mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			1632 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1632 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 | 
						|
 *
 | 
						|
 *  Interactivity improvements by Mike Galbraith
 | 
						|
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 | 
						|
 *
 | 
						|
 *  Various enhancements by Dmitry Adamushko.
 | 
						|
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 | 
						|
 *
 | 
						|
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 | 
						|
 *  Copyright IBM Corporation, 2007
 | 
						|
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 | 
						|
 *
 | 
						|
 *  Scaled math optimizations by Thomas Gleixner
 | 
						|
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 | 
						|
 *
 | 
						|
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 | 
						|
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/latencytop.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Targeted preemption latency for CPU-bound tasks:
 | 
						|
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
 | 
						|
 *
 | 
						|
 * NOTE: this latency value is not the same as the concept of
 | 
						|
 * 'timeslice length' - timeslices in CFS are of variable length
 | 
						|
 * and have no persistent notion like in traditional, time-slice
 | 
						|
 * based scheduling concepts.
 | 
						|
 *
 | 
						|
 * (to see the precise effective timeslice length of your workload,
 | 
						|
 *  run vmstat and monitor the context-switches (cs) field)
 | 
						|
 */
 | 
						|
unsigned int sysctl_sched_latency = 20000000ULL;
 | 
						|
 | 
						|
/*
 | 
						|
 * Minimal preemption granularity for CPU-bound tasks:
 | 
						|
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | 
						|
 */
 | 
						|
unsigned int sysctl_sched_min_granularity = 4000000ULL;
 | 
						|
 | 
						|
/*
 | 
						|
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 | 
						|
 */
 | 
						|
static unsigned int sched_nr_latency = 5;
 | 
						|
 | 
						|
/*
 | 
						|
 * After fork, child runs first. (default) If set to 0 then
 | 
						|
 * parent will (try to) run first.
 | 
						|
 */
 | 
						|
const_debug unsigned int sysctl_sched_child_runs_first = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_sched_yield() compat mode
 | 
						|
 *
 | 
						|
 * This option switches the agressive yield implementation of the
 | 
						|
 * old scheduler back on.
 | 
						|
 */
 | 
						|
unsigned int __read_mostly sysctl_sched_compat_yield;
 | 
						|
 | 
						|
/*
 | 
						|
 * SCHED_OTHER wake-up granularity.
 | 
						|
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | 
						|
 *
 | 
						|
 * This option delays the preemption effects of decoupled workloads
 | 
						|
 * and reduces their over-scheduling. Synchronous workloads will still
 | 
						|
 * have immediate wakeup/sleep latencies.
 | 
						|
 */
 | 
						|
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
 | 
						|
 | 
						|
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 | 
						|
 | 
						|
static const struct sched_class fair_sched_class;
 | 
						|
 | 
						|
/**************************************************************
 | 
						|
 * CFS operations on generic schedulable entities:
 | 
						|
 */
 | 
						|
 | 
						|
static inline struct task_struct *task_of(struct sched_entity *se)
 | 
						|
{
 | 
						|
	return container_of(se, struct task_struct, se);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FAIR_GROUP_SCHED
 | 
						|
 | 
						|
/* cpu runqueue to which this cfs_rq is attached */
 | 
						|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	return cfs_rq->rq;
 | 
						|
}
 | 
						|
 | 
						|
/* An entity is a task if it doesn't "own" a runqueue */
 | 
						|
#define entity_is_task(se)	(!se->my_q)
 | 
						|
 | 
						|
/* Walk up scheduling entities hierarchy */
 | 
						|
#define for_each_sched_entity(se) \
 | 
						|
		for (; se; se = se->parent)
 | 
						|
 | 
						|
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | 
						|
{
 | 
						|
	return p->se.cfs_rq;
 | 
						|
}
 | 
						|
 | 
						|
/* runqueue on which this entity is (to be) queued */
 | 
						|
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | 
						|
{
 | 
						|
	return se->cfs_rq;
 | 
						|
}
 | 
						|
 | 
						|
/* runqueue "owned" by this group */
 | 
						|
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | 
						|
{
 | 
						|
	return grp->my_q;
 | 
						|
}
 | 
						|
 | 
						|
/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 | 
						|
 * another cpu ('this_cpu')
 | 
						|
 */
 | 
						|
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 | 
						|
{
 | 
						|
	return cfs_rq->tg->cfs_rq[this_cpu];
 | 
						|
}
 | 
						|
 | 
						|
/* Iterate thr' all leaf cfs_rq's on a runqueue */
 | 
						|
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | 
						|
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 | 
						|
 | 
						|
/* Do the two (enqueued) entities belong to the same group ? */
 | 
						|
static inline int
 | 
						|
is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | 
						|
{
 | 
						|
	if (se->cfs_rq == pse->cfs_rq)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | 
						|
{
 | 
						|
	return se->parent;
 | 
						|
}
 | 
						|
 | 
						|
#else	/* CONFIG_FAIR_GROUP_SCHED */
 | 
						|
 | 
						|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	return container_of(cfs_rq, struct rq, cfs);
 | 
						|
}
 | 
						|
 | 
						|
#define entity_is_task(se)	1
 | 
						|
 | 
						|
#define for_each_sched_entity(se) \
 | 
						|
		for (; se; se = NULL)
 | 
						|
 | 
						|
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | 
						|
{
 | 
						|
	return &task_rq(p)->cfs;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | 
						|
{
 | 
						|
	struct task_struct *p = task_of(se);
 | 
						|
	struct rq *rq = task_rq(p);
 | 
						|
 | 
						|
	return &rq->cfs;
 | 
						|
}
 | 
						|
 | 
						|
/* runqueue "owned" by this group */
 | 
						|
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 | 
						|
{
 | 
						|
	return &cpu_rq(this_cpu)->cfs;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | 
						|
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 | 
						|
 | 
						|
static inline int
 | 
						|
is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#endif	/* CONFIG_FAIR_GROUP_SCHED */
 | 
						|
 | 
						|
 | 
						|
/**************************************************************
 | 
						|
 * Scheduling class tree data structure manipulation methods:
 | 
						|
 */
 | 
						|
 | 
						|
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
 | 
						|
{
 | 
						|
	s64 delta = (s64)(vruntime - min_vruntime);
 | 
						|
	if (delta > 0)
 | 
						|
		min_vruntime = vruntime;
 | 
						|
 | 
						|
	return min_vruntime;
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 | 
						|
{
 | 
						|
	s64 delta = (s64)(vruntime - min_vruntime);
 | 
						|
	if (delta < 0)
 | 
						|
		min_vruntime = vruntime;
 | 
						|
 | 
						|
	return min_vruntime;
 | 
						|
}
 | 
						|
 | 
						|
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	return se->vruntime - cfs_rq->min_vruntime;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Enqueue an entity into the rb-tree:
 | 
						|
 */
 | 
						|
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct sched_entity *entry;
 | 
						|
	s64 key = entity_key(cfs_rq, se);
 | 
						|
	int leftmost = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the right place in the rbtree:
 | 
						|
	 */
 | 
						|
	while (*link) {
 | 
						|
		parent = *link;
 | 
						|
		entry = rb_entry(parent, struct sched_entity, run_node);
 | 
						|
		/*
 | 
						|
		 * We dont care about collisions. Nodes with
 | 
						|
		 * the same key stay together.
