mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-01 00:58:39 +02:00 
			
		
		
		
	 01c8f1c44b
			
		
	
	
		01c8f1c44b
		
	
	
	
	
		
			
			Convert the raw unsigned long 'pfn' argument to pfn_t for the purpose of evaluating the PFN_MAP and PFN_DEV flags. When both are set it triggers _PAGE_DEVMAP to be set in the resulting pte. There are no functional changes to the gpu drivers as a result of this conversion. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave@sr71.net> Cc: David Airlie <airlied@linux.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			835 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			835 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/dax.c - Direct Access filesystem code
 | |
|  * Copyright (c) 2013-2014 Intel Corporation
 | |
|  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 | |
|  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/genhd.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/pmem.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/pfn_t.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
 | |
| {
 | |
| 	struct request_queue *q = bdev->bd_queue;
 | |
| 	long rc = -EIO;
 | |
| 
 | |
| 	dax->addr = (void __pmem *) ERR_PTR(-EIO);
 | |
| 	if (blk_queue_enter(q, true) != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = bdev_direct_access(bdev, dax);
 | |
| 	if (rc < 0) {
 | |
| 		dax->addr = (void __pmem *) ERR_PTR(rc);
 | |
| 		blk_queue_exit(q);
 | |
| 		return rc;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void dax_unmap_atomic(struct block_device *bdev,
 | |
| 		const struct blk_dax_ctl *dax)
 | |
| {
 | |
| 	if (IS_ERR(dax->addr))
 | |
| 		return;
 | |
| 	blk_queue_exit(bdev->bd_queue);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dax_clear_blocks() is called from within transaction context from XFS,
 | |
|  * and hence this means the stack from this point must follow GFP_NOFS
 | |
|  * semantics for all operations.
 | |
|  */
 | |
| int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
 | |
| {
 | |
| 	struct block_device *bdev = inode->i_sb->s_bdev;
 | |
| 	struct blk_dax_ctl dax = {
 | |
| 		.sector = block << (inode->i_blkbits - 9),
 | |
| 		.size = _size,
 | |
| 	};
 | |
| 
 | |
| 	might_sleep();
 | |
| 	do {
 | |
| 		long count, sz;
 | |
| 
 | |
| 		count = dax_map_atomic(bdev, &dax);
 | |
| 		if (count < 0)
 | |
| 			return count;
 | |
| 		sz = min_t(long, count, SZ_128K);
 | |
| 		clear_pmem(dax.addr, sz);
 | |
| 		dax.size -= sz;
 | |
| 		dax.sector += sz / 512;
 | |
| 		dax_unmap_atomic(bdev, &dax);
 | |
| 		cond_resched();
 | |
| 	} while (dax.size);
 | |
| 
 | |
| 	wmb_pmem();
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_clear_blocks);
 | |
| 
 | |
| /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
 | |
| static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
 | |
| 		loff_t pos, loff_t end)
 | |
| {
 | |
| 	loff_t final = end - pos + first; /* The final byte of the buffer */
 | |
| 
 | |
| 	if (first > 0)
 | |
| 		clear_pmem(addr, first);
 | |
| 	if (final < size)
 | |
| 		clear_pmem(addr + final, size - final);
 | |
| }
 | |
| 
 | |
| static bool buffer_written(struct buffer_head *bh)
 | |
| {
 | |
| 	return buffer_mapped(bh) && !buffer_unwritten(bh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When ext4 encounters a hole, it returns without modifying the buffer_head
 | |
|  * which means that we can't trust b_size.  To cope with this, we set b_state
 | |
|  * to 0 before calling get_block and, if any bit is set, we know we can trust
 | |
|  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
 | |
|  * and would save us time calling get_block repeatedly.
