mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	A rather embarrasing mistake had us call sched_setscheduler() before
initializing the parameters passed to it.
Fixes: 1a763fd7c6 ("rcu/tree: Call setschedule() gp ktread to SCHED_FIFO outside of atomic region")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
		
	
			
		
			
				
	
	
		
			3494 lines
		
	
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3494 lines
		
	
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0+
 | 
						|
/*
 | 
						|
 * Read-Copy Update mechanism for mutual exclusion
 | 
						|
 *
 | 
						|
 * Copyright IBM Corporation, 2008
 | 
						|
 *
 | 
						|
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 | 
						|
 *	    Manfred Spraul <manfred@colorfullife.com>
 | 
						|
 *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
 | 
						|
 *
 | 
						|
 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
 | 
						|
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 | 
						|
 *
 | 
						|
 * For detailed explanation of Read-Copy Update mechanism see -
 | 
						|
 *	Documentation/RCU
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) "rcu: " fmt
 | 
						|
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/rcupdate_wait.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/sched/debug.h>
 | 
						|
#include <linux/nmi.h>
 | 
						|
#include <linux/atomic.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <linux/moduleparam.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <uapi/linux/sched/types.h>
 | 
						|
#include <linux/prefetch.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/stop_machine.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/trace_events.h>
 | 
						|
#include <linux/suspend.h>
 | 
						|
#include <linux/ftrace.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/sysrq.h>
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/oom.h>
 | 
						|
#include <linux/smpboot.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/sched/isolation.h>
 | 
						|
#include "../time/tick-internal.h"
 | 
						|
 | 
						|
#include "tree.h"
 | 
						|
#include "rcu.h"
 | 
						|
 | 
						|
#ifdef MODULE_PARAM_PREFIX
 | 
						|
#undef MODULE_PARAM_PREFIX
 | 
						|
#endif
 | 
						|
#define MODULE_PARAM_PREFIX "rcutree."
 | 
						|
 | 
						|
/* Data structures. */
 | 
						|
 | 
						|
/*
 | 
						|
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 | 
						|
 * control.  Initially this is for TLB flushing.
 | 
						|
 */
 | 
						|
#define RCU_DYNTICK_CTRL_MASK 0x1
 | 
						|
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 | 
						|
#ifndef rcu_eqs_special_exit
 | 
						|
#define rcu_eqs_special_exit() do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
 | 
						|
	.dynticks_nesting = 1,
 | 
						|
	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
 | 
						|
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 | 
						|
};
 | 
						|
struct rcu_state rcu_state = {
 | 
						|
	.level = { &rcu_state.node[0] },
 | 
						|
	.gp_state = RCU_GP_IDLE,
 | 
						|
	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
 | 
						|
	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
 | 
						|
	.name = RCU_NAME,
 | 
						|
	.abbr = RCU_ABBR,
 | 
						|
	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
 | 
						|
	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
 | 
						|
	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
 | 
						|
};
 | 
						|
 | 
						|
/* Dump rcu_node combining tree at boot to verify correct setup. */
 | 
						|
static bool dump_tree;
 | 
						|
module_param(dump_tree, bool, 0444);
 | 
						|
/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 | 
						|
static bool use_softirq = 1;
 | 
						|
module_param(use_softirq, bool, 0444);
 | 
						|
/* Control rcu_node-tree auto-balancing at boot time. */
 | 
						|
static bool rcu_fanout_exact;
 | 
						|
module_param(rcu_fanout_exact, bool, 0444);
 | 
						|
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 | 
						|
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | 
						|
module_param(rcu_fanout_leaf, int, 0444);
 | 
						|
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 | 
						|
/* Number of rcu_nodes at specified level. */
 | 
						|
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 | 
						|
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 | 
						|
 | 
						|
/*
 | 
						|
 * The rcu_scheduler_active variable is initialized to the value
 | 
						|
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 | 
						|
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 | 
						|
 * RCU can assume that there is but one task, allowing RCU to (for example)
 | 
						|
 * optimize synchronize_rcu() to a simple barrier().  When this variable
 | 
						|
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 | 
						|
 * to detect real grace periods.  This variable is also used to suppress
 | 
						|
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 | 
						|
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 | 
						|
 * is fully initialized, including all of its kthreads having been spawned.
 | 
						|
 */
 | 
						|
int rcu_scheduler_active __read_mostly;
 | 
						|
EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 | 
						|
 | 
						|
/*
 | 
						|
 * The rcu_scheduler_fully_active variable transitions from zero to one
 | 
						|
 * during the early_initcall() processing, which is after the scheduler
 | 
						|
 * is capable of creating new tasks.  So RCU processing (for example,
 | 
						|
 * creating tasks for RCU priority boosting) must be delayed until after
 | 
						|
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 | 
						|
 * currently delay invocation of any RCU callbacks until after this point.
 | 
						|
 *
 | 
						|
 * It might later prove better for people registering RCU callbacks during
 | 
						|
 * early boot to take responsibility for these callbacks, but one step at
 | 
						|
 * a time.
 | 
						|
 */
 | 
						|
static int rcu_scheduler_fully_active __read_mostly;
 | 
						|
 | 
						|
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 | 
						|
			      unsigned long gps, unsigned long flags);
 | 
						|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 | 
						|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 | 
						|
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 | 
						|
static void invoke_rcu_core(void);
 | 
						|
static void rcu_report_exp_rdp(struct rcu_data *rdp);
 | 
						|
static void sync_sched_exp_online_cleanup(int cpu);
 | 
						|
 | 
						|
/* rcuc/rcub kthread realtime priority */
 | 
						|
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 | 
						|
module_param(kthread_prio, int, 0444);
 | 
						|
 | 
						|
/* Delay in jiffies for grace-period initialization delays, debug only. */
 | 
						|
 | 
						|
static int gp_preinit_delay;
 | 
						|
module_param(gp_preinit_delay, int, 0444);
 | 
						|
static int gp_init_delay;
 | 
						|
module_param(gp_init_delay, int, 0444);
 | 
						|
static int gp_cleanup_delay;
 | 
						|
module_param(gp_cleanup_delay, int, 0444);
 | 
						|
 | 
						|
/* Retrieve RCU kthreads priority for rcutorture */
 | 
						|
int rcu_get_gp_kthreads_prio(void)
 | 
						|
{
 | 
						|
	return kthread_prio;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 | 
						|
 | 
						|
/*
 | 
						|
 * Number of grace periods between delays, normalized by the duration of
 | 
						|
 * the delay.  The longer the delay, the more the grace periods between
 | 
						|
 * each delay.  The reason for this normalization is that it means that,
 | 
						|
 * for non-zero delays, the overall slowdown of grace periods is constant
 | 
						|
 * regardless of the duration of the delay.  This arrangement balances
 | 
						|
 * the need for long delays to increase some race probabilities with the
 | 
						|
 * need for fast grace periods to increase other race probabilities.
 | 
						|
 */
 | 
						|
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the mask of online CPUs for the specified rcu_node structure.
 | 
						|
 * This will not be stable unless the rcu_node structure's ->lock is
 | 
						|
 * held, but the bit corresponding to the current CPU will be stable
 | 
						|
 * in most contexts.
 | 
						|
 */
 | 
						|
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 | 
						|
{
 | 
						|
	return READ_ONCE(rnp->qsmaskinitnext);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 | 
						|
 * permit this function to be invoked without holding the root rcu_node
 | 
						|
 * structure's ->lock, but of course results can be subject to change.
 | 
						|
 */
 | 
						|
static int rcu_gp_in_progress(void)
 | 
						|
{
 | 
						|
	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of callbacks queued on the specified CPU.
 | 
						|
 * Handles both the nocbs and normal cases.
 | 
						|
 */
 | 
						|
static long rcu_get_n_cbs_cpu(int cpu)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
 | 
						|
	if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
 | 
						|
		return rcu_segcblist_n_cbs(&rdp->cblist);
 | 
						|
	return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
 | 
						|
}
 | 
						|
 | 
						|
void rcu_softirq_qs(void)
 | 
						|
{
 | 
						|
	rcu_qs();
 | 
						|
	rcu_preempt_deferred_qs(current);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Record entry into an extended quiescent state.  This is only to be
 | 
						|
 * called when not already in an extended quiescent state.
 | 
						|
 */
 | 
						|
static void rcu_dynticks_eqs_enter(void)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	int seq;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 | 
						|
	 * critical sections, and we also must force ordering with the
 | 
						|
	 * next idle sojourn.
 | 
						|
	 */
 | 
						|
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 | 
						|
	/* Better be in an extended quiescent state! */
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     (seq & RCU_DYNTICK_CTRL_CTR));
 | 
						|
	/* Better not have special action (TLB flush) pending! */
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     (seq & RCU_DYNTICK_CTRL_MASK));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Record exit from an extended quiescent state.  This is only to be
 | 
						|
 * called from an extended quiescent state.
 | 
						|
 */
 | 
						|
static void rcu_dynticks_eqs_exit(void)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	int seq;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 | 
						|
	 * and we also must force ordering with the next RCU read-side
 | 
						|
	 * critical section.
 | 
						|
	 */
 | 
						|
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     !(seq & RCU_DYNTICK_CTRL_CTR));
 | 
						|
	if (seq & RCU_DYNTICK_CTRL_MASK) {
 | 
						|
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 | 
						|
		smp_mb__after_atomic(); /* _exit after clearing mask. */
 | 
						|
		/* Prefer duplicate flushes to losing a flush. */
 | 
						|
		rcu_eqs_special_exit();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reset the current CPU's ->dynticks counter to indicate that the
 | 
						|
 * newly onlined CPU is no longer in an extended quiescent state.
 | 
						|
 * This will either leave the counter unchanged, or increment it
 | 
						|
 * to the next non-quiescent value.
 | 
						|
 *
 | 
						|
 * The non-atomic test/increment sequence works because the upper bits
 | 
						|
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 | 
						|
 * or when the corresponding CPU is offline.
 | 
						|
 */
 | 
						|
static void rcu_dynticks_eqs_online(void)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
 | 
						|
	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 | 
						|
		return;
 | 
						|
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Is the current CPU in an extended quiescent state?
 | 
						|
 *
 | 
						|
 * No ordering, as we are sampling CPU-local information.
 | 
						|
 */
 | 
						|
bool rcu_dynticks_curr_cpu_in_eqs(void)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
 | 
						|
	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Snapshot the ->dynticks counter with full ordering so as to allow
 | 
						|
 * stable comparison of this counter with past and future snapshots.
 | 
						|
 */
 | 
						|
int rcu_dynticks_snap(struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	int snap = atomic_add_return(0, &rdp->dynticks);
 | 
						|
 | 
						|
	return snap & ~RCU_DYNTICK_CTRL_MASK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if the snapshot returned from rcu_dynticks_snap()
 | 
						|
 * indicates that RCU is in an extended quiescent state.
 | 
						|
 */
 | 
						|
static bool rcu_dynticks_in_eqs(int snap)
 | 
						|
{
 | 
						|
	return !(snap & RCU_DYNTICK_CTRL_CTR);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if the CPU corresponding to the specified rcu_data
 | 
						|
 * structure has spent some time in an extended quiescent state since
 | 
						|
 * rcu_dynticks_snap() returned the specified snapshot.
 | 
						|
 */
 | 
						|
static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 | 
						|
{
 | 
						|
	return snap != rcu_dynticks_snap(rdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set the special (bottom) bit of the specified CPU so that it
 | 
						|
 * will take special action (such as flushing its TLB) on the
 | 
						|
 * next exit from an extended quiescent state.  Returns true if
 | 
						|
 * the bit was successfully set, or false if the CPU was not in
 | 
						|
 * an extended quiescent state.
 | 
						|
 */
 | 
						|
bool rcu_eqs_special_set(int cpu)
 | 
						|
{
 | 
						|
	int old;
 | 
						|
	int new;
 | 
						|
	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 | 
						|
 | 
						|
	do {
 | 
						|
		old = atomic_read(&rdp->dynticks);
 | 
						|
		if (old & RCU_DYNTICK_CTRL_CTR)
 | 
						|
			return false;
 | 
						|
		new = old | RCU_DYNTICK_CTRL_MASK;
 | 
						|
	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Let the RCU core know that this CPU has gone through the scheduler,
 | 
						|
 * which is a quiescent state.  This is called when the need for a
 | 
						|
 * quiescent state is urgent, so we burn an atomic operation and full
 | 
						|
 * memory barriers to let the RCU core know about it, regardless of what
 | 
						|
 * this CPU might (or might not) do in the near future.
 | 
						|
 *
 | 
						|
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 | 
						|
 *
 | 
						|
 * The caller must have disabled interrupts and must not be idle.
 | 
						|
 */
 | 
						|
static void __maybe_unused rcu_momentary_dyntick_idle(void)
 | 
						|
{
 | 
						|
	int special;
 | 
						|
 | 
						|
	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 | 
						|
	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 | 
						|
				    &this_cpu_ptr(&rcu_data)->dynticks);
 | 
						|
	/* It is illegal to call this from idle state. */
 | 
						|
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 | 
						|
	rcu_preempt_deferred_qs(current);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
 | 
						|
 *
 | 
						|
 * If the current CPU is idle and running at a first-level (not nested)
 | 
						|
 * interrupt from idle, return true.  The caller must have at least
 | 
						|
 * disabled preemption.
 | 
						|
 */
 | 
						|
static int rcu_is_cpu_rrupt_from_idle(void)
 | 
						|
{
 | 
						|
	/* Called only from within the scheduling-clock interrupt */
 | 
						|
	lockdep_assert_in_irq();
 | 
						|
 | 
						|
	/* Check for counter underflows */
 | 
						|
	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 | 
						|
			 "RCU dynticks_nesting counter underflow!");
 | 
						|
	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 | 
						|
			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 | 
						|
 | 
						|
	/* Are we at first interrupt nesting level? */
 | 
						|
	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Does CPU appear to be idle from an RCU standpoint? */
 | 
						|
	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 | 
						|
}
 | 
						|
 | 
						|
#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
 | 
						|
#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
 | 
						|
static long blimit = DEFAULT_RCU_BLIMIT;
 | 
						|
#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 | 
						|
static long qhimark = DEFAULT_RCU_QHIMARK;
 | 
						|
#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 | 
						|
static long qlowmark = DEFAULT_RCU_QLOMARK;
 | 
						|
 | 
						|
module_param(blimit, long, 0444);
 | 
						|
module_param(qhimark, long, 0444);
 | 
						|
module_param(qlowmark, long, 0444);
 | 
						|
 | 
						|
static ulong jiffies_till_first_fqs = ULONG_MAX;
 | 
						|
static ulong jiffies_till_next_fqs = ULONG_MAX;
 | 
						|
static bool rcu_kick_kthreads;
 | 
						|
 | 
						|
/*
 | 
						|
 * How long the grace period must be before we start recruiting
 | 
						|
 * quiescent-state help from rcu_note_context_switch().