 | 
						|
		 */
 | 
						|
		if (key < entity_key(cfs_rq, entry)) {
 | 
						|
			link = &parent->rb_left;
 | 
						|
		} else {
 | 
						|
			link = &parent->rb_right;
 | 
						|
			leftmost = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Maintain a cache of leftmost tree entries (it is frequently
 | 
						|
	 * used):
 | 
						|
	 */
 | 
						|
	if (leftmost) {
 | 
						|
		cfs_rq->rb_leftmost = &se->run_node;
 | 
						|
		/*
 | 
						|
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
 | 
						|
		 * value tracking the leftmost vruntime in the tree.
 | 
						|
		 */
 | 
						|
		cfs_rq->min_vruntime =
 | 
						|
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&se->run_node, parent, link);
 | 
						|
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 | 
						|
}
 | 
						|
 | 
						|
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	if (cfs_rq->rb_leftmost == &se->run_node) {
 | 
						|
		struct rb_node *next_node;
 | 
						|
		struct sched_entity *next;
 | 
						|
 | 
						|
		next_node = rb_next(&se->run_node);
 | 
						|
		cfs_rq->rb_leftmost = next_node;
 | 
						|
 | 
						|
		if (next_node) {
 | 
						|
			next = rb_entry(next_node,
 | 
						|
					struct sched_entity, run_node);
 | 
						|
			cfs_rq->min_vruntime =
 | 
						|
				max_vruntime(cfs_rq->min_vruntime,
 | 
						|
					     next->vruntime);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (cfs_rq->next == se)
 | 
						|
		cfs_rq->next = NULL;
 | 
						|
 | 
						|
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	return cfs_rq->rb_leftmost;
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 | 
						|
 | 
						|
	if (!last)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return rb_entry(last, struct sched_entity, run_node);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************
 | 
						|
 * Scheduling class statistics methods:
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
int sched_nr_latency_handler(struct ctl_table *table, int write,
 | 
						|
		struct file *filp, void __user *buffer, size_t *lenp,
 | 
						|
		loff_t *ppos)
 | 
						|
{
 | 
						|
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
 | 
						|
 | 
						|
	if (ret || !write)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 | 
						|
					sysctl_sched_min_granularity);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * delta *= P[w / rw]
 | 
						|
 */
 | 
						|
static inline unsigned long
 | 
						|
calc_delta_weight(unsigned long delta, struct sched_entity *se)
 | 
						|
{
 | 
						|
	for_each_sched_entity(se) {
 | 
						|
		delta = calc_delta_mine(delta,
 | 
						|
				se->load.weight, &cfs_rq_of(se)->load);
 | 
						|
	}
 | 
						|
 | 
						|
	return delta;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * delta /= w
 | 
						|
 */
 | 
						|
static inline unsigned long
 | 
						|
calc_delta_fair(unsigned long delta, struct sched_entity *se)
 | 
						|
{
 | 
						|
	if (unlikely(se->load.weight != NICE_0_LOAD))
 | 
						|
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 | 
						|
 | 
						|
	return delta;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The idea is to set a period in which each task runs once.
 | 
						|
 *
 | 
						|
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 | 
						|
 * this period because otherwise the slices get too small.
 | 
						|
 *
 | 
						|
 * p = (nr <= nl) ? l : l*nr/nl
 | 
						|
 */
 | 
						|
static u64 __sched_period(unsigned long nr_running)
 | 
						|
{
 | 
						|
	u64 period = sysctl_sched_latency;
 | 
						|
	unsigned long nr_latency = sched_nr_latency;
 | 
						|
 | 
						|
	if (unlikely(nr_running > nr_latency)) {
 | 
						|
		period = sysctl_sched_min_granularity;
 | 
						|
		period *= nr_running;
 | 
						|
	}
 | 
						|
 | 
						|
	return period;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We calculate the wall-time slice from the period by taking a part
 | 
						|
 * proportional to the weight.
 | 
						|
 *
 | 
						|
 * s = p*P[w/rw]
 | 
						|
 */
 | 
						|
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	unsigned long nr_running = cfs_rq->nr_running;
 | 
						|
 | 
						|
	if (unlikely(!se->on_rq))
 | 
						|
		nr_running++;
 | 
						|
 | 
						|
	return calc_delta_weight(__sched_period(nr_running), se);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We calculate the vruntime slice of a to be inserted task
 | 
						|
 *
 | 
						|
 * vs = s/w
 | 
						|
 */
 | 
						|
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the current task's runtime statistics. Skip current tasks that
 | 
						|
 * are not in our scheduling class.