 | |
|  */
 | |
| static bool buffer_size_valid(struct buffer_head *bh)
 | |
| {
 | |
| 	return bh->b_state != 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static sector_t to_sector(const struct buffer_head *bh,
 | |
| 		const struct inode *inode)
 | |
| {
 | |
| 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
 | |
| 
 | |
| 	return sector;
 | |
| }
 | |
| 
 | |
| static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
 | |
| 		      loff_t start, loff_t end, get_block_t get_block,
 | |
| 		      struct buffer_head *bh)
 | |
| {
 | |
| 	loff_t pos = start, max = start, bh_max = start;
 | |
| 	bool hole = false, need_wmb = false;
 | |
| 	struct block_device *bdev = NULL;
 | |
| 	int rw = iov_iter_rw(iter), rc;
 | |
| 	long map_len = 0;
 | |
| 	struct blk_dax_ctl dax = {
 | |
| 		.addr = (void __pmem *) ERR_PTR(-EIO),
 | |
| 	};
 | |
| 
 | |
| 	if (rw == READ)
 | |
| 		end = min(end, i_size_read(inode));
 | |
| 
 | |
| 	while (pos < end) {
 | |
| 		size_t len;
 | |
| 		if (pos == max) {
 | |
| 			unsigned blkbits = inode->i_blkbits;
 | |
| 			long page = pos >> PAGE_SHIFT;
 | |
| 			sector_t block = page << (PAGE_SHIFT - blkbits);
 | |
| 			unsigned first = pos - (block << blkbits);
 | |
| 			long size;
 | |
| 
 | |
| 			if (pos == bh_max) {
 | |
| 				bh->b_size = PAGE_ALIGN(end - pos);
 | |
| 				bh->b_state = 0;
 | |
| 				rc = get_block(inode, block, bh, rw == WRITE);
 | |
| 				if (rc)
 | |
| 					break;
 | |
| 				if (!buffer_size_valid(bh))
 | |
| 					bh->b_size = 1 << blkbits;
 | |
| 				bh_max = pos - first + bh->b_size;
 | |
| 				bdev = bh->b_bdev;
 | |
| 			} else {
 | |
| 				unsigned done = bh->b_size -
 | |
| 						(bh_max - (pos - first));
 | |
| 				bh->b_blocknr += done >> blkbits;
 | |
| 				bh->b_size -= done;
 | |
| 			}
 | |
| 
 | |
| 			hole = rw == READ && !buffer_written(bh);
 | |
| 			if (hole) {
 | |
| 				size = bh->b_size - first;
 | |
| 			} else {
 | |
| 				dax_unmap_atomic(bdev, &dax);
 | |
| 				dax.sector = to_sector(bh, inode);
 | |
| 				dax.size = bh->b_size;
 | |
| 				map_len = dax_map_atomic(bdev, &dax);
 | |
| 				if (map_len < 0) {
 | |
| 					rc = map_len;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (buffer_unwritten(bh) || buffer_new(bh)) {
 | |
| 					dax_new_buf(dax.addr, map_len, first,
 | |
| 							pos, end);
 | |
| 					need_wmb = true;
 | |
| 				}
 | |
| 				dax.addr += first;
 | |
| 				size = map_len - first;
 | |
| 			}
 | |
| 			max = min(pos + size, end);
 | |
| 		}
 | |
| 
 | |
| 		if (iov_iter_rw(iter) == WRITE) {
 | |
| 			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
 | |
| 			need_wmb = true;
 | |
| 		} else if (!hole)
 | |
| 			len = copy_to_iter((void __force *) dax.addr, max - pos,
 | |
| 					iter);
 | |
| 		else
 | |
| 			len = iov_iter_zero(max - pos, iter);
 | |
| 
 | |
| 		if (!len) {
 | |
| 			rc = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pos += len;
 | |
| 		if (!IS_ERR(dax.addr))
 | |
| 			dax.addr += len;
 | |
| 	}
 | |
| 
 | |
| 	if (need_wmb)
 | |
| 		wmb_pmem();
 | |
| 	dax_unmap_atomic(bdev, &dax);
 | |
| 
 | |
| 	return (pos == start) ? rc : pos - start;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_do_io - Perform I/O to a DAX file
 | |
|  * @iocb: The control block for this I/O
 | |
|  * @inode: The file which the I/O is directed at
 | |
|  * @iter: The addresses to do I/O from or to
 | |
|  * @pos: The file offset where the I/O starts
 | |
|  * @get_block: The filesystem method used to translate file offsets to blocks
 | |
|  * @end_io: A filesystem callback for I/O completion
 | |
|  * @flags: See below
 | |
|  *
 | |
|  * This function uses the same locking scheme as do_blockdev_direct_IO:
 | |
|  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
 | |
|  * caller for writes.  For reads, we take and release the i_mutex ourselves.
 | |
|  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
 | |
|  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
 | |
|  * is in progress.