 | 
						|
 */
 | 
						|
static ulong jiffies_till_sched_qs = ULONG_MAX;
 | 
						|
module_param(jiffies_till_sched_qs, ulong, 0444);
 | 
						|
static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 | 
						|
module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 | 
						|
 | 
						|
/*
 | 
						|
 * Make sure that we give the grace-period kthread time to detect any
 | 
						|
 * idle CPUs before taking active measures to force quiescent states.
 | 
						|
 * However, don't go below 100 milliseconds, adjusted upwards for really
 | 
						|
 * large systems.
 | 
						|
 */
 | 
						|
static void adjust_jiffies_till_sched_qs(void)
 | 
						|
{
 | 
						|
	unsigned long j;
 | 
						|
 | 
						|
	/* If jiffies_till_sched_qs was specified, respect the request. */
 | 
						|
	if (jiffies_till_sched_qs != ULONG_MAX) {
 | 
						|
		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/* Otherwise, set to third fqs scan, but bound below on large system. */
 | 
						|
	j = READ_ONCE(jiffies_till_first_fqs) +
 | 
						|
		      2 * READ_ONCE(jiffies_till_next_fqs);
 | 
						|
	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 | 
						|
		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 | 
						|
	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 | 
						|
	WRITE_ONCE(jiffies_to_sched_qs, j);
 | 
						|
}
 | 
						|
 | 
						|
static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 | 
						|
{
 | 
						|
	ulong j;
 | 
						|
	int ret = kstrtoul(val, 0, &j);
 | 
						|
 | 
						|
	if (!ret) {
 | 
						|
		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 | 
						|
		adjust_jiffies_till_sched_qs();
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 | 
						|
{
 | 
						|
	ulong j;
 | 
						|
	int ret = kstrtoul(val, 0, &j);
 | 
						|
 | 
						|
	if (!ret) {
 | 
						|
		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 | 
						|
		adjust_jiffies_till_sched_qs();
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct kernel_param_ops first_fqs_jiffies_ops = {
 | 
						|
	.set = param_set_first_fqs_jiffies,
 | 
						|
	.get = param_get_ulong,
 | 
						|
};
 | 
						|
 | 
						|
static struct kernel_param_ops next_fqs_jiffies_ops = {
 | 
						|
	.set = param_set_next_fqs_jiffies,
 | 
						|
	.get = param_get_ulong,
 | 
						|
};
 | 
						|
 | 
						|
module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 | 
						|
module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 | 
						|
module_param(rcu_kick_kthreads, bool, 0644);
 | 
						|
 | 
						|
static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 | 
						|
static int rcu_pending(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU GPs completed thus far for debug & stats.
 | 
						|
 */
 | 
						|
unsigned long rcu_get_gp_seq(void)
 | 
						|
{
 | 
						|
	return READ_ONCE(rcu_state.gp_seq);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU expedited batches completed thus far for
 | 
						|
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 | 
						|
 * numbers mean idle.  The value returned will thus be roughly double
 | 
						|
 * the cumulative batches since boot.
 | 
						|
 */
 | 
						|
unsigned long rcu_exp_batches_completed(void)
 | 
						|
{
 | 
						|
	return rcu_state.expedited_sequence;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the root node of the rcu_state structure.
 | 
						|
 */
 | 
						|
static struct rcu_node *rcu_get_root(void)
 | 
						|
{
 | 
						|
	return &rcu_state.node[0];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert a ->gp_state value to a character string.
 | 
						|
 */
 | 
						|
static const char *gp_state_getname(short gs)
 | 
						|
{
 | 
						|
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 | 
						|
		return "???";
 | 
						|
	return gp_state_names[gs];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Send along grace-period-related data for rcutorture diagnostics.
 | 
						|
 */
 | 
						|
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 | 
						|
			    unsigned long *gp_seq)
 | 
						|
{
 | 
						|
	switch (test_type) {
 | 
						|
	case RCU_FLAVOR:
 | 
						|
		*flags = READ_ONCE(rcu_state.gp_flags);
 | 
						|
		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 | 
						|
 | 
						|
/*
 | 
						|
 * Enter an RCU extended quiescent state, which can be either the
 | 
						|
 * idle loop or adaptive-tickless usermode execution.
 | 
						|
 *
 | 
						|
 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 | 
						|
 * the possibility of usermode upcalls having messed up our count
 | 
						|
 * of interrupt nesting level during the prior busy period.
 | 
						|
 */
 | 
						|
static void rcu_eqs_enter(bool user)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
 | 
						|
	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 | 
						|
	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     rdp->dynticks_nesting == 0);
 | 
						|
	if (rdp->dynticks_nesting != 1) {
 | 
						|
		rdp->dynticks_nesting--;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 | 
						|
	rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	do_nocb_deferred_wakeup(rdp);
 | 
						|
	rcu_prepare_for_idle();
 | 
						|
	rcu_preempt_deferred_qs(current);
 | 
						|
	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 | 
						|
	rcu_dynticks_eqs_enter();
 | 
						|
	rcu_dynticks_task_enter();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 | 
						|
 *
 | 
						|
 * Enter idle mode, in other words, -leave- the mode in which RCU
 | 
						|
 * read-side critical sections can occur.  (Though RCU read-side
 | 
						|
 * critical sections can occur in irq handlers in idle, a possibility
 | 
						|
 * handled by irq_enter() and irq_exit().)
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 | 
						|
 * CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_idle_enter(void)
 | 
						|
{
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
	rcu_eqs_enter(false);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NO_HZ_FULL
 | 
						|
/**
 | 
						|
 * rcu_user_enter - inform RCU that we are resuming userspace.
 | 
						|
 *
 | 
						|
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 | 
						|
 * is permitted between this call and rcu_user_exit(). This way the
 | 
						|
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 | 
						|
 * when the CPU runs in userspace.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_user_enter(), be sure to test with
 | 
						|
 * CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_user_enter(void)
 | 
						|
{
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
	rcu_eqs_enter(true);
 | 
						|
}
 | 
						|
#endif /* CONFIG_NO_HZ_FULL */
 | 
						|
 | 
						|
/*
 | 
						|
 * If we are returning from the outermost NMI handler that interrupted an
 | 
						|
 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 | 
						|
 * to let the RCU grace-period handling know that the CPU is back to
 | 
						|
 * being RCU-idle.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 | 
						|
 * with CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
static __always_inline void rcu_nmi_exit_common(bool irq)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 | 
						|
	 * (We are exiting an NMI handler, so RCU better be paying attention
 | 
						|
	 * to us!)
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 | 
						|
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 | 
						|
	 * leave it in non-RCU-idle state.
 | 
						|
	 */
 | 
						|
	if (rdp->dynticks_nmi_nesting != 1) {
 | 
						|
		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
 | 
						|
		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 | 
						|
			   rdp->dynticks_nmi_nesting - 2);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 | 
						|
	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
 | 
						|
	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 | 
						|
 | 
						|
	if (irq)
 | 
						|
		rcu_prepare_for_idle();
 | 
						|
 | 
						|
	rcu_dynticks_eqs_enter();
 | 
						|
 | 
						|
	if (irq)
 | 
						|
		rcu_dynticks_task_enter();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_nmi_exit - inform RCU of exit from NMI context
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 | 
						|
 * with CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_nmi_exit(void)
 | 
						|
{
 | 
						|
	rcu_nmi_exit_common(false);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 | 
						|
 *
 | 
						|
 * Exit from an interrupt handler, which might possibly result in entering
 | 
						|
 * idle mode, in other words, leaving the mode in which read-side critical
 | 
						|
 * sections can occur.  The caller must have disabled interrupts.
 | 
						|
 *
 | 
						|
 * This code assumes that the idle loop never does anything that might
 | 
						|
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 | 
						|
 * architecture's idle loop violates this assumption, RCU will give you what
 | 
						|
 * you deserve, good and hard.  But very infrequently and irreproducibly.
 | 
						|
 *
 | 
						|
 * Use things like work queues to work around this limitation.
 | 
						|
 *
 | 
						|
 * You have been warned.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 | 
						|
 * CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_irq_exit(void)
 | 
						|
{
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
	rcu_nmi_exit_common(true);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 | 
						|
 * with CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_irq_exit_irqson(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rcu_irq_exit();
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Exit an RCU extended quiescent state, which can be either the
 | 
						|
 * idle loop or adaptive-tickless usermode execution.
 | 
						|
 *
 | 
						|
 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 | 
						|
 * allow for the possibility of usermode upcalls messing up our count of
 | 
						|
 * interrupt nesting level during the busy period that is just now starting.
 | 
						|
 */
 | 
						|
static void rcu_eqs_exit(bool user)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	long oldval;
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
	rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	oldval = rdp->dynticks_nesting;
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 | 
						|
	if (oldval) {
 | 
						|
		rdp->dynticks_nesting++;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	rcu_dynticks_task_exit();
 | 
						|
	rcu_dynticks_eqs_exit();
 | 
						|
	rcu_cleanup_after_idle();
 | 
						|
	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 | 
						|
	WRITE_ONCE(rdp->dynticks_nesting, 1);
 | 
						|
	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 | 
						|
	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 | 
						|
 *
 | 
						|
 * Exit idle mode, in other words, -enter- the mode in which RCU
 | 
						|
 * read-side critical sections can occur.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 | 
						|
 * CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_idle_exit(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rcu_eqs_exit(false);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NO_HZ_FULL
 | 
						|
/**
 | 
						|
 * rcu_user_exit - inform RCU that we are exiting userspace.
 | 
						|
 *
 | 
						|
 * Exit RCU idle mode while entering the kernel because it can
 | 
						|
 * run a RCU read side critical section anytime.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_user_exit(), be sure to test with
 | 
						|
 * CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_user_exit(void)
 | 
						|
{
 | 
						|
	rcu_eqs_exit(1);
 | 
						|
}
 | 
						|
#endif /* CONFIG_NO_HZ_FULL */
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 | 
						|
 * @irq: Is this call from rcu_irq_enter?
 | 
						|
 *
 | 
						|
 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 | 
						|
 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 | 
						|
 * that the CPU is active.  This implementation permits nested NMIs, as
 | 
						|
 * long as the nesting level does not overflow an int.  (You will probably
 | 
						|
 * run out of stack space first.)
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 | 
						|
 * with CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
static __always_inline void rcu_nmi_enter_common(bool irq)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	long incby = 2;
 | 
						|
 | 
						|
	/* Complain about underflow. */
 | 
						|
	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If idle from RCU viewpoint, atomically increment ->dynticks
 | 
						|
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 | 
						|
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 | 
						|
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 | 
						|
	 * to be in the outermost NMI handler that interrupted an RCU-idle
 | 
						|
	 * period (observation due to Andy Lutomirski).
 | 
						|
	 */
 | 
						|
	if (rcu_dynticks_curr_cpu_in_eqs()) {
 | 
						|
 | 
						|
		if (irq)
 | 
						|
			rcu_dynticks_task_exit();
 | 
						|
 | 
						|
		rcu_dynticks_eqs_exit();
 | 
						|
 | 
						|
		if (irq)
 | 
						|
			rcu_cleanup_after_idle();
 | 
						|
 | 
						|
		incby = 1;
 | 
						|
	}
 | 
						|
	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 | 
						|
			  rdp->dynticks_nmi_nesting,
 | 
						|
			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
 | 
						|
	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
 | 
						|
		   rdp->dynticks_nmi_nesting + incby);
 | 
						|
	barrier();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_nmi_enter - inform RCU of entry to NMI context
 | 
						|
 */
 | 
						|
void rcu_nmi_enter(void)
 | 
						|
{
 | 
						|
	rcu_nmi_enter_common(false);
 | 
						|
}
 | 
						|
NOKPROBE_SYMBOL(rcu_nmi_enter);
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 | 
						|
 *
 | 
						|
 * Enter an interrupt handler, which might possibly result in exiting
 | 
						|
 * idle mode, in other words, entering the mode in which read-side critical
 | 
						|
 * sections can occur.  The caller must have disabled interrupts.
 | 
						|
 *
 | 
						|
 * Note that the Linux kernel is fully capable of entering an interrupt
 | 
						|
 * handler that it never exits, for example when doing upcalls to user mode!
 | 
						|
 * This code assumes that the idle loop never does upcalls to user mode.
 | 
						|
 * If your architecture's idle loop does do upcalls to user mode (or does
 | 
						|
 * anything else that results in unbalanced calls to the irq_enter() and
 | 
						|
 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 | 
						|
 * But very infrequently and irreproducibly.
 | 
						|
 *
 | 
						|
 * Use things like work queues to work around this limitation.
 | 
						|
 *
 | 
						|
 * You have been warned.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 | 
						|
 * CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_irq_enter(void)
 | 
						|
{
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
	rcu_nmi_enter_common(true);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 | 
						|
 *
 | 
						|
 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 | 
						|
 * with CONFIG_RCU_EQS_DEBUG=y.
 | 
						|
 */
 | 
						|
void rcu_irq_enter_irqson(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rcu_irq_enter();
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 | 
						|
 *
 | 
						|
 * Return true if RCU is watching the running CPU, which means that this
 | 
						|
 * CPU can safely enter RCU read-side critical sections.  In other words,
 | 
						|
 * if the current CPU is not in its idle loop or is in an interrupt or
 | 
						|
 * NMI handler, return true.
 | 
						|
 */
 | 
						|
bool notrace rcu_is_watching(void)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	preempt_disable_notrace();
 | 
						|
	ret = !rcu_dynticks_curr_cpu_in_eqs();
 | 
						|
	preempt_enable_notrace();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_is_watching);
 | 
						|
 | 
						|
/*
 | 
						|
 * If a holdout task is actually running, request an urgent quiescent
 | 
						|
 * state from its CPU.  This is unsynchronized, so migrations can cause
 | 
						|
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 | 
						|
 * is that the CPU's next context switch will be a bit slower and next
 | 
						|
 * time around this task will generate another request.