 | 
						|
 */
 | 
						|
static inline void
 | 
						|
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 | 
						|
	      unsigned long delta_exec)
 | 
						|
{
 | 
						|
	unsigned long delta_exec_weighted;
 | 
						|
 | 
						|
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
 | 
						|
 | 
						|
	curr->sum_exec_runtime += delta_exec;
 | 
						|
	schedstat_add(cfs_rq, exec_clock, delta_exec);
 | 
						|
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 | 
						|
	curr->vruntime += delta_exec_weighted;
 | 
						|
}
 | 
						|
 | 
						|
static void update_curr(struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	struct sched_entity *curr = cfs_rq->curr;
 | 
						|
	u64 now = rq_of(cfs_rq)->clock;
 | 
						|
	unsigned long delta_exec;
 | 
						|
 | 
						|
	if (unlikely(!curr))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the amount of time the current task was running
 | 
						|
	 * since the last time we changed load (this cannot
 | 
						|
	 * overflow on 32 bits):
 | 
						|
	 */
 | 
						|
	delta_exec = (unsigned long)(now - curr->exec_start);
 | 
						|
 | 
						|
	__update_curr(cfs_rq, curr, delta_exec);
 | 
						|
	curr->exec_start = now;
 | 
						|
 | 
						|
	if (entity_is_task(curr)) {
 | 
						|
		struct task_struct *curtask = task_of(curr);
 | 
						|
 | 
						|
		cpuacct_charge(curtask, delta_exec);
 | 
						|
		account_group_exec_runtime(curtask, delta_exec);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Task is being enqueued - update stats:
 | 
						|
 */
 | 
						|
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Are we enqueueing a waiting task? (for current tasks
 | 
						|
	 * a dequeue/enqueue event is a NOP)
 | 
						|
	 */
 | 
						|
	if (se != cfs_rq->curr)
 | 
						|
		update_stats_wait_start(cfs_rq, se);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	schedstat_set(se->wait_max, max(se->wait_max,
 | 
						|
			rq_of(cfs_rq)->clock - se->wait_start));
 | 
						|
	schedstat_set(se->wait_count, se->wait_count + 1);
 | 
						|
	schedstat_set(se->wait_sum, se->wait_sum +
 | 
						|
			rq_of(cfs_rq)->clock - se->wait_start);
 | 
						|
	schedstat_set(se->wait_start, 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline void
 | 
						|
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Mark the end of the wait period if dequeueing a
 | 
						|
	 * waiting task:
 | 
						|
	 */
 | 
						|
	if (se != cfs_rq->curr)
 | 
						|
		update_stats_wait_end(cfs_rq, se);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We are picking a new current task - update its stats:
 | 
						|
 */
 | 
						|
static inline void
 | 
						|
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We are starting a new run period:
 | 
						|
	 */
 | 
						|
	se->exec_start = rq_of(cfs_rq)->clock;
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************
 | 
						|
 * Scheduling class queueing methods:
 | 
						|
 */
 | 
						|
 | 
						|
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 | 
						|
static void
 | 
						|
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 | 
						|
{
 | 
						|
	cfs_rq->task_weight += weight;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void
 | 
						|
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	update_load_add(&cfs_rq->load, se->load.weight);
 | 
						|
	if (!parent_entity(se))
 | 
						|
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
 | 
						|
	if (entity_is_task(se)) {
 | 
						|
		add_cfs_task_weight(cfs_rq, se->load.weight);
 | 
						|
		list_add(&se->group_node, &cfs_rq->tasks);
 | 
						|
	}
 | 
						|
	cfs_rq->nr_running++;
 | 
						|
	se->on_rq = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	update_load_sub(&cfs_rq->load, se->load.weight);
 | 
						|
	if (!parent_entity(se))
 | 
						|
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
 | 
						|
	if (entity_is_task(se)) {
 | 
						|
		add_cfs_task_weight(cfs_rq, -se->load.weight);
 | 
						|
		list_del_init(&se->group_node);
 | 
						|
	}
 | 
						|
	cfs_rq->nr_running--;
 | 
						|
	se->on_rq = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
	if (se->sleep_start) {
 | 
						|
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
 | 
						|
		struct task_struct *tsk = task_of(se);
 | 
						|
 | 
						|
		if ((s64)delta < 0)
 | 
						|
			delta = 0;
 | 
						|
 | 
						|
		if (unlikely(delta > se->sleep_max))
 | 
						|
			se->sleep_max = delta;
 | 
						|
 | 
						|
		se->sleep_start = 0;
 | 
						|
		se->sum_sleep_runtime += delta;
 | 
						|
 | 
						|
		account_scheduler_latency(tsk, delta >> 10, 1);
 | 
						|
	}
 | 
						|
	if (se->block_start) {
 | 
						|
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
 | 
						|
		struct task_struct *tsk = task_of(se);
 | 
						|
 | 
						|
		if ((s64)delta < 0)
 | 
						|
			delta = 0;
 | 
						|
 | 
						|
		if (unlikely(delta > se->block_max))
 | 
						|
			se->block_max = delta;
 | 
						|
 | 
						|
		se->block_start = 0;
 | 
						|
		se->sum_sleep_runtime += delta;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Blocking time is in units of nanosecs, so shift by 20 to
 | 
						|
		 * get a milliseconds-range estimation of the amount of
 | 
						|
		 * time that the task spent sleeping:
 | 
						|
		 */
 | 
						|
		if (unlikely(prof_on == SLEEP_PROFILING)) {
 | 
						|
 | 
						|
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
 | 
						|
				     delta >> 20);
 | 
						|
		}
 | 
						|
		account_scheduler_latency(tsk, delta >> 10, 0);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
	s64 d = se->vruntime - cfs_rq->min_vruntime;
 | 
						|
 | 
						|
	if (d < 0)
 | 
						|
		d = -d;
 | 
						|
 | 
						|
	if (d > 3*sysctl_sched_latency)
 | 
						|
		schedstat_inc(cfs_rq, nr_spread_over);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 | 
						|
{
 | 
						|
	u64 vruntime;
 | 
						|
 | 
						|
	if (first_fair(cfs_rq)) {
 | 
						|
		vruntime = min_vruntime(cfs_rq->min_vruntime,
 | 
						|
				__pick_next_entity(cfs_rq)->vruntime);
 | 
						|
	} else
 | 
						|
		vruntime = cfs_rq->min_vruntime;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The 'current' period is already promised to the current tasks,
 | 
						|
	 * however the extra weight of the new task will slow them down a
 | 
						|
	 * little, place the new task so that it fits in the slot that
 | 
						|
	 * stays open at the end.
 | 
						|
	 */
 | 
						|
	if (initial && sched_feat(START_DEBIT))
 | 
						|
		vruntime += sched_vslice(cfs_rq, se);
 | 
						|
 | 
						|
	if (!initial) {
 | 
						|
		/* sleeps upto a single latency don't count. */
 | 
						|
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
 | 
						|
			unsigned long thresh = sysctl_sched_latency;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * convert the sleeper threshold into virtual time
 | 
						|
			 */
 | 
						|
			if (sched_feat(NORMALIZED_SLEEPER))
 | 
						|
				thresh = calc_delta_fair(thresh, se);
 | 
						|
 | 
						|
			vruntime -= thresh;
 | 
						|
		}
 | 
						|
 | 
						|
		/* ensure we never gain time by being placed backwards. */
 | 
						|
		vruntime = max_vruntime(se->vruntime, vruntime);
 | 
						|
	}
 | 
						|
 | 
						|
	se->vruntime = vruntime;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Update run-time statistics of the 'current'.