 | |
|  */
 | |
| ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
 | |
| 		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
 | |
| 		  dio_iodone_t end_io, int flags)
 | |
| {
 | |
| 	struct buffer_head bh;
 | |
| 	ssize_t retval = -EINVAL;
 | |
| 	loff_t end = pos + iov_iter_count(iter);
 | |
| 
 | |
| 	memset(&bh, 0, sizeof(bh));
 | |
| 
 | |
| 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
 | |
| 		struct address_space *mapping = inode->i_mapping;
 | |
| 		mutex_lock(&inode->i_mutex);
 | |
| 		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
 | |
| 		if (retval) {
 | |
| 			mutex_unlock(&inode->i_mutex);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Protects against truncate */
 | |
| 	if (!(flags & DIO_SKIP_DIO_COUNT))
 | |
| 		inode_dio_begin(inode);
 | |
| 
 | |
| 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
 | |
| 
 | |
| 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 
 | |
| 	if ((retval > 0) && end_io)
 | |
| 		end_io(iocb, pos, retval, bh.b_private);
 | |
| 
 | |
| 	if (!(flags & DIO_SKIP_DIO_COUNT))
 | |
| 		inode_dio_end(inode);
 | |
|  out:
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_do_io);
 | |
| 
 | |
| /*
 | |
|  * The user has performed a load from a hole in the file.  Allocating
 | |
|  * a new page in the file would cause excessive storage usage for
 | |
|  * workloads with sparse files.  We allocate a page cache page instead.
 | |
|  * We'll kick it out of the page cache if it's ever written to,
 | |
|  * otherwise it will simply fall out of the page cache under memory
 | |
|  * pressure without ever having been dirtied.
 | |
|  */
 | |
| static int dax_load_hole(struct address_space *mapping, struct page *page,
 | |
| 							struct vm_fault *vmf)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	if (!page)
 | |
| 		page = find_or_create_page(mapping, vmf->pgoff,
 | |
| 						GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!page)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	/* Recheck i_size under page lock to avoid truncate race */
 | |
| 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	if (vmf->pgoff >= size) {
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	}
 | |
| 
 | |
| 	vmf->page = page;
 | |
| 	return VM_FAULT_LOCKED;
 | |
| }
 | |
| 
 | |
| static int copy_user_bh(struct page *to, struct inode *inode,
 | |
| 		struct buffer_head *bh, unsigned long vaddr)
 | |
| {
 | |
| 	struct blk_dax_ctl dax = {
 | |
| 		.sector = to_sector(bh, inode),
 | |
| 		.size = bh->b_size,
 | |
| 	};
 | |
| 	struct block_device *bdev = bh->b_bdev;
 | |
| 	void *vto;
 | |
| 
 | |
| 	if (dax_map_atomic(bdev, &dax) < 0)
 | |
| 		return PTR_ERR(dax.addr);
 | |
| 	vto = kmap_atomic(to);
 | |
| 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
 | |
| 	kunmap_atomic(vto);
 | |
| 	dax_unmap_atomic(bdev, &dax);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
 | |
| 			struct vm_area_struct *vma, struct vm_fault *vmf)
 | |
| {
 | |
| 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct block_device *bdev = bh->b_bdev;
 | |
| 	struct blk_dax_ctl dax = {
 | |
| 		.sector = to_sector(bh, inode),
 | |
| 		.size = bh->b_size,
 | |
| 	};
 | |
| 	pgoff_t size;
 | |
| 	int error;
 | |
| 
 | |
| 	i_mmap_lock_read(mapping);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check truncate didn't happen while we were allocating a block.
 | |
| 	 * If it did, this block may or may not be still allocated to the
 | |
| 	 * file.  We can't tell the filesystem to free it because we can't
 | |
| 	 * take i_mutex here.  In the worst case, the file still has blocks
 | |
| 	 * allocated past the end of the file.