 | 
						|
 */
 | 
						|
void rcu_request_urgent_qs_task(struct task_struct *t)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	barrier();
 | 
						|
	cpu = task_cpu(t);
 | 
						|
	if (!task_curr(t))
 | 
						|
		return; /* This task is not running on that CPU. */
 | 
						|
	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 | 
						|
 | 
						|
/*
 | 
						|
 * Is the current CPU online as far as RCU is concerned?
 | 
						|
 *
 | 
						|
 * Disable preemption to avoid false positives that could otherwise
 | 
						|
 * happen due to the current CPU number being sampled, this task being
 | 
						|
 * preempted, its old CPU being taken offline, resuming on some other CPU,
 | 
						|
 * then determining that its old CPU is now offline.
 | 
						|
 *
 | 
						|
 * Disable checking if in an NMI handler because we cannot safely
 | 
						|
 * report errors from NMI handlers anyway.  In addition, it is OK to use
 | 
						|
 * RCU on an offline processor during initial boot, hence the check for
 | 
						|
 * rcu_scheduler_fully_active.
 | 
						|
 */
 | 
						|
bool rcu_lockdep_current_cpu_online(void)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	if (in_nmi() || !rcu_scheduler_fully_active)
 | 
						|
		return true;
 | 
						|
	preempt_disable();
 | 
						|
	rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
 | 
						|
		ret = true;
 | 
						|
	preempt_enable();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 | 
						|
 | 
						|
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 | 
						|
 | 
						|
/*
 | 
						|
 * We are reporting a quiescent state on behalf of some other CPU, so
 | 
						|
 * it is our responsibility to check for and handle potential overflow
 | 
						|
 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 | 
						|
 * After all, the CPU might be in deep idle state, and thus executing no
 | 
						|
 * code whatsoever.
 | 
						|
 */
 | 
						|
static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp);
 | 
						|
	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 | 
						|
			 rnp->gp_seq))
 | 
						|
		WRITE_ONCE(rdp->gpwrap, true);
 | 
						|
	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 | 
						|
		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Snapshot the specified CPU's dynticks counter so that we can later
 | 
						|
 * credit them with an implicit quiescent state.  Return 1 if this CPU
 | 
						|
 * is in dynticks idle mode, which is an extended quiescent state.
 | 
						|
 */
 | 
						|
static int dyntick_save_progress_counter(struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
 | 
						|
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 | 
						|
		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 | 
						|
		rcu_gpnum_ovf(rdp->mynode, rdp);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if the specified CPU has passed through a quiescent
 | 
						|
 * state by virtue of being in or having passed through an dynticks
 | 
						|
 * idle state since the last call to dyntick_save_progress_counter()
 | 
						|
 * for this same CPU, or by virtue of having been offline.
 | 
						|
 */
 | 
						|
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long jtsq;
 | 
						|
	bool *rnhqp;
 | 
						|
	bool *ruqp;
 | 
						|
	struct rcu_node *rnp = rdp->mynode;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the CPU passed through or entered a dynticks idle phase with
 | 
						|
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 | 
						|
	 * already acknowledged the request to pass through a quiescent
 | 
						|
	 * state.  Either way, that CPU cannot possibly be in an RCU
 | 
						|
	 * read-side critical section that started before the beginning
 | 
						|
	 * of the current RCU grace period.
 | 
						|
	 */
 | 
						|
	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
 | 
						|
		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 | 
						|
		rcu_gpnum_ovf(rnp, rdp);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If waiting too long on an offline CPU, complain. */
 | 
						|
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
 | 
						|
	    time_after(jiffies, rcu_state.gp_start + HZ)) {
 | 
						|
		bool onl;
 | 
						|
		struct rcu_node *rnp1;
 | 
						|
 | 
						|
		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
 | 
						|
		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 | 
						|
			__func__, rnp->grplo, rnp->grphi, rnp->level,
 | 
						|
			(long)rnp->gp_seq, (long)rnp->completedqs);
 | 
						|
		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 | 
						|
			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 | 
						|
				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 | 
						|
		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 | 
						|
		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 | 
						|
			__func__, rdp->cpu, ".o"[onl],
 | 
						|
			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 | 
						|
			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 | 
						|
		return 1; /* Break things loose after complaining. */
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A CPU running for an extended time within the kernel can
 | 
						|
	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 | 
						|
	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 | 
						|
	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 | 
						|
	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 | 
						|
	 * variable are safe because the assignments are repeated if this
 | 
						|
	 * CPU failed to pass through a quiescent state.  This code
 | 
						|
	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 | 
						|
	 * is set way high.
 | 
						|
	 */
 | 
						|
	jtsq = READ_ONCE(jiffies_to_sched_qs);
 | 
						|
	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
 | 
						|
	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
 | 
						|
	if (!READ_ONCE(*rnhqp) &&
 | 
						|
	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 | 
						|
	     time_after(jiffies, rcu_state.jiffies_resched))) {
 | 
						|
		WRITE_ONCE(*rnhqp, true);
 | 
						|
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 | 
						|
		smp_store_release(ruqp, true);
 | 
						|
	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 | 
						|
		WRITE_ONCE(*ruqp, true);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 | 
						|
	 * The above code handles this, but only for straight cond_resched().
 | 
						|
	 * And some in-kernel loops check need_resched() before calling
 | 
						|
	 * cond_resched(), which defeats the above code for CPUs that are
 | 
						|
	 * running in-kernel with scheduling-clock interrupts disabled.
 | 
						|
	 * So hit them over the head with the resched_cpu() hammer!
 | 
						|
	 */
 | 
						|
	if (tick_nohz_full_cpu(rdp->cpu) &&
 | 
						|
		   time_after(jiffies,
 | 
						|
			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
 | 
						|
		resched_cpu(rdp->cpu);
 | 
						|
		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If more than halfway to RCU CPU stall-warning time, invoke
 | 
						|
	 * resched_cpu() more frequently to try to loosen things up a bit.
 | 
						|
	 * Also check to see if the CPU is getting hammered with interrupts,
 | 
						|
	 * but only once per grace period, just to keep the IPIs down to
 | 
						|
	 * a dull roar.
 | 
						|
	 */
 | 
						|
	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 | 
						|
		if (time_after(jiffies,
 | 
						|
			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 | 
						|
			resched_cpu(rdp->cpu);
 | 
						|
			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 | 
						|
		}
 | 
						|
		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 | 
						|
		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 | 
						|
		    (rnp->ffmask & rdp->grpmask)) {
 | 
						|
			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
 | 
						|
			rdp->rcu_iw_pending = true;
 | 
						|
			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 | 
						|
			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 | 
						|
static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 | 
						|
			      unsigned long gp_seq_req, const char *s)
 | 
						|
{
 | 
						|
	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
 | 
						|
				      rnp->level, rnp->grplo, rnp->grphi, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * rcu_start_this_gp - Request the start of a particular grace period
 | 
						|
 * @rnp_start: The leaf node of the CPU from which to start.
 | 
						|
 * @rdp: The rcu_data corresponding to the CPU from which to start.
 | 
						|
 * @gp_seq_req: The gp_seq of the grace period to start.
 | 
						|
 *
 | 
						|
 * Start the specified grace period, as needed to handle newly arrived
 | 
						|
 * callbacks.  The required future grace periods are recorded in each
 | 
						|
 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 | 
						|
 * is reason to awaken the grace-period kthread.
 | 
						|
 *
 | 
						|
 * The caller must hold the specified rcu_node structure's ->lock, which
 | 
						|
 * is why the caller is responsible for waking the grace-period kthread.
 | 
						|
 *
 | 
						|
 * Returns true if the GP thread needs to be awakened else false.
 | 
						|
 */
 | 
						|
static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 | 
						|
			      unsigned long gp_seq_req)
 | 
						|
{
 | 
						|
	bool ret = false;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use funnel locking to either acquire the root rcu_node
 | 
						|
	 * structure's lock or bail out if the need for this grace period
 | 
						|
	 * has already been recorded -- or if that grace period has in
 | 
						|
	 * fact already started.  If there is already a grace period in
 | 
						|
	 * progress in a non-leaf node, no recording is needed because the
 | 
						|
	 * end of the grace period will scan the leaf rcu_node structures.
 | 
						|
	 * Note that rnp_start->lock must not be released.
 | 
						|
	 */
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp_start);
 | 
						|
	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 | 
						|
	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 | 
						|
		if (rnp != rnp_start)
 | 
						|
			raw_spin_lock_rcu_node(rnp);
 | 
						|
		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 | 
						|
		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 | 
						|
		    (rnp != rnp_start &&
 | 
						|
		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 | 
						|
			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 | 
						|
					  TPS("Prestarted"));
 | 
						|
			goto unlock_out;
 | 
						|
		}
 | 
						|
		rnp->gp_seq_needed = gp_seq_req;
 | 
						|
		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 | 
						|
			/*
 | 
						|
			 * We just marked the leaf or internal node, and a
 | 
						|
			 * grace period is in progress, which means that
 | 
						|
			 * rcu_gp_cleanup() will see the marking.  Bail to
 | 
						|
			 * reduce contention.
 | 
						|
			 */
 | 
						|
			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 | 
						|
					  TPS("Startedleaf"));
 | 
						|
			goto unlock_out;
 | 
						|
		}
 | 
						|
		if (rnp != rnp_start && rnp->parent != NULL)
 | 
						|
			raw_spin_unlock_rcu_node(rnp);
 | 
						|
		if (!rnp->parent)
 | 
						|
			break;  /* At root, and perhaps also leaf. */
 | 
						|
	}
 | 
						|
 | 
						|
	/* If GP already in progress, just leave, otherwise start one. */
 | 
						|
	if (rcu_gp_in_progress()) {
 | 
						|
		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
 | 
						|
		goto unlock_out;
 | 
						|
	}
 | 
						|
	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
 | 
						|
	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
 | 
						|
	rcu_state.gp_req_activity = jiffies;
 | 
						|
	if (!rcu_state.gp_kthread) {
 | 
						|
		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
 | 
						|
		goto unlock_out;
 | 
						|
	}
 | 
						|
	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
 | 
						|
	ret = true;  /* Caller must wake GP kthread. */
 | 
						|
unlock_out:
 | 
						|
	/* Push furthest requested GP to leaf node and rcu_data structure. */
 | 
						|
	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
 | 
						|
		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
 | 
						|
		rdp->gp_seq_needed = rnp->gp_seq_needed;
 | 
						|
	}
 | 
						|
	if (rnp != rnp_start)
 | 
						|
		raw_spin_unlock_rcu_node(rnp);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clean up any old requests for the just-ended grace period.  Also return
 | 
						|
 * whether any additional grace periods have been requested.
 | 
						|
 */
 | 
						|
static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
 | 
						|
{
 | 
						|
	bool needmore;
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
 | 
						|
	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
 | 
						|
	if (!needmore)
 | 
						|
		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
 | 
						|
	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
 | 
						|
			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
 | 
						|
	return needmore;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
 | 
						|
 * an interrupt or softirq handler), and don't bother awakening when there
 | 
						|
 * is nothing for the grace-period kthread to do (as in several CPUs raced
 | 
						|
 * to awaken, and we lost), and finally don't try to awaken a kthread that
 | 
						|
 * has not yet been created.  If all those checks are passed, track some
 | 
						|
 * debug information and awaken.
 | 
						|
 *
 | 
						|
 * So why do the self-wakeup when in an interrupt or softirq handler
 | 
						|
 * in the grace-period kthread's context?  Because the kthread might have
 | 
						|
 * been interrupted just as it was going to sleep, and just after the final
 | 
						|
 * pre-sleep check of the awaken condition.  In this case, a wakeup really
 | 
						|
 * is required, and is therefore supplied.
 | 
						|
 */
 | 
						|
static void rcu_gp_kthread_wake(void)
 | 
						|
{
 | 
						|
	if ((current == rcu_state.gp_kthread &&
 | 
						|
	     !in_irq() && !in_serving_softirq()) ||
 | 
						|
	    !READ_ONCE(rcu_state.gp_flags) ||
 | 
						|
	    !rcu_state.gp_kthread)
 | 
						|
		return;
 | 
						|
	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
 | 
						|
	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
 | 
						|
	swake_up_one(&rcu_state.gp_wq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If there is room, assign a ->gp_seq number to any callbacks on this
 | 
						|
 * CPU that have not already been assigned.  Also accelerate any callbacks
 | 
						|
 * that were previously assigned a ->gp_seq number that has since proven
 | 
						|
 * to be too conservative, which can happen if callbacks get assigned a
 | 
						|
 * ->gp_seq number while RCU is idle, but with reference to a non-root
 | 
						|
 * rcu_node structure.  This function is idempotent, so it does not hurt
 | 
						|
 * to call it repeatedly.  Returns an flag saying that we should awaken
 | 
						|
 * the RCU grace-period kthread.
 | 
						|
 *
 | 
						|
 * The caller must hold rnp->lock with interrupts disabled.
 | 
						|
 */
 | 
						|
static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long gp_seq_req;
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp);
 | 
						|
 | 
						|
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | 
						|
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Callbacks are often registered with incomplete grace-period
 | 
						|
	 * information.  Something about the fact that getting exact
 | 
						|
	 * information requires acquiring a global lock...  RCU therefore
 | 
						|
	 * makes a conservative estimate of the grace period number at which
 | 
						|
	 * a given callback will become ready to invoke.	The following
 | 
						|
	 * code checks this estimate and improves it when possible, thus
 | 
						|
	 * accelerating callback invocation to an earlier grace-period
 | 
						|
	 * number.
 | 
						|
	 */
 | 
						|
	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
 | 
						|
	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
 | 
						|
		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
 | 
						|
 | 
						|
	/* Trace depending on how much we were able to accelerate. */
 | 
						|
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
 | 
						|
		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
 | 
						|
	else
 | 
						|
		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
 | 
						|
 * rcu_node structure's ->lock be held.  It consults the cached value
 | 
						|
 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
 | 
						|
 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
 | 
						|
 * while holding the leaf rcu_node structure's ->lock.
 | 
						|
 */
 | 
						|
static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
 | 
						|
					struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long c;
 | 
						|
	bool needwake;
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
	c = rcu_seq_snap(&rcu_state.gp_seq);
 | 
						|
	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
 | 
						|
		/* Old request still live, so mark recent callbacks. */
 | 
						|
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | 
						|
	needwake = rcu_accelerate_cbs(rnp, rdp);
 | 
						|
	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | 
						|
	if (needwake)
 | 
						|
		rcu_gp_kthread_wake();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Move any callbacks whose grace period has completed to the
 | 
						|
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 | 
						|
 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
 | 
						|
 * sublist.  This function is idempotent, so it does not hurt to
 | 
						|
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 | 
						|
 * Returns true if the RCU grace-period kthread needs to be awakened.