 | 
						|
	 */
 | 
						|
	update_curr(cfs_rq);
 | 
						|
	account_entity_enqueue(cfs_rq, se);
 | 
						|
 | 
						|
	if (wakeup) {
 | 
						|
		place_entity(cfs_rq, se, 0);
 | 
						|
		enqueue_sleeper(cfs_rq, se);
 | 
						|
	}
 | 
						|
 | 
						|
	update_stats_enqueue(cfs_rq, se);
 | 
						|
	check_spread(cfs_rq, se);
 | 
						|
	if (se != cfs_rq->curr)
 | 
						|
		__enqueue_entity(cfs_rq, se);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Update run-time statistics of the 'current'.
 | 
						|
	 */
 | 
						|
	update_curr(cfs_rq);
 | 
						|
 | 
						|
	update_stats_dequeue(cfs_rq, se);
 | 
						|
	if (sleep) {
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
		if (entity_is_task(se)) {
 | 
						|
			struct task_struct *tsk = task_of(se);
 | 
						|
 | 
						|
			if (tsk->state & TASK_INTERRUPTIBLE)
 | 
						|
				se->sleep_start = rq_of(cfs_rq)->clock;
 | 
						|
			if (tsk->state & TASK_UNINTERRUPTIBLE)
 | 
						|
				se->block_start = rq_of(cfs_rq)->clock;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	if (se != cfs_rq->curr)
 | 
						|
		__dequeue_entity(cfs_rq, se);
 | 
						|
	account_entity_dequeue(cfs_rq, se);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Preempt the current task with a newly woken task if needed:
 | 
						|
 */
 | 
						|
static void
 | 
						|
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 | 
						|
{
 | 
						|
	unsigned long ideal_runtime, delta_exec;
 | 
						|
 | 
						|
	ideal_runtime = sched_slice(cfs_rq, curr);
 | 
						|
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
 | 
						|
	if (delta_exec > ideal_runtime)
 | 
						|
		resched_task(rq_of(cfs_rq)->curr);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	/* 'current' is not kept within the tree. */
 | 
						|
	if (se->on_rq) {
 | 
						|
		/*
 | 
						|
		 * Any task has to be enqueued before it get to execute on
 | 
						|
		 * a CPU. So account for the time it spent waiting on the
 | 
						|
		 * runqueue.
 | 
						|
		 */
 | 
						|
		update_stats_wait_end(cfs_rq, se);
 | 
						|
		__dequeue_entity(cfs_rq, se);
 | 
						|
	}
 | 
						|
 | 
						|
	update_stats_curr_start(cfs_rq, se);
 | 
						|
	cfs_rq->curr = se;
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
	/*
 | 
						|
	 * Track our maximum slice length, if the CPU's load is at
 | 
						|
	 * least twice that of our own weight (i.e. dont track it
 | 
						|
	 * when there are only lesser-weight tasks around):
 | 
						|
	 */
 | 
						|
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
 | 
						|
		se->slice_max = max(se->slice_max,
 | 
						|
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_entity *
 | 
						|
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of(cfs_rq);
 | 
						|
	u64 pair_slice = rq->clock - cfs_rq->pair_start;
 | 
						|
 | 
						|
	if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
 | 
						|
		cfs_rq->pair_start = rq->clock;
 | 
						|
		return se;
 | 
						|
	}
 | 
						|
 | 
						|
	return cfs_rq->next;
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	struct sched_entity *se = NULL;
 | 
						|
 | 
						|
	if (first_fair(cfs_rq)) {
 | 
						|
		se = __pick_next_entity(cfs_rq);
 | 
						|
		se = pick_next(cfs_rq, se);
 | 
						|
		set_next_entity(cfs_rq, se);
 | 
						|
	}
 | 
						|
 | 
						|
	return se;
 | 
						|
}
 | 
						|
 | 
						|
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If still on the runqueue then deactivate_task()
 | 
						|
	 * was not called and update_curr() has to be done:
 | 
						|
	 */
 | 
						|
	if (prev->on_rq)
 | 
						|
		update_curr(cfs_rq);
 | 
						|
 | 
						|
	check_spread(cfs_rq, prev);
 | 
						|
	if (prev->on_rq) {
 | 
						|
		update_stats_wait_start(cfs_rq, prev);
 | 
						|
		/* Put 'current' back into the tree. */
 | 
						|
		__enqueue_entity(cfs_rq, prev);
 | 
						|
	}
 | 
						|
	cfs_rq->curr = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Update run-time statistics of the 'current'.
 | 
						|
	 */
 | 
						|
	update_curr(cfs_rq);
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_HRTICK
 | 
						|
	/*
 | 
						|
	 * queued ticks are scheduled to match the slice, so don't bother
 | 
						|
	 * validating it and just reschedule.
 | 
						|
	 */
 | 
						|
	if (queued) {
 | 
						|
		resched_task(rq_of(cfs_rq)->curr);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * don't let the period tick interfere with the hrtick preemption
 | 
						|
	 */
 | 
						|
	if (!sched_feat(DOUBLE_TICK) &&
 | 
						|
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
 | 
						|
		return;
 | 
						|
#endif
 | 
						|
 | 
						|
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
 | 
						|
		check_preempt_tick(cfs_rq, curr);
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************
 | 
						|
 * CFS operations on tasks:
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_HRTICK
 | 
						|
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct sched_entity *se = &p->se;
 | 
						|
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | 
						|
 | 
						|
	WARN_ON(task_rq(p) != rq);
 | 
						|
 | 
						|
	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
 | 
						|
		u64 slice = sched_slice(cfs_rq, se);
 | 
						|
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 | 
						|
		s64 delta = slice - ran;
 | 
						|
 | 
						|
		if (delta < 0) {
 | 
						|
			if (rq->curr == p)
 | 
						|
				resched_task(p);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't schedule slices shorter than 10000ns, that just
 | 
						|
		 * doesn't make sense. Rely on vruntime for fairness.