 | |
| 	 */
 | |
| 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	if (unlikely(vmf->pgoff >= size)) {
 | |
| 		error = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (dax_map_atomic(bdev, &dax) < 0) {
 | |
| 		error = PTR_ERR(dax.addr);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (buffer_unwritten(bh) || buffer_new(bh)) {
 | |
| 		clear_pmem(dax.addr, PAGE_SIZE);
 | |
| 		wmb_pmem();
 | |
| 	}
 | |
| 	dax_unmap_atomic(bdev, &dax);
 | |
| 
 | |
| 	error = vm_insert_mixed(vma, vaddr, dax.pfn);
 | |
| 
 | |
|  out:
 | |
| 	i_mmap_unlock_read(mapping);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __dax_fault - handle a page fault on a DAX file
 | |
|  * @vma: The virtual memory area where the fault occurred
 | |
|  * @vmf: The description of the fault
 | |
|  * @get_block: The filesystem method used to translate file offsets to blocks
 | |
|  * @complete_unwritten: The filesystem method used to convert unwritten blocks
 | |
|  *	to written so the data written to them is exposed. This is required for
 | |
|  *	required by write faults for filesystems that will return unwritten
 | |
|  *	extent mappings from @get_block, but it is optional for reads as
 | |
|  *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
 | |
|  *	not support unwritten extents, the it should pass NULL.
 | |
|  *
 | |
|  * When a page fault occurs, filesystems may call this helper in their
 | |
|  * fault handler for DAX files. __dax_fault() assumes the caller has done all
 | |
|  * the necessary locking for the page fault to proceed successfully.
 | |
|  */
 | |
| int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
 | |
| 			get_block_t get_block, dax_iodone_t complete_unwritten)
 | |
| {
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct page *page;
 | |
| 	struct buffer_head bh;
 | |
| 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
 | |
| 	unsigned blkbits = inode->i_blkbits;
 | |
| 	sector_t block;
 | |
| 	pgoff_t size;
 | |
| 	int error;
 | |
| 	int major = 0;
 | |
| 
 | |
| 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	if (vmf->pgoff >= size)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	memset(&bh, 0, sizeof(bh));
 | |
| 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
 | |
| 	bh.b_size = PAGE_SIZE;
 | |
| 
 | |
|  repeat:
 | |
| 	page = find_get_page(mapping, vmf->pgoff);
 | |
| 	if (page) {
 | |
| 		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
 | |
| 			page_cache_release(page);
 | |
| 			return VM_FAULT_RETRY;
 | |
| 		}
 | |
| 		if (unlikely(page->mapping != mapping)) {
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 		if (unlikely(vmf->pgoff >= size)) {
 | |
| 			/*
 | |
| 			 * We have a struct page covering a hole in the file
 | |
| 			 * from a read fault and we've raced with a truncate
 | |
| 			 */
 | |
| 			error = -EIO;
 | |
| 			goto unlock_page;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = get_block(inode, block, &bh, 0);
 | |
| 	if (!error && (bh.b_size < PAGE_SIZE))
 | |
| 		error = -EIO;		/* fs corruption? */
 | |
| 	if (error)
 | |
| 		goto unlock_page;
 | |
| 
 | |
| 	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
 | |
| 		if (vmf->flags & FAULT_FLAG_WRITE) {
 | |
| 			error = get_block(inode, block, &bh, 1);
 | |
| 			count_vm_event(PGMAJFAULT);
 | |
| 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 | |
| 			major = VM_FAULT_MAJOR;
 | |
| 			if (!error && (bh.b_size < PAGE_SIZE))
 | |
| 				error = -EIO;
 | |
| 			if (error)
 | |
| 				goto unlock_page;
 | |
| 		} else {
 | |
| 			return dax_load_hole(mapping, page, vmf);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vmf->cow_page) {
 | |
| 		struct page *new_page = vmf->cow_page;
 | |
| 		if (buffer_written(&bh))
 | |
| 			error = copy_user_bh(new_page, inode, &bh, vaddr);
 | |
| 		else
 | |
| 			clear_user_highpage(new_page, vaddr);
 | |
| 		if (error)
 | |
| 			goto unlock_page;
 | |
| 		vmf->page = page;
 | |
| 		if (!page) {
 | |
| 			i_mmap_lock_read(mapping);
 | |
| 			/* Check we didn't race with truncate */
 | |
| 			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
 | |
| 								PAGE_SHIFT;
 | |
| 			if (vmf->pgoff >= size) {
 | |
| 				i_mmap_unlock_read(mapping);
 | |
| 				error = -EIO;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		return VM_FAULT_LOCKED;
 | |
| 	}
 | |
| 
 | |
| 	/* Check we didn't race with a read fault installing a new page */
 | |
| 	if (!page && major)
 | |
| 		page = find_lock_page(mapping, vmf->pgoff);
 | |
| 
 | |
| 	if (page) {
 | |
| 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
 | |
| 							PAGE_CACHE_SIZE, 0);
 | |
| 		delete_from_page_cache(page);
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we successfully insert the new mapping over an unwritten extent,
 | |
| 	 * we need to ensure we convert the unwritten extent. If there is an
 | |
| 	 * error inserting the mapping, the filesystem needs to leave it as
 | |
| 	 * unwritten to prevent exposure of the stale underlying data to
 | |
| 	 * userspace, but we still need to call the completion function so
 | |
| 	 * the private resources on the mapping buffer can be released. We
 | |
| 	 * indicate what the callback should do via the uptodate variable, same
 | |
| 	 * as for normal BH based IO completions.