 | 
						|
 *
 | 
						|
 * The caller must hold rnp->lock with interrupts disabled.
 | 
						|
 */
 | 
						|
static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp);
 | 
						|
 | 
						|
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | 
						|
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find all callbacks whose ->gp_seq numbers indicate that they
 | 
						|
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
 | 
						|
	 */
 | 
						|
	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
 | 
						|
 | 
						|
	/* Classify any remaining callbacks. */
 | 
						|
	return rcu_accelerate_cbs(rnp, rdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update CPU-local rcu_data state to record the beginnings and ends of
 | 
						|
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 | 
						|
 * structure corresponding to the current CPU, and must have irqs disabled.
 | 
						|
 * Returns true if the grace-period kthread needs to be awakened.
 | 
						|
 */
 | 
						|
static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
	bool need_gp;
 | 
						|
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp);
 | 
						|
 | 
						|
	if (rdp->gp_seq == rnp->gp_seq)
 | 
						|
		return false; /* Nothing to do. */
 | 
						|
 | 
						|
	/* Handle the ends of any preceding grace periods first. */
 | 
						|
	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
 | 
						|
	    unlikely(READ_ONCE(rdp->gpwrap))) {
 | 
						|
		ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
 | 
						|
		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
 | 
						|
	} else {
 | 
						|
		ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
 | 
						|
	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
 | 
						|
	    unlikely(READ_ONCE(rdp->gpwrap))) {
 | 
						|
		/*
 | 
						|
		 * If the current grace period is waiting for this CPU,
 | 
						|
		 * set up to detect a quiescent state, otherwise don't
 | 
						|
		 * go looking for one.
 | 
						|
		 */
 | 
						|
		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
 | 
						|
		need_gp = !!(rnp->qsmask & rdp->grpmask);
 | 
						|
		rdp->cpu_no_qs.b.norm = need_gp;
 | 
						|
		rdp->core_needs_qs = need_gp;
 | 
						|
		zero_cpu_stall_ticks(rdp);
 | 
						|
	}
 | 
						|
	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
 | 
						|
	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
 | 
						|
		rdp->gp_seq_needed = rnp->gp_seq_needed;
 | 
						|
	WRITE_ONCE(rdp->gpwrap, false);
 | 
						|
	rcu_gpnum_ovf(rnp, rdp);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void note_gp_changes(struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	bool needwake;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
 | 
						|
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
 | 
						|
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
 | 
						|
		local_irq_restore(flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	needwake = __note_gp_changes(rnp, rdp);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	if (needwake)
 | 
						|
		rcu_gp_kthread_wake();
 | 
						|
}
 | 
						|
 | 
						|
static void rcu_gp_slow(int delay)
 | 
						|
{
 | 
						|
	if (delay > 0 &&
 | 
						|
	    !(rcu_seq_ctr(rcu_state.gp_seq) %
 | 
						|
	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
 | 
						|
		schedule_timeout_uninterruptible(delay);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize a new grace period.  Return false if no grace period required.
 | 
						|
 */
 | 
						|
static bool rcu_gp_init(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long oldmask;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp = rcu_get_root();
 | 
						|
 | 
						|
	WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
	raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
	if (!READ_ONCE(rcu_state.gp_flags)) {
 | 
						|
		/* Spurious wakeup, tell caller to go back to sleep.  */
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
 | 
						|
		/*
 | 
						|
		 * Grace period already in progress, don't start another.
 | 
						|
		 * Not supposed to be able to happen.
 | 
						|
		 */
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Advance to a new grace period and initialize state. */
 | 
						|
	record_gp_stall_check_time();
 | 
						|
	/* Record GP times before starting GP, hence rcu_seq_start(). */
 | 
						|
	rcu_seq_start(&rcu_state.gp_seq);
 | 
						|
	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
 | 
						|
	raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Apply per-leaf buffered online and offline operations to the
 | 
						|
	 * rcu_node tree.  Note that this new grace period need not wait
 | 
						|
	 * for subsequent online CPUs, and that quiescent-state forcing
 | 
						|
	 * will handle subsequent offline CPUs.
 | 
						|
	 */
 | 
						|
	rcu_state.gp_state = RCU_GP_ONOFF;
 | 
						|
	rcu_for_each_leaf_node(rnp) {
 | 
						|
		raw_spin_lock(&rcu_state.ofl_lock);
 | 
						|
		raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
 | 
						|
		    !rnp->wait_blkd_tasks) {
 | 
						|
			/* Nothing to do on this leaf rcu_node structure. */
 | 
						|
			raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
			raw_spin_unlock(&rcu_state.ofl_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Record old state, apply changes to ->qsmaskinit field. */
 | 
						|
		oldmask = rnp->qsmaskinit;
 | 
						|
		rnp->qsmaskinit = rnp->qsmaskinitnext;
 | 
						|
 | 
						|
		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
 | 
						|
		if (!oldmask != !rnp->qsmaskinit) {
 | 
						|
			if (!oldmask) { /* First online CPU for rcu_node. */
 | 
						|
				if (!rnp->wait_blkd_tasks) /* Ever offline? */
 | 
						|
					rcu_init_new_rnp(rnp);
 | 
						|
			} else if (rcu_preempt_has_tasks(rnp)) {
 | 
						|
				rnp->wait_blkd_tasks = true; /* blocked tasks */
 | 
						|
			} else { /* Last offline CPU and can propagate. */
 | 
						|
				rcu_cleanup_dead_rnp(rnp);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If all waited-on tasks from prior grace period are
 | 
						|
		 * done, and if all this rcu_node structure's CPUs are
 | 
						|
		 * still offline, propagate up the rcu_node tree and
 | 
						|
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
 | 
						|
		 * rcu_node structure's CPUs has since come back online,
 | 
						|
		 * simply clear ->wait_blkd_tasks.
 | 
						|
		 */
 | 
						|
		if (rnp->wait_blkd_tasks &&
 | 
						|
		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
 | 
						|
			rnp->wait_blkd_tasks = false;
 | 
						|
			if (!rnp->qsmaskinit)
 | 
						|
				rcu_cleanup_dead_rnp(rnp);
 | 
						|
		}
 | 
						|
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		raw_spin_unlock(&rcu_state.ofl_lock);
 | 
						|
	}
 | 
						|
	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the quiescent-state-needed bits in all the rcu_node
 | 
						|
	 * structures for all currently online CPUs in breadth-first
 | 
						|
	 * order, starting from the root rcu_node structure, relying on the
 | 
						|
	 * layout of the tree within the rcu_state.node[] array.  Note that
 | 
						|
	 * other CPUs will access only the leaves of the hierarchy, thus
 | 
						|
	 * seeing that no grace period is in progress, at least until the
 | 
						|
	 * corresponding leaf node has been initialized.
 | 
						|
	 *
 | 
						|
	 * The grace period cannot complete until the initialization
 | 
						|
	 * process finishes, because this kthread handles both.
 | 
						|
	 */
 | 
						|
	rcu_state.gp_state = RCU_GP_INIT;
 | 
						|
	rcu_for_each_node_breadth_first(rnp) {
 | 
						|
		rcu_gp_slow(gp_init_delay);
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		rdp = this_cpu_ptr(&rcu_data);
 | 
						|
		rcu_preempt_check_blocked_tasks(rnp);
 | 
						|
		rnp->qsmask = rnp->qsmaskinit;
 | 
						|
		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
 | 
						|
		if (rnp == rdp->mynode)
 | 
						|
			(void)__note_gp_changes(rnp, rdp);
 | 
						|
		rcu_preempt_boost_start_gp(rnp);
 | 
						|
		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
 | 
						|
					    rnp->level, rnp->grplo,
 | 
						|
					    rnp->grphi, rnp->qsmask);
 | 
						|
		/* Quiescent states for tasks on any now-offline CPUs. */
 | 
						|
		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
 | 
						|
		rnp->rcu_gp_init_mask = mask;
 | 
						|
		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
 | 
						|
			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | 
						|
		else
 | 
						|
			raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		cond_resched_tasks_rcu_qs();
 | 
						|
		WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
 | 
						|
 * time.
 | 
						|
 */
 | 
						|
static bool rcu_gp_fqs_check_wake(int *gfp)
 | 
						|
{
 | 
						|
	struct rcu_node *rnp = rcu_get_root();
 | 
						|
 | 
						|
	/* Someone like call_rcu() requested a force-quiescent-state scan. */
 | 
						|
	*gfp = READ_ONCE(rcu_state.gp_flags);
 | 
						|
	if (*gfp & RCU_GP_FLAG_FQS)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* The current grace period has completed. */
 | 
						|
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do one round of quiescent-state forcing.
 | 
						|
 */
 | 
						|
static void rcu_gp_fqs(bool first_time)
 | 
						|
{
 | 
						|
	struct rcu_node *rnp = rcu_get_root();
 | 
						|
 | 
						|
	WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
	rcu_state.n_force_qs++;
 | 
						|
	if (first_time) {
 | 
						|
		/* Collect dyntick-idle snapshots. */
 | 
						|
		force_qs_rnp(dyntick_save_progress_counter);
 | 
						|
	} else {
 | 
						|
		/* Handle dyntick-idle and offline CPUs. */
 | 
						|
		force_qs_rnp(rcu_implicit_dynticks_qs);
 | 
						|
	}
 | 
						|
	/* Clear flag to prevent immediate re-entry. */
 | 
						|
	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
 | 
						|
		raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
		WRITE_ONCE(rcu_state.gp_flags,
 | 
						|
			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Loop doing repeated quiescent-state forcing until the grace period ends.
 | 
						|
 */
 | 
						|
static void rcu_gp_fqs_loop(void)
 | 
						|
{
 | 
						|
	bool first_gp_fqs;
 | 
						|
	int gf;
 | 
						|
	unsigned long j;
 | 
						|
	int ret;
 | 
						|
	struct rcu_node *rnp = rcu_get_root();
 | 
						|
 | 
						|
	first_gp_fqs = true;
 | 
						|
	j = READ_ONCE(jiffies_till_first_fqs);
 | 
						|
	ret = 0;
 | 
						|
	for (;;) {
 | 
						|
		if (!ret) {
 | 
						|
			rcu_state.jiffies_force_qs = jiffies + j;
 | 
						|
			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
 | 
						|
				   jiffies + (j ? 3 * j : 2));
 | 
						|
		}
 | 
						|
		trace_rcu_grace_period(rcu_state.name,
 | 
						|
				       READ_ONCE(rcu_state.gp_seq),
 | 
						|
				       TPS("fqswait"));
 | 
						|
		rcu_state.gp_state = RCU_GP_WAIT_FQS;
 | 
						|
		ret = swait_event_idle_timeout_exclusive(
 | 
						|
				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
 | 
						|
		rcu_state.gp_state = RCU_GP_DOING_FQS;
 | 
						|
		/* Locking provides needed memory barriers. */
 | 
						|
		/* If grace period done, leave loop. */
 | 
						|
		if (!READ_ONCE(rnp->qsmask) &&
 | 
						|
		    !rcu_preempt_blocked_readers_cgp(rnp))
 | 
						|
			break;
 | 
						|
		/* If time for quiescent-state forcing, do it. */
 | 
						|
		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
 | 
						|
		    (gf & RCU_GP_FLAG_FQS)) {
 | 
						|
			trace_rcu_grace_period(rcu_state.name,
 | 
						|
					       READ_ONCE(rcu_state.gp_seq),
 | 
						|
					       TPS("fqsstart"));
 | 
						|
			rcu_gp_fqs(first_gp_fqs);
 | 
						|
			first_gp_fqs = false;
 | 
						|
			trace_rcu_grace_period(rcu_state.name,
 | 
						|
					       READ_ONCE(rcu_state.gp_seq),
 | 
						|
					       TPS("fqsend"));
 | 
						|
			cond_resched_tasks_rcu_qs();
 | 
						|
			WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
			ret = 0; /* Force full wait till next FQS. */
 | 
						|
			j = READ_ONCE(jiffies_till_next_fqs);
 | 
						|
		} else {
 | 
						|
			/* Deal with stray signal. */
 | 
						|
			cond_resched_tasks_rcu_qs();
 | 
						|
			WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
			WARN_ON(signal_pending(current));
 | 
						|
			trace_rcu_grace_period(rcu_state.name,
 | 
						|
					       READ_ONCE(rcu_state.gp_seq),
 | 
						|
					       TPS("fqswaitsig"));
 | 
						|
			ret = 1; /* Keep old FQS timing. */
 | 
						|
			j = jiffies;
 | 
						|
			if (time_after(jiffies, rcu_state.jiffies_force_qs))
 | 
						|
				j = 1;
 | 
						|
			else
 | 
						|
				j = rcu_state.jiffies_force_qs - j;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clean up after the old grace period.
 | 
						|
 */
 | 
						|
static void rcu_gp_cleanup(void)
 | 
						|
{
 | 
						|
	unsigned long gp_duration;
 | 
						|
	bool needgp = false;
 | 
						|
	unsigned long new_gp_seq;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp = rcu_get_root();
 | 
						|
	struct swait_queue_head *sq;
 | 
						|
 | 
						|
	WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
	raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
	rcu_state.gp_end = jiffies;
 | 
						|
	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
 | 
						|
	if (gp_duration > rcu_state.gp_max)
 | 
						|
		rcu_state.gp_max = gp_duration;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We know the grace period is complete, but to everyone else
 | 
						|
	 * it appears to still be ongoing.  But it is also the case
 | 
						|
	 * that to everyone else it looks like there is nothing that
 | 
						|
	 * they can do to advance the grace period.  It is therefore
 | 
						|
	 * safe for us to drop the lock in order to mark the grace
 | 
						|
	 * period as completed in all of the rcu_node structures.
 | 
						|
	 */
 | 
						|
	raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Propagate new ->gp_seq value to rcu_node structures so that
 | 
						|
	 * other CPUs don't have to wait until the start of the next grace
 | 
						|
	 * period to process their callbacks.  This also avoids some nasty
 | 
						|
	 * RCU grace-period initialization races by forcing the end of
 | 
						|
	 * the current grace period to be completely recorded in all of
 | 
						|
	 * the rcu_node structures before the beginning of the next grace
 | 
						|
	 * period is recorded in any of the rcu_node structures.