 | 
						|
		 */
 | 
						|
		if (rq->curr != p)
 | 
						|
			delta = max_t(s64, 10000LL, delta);
 | 
						|
 | 
						|
		hrtick_start(rq, delta);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * called from enqueue/dequeue and updates the hrtick when the
 | 
						|
 * current task is from our class and nr_running is low enough
 | 
						|
 * to matter.
 | 
						|
 */
 | 
						|
static void hrtick_update(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *curr = rq->curr;
 | 
						|
 | 
						|
	if (curr->sched_class != &fair_sched_class)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
 | 
						|
		hrtick_start_fair(rq, curr);
 | 
						|
}
 | 
						|
#else /* !CONFIG_SCHED_HRTICK */
 | 
						|
static inline void
 | 
						|
hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void hrtick_update(struct rq *rq)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * The enqueue_task method is called before nr_running is
 | 
						|
 * increased. Here we update the fair scheduling stats and
 | 
						|
 * then put the task into the rbtree:
 | 
						|
 */
 | 
						|
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq;
 | 
						|
	struct sched_entity *se = &p->se;
 | 
						|
 | 
						|
	for_each_sched_entity(se) {
 | 
						|
		if (se->on_rq)
 | 
						|
			break;
 | 
						|
		cfs_rq = cfs_rq_of(se);
 | 
						|
		enqueue_entity(cfs_rq, se, wakeup);
 | 
						|
		wakeup = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	hrtick_update(rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The dequeue_task method is called before nr_running is
 | 
						|
 * decreased. We remove the task from the rbtree and
 | 
						|
 * update the fair scheduling stats:
 | 
						|
 */
 | 
						|
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq;
 | 
						|
	struct sched_entity *se = &p->se;
 | 
						|
 | 
						|
	for_each_sched_entity(se) {
 | 
						|
		cfs_rq = cfs_rq_of(se);
 | 
						|
		dequeue_entity(cfs_rq, se, sleep);
 | 
						|
		/* Don't dequeue parent if it has other entities besides us */
 | 
						|
		if (cfs_rq->load.weight)
 | 
						|
			break;
 | 
						|
		sleep = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	hrtick_update(rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sched_yield() support is very simple - we dequeue and enqueue.
 | 
						|
 *
 | 
						|
 * If compat_yield is turned on then we requeue to the end of the tree.
 | 
						|
 */
 | 
						|
static void yield_task_fair(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *curr = rq->curr;
 | 
						|
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | 
						|
	struct sched_entity *rightmost, *se = &curr->se;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Are we the only task in the tree?
 | 
						|
	 */
 | 
						|
	if (unlikely(cfs_rq->nr_running == 1))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
 | 
						|
		update_rq_clock(rq);
 | 
						|
		/*
 | 
						|
		 * Update run-time statistics of the 'current'.
 | 
						|
		 */
 | 
						|
		update_curr(cfs_rq);
 | 
						|
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Find the rightmost entry in the rbtree:
 | 
						|
	 */
 | 
						|
	rightmost = __pick_last_entity(cfs_rq);
 | 
						|
	/*
 | 
						|
	 * Already in the rightmost position?
 | 
						|
	 */
 | 
						|
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Minimally necessary key value to be last in the tree:
 | 
						|
	 * Upon rescheduling, sched_class::put_prev_task() will place
 | 
						|
	 * 'current' within the tree based on its new key value.
 | 
						|
	 */
 | 
						|
	se->vruntime = rightmost->vruntime + 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 | 
						|
 * not idle and an idle cpu is available.  The span of cpus to
 | 
						|
 * search starts with cpus closest then further out as needed,
 | 
						|
 * so we always favor a closer, idle cpu.
 | 
						|
 * Domains may include CPUs that are not usable for migration,
 | 
						|
 * hence we need to mask them out (cpu_active_map)
 | 
						|
 *
 | 
						|
 * Returns the CPU we should wake onto.
 | 
						|
 */
 | 
						|
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
 | 
						|
static int wake_idle(int cpu, struct task_struct *p)
 | 
						|
{
 | 
						|
	cpumask_t tmp;
 | 
						|
	struct sched_domain *sd;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If it is idle, then it is the best cpu to run this task.
 | 
						|
	 *
 | 
						|
	 * This cpu is also the best, if it has more than one task already.
 | 
						|
	 * Siblings must be also busy(in most cases) as they didn't already
 | 
						|
	 * pickup the extra load from this cpu and hence we need not check
 | 
						|
	 * sibling runqueue info. This will avoid the checks and cache miss
 | 
						|
	 * penalities associated with that.
 | 
						|
	 */
 | 
						|
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
 | 
						|
		return cpu;
 | 
						|
 | 
						|
	for_each_domain(cpu, sd) {
 | 
						|
		if ((sd->flags & SD_WAKE_IDLE)
 | 
						|
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
 | 
						|
			&& !task_hot(p, task_rq(p)->clock, sd))) {
 | 
						|
			cpus_and(tmp, sd->span, p->cpus_allowed);
 | 
						|
			cpus_and(tmp, tmp, cpu_active_map);
 | 
						|
			for_each_cpu_mask_nr(i, tmp) {
 | 
						|
				if (idle_cpu(i)) {
 | 
						|
					if (i != task_cpu(p)) {
 | 
						|
						schedstat_inc(p,
 | 
						|
						       se.nr_wakeups_idle);
 | 
						|
					}
 | 
						|
					return i;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
 | 
						|
static inline int wake_idle(int cpu, struct task_struct *p)
 | 
						|
{
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
#ifdef CONFIG_FAIR_GROUP_SCHED
 | 
						|
/*
 | 
						|
 * effective_load() calculates the load change as seen from the root_task_group
 | 
						|
 *
 | 
						|
 * Adding load to a group doesn't make a group heavier, but can cause movement
 | 
						|
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 | 
						|
 * can calculate the shift in shares.
 | 
						|
 *
 | 
						|
 * The problem is that perfectly aligning the shares is rather expensive, hence
 | 
						|
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 | 
						|
 * this change.
 | 
						|
 *
 | 
						|
 * We compensate this by not only taking the current delta into account, but
 | 
						|
 * also considering the delta between when the shares were last adjusted and
 | 
						|
 * now.