 | |
| 	 */
 | |
| 	error = dax_insert_mapping(inode, &bh, vma, vmf);
 | |
| 	if (buffer_unwritten(&bh)) {
 | |
| 		if (complete_unwritten)
 | |
| 			complete_unwritten(&bh, !error);
 | |
| 		else
 | |
| 			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	if (error == -ENOMEM)
 | |
| 		return VM_FAULT_OOM | major;
 | |
| 	/* -EBUSY is fine, somebody else faulted on the same PTE */
 | |
| 	if ((error < 0) && (error != -EBUSY))
 | |
| 		return VM_FAULT_SIGBUS | major;
 | |
| 	return VM_FAULT_NOPAGE | major;
 | |
| 
 | |
|  unlock_page:
 | |
| 	if (page) {
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 	goto out;
 | |
| }
 | |
| EXPORT_SYMBOL(__dax_fault);
 | |
| 
 | |
| /**
 | |
|  * dax_fault - handle a page fault on a DAX file
 | |
|  * @vma: The virtual memory area where the fault occurred
 | |
|  * @vmf: The description of the fault
 | |
|  * @get_block: The filesystem method used to translate file offsets to blocks
 | |
|  *
 | |
|  * When a page fault occurs, filesystems may call this helper in their
 | |
|  * fault handler for DAX files.
 | |
|  */
 | |
| int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
 | |
| 	      get_block_t get_block, dax_iodone_t complete_unwritten)
 | |
| {
 | |
| 	int result;
 | |
| 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
 | |
| 
 | |
| 	if (vmf->flags & FAULT_FLAG_WRITE) {
 | |
| 		sb_start_pagefault(sb);
 | |
| 		file_update_time(vma->vm_file);
 | |
| 	}
 | |
| 	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
 | |
| 	if (vmf->flags & FAULT_FLAG_WRITE)
 | |
| 		sb_end_pagefault(sb);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_fault);
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| /*
 | |
|  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
 | |
|  * more often than one might expect in the below function.
 | |
|  */
 | |
| #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
 | |
| 
 | |
| int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
 | |
| 		pmd_t *pmd, unsigned int flags, get_block_t get_block,
 | |
| 		dax_iodone_t complete_unwritten)
 | |
| {
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct buffer_head bh;
 | |
| 	unsigned blkbits = inode->i_blkbits;
 | |
| 	unsigned long pmd_addr = address & PMD_MASK;
 | |
| 	bool write = flags & FAULT_FLAG_WRITE;
 | |
| 	struct block_device *bdev;
 | |
| 	pgoff_t size, pgoff;
 | |
| 	sector_t block;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	/* dax pmd mappings are broken wrt gup and fork */
 | |
| 	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 
 | |
| 	/* Fall back to PTEs if we're going to COW */
 | |
| 	if (write && !(vma->vm_flags & VM_SHARED)) {
 | |
| 		split_huge_pmd(vma, pmd, address);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 	/* If the PMD would extend outside the VMA */
 | |
| 	if (pmd_addr < vma->vm_start)
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 
 | |
| 	pgoff = linear_page_index(vma, pmd_addr);
 | |
| 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	if (pgoff >= size)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	/* If the PMD would cover blocks out of the file */
 | |
| 	if ((pgoff | PG_PMD_COLOUR) >= size)
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 
 | |
| 	memset(&bh, 0, sizeof(bh));
 | |
| 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
 | |
| 
 | |
| 	bh.b_size = PMD_SIZE;
 | |
| 	if (get_block(inode, block, &bh, write) != 0)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	bdev = bh.b_bdev;
 | |
| 	i_mmap_lock_read(mapping);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the filesystem isn't willing to tell us the length of a hole,
 | |
| 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
 | |
| 	 * would be silly.