 | 
						|
	 */
 | 
						|
	new_gp_seq = rcu_state.gp_seq;
 | 
						|
	rcu_seq_end(&new_gp_seq);
 | 
						|
	rcu_for_each_node_breadth_first(rnp) {
 | 
						|
		raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 | 
						|
			dump_blkd_tasks(rnp, 10);
 | 
						|
		WARN_ON_ONCE(rnp->qsmask);
 | 
						|
		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
 | 
						|
		rdp = this_cpu_ptr(&rcu_data);
 | 
						|
		if (rnp == rdp->mynode)
 | 
						|
			needgp = __note_gp_changes(rnp, rdp) || needgp;
 | 
						|
		/* smp_mb() provided by prior unlock-lock pair. */
 | 
						|
		needgp = rcu_future_gp_cleanup(rnp) || needgp;
 | 
						|
		sq = rcu_nocb_gp_get(rnp);
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		rcu_nocb_gp_cleanup(sq);
 | 
						|
		cond_resched_tasks_rcu_qs();
 | 
						|
		WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
		rcu_gp_slow(gp_cleanup_delay);
 | 
						|
	}
 | 
						|
	rnp = rcu_get_root();
 | 
						|
	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
 | 
						|
 | 
						|
	/* Declare grace period done, trace first to use old GP number. */
 | 
						|
	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
 | 
						|
	rcu_seq_end(&rcu_state.gp_seq);
 | 
						|
	rcu_state.gp_state = RCU_GP_IDLE;
 | 
						|
	/* Check for GP requests since above loop. */
 | 
						|
	rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
 | 
						|
		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
 | 
						|
				  TPS("CleanupMore"));
 | 
						|
		needgp = true;
 | 
						|
	}
 | 
						|
	/* Advance CBs to reduce false positives below. */
 | 
						|
	if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
 | 
						|
		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
 | 
						|
		rcu_state.gp_req_activity = jiffies;
 | 
						|
		trace_rcu_grace_period(rcu_state.name,
 | 
						|
				       READ_ONCE(rcu_state.gp_seq),
 | 
						|
				       TPS("newreq"));
 | 
						|
	} else {
 | 
						|
		WRITE_ONCE(rcu_state.gp_flags,
 | 
						|
			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
 | 
						|
	}
 | 
						|
	raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Body of kthread that handles grace periods.
 | 
						|
 */
 | 
						|
static int __noreturn rcu_gp_kthread(void *unused)
 | 
						|
{
 | 
						|
	rcu_bind_gp_kthread();
 | 
						|
	for (;;) {
 | 
						|
 | 
						|
		/* Handle grace-period start. */
 | 
						|
		for (;;) {
 | 
						|
			trace_rcu_grace_period(rcu_state.name,
 | 
						|
					       READ_ONCE(rcu_state.gp_seq),
 | 
						|
					       TPS("reqwait"));
 | 
						|
			rcu_state.gp_state = RCU_GP_WAIT_GPS;
 | 
						|
			swait_event_idle_exclusive(rcu_state.gp_wq,
 | 
						|
					 READ_ONCE(rcu_state.gp_flags) &
 | 
						|
					 RCU_GP_FLAG_INIT);
 | 
						|
			rcu_state.gp_state = RCU_GP_DONE_GPS;
 | 
						|
			/* Locking provides needed memory barrier. */
 | 
						|
			if (rcu_gp_init())
 | 
						|
				break;
 | 
						|
			cond_resched_tasks_rcu_qs();
 | 
						|
			WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | 
						|
			WARN_ON(signal_pending(current));
 | 
						|
			trace_rcu_grace_period(rcu_state.name,
 | 
						|
					       READ_ONCE(rcu_state.gp_seq),
 | 
						|
					       TPS("reqwaitsig"));
 | 
						|
		}
 | 
						|
 | 
						|
		/* Handle quiescent-state forcing. */
 | 
						|
		rcu_gp_fqs_loop();
 | 
						|
 | 
						|
		/* Handle grace-period end. */
 | 
						|
		rcu_state.gp_state = RCU_GP_CLEANUP;
 | 
						|
		rcu_gp_cleanup();
 | 
						|
		rcu_state.gp_state = RCU_GP_CLEANED;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Report a full set of quiescent states to the rcu_state data structure.
 | 
						|
 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
 | 
						|
 * another grace period is required.  Whether we wake the grace-period
 | 
						|
 * kthread or it awakens itself for the next round of quiescent-state
 | 
						|
 * forcing, that kthread will clean up after the just-completed grace
 | 
						|
 * period.  Note that the caller must hold rnp->lock, which is released
 | 
						|
 * before return.
 | 
						|
 */
 | 
						|
static void rcu_report_qs_rsp(unsigned long flags)
 | 
						|
	__releases(rcu_get_root()->lock)
 | 
						|
{
 | 
						|
	raw_lockdep_assert_held_rcu_node(rcu_get_root());
 | 
						|
	WARN_ON_ONCE(!rcu_gp_in_progress());
 | 
						|
	WRITE_ONCE(rcu_state.gp_flags,
 | 
						|
		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
 | 
						|
	rcu_gp_kthread_wake();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 | 
						|
 * Allows quiescent states for a group of CPUs to be reported at one go
 | 
						|
 * to the specified rcu_node structure, though all the CPUs in the group
 | 
						|
 * must be represented by the same rcu_node structure (which need not be a
 | 
						|
 * leaf rcu_node structure, though it often will be).  The gps parameter
 | 
						|
 * is the grace-period snapshot, which means that the quiescent states
 | 
						|
 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
 | 
						|
 * must be held upon entry, and it is released before return.
 | 
						|
 *
 | 
						|
 * As a special case, if mask is zero, the bit-already-cleared check is
 | 
						|
 * disabled.  This allows propagating quiescent state due to resumed tasks
 | 
						|
 * during grace-period initialization.
 | 
						|
 */
 | 
						|
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 | 
						|
			      unsigned long gps, unsigned long flags)
 | 
						|
	__releases(rnp->lock)
 | 
						|
{
 | 
						|
	unsigned long oldmask = 0;
 | 
						|
	struct rcu_node *rnp_c;
 | 
						|
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp);
 | 
						|
 | 
						|
	/* Walk up the rcu_node hierarchy. */
 | 
						|
	for (;;) {
 | 
						|
		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Our bit has already been cleared, or the
 | 
						|
			 * relevant grace period is already over, so done.
 | 
						|
			 */
 | 
						|
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
 | 
						|
		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
 | 
						|
			     rcu_preempt_blocked_readers_cgp(rnp));
 | 
						|
		rnp->qsmask &= ~mask;
 | 
						|
		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
 | 
						|
						 mask, rnp->qsmask, rnp->level,
 | 
						|
						 rnp->grplo, rnp->grphi,
 | 
						|
						 !!rnp->gp_tasks);
 | 
						|
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 | 
						|
 | 
						|
			/* Other bits still set at this level, so done. */
 | 
						|
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		rnp->completedqs = rnp->gp_seq;
 | 
						|
		mask = rnp->grpmask;
 | 
						|
		if (rnp->parent == NULL) {
 | 
						|
 | 
						|
			/* No more levels.  Exit loop holding root lock. */
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		rnp_c = rnp;
 | 
						|
		rnp = rnp->parent;
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		oldmask = rnp_c->qsmask;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get here if we are the last CPU to pass through a quiescent
 | 
						|
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
 | 
						|
	 * to clean up and start the next grace period if one is needed.
 | 
						|
	 */
 | 
						|
	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Record a quiescent state for all tasks that were previously queued
 | 
						|
 * on the specified rcu_node structure and that were blocking the current
 | 
						|
 * RCU grace period.  The caller must hold the corresponding rnp->lock with
 | 
						|
 * irqs disabled, and this lock is released upon return, but irqs remain
 | 
						|
 * disabled.
 | 
						|
 */
 | 
						|
static void __maybe_unused
 | 
						|
rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 | 
						|
	__releases(rnp->lock)
 | 
						|
{
 | 
						|
	unsigned long gps;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_node *rnp_p;
 | 
						|
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp);
 | 
						|
	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
 | 
						|
	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
 | 
						|
	    rnp->qsmask != 0) {
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		return;  /* Still need more quiescent states! */
 | 
						|
	}
 | 
						|
 | 
						|
	rnp->completedqs = rnp->gp_seq;
 | 
						|
	rnp_p = rnp->parent;
 | 
						|
	if (rnp_p == NULL) {
 | 
						|
		/*
 | 
						|
		 * Only one rcu_node structure in the tree, so don't
 | 
						|
		 * try to report up to its nonexistent parent!
 | 
						|
		 */
 | 
						|
		rcu_report_qs_rsp(flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
 | 
						|
	gps = rnp->gp_seq;
 | 
						|
	mask = rnp->grpmask;
 | 
						|
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
 | 
						|
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
 | 
						|
	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 | 
						|
 * structure.  This must be called from the specified CPU.
 | 
						|
 */
 | 
						|
static void
 | 
						|
rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	bool needwake;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
 | 
						|
	    rdp->gpwrap) {
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The grace period in which this quiescent state was
 | 
						|
		 * recorded has ended, so don't report it upwards.
 | 
						|
		 * We will instead need a new quiescent state that lies
 | 
						|
		 * within the current grace period.
 | 
						|
		 */
 | 
						|
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	mask = rdp->grpmask;
 | 
						|
	rdp->core_needs_qs = false;
 | 
						|
	if ((rnp->qsmask & mask) == 0) {
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This GP can't end until cpu checks in, so all of our
 | 
						|
		 * callbacks can be processed during the next GP.
 | 
						|
		 */
 | 
						|
		needwake = rcu_accelerate_cbs(rnp, rdp);
 | 
						|
 | 
						|
		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | 
						|
		/* ^^^ Released rnp->lock */
 | 
						|
		if (needwake)
 | 
						|
			rcu_gp_kthread_wake();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if there is a new grace period of which this CPU
 | 
						|
 * is not yet aware, and if so, set up local rcu_data state for it.
 | 
						|
 * Otherwise, see if this CPU has just passed through its first
 | 
						|
 * quiescent state for this grace period, and record that fact if so.
 | 
						|
 */
 | 
						|
static void
 | 
						|
rcu_check_quiescent_state(struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	/* Check for grace-period ends and beginnings. */
 | 
						|
	note_gp_changes(rdp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Does this CPU still need to do its part for current grace period?
 | 
						|
	 * If no, return and let the other CPUs do their part as well.
 | 
						|
	 */
 | 
						|
	if (!rdp->core_needs_qs)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Was there a quiescent state since the beginning of the grace
 | 
						|
	 * period? If no, then exit and wait for the next call.
 | 
						|
	 */
 | 
						|
	if (rdp->cpu_no_qs.b.norm)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
 | 
						|
	 * judge of that).
 | 
						|
	 */
 | 
						|
	rcu_report_qs_rdp(rdp->cpu, rdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Near the end of the offline process.  Trace the fact that this CPU
 | 
						|
 * is going offline.
 | 
						|
 */
 | 
						|
int rcutree_dying_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	bool blkd;
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	struct rcu_node *rnp = rdp->mynode;
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	blkd = !!(rnp->qsmask & rdp->grpmask);
 | 
						|
	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
 | 
						|
			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * All CPUs for the specified rcu_node structure have gone offline,
 | 
						|
 * and all tasks that were preempted within an RCU read-side critical
 | 
						|
 * section while running on one of those CPUs have since exited their RCU
 | 
						|
 * read-side critical section.  Some other CPU is reporting this fact with
 | 
						|
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 | 
						|
 * This function therefore goes up the tree of rcu_node structures,
 | 
						|
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 | 
						|
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 | 
						|
 * updated.
 | 
						|
 *
 | 
						|
 * This function does check that the specified rcu_node structure has
 | 
						|
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 | 
						|
 * prematurely.  That said, invoking it after the fact will cost you
 | 
						|
 * a needless lock acquisition.  So once it has done its work, don't
 | 
						|
 * invoke it again.
 | 
						|
 */
 | 
						|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
 | 
						|
{
 | 
						|
	long mask;
 | 
						|
	struct rcu_node *rnp = rnp_leaf;
 | 
						|
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp_leaf);
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
 | 
						|
	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
 | 
						|
	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
 | 
						|
		return;
 | 
						|
	for (;;) {
 | 
						|
		mask = rnp->grpmask;
 | 
						|
		rnp = rnp->parent;
 | 
						|
		if (!rnp)
 | 
						|
			break;
 | 
						|
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | 
						|
		rnp->qsmaskinit &= ~mask;
 | 
						|
		/* Between grace periods, so better already be zero! */
 | 
						|
		WARN_ON_ONCE(rnp->qsmask);
 | 
						|
		if (rnp->qsmaskinit) {
 | 
						|
			raw_spin_unlock_rcu_node(rnp);
 | 
						|
			/* irqs remain disabled. */
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The CPU has been completely removed, and some other CPU is reporting
 | 
						|
 * this fact from process context.  Do the remainder of the cleanup.
 | 
						|
 * There can only be one CPU hotplug operation at a time, so no need for
 | 
						|
 * explicit locking.
 | 
						|
 */
 | 
						|
int rcutree_dead_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Adjust any no-longer-needed kthreads. */
 | 
						|
	rcu_boost_kthread_setaffinity(rnp, -1);
 | 
						|
	/* Do any needed no-CB deferred wakeups from this CPU. */
 | 
						|
	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invoke any RCU callbacks that have made it to the end of their grace
 | 
						|
 * period.  Thottle as specified by rdp->blimit.
 | 
						|
 */
 | 
						|
static void rcu_do_batch(struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_head *rhp;
 | 
						|
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
 | 
						|
	long bl, count;
 | 
						|
 | 
						|
	/* If no callbacks are ready, just return. */
 | 
						|
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
 | 
						|
		trace_rcu_batch_start(rcu_state.name,
 | 
						|
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
 | 
						|
		trace_rcu_batch_end(rcu_state.name, 0,
 | 
						|
				    !rcu_segcblist_empty(&rdp->cblist),
 | 
						|
				    need_resched(), is_idle_task(current),
 | 
						|
				    rcu_is_callbacks_kthread());
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Extract the list of ready callbacks, disabling to prevent
 | 
						|
	 * races with call_rcu() from interrupt handlers.  Leave the
 | 
						|
	 * callback counts, as rcu_barrier() needs to be conservative.