 | 
						|
 *
 | 
						|
 * We still saw a performance dip, some tracing learned us that between
 | 
						|
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 | 
						|
 * significantly. Therefore try to bias the error in direction of failing
 | 
						|
 * the affine wakeup.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static long effective_load(struct task_group *tg, int cpu,
 | 
						|
		long wl, long wg)
 | 
						|
{
 | 
						|
	struct sched_entity *se = tg->se[cpu];
 | 
						|
 | 
						|
	if (!tg->parent)
 | 
						|
		return wl;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * By not taking the decrease of shares on the other cpu into
 | 
						|
	 * account our error leans towards reducing the affine wakeups.
 | 
						|
	 */
 | 
						|
	if (!wl && sched_feat(ASYM_EFF_LOAD))
 | 
						|
		return wl;
 | 
						|
 | 
						|
	for_each_sched_entity(se) {
 | 
						|
		long S, rw, s, a, b;
 | 
						|
		long more_w;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Instead of using this increment, also add the difference
 | 
						|
		 * between when the shares were last updated and now.
 | 
						|
		 */
 | 
						|
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
 | 
						|
		wl += more_w;
 | 
						|
		wg += more_w;
 | 
						|
 | 
						|
		S = se->my_q->tg->shares;
 | 
						|
		s = se->my_q->shares;
 | 
						|
		rw = se->my_q->rq_weight;
 | 
						|
 | 
						|
		a = S*(rw + wl);
 | 
						|
		b = S*rw + s*wg;
 | 
						|
 | 
						|
		wl = s*(a-b);
 | 
						|
 | 
						|
		if (likely(b))
 | 
						|
			wl /= b;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Assume the group is already running and will
 | 
						|
		 * thus already be accounted for in the weight.
 | 
						|
		 *
 | 
						|
		 * That is, moving shares between CPUs, does not
 | 
						|
		 * alter the group weight.
 | 
						|
		 */
 | 
						|
		wg = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return wl;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline unsigned long effective_load(struct task_group *tg, int cpu,
 | 
						|
		unsigned long wl, unsigned long wg)
 | 
						|
{
 | 
						|
	return wl;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
 | 
						|
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
 | 
						|
	    int idx, unsigned long load, unsigned long this_load,
 | 
						|
	    unsigned int imbalance)
 | 
						|
{
 | 
						|
	struct task_struct *curr = this_rq->curr;
 | 
						|
	struct task_group *tg;
 | 
						|
	unsigned long tl = this_load;
 | 
						|
	unsigned long tl_per_task;
 | 
						|
	unsigned long weight;
 | 
						|
	int balanced;
 | 
						|
 | 
						|
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!sync && sched_feat(SYNC_WAKEUPS) &&
 | 
						|
	    curr->se.avg_overlap < sysctl_sched_migration_cost &&
 | 
						|
	    p->se.avg_overlap < sysctl_sched_migration_cost)
 | 
						|
		sync = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If sync wakeup then subtract the (maximum possible)
 | 
						|
	 * effect of the currently running task from the load
 | 
						|
	 * of the current CPU:
 | 
						|
	 */
 | 
						|
	if (sync) {
 | 
						|
		tg = task_group(current);
 | 
						|
		weight = current->se.load.weight;
 | 
						|
 | 
						|
		tl += effective_load(tg, this_cpu, -weight, -weight);
 | 
						|
		load += effective_load(tg, prev_cpu, 0, -weight);
 | 
						|
	}
 | 
						|
 | 
						|
	tg = task_group(p);
 | 
						|
	weight = p->se.load.weight;
 | 
						|
 | 
						|
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
 | 
						|
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the currently running task will sleep within
 | 
						|
	 * a reasonable amount of time then attract this newly
 | 
						|
	 * woken task:
 | 
						|
	 */
 | 
						|
	if (sync && balanced)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	schedstat_inc(p, se.nr_wakeups_affine_attempts);
 | 
						|
	tl_per_task = cpu_avg_load_per_task(this_cpu);
 | 
						|
 | 
						|
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
 | 
						|
			tl_per_task)) {
 | 
						|
		/*
 | 
						|
		 * This domain has SD_WAKE_AFFINE and
 | 
						|
		 * p is cache cold in this domain, and
 | 
						|
		 * there is no bad imbalance.
 | 
						|
		 */
 | 
						|
		schedstat_inc(this_sd, ttwu_move_affine);
 | 
						|
		schedstat_inc(p, se.nr_wakeups_affine);
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int select_task_rq_fair(struct task_struct *p, int sync)
 | 
						|
{
 | 
						|
	struct sched_domain *sd, *this_sd = NULL;
 | 
						|
	int prev_cpu, this_cpu, new_cpu;
 | 
						|
	unsigned long load, this_load;
 | 
						|
	struct rq *this_rq;
 | 
						|
	unsigned int imbalance;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	prev_cpu	= task_cpu(p);
 | 
						|
	this_cpu	= smp_processor_id();
 | 
						|
	this_rq		= cpu_rq(this_cpu);
 | 
						|
	new_cpu		= prev_cpu;
 | 
						|
 | 
						|
	if (prev_cpu == this_cpu)
 | 
						|
		goto out;
 | 
						|
	/*
 | 
						|
	 * 'this_sd' is the first domain that both
 | 
						|
	 * this_cpu and prev_cpu are present in:
 | 
						|
	 */
 | 
						|
	for_each_domain(this_cpu, sd) {
 | 
						|
		if (cpu_isset(prev_cpu, sd->span)) {
 | 
						|
			this_sd = sd;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for affine wakeup and passive balancing possibilities.
 | 
						|
	 */
 | 
						|
	if (!this_sd)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	idx = this_sd->wake_idx;
 | 
						|
 | 
						|
	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
 | 
						|
 | 
						|
	load = source_load(prev_cpu, idx);
 | 
						|
	this_load = target_load(this_cpu, idx);
 | 
						|
 | 
						|
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
 | 
						|
				     load, this_load, imbalance))
 | 
						|
		return this_cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start passive balancing when half the imbalance_pct
 | 
						|
	 * limit is reached.
 | 
						|
	 */
 | 
						|
	if (this_sd->flags & SD_WAKE_BALANCE) {
 | 
						|
		if (imbalance*this_load <= 100*load) {
 | 
						|
			schedstat_inc(this_sd, ttwu_move_balance);
 | 
						|
			schedstat_inc(p, se.nr_wakeups_passive);
 | 
						|
			return this_cpu;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	return wake_idle(new_cpu, p);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
static unsigned long wakeup_gran(struct sched_entity *se)
 | 
						|
{
 | 
						|
	unsigned long gran = sysctl_sched_wakeup_granularity;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * More easily preempt - nice tasks, while not making it harder for
 | 
						|
	 * + nice tasks.