 | |
| 	 */
 | |
| 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
 | |
| 		goto fallback;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we allocated new storage, make sure no process has any
 | |
| 	 * zero pages covering this hole
 | |
| 	 */
 | |
| 	if (buffer_new(&bh)) {
 | |
| 		i_mmap_unlock_read(mapping);
 | |
| 		unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
 | |
| 		i_mmap_lock_read(mapping);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a truncate happened while we were allocating blocks, we may
 | |
| 	 * leave blocks allocated to the file that are beyond EOF.  We can't
 | |
| 	 * take i_mutex here, so just leave them hanging; they'll be freed
 | |
| 	 * when the file is deleted.
 | |
| 	 */
 | |
| 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	if (pgoff >= size) {
 | |
| 		result = VM_FAULT_SIGBUS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if ((pgoff | PG_PMD_COLOUR) >= size)
 | |
| 		goto fallback;
 | |
| 
 | |
| 	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
 | |
| 		spinlock_t *ptl;
 | |
| 		pmd_t entry;
 | |
| 		struct page *zero_page = get_huge_zero_page();
 | |
| 
 | |
| 		if (unlikely(!zero_page))
 | |
| 			goto fallback;
 | |
| 
 | |
| 		ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 		if (!pmd_none(*pmd)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			goto fallback;
 | |
| 		}
 | |
| 
 | |
| 		entry = mk_pmd(zero_page, vma->vm_page_prot);
 | |
| 		entry = pmd_mkhuge(entry);
 | |
| 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
 | |
| 		result = VM_FAULT_NOPAGE;
 | |
| 		spin_unlock(ptl);
 | |
| 	} else {
 | |
| 		struct blk_dax_ctl dax = {
 | |
| 			.sector = to_sector(&bh, inode),
 | |
| 			.size = PMD_SIZE,
 | |
| 		};
 | |
| 		long length = dax_map_atomic(bdev, &dax);
 | |
| 
 | |
| 		if (length < 0) {
 | |
| 			result = VM_FAULT_SIGBUS;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (length < PMD_SIZE
 | |
| 				|| (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)) {
 | |
| 			dax_unmap_atomic(bdev, &dax);
 | |
| 			goto fallback;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * TODO: teach vmf_insert_pfn_pmd() to support
 | |
| 		 * 'pte_special' for pmds
 | |
| 		 */
 | |
| 		if (pfn_t_has_page(dax.pfn)) {
 | |
| 			dax_unmap_atomic(bdev, &dax);
 | |
| 			goto fallback;
 | |
| 		}
 | |
| 
 | |
| 		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
 | |
| 			clear_pmem(dax.addr, PMD_SIZE);
 | |
| 			wmb_pmem();
 | |
| 			count_vm_event(PGMAJFAULT);
 | |
| 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 | |
| 			result |= VM_FAULT_MAJOR;
 | |
| 		}
 | |
| 		dax_unmap_atomic(bdev, &dax);
 | |
| 
 | |
| 		result |= vmf_insert_pfn_pmd(vma, address, pmd,
 | |
| 				pfn_t_to_pfn(dax.pfn), write);
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	i_mmap_unlock_read(mapping);
 | |
| 
 | |
| 	if (buffer_unwritten(&bh))
 | |
| 		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
 | |
| 
 | |
| 	return result;
 | |
| 
 | |
|  fallback:
 | |
| 	count_vm_event(THP_FAULT_FALLBACK);
 | |
| 	result = VM_FAULT_FALLBACK;
 | |
| 	goto out;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__dax_pmd_fault);
 | |
| 
 | |
| /**
 | |
|  * dax_pmd_fault - handle a PMD fault on a DAX file
 | |
|  * @vma: The virtual memory area where the fault occurred
 | |
|  * @vmf: The description of the fault
 | |
|  * @get_block: The filesystem method used to translate file offsets to blocks
 | |
|  *
 | |
|  * When a page fault occurs, filesystems may call this helper in their
 | |
|  * pmd_fault handler for DAX files.