 | 
						|
	 */
 | 
						|
	local_irq_save(flags);
 | 
						|
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
 | 
						|
	bl = rdp->blimit;
 | 
						|
	trace_rcu_batch_start(rcu_state.name,
 | 
						|
			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
 | 
						|
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	/* Invoke callbacks. */
 | 
						|
	rhp = rcu_cblist_dequeue(&rcl);
 | 
						|
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 | 
						|
		debug_rcu_head_unqueue(rhp);
 | 
						|
		if (__rcu_reclaim(rcu_state.name, rhp))
 | 
						|
			rcu_cblist_dequeued_lazy(&rcl);
 | 
						|
		/*
 | 
						|
		 * Stop only if limit reached and CPU has something to do.
 | 
						|
		 * Note: The rcl structure counts down from zero.
 | 
						|
		 */
 | 
						|
		if (-rcl.len >= bl &&
 | 
						|
		    (need_resched() ||
 | 
						|
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	count = -rcl.len;
 | 
						|
	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
 | 
						|
			    is_idle_task(current), rcu_is_callbacks_kthread());
 | 
						|
 | 
						|
	/* Update counts and requeue any remaining callbacks. */
 | 
						|
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
 | 
						|
	smp_mb(); /* List handling before counting for rcu_barrier(). */
 | 
						|
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
 | 
						|
 | 
						|
	/* Reinstate batch limit if we have worked down the excess. */
 | 
						|
	count = rcu_segcblist_n_cbs(&rdp->cblist);
 | 
						|
	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
 | 
						|
		rdp->blimit = blimit;
 | 
						|
 | 
						|
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
 | 
						|
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
 | 
						|
		rdp->qlen_last_fqs_check = 0;
 | 
						|
		rdp->n_force_qs_snap = rcu_state.n_force_qs;
 | 
						|
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
 | 
						|
		rdp->qlen_last_fqs_check = count;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The following usually indicates a double call_rcu().  To track
 | 
						|
	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	/* Re-invoke RCU core processing if there are callbacks remaining. */
 | 
						|
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | 
						|
		invoke_rcu_core();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is invoked from each scheduling-clock interrupt,
 | 
						|
 * and checks to see if this CPU is in a non-context-switch quiescent
 | 
						|
 * state, for example, user mode or idle loop.  It also schedules RCU
 | 
						|
 * core processing.  If the current grace period has gone on too long,
 | 
						|
 * it will ask the scheduler to manufacture a context switch for the sole
 | 
						|
 * purpose of providing a providing the needed quiescent state.
 | 
						|
 */
 | 
						|
void rcu_sched_clock_irq(int user)
 | 
						|
{
 | 
						|
	trace_rcu_utilization(TPS("Start scheduler-tick"));
 | 
						|
	raw_cpu_inc(rcu_data.ticks_this_gp);
 | 
						|
	/* The load-acquire pairs with the store-release setting to true. */
 | 
						|
	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 | 
						|
		/* Idle and userspace execution already are quiescent states. */
 | 
						|
		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
 | 
						|
			set_tsk_need_resched(current);
 | 
						|
			set_preempt_need_resched();
 | 
						|
		}
 | 
						|
		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
 | 
						|
	}
 | 
						|
	rcu_flavor_sched_clock_irq(user);
 | 
						|
	if (rcu_pending())
 | 
						|
		invoke_rcu_core();
 | 
						|
 | 
						|
	trace_rcu_utilization(TPS("End scheduler-tick"));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Scan the leaf rcu_node structures.  For each structure on which all
 | 
						|
 * CPUs have reported a quiescent state and on which there are tasks
 | 
						|
 * blocking the current grace period, initiate RCU priority boosting.
 | 
						|
 * Otherwise, invoke the specified function to check dyntick state for
 | 
						|
 * each CPU that has not yet reported a quiescent state.
 | 
						|
 */
 | 
						|
static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	rcu_for_each_leaf_node(rnp) {
 | 
						|
		cond_resched_tasks_rcu_qs();
 | 
						|
		mask = 0;
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		if (rnp->qsmask == 0) {
 | 
						|
			if (!IS_ENABLED(CONFIG_PREEMPT) ||
 | 
						|
			    rcu_preempt_blocked_readers_cgp(rnp)) {
 | 
						|
				/*
 | 
						|
				 * No point in scanning bits because they
 | 
						|
				 * are all zero.  But we might need to
 | 
						|
				 * priority-boost blocked readers.
 | 
						|
				 */
 | 
						|
				rcu_initiate_boost(rnp, flags);
 | 
						|
				/* rcu_initiate_boost() releases rnp->lock */
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		for_each_leaf_node_possible_cpu(rnp, cpu) {
 | 
						|
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
 | 
						|
			if ((rnp->qsmask & bit) != 0) {
 | 
						|
				if (f(per_cpu_ptr(&rcu_data, cpu)))
 | 
						|
					mask |= bit;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (mask != 0) {
 | 
						|
			/* Idle/offline CPUs, report (releases rnp->lock). */
 | 
						|
			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | 
						|
		} else {
 | 
						|
			/* Nothing to do here, so just drop the lock. */
 | 
						|
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Force quiescent states on reluctant CPUs, and also detect which
 | 
						|
 * CPUs are in dyntick-idle mode.
 | 
						|
 */
 | 
						|
void rcu_force_quiescent_state(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	bool ret;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
	struct rcu_node *rnp_old = NULL;
 | 
						|
 | 
						|
	/* Funnel through hierarchy to reduce memory contention. */
 | 
						|
	rnp = __this_cpu_read(rcu_data.mynode);
 | 
						|
	for (; rnp != NULL; rnp = rnp->parent) {
 | 
						|
		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
 | 
						|
		      !raw_spin_trylock(&rnp->fqslock);
 | 
						|
		if (rnp_old != NULL)
 | 
						|
			raw_spin_unlock(&rnp_old->fqslock);
 | 
						|
		if (ret)
 | 
						|
			return;
 | 
						|
		rnp_old = rnp;
 | 
						|
	}
 | 
						|
	/* rnp_old == rcu_get_root(), rnp == NULL. */
 | 
						|
 | 
						|
	/* Reached the root of the rcu_node tree, acquire lock. */
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
 | 
						|
	raw_spin_unlock(&rnp_old->fqslock);
 | 
						|
	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | 
						|
		return;  /* Someone beat us to it. */
 | 
						|
	}
 | 
						|
	WRITE_ONCE(rcu_state.gp_flags,
 | 
						|
		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | 
						|
	rcu_gp_kthread_wake();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 | 
						|
 | 
						|
/* Perform RCU core processing work for the current CPU.  */
 | 
						|
static __latent_entropy void rcu_core(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
 | 
						|
	struct rcu_node *rnp = rdp->mynode;
 | 
						|
 | 
						|
	if (cpu_is_offline(smp_processor_id()))
 | 
						|
		return;
 | 
						|
	trace_rcu_utilization(TPS("Start RCU core"));
 | 
						|
	WARN_ON_ONCE(!rdp->beenonline);
 | 
						|
 | 
						|
	/* Report any deferred quiescent states if preemption enabled. */
 | 
						|
	if (!(preempt_count() & PREEMPT_MASK)) {
 | 
						|
		rcu_preempt_deferred_qs(current);
 | 
						|
	} else if (rcu_preempt_need_deferred_qs(current)) {
 | 
						|
		set_tsk_need_resched(current);
 | 
						|
		set_preempt_need_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	/* Update RCU state based on any recent quiescent states. */
 | 
						|
	rcu_check_quiescent_state(rdp);
 | 
						|
 | 
						|
	/* No grace period and unregistered callbacks? */
 | 
						|
	if (!rcu_gp_in_progress() &&
 | 
						|
	    rcu_segcblist_is_enabled(&rdp->cblist)) {
 | 
						|
		local_irq_save(flags);
 | 
						|
		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 | 
						|
			rcu_accelerate_cbs_unlocked(rnp, rdp);
 | 
						|
		local_irq_restore(flags);
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
 | 
						|
 | 
						|
	/* If there are callbacks ready, invoke them. */
 | 
						|
	if (rcu_segcblist_ready_cbs(&rdp->cblist) &&
 | 
						|
	    likely(READ_ONCE(rcu_scheduler_fully_active)))
 | 
						|
		rcu_do_batch(rdp);
 | 
						|
 | 
						|
	/* Do any needed deferred wakeups of rcuo kthreads. */
 | 
						|
	do_nocb_deferred_wakeup(rdp);
 | 
						|
	trace_rcu_utilization(TPS("End RCU core"));
 | 
						|
}
 | 
						|
 | 
						|
static void rcu_core_si(struct softirq_action *h)
 | 
						|
{
 | 
						|
	rcu_core();
 | 
						|
}
 | 
						|
 | 
						|
static void rcu_wake_cond(struct task_struct *t, int status)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If the thread is yielding, only wake it when this
 | 
						|
	 * is invoked from idle
 | 
						|
	 */
 | 
						|
	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
 | 
						|
		wake_up_process(t);
 | 
						|
}
 | 
						|
 | 
						|
static void invoke_rcu_core_kthread(void)
 | 
						|
{
 | 
						|
	struct task_struct *t;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
 | 
						|
	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
 | 
						|
	if (t != NULL && t != current)
 | 
						|
		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wake up this CPU's rcuc kthread to do RCU core processing.
 | 
						|
 */
 | 
						|
static void invoke_rcu_core(void)
 | 
						|
{
 | 
						|
	if (!cpu_online(smp_processor_id()))
 | 
						|
		return;
 | 
						|
	if (use_softirq)
 | 
						|
		raise_softirq(RCU_SOFTIRQ);
 | 
						|
	else
 | 
						|
		invoke_rcu_core_kthread();
 | 
						|
}
 | 
						|
 | 
						|
static void rcu_cpu_kthread_park(unsigned int cpu)
 | 
						|
{
 | 
						|
	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
 | 
						|
}
 | 
						|
 | 
						|
static int rcu_cpu_kthread_should_run(unsigned int cpu)
 | 
						|
{
 | 
						|
	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
 | 
						|
 * the RCU softirq used in configurations of RCU that do not support RCU
 | 
						|
 * priority boosting.
 | 
						|
 */
 | 
						|
static void rcu_cpu_kthread(unsigned int cpu)
 | 
						|
{
 | 
						|
	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
 | 
						|
	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
 | 
						|
	int spincnt;
 | 
						|
 | 
						|
	for (spincnt = 0; spincnt < 10; spincnt++) {
 | 
						|
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
 | 
						|
		local_bh_disable();
 | 
						|
		*statusp = RCU_KTHREAD_RUNNING;
 | 
						|
		local_irq_disable();
 | 
						|
		work = *workp;
 | 
						|
		*workp = 0;
 | 
						|
		local_irq_enable();
 | 
						|
		if (work)
 | 
						|
			rcu_core();
 | 
						|
		local_bh_enable();
 | 
						|
		if (*workp == 0) {
 | 
						|
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
 | 
						|
			*statusp = RCU_KTHREAD_WAITING;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	*statusp = RCU_KTHREAD_YIELDING;
 | 
						|
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
 | 
						|
	schedule_timeout_interruptible(2);
 | 
						|
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
 | 
						|
	*statusp = RCU_KTHREAD_WAITING;
 | 
						|
}
 | 
						|
 | 
						|
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
 | 
						|
	.store			= &rcu_data.rcu_cpu_kthread_task,
 | 
						|
	.thread_should_run	= rcu_cpu_kthread_should_run,
 | 
						|
	.thread_fn		= rcu_cpu_kthread,
 | 
						|
	.thread_comm		= "rcuc/%u",
 | 
						|
	.setup			= rcu_cpu_kthread_setup,
 | 
						|
	.park			= rcu_cpu_kthread_park,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Spawn per-CPU RCU core processing kthreads.
 | 
						|
 */
 | 
						|
static int __init rcu_spawn_core_kthreads(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
 | 
						|
	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
 | 
						|
		return 0;
 | 
						|
	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
 | 
						|
		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_initcall(rcu_spawn_core_kthreads);
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle any core-RCU processing required by a call_rcu() invocation.
 | 
						|
 */
 | 
						|
static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
 | 
						|
			    unsigned long flags)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If called from an extended quiescent state, invoke the RCU
 | 
						|
	 * core in order to force a re-evaluation of RCU's idleness.
 | 
						|
	 */
 | 
						|
	if (!rcu_is_watching())
 | 
						|
		invoke_rcu_core();
 | 
						|
 | 
						|
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
 | 
						|
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Force the grace period if too many callbacks or too long waiting.
 | 
						|
	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
 | 
						|
	 * if some other CPU has recently done so.  Also, don't bother
 | 
						|
	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
 | 
						|
	 * is the only one waiting for a grace period to complete.
 | 
						|
	 */
 | 
						|
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
 | 
						|
		     rdp->qlen_last_fqs_check + qhimark)) {
 | 
						|
 | 
						|
		/* Are we ignoring a completed grace period? */
 | 
						|
		note_gp_changes(rdp);
 | 
						|
 | 
						|
		/* Start a new grace period if one not already started. */
 | 
						|
		if (!rcu_gp_in_progress()) {
 | 
						|
			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
 | 
						|
		} else {
 | 
						|
			/* Give the grace period a kick. */
 | 
						|
			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
 | 
						|
			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
 | 
						|
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
 | 
						|
				rcu_force_quiescent_state();
 | 
						|
			rdp->n_force_qs_snap = rcu_state.n_force_qs;
 | 
						|
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * RCU callback function to leak a callback.
 | 
						|
 */
 | 
						|
static void rcu_leak_callback(struct rcu_head *rhp)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for call_rcu() and friends.  The cpu argument will
 | 
						|
 * normally be -1, indicating "currently running CPU".  It may specify
 | 
						|
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
 | 
						|
 * is expected to specify a CPU.
 | 
						|
 */
 | 
						|
static void
 | 
						|
__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
 | 
						|
	/* Misaligned rcu_head! */
 | 
						|
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
 | 
						|
 | 
						|
	if (debug_rcu_head_queue(head)) {
 | 
						|
		/*
 | 
						|
		 * Probable double call_rcu(), so leak the callback.
 | 
						|
		 * Use rcu:rcu_callback trace event to find the previous
 | 
						|
		 * time callback was passed to __call_rcu().