 | 
						|
	 */
 | 
						|
	if (sched_feat(ASYM_GRAN))
 | 
						|
		gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
 | 
						|
 | 
						|
	return gran;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Preempt the current task with a newly woken task if needed:
 | 
						|
 */
 | 
						|
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
 | 
						|
{
 | 
						|
	struct task_struct *curr = rq->curr;
 | 
						|
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | 
						|
	struct sched_entity *se = &curr->se, *pse = &p->se;
 | 
						|
	s64 delta_exec;
 | 
						|
 | 
						|
	if (unlikely(rt_prio(p->prio))) {
 | 
						|
		update_rq_clock(rq);
 | 
						|
		update_curr(cfs_rq);
 | 
						|
		resched_task(curr);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(se == pse))
 | 
						|
		return;
 | 
						|
 | 
						|
	cfs_rq_of(pse)->next = pse;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can come here with TIF_NEED_RESCHED already set from new task
 | 
						|
	 * wake up path.
 | 
						|
	 */
 | 
						|
	if (test_tsk_need_resched(curr))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Batch tasks do not preempt (their preemption is driven by
 | 
						|
	 * the tick):
 | 
						|
	 */
 | 
						|
	if (unlikely(p->policy == SCHED_BATCH))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!sched_feat(WAKEUP_PREEMPT))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
 | 
						|
			(se->avg_overlap < sysctl_sched_migration_cost &&
 | 
						|
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
 | 
						|
		resched_task(curr);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 | 
						|
	if (delta_exec > wakeup_gran(pse))
 | 
						|
		resched_task(curr);
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *pick_next_task_fair(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
	struct cfs_rq *cfs_rq = &rq->cfs;
 | 
						|
	struct sched_entity *se;
 | 
						|
 | 
						|
	if (unlikely(!cfs_rq->nr_running))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	do {
 | 
						|
		se = pick_next_entity(cfs_rq);
 | 
						|
		cfs_rq = group_cfs_rq(se);
 | 
						|
	} while (cfs_rq);
 | 
						|
 | 
						|
	p = task_of(se);
 | 
						|
	hrtick_start_fair(rq, p);
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Account for a descheduled task:
 | 
						|
 */
 | 
						|
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
 | 
						|
{
 | 
						|
	struct sched_entity *se = &prev->se;
 | 
						|
	struct cfs_rq *cfs_rq;
 | 
						|
 | 
						|
	for_each_sched_entity(se) {
 | 
						|
		cfs_rq = cfs_rq_of(se);
 | 
						|
		put_prev_entity(cfs_rq, se);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
/**************************************************
 | 
						|
 * Fair scheduling class load-balancing methods:
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Load-balancing iterator. Note: while the runqueue stays locked
 | 
						|
 * during the whole iteration, the current task might be
 | 
						|
 * dequeued so the iterator has to be dequeue-safe. Here we
 | 
						|
 * achieve that by always pre-iterating before returning
 | 
						|
 * the current task:
 | 
						|
 */
 | 
						|
static struct task_struct *
 | 
						|
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
 | 
						|
{
 | 
						|
	struct task_struct *p = NULL;
 | 
						|
	struct sched_entity *se;
 | 
						|
 | 
						|
	if (next == &cfs_rq->tasks)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	se = list_entry(next, struct sched_entity, group_node);
 | 
						|
	p = task_of(se);
 | 
						|
	cfs_rq->balance_iterator = next->next;
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *load_balance_start_fair(void *arg)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq = arg;
 | 
						|
 | 
						|
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *load_balance_next_fair(void *arg)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq = arg;
 | 
						|
 | 
						|
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | 
						|
		unsigned long max_load_move, struct sched_domain *sd,
 | 
						|
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
 | 
						|
		struct cfs_rq *cfs_rq)
 | 
						|
{
 | 
						|
	struct rq_iterator cfs_rq_iterator;
 | 
						|
 | 
						|
	cfs_rq_iterator.start = load_balance_start_fair;
 | 
						|
	cfs_rq_iterator.next = load_balance_next_fair;
 | 
						|
	cfs_rq_iterator.arg = cfs_rq;
 | 
						|
 | 
						|
	return balance_tasks(this_rq, this_cpu, busiest,
 | 
						|
			max_load_move, sd, idle, all_pinned,
 | 
						|
			this_best_prio, &cfs_rq_iterator);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FAIR_GROUP_SCHED
 | 
						|
static unsigned long
 | 
						|
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | 
						|
		  unsigned long max_load_move,
 | 
						|
		  struct sched_domain *sd, enum cpu_idle_type idle,
 | 
						|
		  int *all_pinned, int *this_best_prio)
 | 
						|
{
 | 
						|
	long rem_load_move = max_load_move;
 | 
						|
	int busiest_cpu = cpu_of(busiest);
 | 
						|
	struct task_group *tg;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	update_h_load(busiest_cpu);
 | 
						|
 | 
						|
	list_for_each_entry_rcu(tg, &task_groups, list) {
 | 
						|
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
 | 
						|
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
 | 
						|
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
 | 
						|
		u64 rem_load, moved_load;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * empty group
 | 
						|
		 */
 | 
						|
		if (!busiest_cfs_rq->task_weight)
 | 
						|
			continue;
 | 
						|
 | 
						|
		rem_load = (u64)rem_load_move * busiest_weight;
 | 
						|
		rem_load = div_u64(rem_load, busiest_h_load + 1);
 | 
						|
 | 
						|
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
 | 
						|
				rem_load, sd, idle, all_pinned, this_best_prio,
 | 
						|
				tg->cfs_rq[busiest_cpu]);
 | 
						|
 | 
						|
		if (!moved_load)
 | 
						|
			continue;
 | 
						|
 | 
						|
		moved_load *= busiest_h_load;
 | 
						|
		moved_load = div_u64(moved_load, busiest_weight + 1);
 | 
						|
 | 
						|
		rem_load_move -= moved_load;
 | 
						|
		if (rem_load_move < 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return max_load_move - rem_load_move;
 | 
						|
}
 | 
						|
#else
 | 
						|
static unsigned long
 | 
						|
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | 
						|
		  unsigned long max_load_move,
 | 
						|
		  struct sched_domain *sd, enum cpu_idle_type idle,
 | 
						|
		  int *all_pinned, int *this_best_prio)
 | 
						|
{
 | 
						|
	return __load_balance_fair(this_rq, this_cpu, busiest,
 | 
						|
			max_load_move, sd, idle, all_pinned,
 | 
						|
			this_best_prio, &busiest->cfs);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | 
						|
		   struct sched_domain *sd, enum cpu_idle_type idle)
 | 
						|
{
 | 
						|
	struct cfs_rq *busy_cfs_rq;
 | 
						|
	struct rq_iterator cfs_rq_iterator;
 | 
						|
 | 
						|
	cfs_rq_iterator.start = load_balance_start_fair;
 | 
						|
	cfs_rq_iterator.next = load_balance_next_fair;
 | 
						|
 | 
						|
	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
 | 
						|
		/*
 | 
						|
		 * pass busy_cfs_rq argument into
 | 
						|
		 * load_balance_[start|next]_fair iterators
 | 
						|
		 */
 | 
						|
		cfs_rq_iterator.arg = busy_cfs_rq;
 | 
						|
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
 | 
						|
				       &cfs_rq_iterator))
 | 
						|
		    return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
/*
 | 
						|
 * scheduler tick hitting a task of our scheduling class:
 | 
						|
 */
 | 
						|
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq;
 | 
						|
	struct sched_entity *se = &curr->se;
 | 
						|
 | 
						|
	for_each_sched_entity(se) {
 | 
						|
		cfs_rq = cfs_rq_of(se);
 | 
						|
		entity_tick(cfs_rq, se, queued);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
 | 
						|
 | 
						|
/*
 | 
						|
 * Share the fairness runtime between parent and child, thus the
 | 
						|
 * total amount of pressure for CPU stays equal - new tasks
 | 
						|
 * get a chance to run but frequent forkers are not allowed to
 | 
						|
 * monopolize the CPU. Note: the parent runqueue is locked,
 | 
						|
 * the child is not running yet.
