t size;
if (!slots) {
if (totalram_pages() >= 128 * 1024)
slots = 16 * 1024;
else
slots = 8 * 1024;
}
tcp_metrics_hash_log = order_base_2(slots);
size = sizeof(struct tcpm_hash_bucket) << tcp_metrics_hash_log;
tcp_metrics_hash = kvzalloc(size, GFP_KERNEL);
if (!tcp_metrics_hash)
panic("Could not allocate the tcp_metrics hash table\n");
}
static void __net_exit tcp_net_metrics_exit_batch(struct list_head *net_exit_list)
{
tcp_metrics_flush_all(NULL);
}
static __net_initdata struct pernet_operations tcp_net_metrics_ops = {
.exit_batch = tcp_net_metrics_exit_batch,
};
void __init tcp_metrics_init(void)
{
int ret;
tcp_metrics_hash_alloc();
ret = register_pernet_subsys(&tcp_net_metrics_ops);
if (ret < 0)
panic("Could not register tcp_net_metrics_ops\n");
ret = genl_register_family(&tcp_metrics_nl_family);
if (ret < 0)
panic("Could not register tcp_metrics generic netlink\n");
}