 | 
						|
		 */
 | 
						|
		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
 | 
						|
			  head, head->func);
 | 
						|
		WRITE_ONCE(head->func, rcu_leak_callback);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	head->func = func;
 | 
						|
	head->next = NULL;
 | 
						|
	local_irq_save(flags);
 | 
						|
	rdp = this_cpu_ptr(&rcu_data);
 | 
						|
 | 
						|
	/* Add the callback to our list. */
 | 
						|
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
 | 
						|
		int offline;
 | 
						|
 | 
						|
		if (cpu != -1)
 | 
						|
			rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
		if (likely(rdp->mynode)) {
 | 
						|
			/* Post-boot, so this should be for a no-CBs CPU. */
 | 
						|
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
 | 
						|
			WARN_ON_ONCE(offline);
 | 
						|
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
 | 
						|
			local_irq_restore(flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Very early boot, before rcu_init().  Initialize if needed
 | 
						|
		 * and then drop through to queue the callback.
 | 
						|
		 */
 | 
						|
		WARN_ON_ONCE(cpu != -1);
 | 
						|
		WARN_ON_ONCE(!rcu_is_watching());
 | 
						|
		if (rcu_segcblist_empty(&rdp->cblist))
 | 
						|
			rcu_segcblist_init(&rdp->cblist);
 | 
						|
	}
 | 
						|
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
 | 
						|
	if (__is_kfree_rcu_offset((unsigned long)func))
 | 
						|
		trace_rcu_kfree_callback(rcu_state.name, head,
 | 
						|
					 (unsigned long)func,
 | 
						|
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
					 rcu_segcblist_n_cbs(&rdp->cblist));
 | 
						|
	else
 | 
						|
		trace_rcu_callback(rcu_state.name, head,
 | 
						|
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
				   rcu_segcblist_n_cbs(&rdp->cblist));
 | 
						|
 | 
						|
	/* Go handle any RCU core processing required. */
 | 
						|
	__call_rcu_core(rdp, head, flags);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 | 
						|
 * @head: structure to be used for queueing the RCU updates.
 | 
						|
 * @func: actual callback function to be invoked after the grace period
 | 
						|
 *
 | 
						|
 * The callback function will be invoked some time after a full grace
 | 
						|
 * period elapses, in other words after all pre-existing RCU read-side
 | 
						|
 * critical sections have completed.  However, the callback function
 | 
						|
 * might well execute concurrently with RCU read-side critical sections
 | 
						|
 * that started after call_rcu() was invoked.  RCU read-side critical
 | 
						|
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
 | 
						|
 * may be nested.  In addition, regions of code across which interrupts,
 | 
						|
 * preemption, or softirqs have been disabled also serve as RCU read-side
 | 
						|
 * critical sections.  This includes hardware interrupt handlers, softirq
 | 
						|
 * handlers, and NMI handlers.
 | 
						|
 *
 | 
						|
 * Note that all CPUs must agree that the grace period extended beyond
 | 
						|
 * all pre-existing RCU read-side critical section.  On systems with more
 | 
						|
 * than one CPU, this means that when "func()" is invoked, each CPU is
 | 
						|
 * guaranteed to have executed a full memory barrier since the end of its
 | 
						|
 * last RCU read-side critical section whose beginning preceded the call
 | 
						|
 * to call_rcu().  It also means that each CPU executing an RCU read-side
 | 
						|
 * critical section that continues beyond the start of "func()" must have
 | 
						|
 * executed a memory barrier after the call_rcu() but before the beginning
 | 
						|
 * of that RCU read-side critical section.  Note that these guarantees
 | 
						|
 * include CPUs that are offline, idle, or executing in user mode, as
 | 
						|
 * well as CPUs that are executing in the kernel.
 | 
						|
 *
 | 
						|
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 | 
						|
 * resulting RCU callback function "func()", then both CPU A and CPU B are
 | 
						|
 * guaranteed to execute a full memory barrier during the time interval
 | 
						|
 * between the call to call_rcu() and the invocation of "func()" -- even
 | 
						|
 * if CPU A and CPU B are the same CPU (but again only if the system has
 | 
						|
 * more than one CPU).
 | 
						|
 */
 | 
						|
void call_rcu(struct rcu_head *head, rcu_callback_t func)
 | 
						|
{
 | 
						|
	__call_rcu(head, func, -1, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(call_rcu);
 | 
						|
 | 
						|
/*
 | 
						|
 * Queue an RCU callback for lazy invocation after a grace period.
 | 
						|
 * This will likely be later named something like "call_rcu_lazy()",
 | 
						|
 * but this change will require some way of tagging the lazy RCU
 | 
						|
 * callbacks in the list of pending callbacks. Until then, this
 | 
						|
 * function may only be called from __kfree_rcu().
 | 
						|
 */
 | 
						|
void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
 | 
						|
{
 | 
						|
	__call_rcu(head, func, -1, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(kfree_call_rcu);
 | 
						|
 | 
						|
/*
 | 
						|
 * During early boot, any blocking grace-period wait automatically
 | 
						|
 * implies a grace period.  Later on, this is never the case for PREEMPT.
 | 
						|
 *
 | 
						|
 * Howevr, because a context switch is a grace period for !PREEMPT, any
 | 
						|
 * blocking grace-period wait automatically implies a grace period if
 | 
						|
 * there is only one CPU online at any point time during execution of
 | 
						|
 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
 | 
						|
 * occasionally incorrectly indicate that there are multiple CPUs online
 | 
						|
 * when there was in fact only one the whole time, as this just adds some
 | 
						|
 * overhead: RCU still operates correctly.
 | 
						|
 */
 | 
						|
static int rcu_blocking_is_gp(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_PREEMPT))
 | 
						|
		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
 | 
						|
	might_sleep();  /* Check for RCU read-side critical section. */
 | 
						|
	preempt_disable();
 | 
						|
	ret = num_online_cpus() <= 1;
 | 
						|
	preempt_enable();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * synchronize_rcu - wait until a grace period has elapsed.
 | 
						|
 *
 | 
						|
 * Control will return to the caller some time after a full grace
 | 
						|
 * period has elapsed, in other words after all currently executing RCU
 | 
						|
 * read-side critical sections have completed.  Note, however, that
 | 
						|
 * upon return from synchronize_rcu(), the caller might well be executing
 | 
						|
 * concurrently with new RCU read-side critical sections that began while
 | 
						|
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 | 
						|
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 | 
						|
 * In addition, regions of code across which interrupts, preemption, or
 | 
						|
 * softirqs have been disabled also serve as RCU read-side critical
 | 
						|
 * sections.  This includes hardware interrupt handlers, softirq handlers,
 | 
						|
 * and NMI handlers.
 | 
						|
 *
 | 
						|
 * Note that this guarantee implies further memory-ordering guarantees.
 | 
						|
 * On systems with more than one CPU, when synchronize_rcu() returns,
 | 
						|
 * each CPU is guaranteed to have executed a full memory barrier since
 | 
						|
 * the end of its last RCU read-side critical section whose beginning
 | 
						|
 * preceded the call to synchronize_rcu().  In addition, each CPU having
 | 
						|
 * an RCU read-side critical section that extends beyond the return from
 | 
						|
 * synchronize_rcu() is guaranteed to have executed a full memory barrier
 | 
						|
 * after the beginning of synchronize_rcu() and before the beginning of
 | 
						|
 * that RCU read-side critical section.  Note that these guarantees include
 | 
						|
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 | 
						|
 * that are executing in the kernel.
 | 
						|
 *
 | 
						|
 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
 | 
						|
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 | 
						|
 * to have executed a full memory barrier during the execution of
 | 
						|
 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
 | 
						|
 * again only if the system has more than one CPU).
 | 
						|
 */
 | 
						|
void synchronize_rcu(void)
 | 
						|
{
 | 
						|
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 | 
						|
			 lock_is_held(&rcu_lock_map) ||
 | 
						|
			 lock_is_held(&rcu_sched_lock_map),
 | 
						|
			 "Illegal synchronize_rcu() in RCU read-side critical section");
 | 
						|
	if (rcu_blocking_is_gp())
 | 
						|
		return;
 | 
						|
	if (rcu_gp_is_expedited())
 | 
						|
		synchronize_rcu_expedited();
 | 
						|
	else
 | 
						|
		wait_rcu_gp(call_rcu);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(synchronize_rcu);
 | 
						|
 | 
						|
/**
 | 
						|
 * get_state_synchronize_rcu - Snapshot current RCU state
 | 
						|
 *
 | 
						|
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 | 
						|
 * to determine whether or not a full grace period has elapsed in the
 | 
						|
 * meantime.
 | 
						|
 */
 | 
						|
unsigned long get_state_synchronize_rcu(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Any prior manipulation of RCU-protected data must happen
 | 
						|
	 * before the load from ->gp_seq.
 | 
						|
	 */
 | 
						|
	smp_mb();  /* ^^^ */
 | 
						|
	return rcu_seq_snap(&rcu_state.gp_seq);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
 | 
						|
 | 
						|
/**
 | 
						|
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 | 
						|
 *
 | 
						|
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 | 
						|
 *
 | 
						|
 * If a full RCU grace period has elapsed since the earlier call to
 | 
						|
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 | 
						|
 * synchronize_rcu() to wait for a full grace period.
 | 
						|
 *
 | 
						|
 * Yes, this function does not take counter wrap into account.  But
 | 
						|
 * counter wrap is harmless.  If the counter wraps, we have waited for
 | 
						|
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 | 
						|
 * so waiting for one additional grace period should be just fine.
 | 
						|
 */
 | 
						|
void cond_synchronize_rcu(unsigned long oldstate)
 | 
						|
{
 | 
						|
	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
 | 
						|
		synchronize_rcu();
 | 
						|
	else
 | 
						|
		smp_mb(); /* Ensure GP ends before subsequent accesses. */
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if there is any immediate RCU-related work to be done by
 | 
						|
 * the current CPU, returning 1 if so and zero otherwise.  The checks are
 | 
						|
 * in order of increasing expense: checks that can be carried out against
 | 
						|
 * CPU-local state are performed first.  However, we must check for CPU
 | 
						|
 * stalls first, else we might not get a chance.
 | 
						|
 */
 | 
						|
static int rcu_pending(void)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	struct rcu_node *rnp = rdp->mynode;
 | 
						|
 | 
						|
	/* Check for CPU stalls, if enabled. */
 | 
						|
	check_cpu_stall(rdp);
 | 
						|
 | 
						|
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
 | 
						|
	if (rcu_nohz_full_cpu())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Is the RCU core waiting for a quiescent state from this CPU? */
 | 
						|
	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* Does this CPU have callbacks ready to invoke? */
 | 
						|
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* Has RCU gone idle with this CPU needing another grace period? */
 | 
						|
	if (!rcu_gp_in_progress() &&
 | 
						|
	    rcu_segcblist_is_enabled(&rdp->cblist) &&
 | 
						|
	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* Have RCU grace period completed or started?  */
 | 
						|
	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
 | 
						|
	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* Does this CPU need a deferred NOCB wakeup? */
 | 
						|
	if (rcu_nocb_need_deferred_wakeup(rdp))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* nothing to do */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
 | 
						|
 * the compiler is expected to optimize this away.
 | 
						|
 */
 | 
						|
static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
 | 
						|
{
 | 
						|
	trace_rcu_barrier(rcu_state.name, s, cpu,
 | 
						|
			  atomic_read(&rcu_state.barrier_cpu_count), done);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * RCU callback function for rcu_barrier().  If we are last, wake
 | 
						|
 * up the task executing rcu_barrier().
 | 
						|
 */
 | 
						|
static void rcu_barrier_callback(struct rcu_head *rhp)
 | 
						|
{
 | 
						|
	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
 | 
						|
		rcu_barrier_trace(TPS("LastCB"), -1,
 | 
						|
				   rcu_state.barrier_sequence);
 | 
						|
		complete(&rcu_state.barrier_completion);
 | 
						|
	} else {
 | 
						|
		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with preemption disabled, and from cross-cpu IRQ context.
 | 
						|
 */
 | 
						|
static void rcu_barrier_func(void *unused)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
 | 
						|
 | 
						|
	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
 | 
						|
	rdp->barrier_head.func = rcu_barrier_callback;
 | 
						|
	debug_rcu_head_queue(&rdp->barrier_head);
 | 
						|
	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
 | 
						|
		atomic_inc(&rcu_state.barrier_cpu_count);
 | 
						|
	} else {
 | 
						|
		debug_rcu_head_unqueue(&rdp->barrier_head);
 | 
						|
		rcu_barrier_trace(TPS("IRQNQ"), -1,
 | 
						|
				   rcu_state.barrier_sequence);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 | 
						|
 *
 | 
						|
 * Note that this primitive does not necessarily wait for an RCU grace period
 | 
						|
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 | 
						|
 * in the system, then rcu_barrier() is within its rights to return
 | 
						|
 * immediately, without waiting for anything, much less an RCU grace period.
 | 
						|
 */
 | 
						|
void rcu_barrier(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
 | 
						|
 | 
						|
	rcu_barrier_trace(TPS("Begin"), -1, s);
 | 
						|
 | 
						|
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
 | 
						|
	mutex_lock(&rcu_state.barrier_mutex);
 | 
						|
 | 
						|
	/* Did someone else do our work for us? */
 | 
						|
	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
 | 
						|
		rcu_barrier_trace(TPS("EarlyExit"), -1,
 | 
						|
				   rcu_state.barrier_sequence);
 | 
						|
		smp_mb(); /* caller's subsequent code after above check. */
 | 
						|
		mutex_unlock(&rcu_state.barrier_mutex);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Mark the start of the barrier operation. */
 | 
						|
	rcu_seq_start(&rcu_state.barrier_sequence);
 | 
						|
	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the count to one rather than to zero in order to
 | 
						|
	 * avoid a too-soon return to zero in case of a short grace period
 | 
						|
	 * (or preemption of this task).  Exclude CPU-hotplug operations
 | 
						|
	 * to ensure that no offline CPU has callbacks queued.
 | 
						|
	 */
 | 
						|
	init_completion(&rcu_state.barrier_completion);
 | 
						|
	atomic_set(&rcu_state.barrier_cpu_count, 1);
 | 
						|
	get_online_cpus();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Force each CPU with callbacks to register a new callback.
 | 
						|
	 * When that callback is invoked, we will know that all of the
 | 
						|
	 * corresponding CPU's preceding callbacks have been invoked.