 | 
						|
 */
 | 
						|
static void task_new_fair(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | 
						|
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
 | 
						|
	int this_cpu = smp_processor_id();
 | 
						|
 | 
						|
	sched_info_queued(p);
 | 
						|
 | 
						|
	update_curr(cfs_rq);
 | 
						|
	place_entity(cfs_rq, se, 1);
 | 
						|
 | 
						|
	/* 'curr' will be NULL if the child belongs to a different group */
 | 
						|
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
 | 
						|
			curr && curr->vruntime < se->vruntime) {
 | 
						|
		/*
 | 
						|
		 * Upon rescheduling, sched_class::put_prev_task() will place
 | 
						|
		 * 'current' within the tree based on its new key value.
 | 
						|
		 */
 | 
						|
		swap(curr->vruntime, se->vruntime);
 | 
						|
		resched_task(rq->curr);
 | 
						|
	}
 | 
						|
 | 
						|
	enqueue_task_fair(rq, p, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Priority of the task has changed. Check to see if we preempt
 | 
						|
 * the current task.
 | 
						|
 */
 | 
						|
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
 | 
						|
			      int oldprio, int running)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Reschedule if we are currently running on this runqueue and
 | 
						|
	 * our priority decreased, or if we are not currently running on
 | 
						|
	 * this runqueue and our priority is higher than the current's
 | 
						|
	 */
 | 
						|
	if (running) {
 | 
						|
		if (p->prio > oldprio)
 | 
						|
			resched_task(rq->curr);
 | 
						|
	} else
 | 
						|
		check_preempt_curr(rq, p, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We switched to the sched_fair class.
 | 
						|
 */
 | 
						|
static void switched_to_fair(struct rq *rq, struct task_struct *p,
 | 
						|
			     int running)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We were most likely switched from sched_rt, so
 | 
						|
	 * kick off the schedule if running, otherwise just see
 | 
						|
	 * if we can still preempt the current task.
 | 
						|
	 */
 | 
						|
	if (running)
 | 
						|
		resched_task(rq->curr);
 | 
						|
	else
 | 
						|
		check_preempt_curr(rq, p, 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Account for a task changing its policy or group.
 | 
						|
 *
 | 
						|
 * This routine is mostly called to set cfs_rq->curr field when a task
 | 
						|
 * migrates between groups/classes.
 | 
						|
 */
 | 
						|
static void set_curr_task_fair(struct rq *rq)
 | 
						|
{
 | 
						|
	struct sched_entity *se = &rq->curr->se;
 | 
						|
 | 
						|
	for_each_sched_entity(se)
 | 
						|
		set_next_entity(cfs_rq_of(se), se);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FAIR_GROUP_SCHED
 | 
						|
static void moved_group_fair(struct task_struct *p)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | 
						|
 | 
						|
	update_curr(cfs_rq);
 | 
						|
	place_entity(cfs_rq, &p->se, 1);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * All the scheduling class methods:
 | 
						|
 */
 | 
						|
static const struct sched_class fair_sched_class = {
 | 
						|
	.next			= &idle_sched_class,
 | 
						|
	.enqueue_task		= enqueue_task_fair,
 | 
						|
	.dequeue_task		= dequeue_task_fair,
 | 
						|
	.yield_task		= yield_task_fair,
 | 
						|
 | 
						|
	.check_preempt_curr	= check_preempt_wakeup,
 | 
						|
 | 
						|
	.pick_next_task		= pick_next_task_fair,
 | 
						|
	.put_prev_task		= put_prev_task_fair,
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	.select_task_rq		= select_task_rq_fair,
 | 
						|
 | 
						|
	.load_balance		= load_balance_fair,
 | 
						|
	.move_one_task		= move_one_task_fair,
 | 
						|
#endif
 | 
						|
 | 
						|
	.set_curr_task          = set_curr_task_fair,
 | 
						|
	.task_tick		= task_tick_fair,
 | 
						|
	.task_new		= task_new_fair,
 | 
						|
 | 
						|
	.prio_changed		= prio_changed_fair,
 | 
						|
	.switched_to		= switched_to_fair,
 | 
						|
 | 
						|
#ifdef CONFIG_FAIR_GROUP_SCHED
 | 
						|
	.moved_group		= moved_group_fair,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
static void print_cfs_stats(struct seq_file *m, int cpu)
 | 
						|
{
 | 
						|
	struct cfs_rq *cfs_rq;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
 | 
						|
		print_cfs_rq(m, cpu, cfs_rq);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
#endif
 |