 | |
|  */
 | |
| int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
 | |
| 			pmd_t *pmd, unsigned int flags, get_block_t get_block,
 | |
| 			dax_iodone_t complete_unwritten)
 | |
| {
 | |
| 	int result;
 | |
| 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
 | |
| 
 | |
| 	if (flags & FAULT_FLAG_WRITE) {
 | |
| 		sb_start_pagefault(sb);
 | |
| 		file_update_time(vma->vm_file);
 | |
| 	}
 | |
| 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
 | |
| 				complete_unwritten);
 | |
| 	if (flags & FAULT_FLAG_WRITE)
 | |
| 		sb_end_pagefault(sb);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_pmd_fault);
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| /**
 | |
|  * dax_pfn_mkwrite - handle first write to DAX page
 | |
|  * @vma: The virtual memory area where the fault occurred
 | |
|  * @vmf: The description of the fault
 | |
|  *
 | |
|  */
 | |
| int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 | |
| {
 | |
| 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
 | |
| 
 | |
| 	sb_start_pagefault(sb);
 | |
| 	file_update_time(vma->vm_file);
 | |
| 	sb_end_pagefault(sb);
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
 | |
| 
 | |
| /**
 | |
|  * dax_zero_page_range - zero a range within a page of a DAX file
 | |
|  * @inode: The file being truncated
 | |
|  * @from: The file offset that is being truncated to
 | |
|  * @length: The number of bytes to zero
 | |
|  * @get_block: The filesystem method used to translate file offsets to blocks
 | |
|  *
 | |
|  * This function can be called by a filesystem when it is zeroing part of a
 | |
|  * page in a DAX file.  This is intended for hole-punch operations.  If
 | |
|  * you are truncating a file, the helper function dax_truncate_page() may be
 | |
|  * more convenient.
 | |
|  *
 | |
|  * We work in terms of PAGE_CACHE_SIZE here for commonality with
 | |
|  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 | |
|  * took care of disposing of the unnecessary blocks.  Even if the filesystem
 | |
|  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
 | |
|  * since the file might be mmapped.
 | |
|  */
 | |
| int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
 | |
| 							get_block_t get_block)
 | |
| {
 | |
| 	struct buffer_head bh;
 | |
| 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
 | |
| 	int err;
 | |
| 
 | |
| 	/* Block boundary? Nothing to do */
 | |
| 	if (!length)
 | |
| 		return 0;
 | |
| 	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	memset(&bh, 0, sizeof(bh));
 | |
| 	bh.b_size = PAGE_CACHE_SIZE;
 | |
| 	err = get_block(inode, index, &bh, 0);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	if (buffer_written(&bh)) {
 | |
| 		struct block_device *bdev = bh.b_bdev;
 | |
| 		struct blk_dax_ctl dax = {
 | |
| 			.sector = to_sector(&bh, inode),
 | |
| 			.size = PAGE_CACHE_SIZE,
 | |
| 		};
 | |
| 
 | |
| 		if (dax_map_atomic(bdev, &dax) < 0)
 | |
| 			return PTR_ERR(dax.addr);
 | |
| 		clear_pmem(dax.addr + offset, length);
 | |
| 		wmb_pmem();
 | |
| 		dax_unmap_atomic(bdev, &dax);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_zero_page_range);
 | |
| 
 | |
| /**
 | |
|  * dax_truncate_page - handle a partial page being truncated in a DAX file
 | |
|  * @inode: The file being truncated
 | |
|  * @from: The file offset that is being truncated to
 | |
|  * @get_block: The filesystem method used to translate file offsets to blocks
 | |
|  *
 | |
|  * Similar to block_truncate_page(), this function can be called by a
 | |
|  * filesystem when it is truncating a DAX file to handle the partial page.
 | |
|  *
 | |
|  * We work in terms of PAGE_CACHE_SIZE here for commonality with
 | |
|  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 | |
|  * took care of disposing of the unnecessary blocks.  Even if the filesystem
 | |
|  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
 | |
|  * since the file might be mmapped.
 | |
|  */
 | |
| int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
 | |
| {
 | |
| 	unsigned length = PAGE_CACHE_ALIGN(from) - from;
 | |
| 	return dax_zero_page_range(inode, from, length, get_block);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_truncate_page);
 |