 | 
						|
	 */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 | 
						|
			continue;
 | 
						|
		rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
		if (rcu_is_nocb_cpu(cpu)) {
 | 
						|
			if (!rcu_nocb_cpu_needs_barrier(cpu)) {
 | 
						|
				rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
 | 
						|
						   rcu_state.barrier_sequence);
 | 
						|
			} else {
 | 
						|
				rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
 | 
						|
						   rcu_state.barrier_sequence);
 | 
						|
				smp_mb__before_atomic();
 | 
						|
				atomic_inc(&rcu_state.barrier_cpu_count);
 | 
						|
				__call_rcu(&rdp->barrier_head,
 | 
						|
					   rcu_barrier_callback, cpu, 0);
 | 
						|
			}
 | 
						|
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
 | 
						|
			rcu_barrier_trace(TPS("OnlineQ"), cpu,
 | 
						|
					   rcu_state.barrier_sequence);
 | 
						|
			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
 | 
						|
		} else {
 | 
						|
			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
 | 
						|
					   rcu_state.barrier_sequence);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	put_online_cpus();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that we have an rcu_barrier_callback() callback on each
 | 
						|
	 * CPU, and thus each counted, remove the initial count.
 | 
						|
	 */
 | 
						|
	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
 | 
						|
		complete(&rcu_state.barrier_completion);
 | 
						|
 | 
						|
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
 | 
						|
	wait_for_completion(&rcu_state.barrier_completion);
 | 
						|
 | 
						|
	/* Mark the end of the barrier operation. */
 | 
						|
	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
 | 
						|
	rcu_seq_end(&rcu_state.barrier_sequence);
 | 
						|
 | 
						|
	/* Other rcu_barrier() invocations can now safely proceed. */
 | 
						|
	mutex_unlock(&rcu_state.barrier_mutex);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_barrier);
 | 
						|
 | 
						|
/*
 | 
						|
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 | 
						|
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 | 
						|
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 | 
						|
 * disabled.
 | 
						|
 */
 | 
						|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
 | 
						|
{
 | 
						|
	long mask;
 | 
						|
	long oldmask;
 | 
						|
	struct rcu_node *rnp = rnp_leaf;
 | 
						|
 | 
						|
	raw_lockdep_assert_held_rcu_node(rnp_leaf);
 | 
						|
	WARN_ON_ONCE(rnp->wait_blkd_tasks);
 | 
						|
	for (;;) {
 | 
						|
		mask = rnp->grpmask;
 | 
						|
		rnp = rnp->parent;
 | 
						|
		if (rnp == NULL)
 | 
						|
			return;
 | 
						|
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 | 
						|
		oldmask = rnp->qsmaskinit;
 | 
						|
		rnp->qsmaskinit |= mask;
 | 
						|
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 | 
						|
		if (oldmask)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do boot-time initialization of a CPU's per-CPU RCU data.
 | 
						|
 */
 | 
						|
static void __init
 | 
						|
rcu_boot_init_percpu_data(int cpu)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
 | 
						|
	/* Set up local state, ensuring consistent view of global state. */
 | 
						|
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
 | 
						|
	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
 | 
						|
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
 | 
						|
	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
 | 
						|
	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
 | 
						|
	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
 | 
						|
	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
 | 
						|
	rdp->cpu = cpu;
 | 
						|
	rcu_boot_init_nocb_percpu_data(rdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invoked early in the CPU-online process, when pretty much all services
 | 
						|
 * are available.  The incoming CPU is not present.
 | 
						|
 *
 | 
						|
 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
 | 
						|
 * offline event can be happening at a given time.  Note also that we can
 | 
						|
 * accept some slop in the rsp->gp_seq access due to the fact that this
 | 
						|
 * CPU cannot possibly have any RCU callbacks in flight yet.
 | 
						|
 */
 | 
						|
int rcutree_prepare_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
	struct rcu_node *rnp = rcu_get_root();
 | 
						|
 | 
						|
	/* Set up local state, ensuring consistent view of global state. */
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	rdp->qlen_last_fqs_check = 0;
 | 
						|
	rdp->n_force_qs_snap = rcu_state.n_force_qs;
 | 
						|
	rdp->blimit = blimit;
 | 
						|
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
 | 
						|
	    !init_nocb_callback_list(rdp))
 | 
						|
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
 | 
						|
	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
 | 
						|
	rcu_dynticks_eqs_online();
 | 
						|
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
 | 
						|
	 * propagation up the rcu_node tree will happen at the beginning
 | 
						|
	 * of the next grace period.
 | 
						|
	 */
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
 | 
						|
	rdp->beenonline = true;	 /* We have now been online. */
 | 
						|
	rdp->gp_seq = rnp->gp_seq;
 | 
						|
	rdp->gp_seq_needed = rnp->gp_seq;
 | 
						|
	rdp->cpu_no_qs.b.norm = true;
 | 
						|
	rdp->core_needs_qs = false;
 | 
						|
	rdp->rcu_iw_pending = false;
 | 
						|
	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
 | 
						|
	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	rcu_prepare_kthreads(cpu);
 | 
						|
	rcu_spawn_cpu_nocb_kthread(cpu);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 | 
						|
 */
 | 
						|
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
 | 
						|
	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Near the end of the CPU-online process.  Pretty much all services
 | 
						|
 * enabled, and the CPU is now very much alive.
 | 
						|
 */
 | 
						|
int rcutree_online_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	rnp->ffmask |= rdp->grpmask;
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 | 
						|
		return 0; /* Too early in boot for scheduler work. */
 | 
						|
	sync_sched_exp_online_cleanup(cpu);
 | 
						|
	rcutree_affinity_setting(cpu, -1);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Near the beginning of the process.  The CPU is still very much alive
 | 
						|
 * with pretty much all services enabled.
 | 
						|
 */
 | 
						|
int rcutree_offline_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	rnp->ffmask &= ~rdp->grpmask;
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
 | 
						|
	rcutree_affinity_setting(cpu, cpu);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_PER_CPU(int, rcu_cpu_started);
 | 
						|
 | 
						|
/*
 | 
						|
 * Mark the specified CPU as being online so that subsequent grace periods
 | 
						|
 * (both expedited and normal) will wait on it.  Note that this means that
 | 
						|
 * incoming CPUs are not allowed to use RCU read-side critical sections
 | 
						|
 * until this function is called.  Failing to observe this restriction
 | 
						|
 * will result in lockdep splats.
 | 
						|
 *
 | 
						|
 * Note that this function is special in that it is invoked directly
 | 
						|
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 | 
						|
 * This is because this function must be invoked at a precise location.
 | 
						|
 */
 | 
						|
void rcu_cpu_starting(unsigned int cpu)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	int nbits;
 | 
						|
	unsigned long oldmask;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	if (per_cpu(rcu_cpu_started, cpu))
 | 
						|
		return;
 | 
						|
 | 
						|
	per_cpu(rcu_cpu_started, cpu) = 1;
 | 
						|
 | 
						|
	rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	mask = rdp->grpmask;
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	rnp->qsmaskinitnext |= mask;
 | 
						|
	oldmask = rnp->expmaskinitnext;
 | 
						|
	rnp->expmaskinitnext |= mask;
 | 
						|
	oldmask ^= rnp->expmaskinitnext;
 | 
						|
	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
 | 
						|
	/* Allow lockless access for expedited grace periods. */
 | 
						|
	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
 | 
						|
	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
 | 
						|
	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
 | 
						|
	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
 | 
						|
	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
 | 
						|
		/* Report QS -after- changing ->qsmaskinitnext! */
 | 
						|
		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | 
						|
	} else {
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	}
 | 
						|
	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
/*
 | 
						|
 * The outgoing function has no further need of RCU, so remove it from
 | 
						|
 * the rcu_node tree's ->qsmaskinitnext bit masks.
 | 
						|
 *
 | 
						|
 * Note that this function is special in that it is invoked directly
 | 
						|
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 | 
						|
 * This is because this function must be invoked at a precise location.
 | 
						|
 */
 | 
						|
void rcu_report_dead(unsigned int cpu)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
 | 
						|
 | 
						|
	/* QS for any half-done expedited grace period. */
 | 
						|
	preempt_disable();
 | 
						|
	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 | 
						|
	preempt_enable();
 | 
						|
	rcu_preempt_deferred_qs(current);
 | 
						|
 | 
						|
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
 | 
						|
	mask = rdp->grpmask;
 | 
						|
	raw_spin_lock(&rcu_state.ofl_lock);
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
 | 
						|
	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
 | 
						|
	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
 | 
						|
	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
 | 
						|
		/* Report quiescent state -before- changing ->qsmaskinitnext! */
 | 
						|
		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	}
 | 
						|
	rnp->qsmaskinitnext &= ~mask;
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	raw_spin_unlock(&rcu_state.ofl_lock);
 | 
						|
 | 
						|
	per_cpu(rcu_cpu_started, cpu) = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The outgoing CPU has just passed through the dying-idle state, and we
 | 
						|
 * are being invoked from the CPU that was IPIed to continue the offline
 | 
						|
 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
 | 
						|
 */
 | 
						|
void rcutree_migrate_callbacks(int cpu)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *my_rdp;
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | 
						|
	struct rcu_node *rnp_root = rcu_get_root();
 | 
						|
	bool needwake;
 | 
						|
 | 
						|
	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
 | 
						|
		return;  /* No callbacks to migrate. */
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	my_rdp = this_cpu_ptr(&rcu_data);
 | 
						|
	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
 | 
						|
		local_irq_restore(flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
 | 
						|
	/* Leverage recent GPs and set GP for new callbacks. */
 | 
						|
	needwake = rcu_advance_cbs(rnp_root, rdp) ||
 | 
						|
		   rcu_advance_cbs(rnp_root, my_rdp);
 | 
						|
	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
 | 
						|
	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
 | 
						|
		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
 | 
						|
	if (needwake)
 | 
						|
		rcu_gp_kthread_wake();
 | 
						|
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
 | 
						|
		  !rcu_segcblist_empty(&rdp->cblist),
 | 
						|
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
 | 
						|
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
 | 
						|
		  rcu_segcblist_first_cb(&rdp->cblist));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * On non-huge systems, use expedited RCU grace periods to make suspend
 | 
						|
 * and hibernation run faster.
 | 
						|
 */
 | 
						|
static int rcu_pm_notify(struct notifier_block *self,
 | 
						|
			 unsigned long action, void *hcpu)
 | 
						|
{
 | 
						|
	switch (action) {
 | 
						|
	case PM_HIBERNATION_PREPARE:
 | 
						|
	case PM_SUSPEND_PREPARE:
 | 
						|
		rcu_expedite_gp();
 | 
						|
		break;
 | 
						|
	case PM_POST_HIBERNATION:
 | 
						|
	case PM_POST_SUSPEND:
 | 
						|
		rcu_unexpedite_gp();
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Spawn the kthreads that handle RCU's grace periods.
 | 
						|
 */
 | 
						|
static int __init rcu_spawn_gp_kthread(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int kthread_prio_in = kthread_prio;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
	struct sched_param sp;
 | 
						|
	struct task_struct *t;
 | 
						|
 | 
						|
	/* Force priority into range. */
 | 
						|
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
 | 
						|
	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
 | 
						|
		kthread_prio = 2;
 | 
						|
	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
 | 
						|
		kthread_prio = 1;
 | 
						|
	else if (kthread_prio < 0)
 | 
						|
		kthread_prio = 0;
 | 
						|
	else if (kthread_prio > 99)
 | 
						|
		kthread_prio = 99;
 | 
						|
 | 
						|
	if (kthread_prio != kthread_prio_in)
 | 
						|
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
 | 
						|
			 kthread_prio, kthread_prio_in);
 | 
						|
 | 
						|
	rcu_scheduler_fully_active = 1;
 | 
						|
	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
 | 
						|
	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
 | 
						|
		return 0;
 | 
						|
	if (kthread_prio) {
 | 
						|
		sp.sched_priority = kthread_prio;
 | 
						|
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | 
						|
	}
 | 
						|
	rnp = rcu_get_root();
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	rcu_state.gp_kthread = t;
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	wake_up_process(t);
 | 
						|
	rcu_spawn_nocb_kthreads();
 | 
						|
	rcu_spawn_boost_kthreads();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_initcall(rcu_spawn_gp_kthread);
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is invoked towards the end of the scheduler's
 | 
						|
 * initialization process.  Before this is called, the idle task might
 | 
						|
 * contain synchronous grace-period primitives (during which time, this idle
 | 
						|
 * task is booting the system, and such primitives are no-ops).  After this
 | 
						|
 * function is called, any synchronous grace-period primitives are run as
 | 
						|
 * expedited, with the requesting task driving the grace period forward.
 | 
						|
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
 | 
						|
 * runtime RCU functionality.
 | 
						|
 */
 | 
						|
void rcu_scheduler_starting(void)
 | 
						|
{
 | 
						|
	WARN_ON(num_online_cpus() != 1);
 | 
						|
	WARN_ON(nr_context_switches() > 0);
 | 
						|
	rcu_test_sync_prims();
 | 
						|
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
 | 
						|
	rcu_test_sync_prims();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for rcu_init() that initializes the rcu_state structure.
 | 
						|
 */
 | 
						|
static void __init rcu_init_one(void)
 | 
						|
{
 | 
						|
	static const char * const buf[] = RCU_NODE_NAME_INIT;
 | 
						|
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
 | 
						|
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
 | 
						|
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
 | 
						|
 | 
						|
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
 | 
						|
	int cpustride = 1;
 | 
						|
	int i;
 | 
						|
	int j;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
 | 
						|
 | 
						|
	/* Silence gcc 4.8 false positive about array index out of range. */
 | 
						|
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
 | 
						|
		panic("rcu_init_one: rcu_num_lvls out of range");
 | 
						|
 | 
						|
	/* Initialize the level-tracking arrays. */
 | 
						|
 | 
						|
	for (i = 1; i < rcu_num_lvls; i++)
 | 
						|
		rcu_state.level[i] =
 | 
						|
			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
 | 
						|
	rcu_init_levelspread(levelspread, num_rcu_lvl);
 | 
						|
 | 
						|
	/* Initialize the elements themselves, starting from the leaves. */
 | 
						|
 | 
						|
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
 | 
						|
		cpustride *= levelspread[i];
 | 
						|
		rnp = rcu_state.level[i];
 | 
						|
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
 | 
						|
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
 | 
						|
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
 | 
						|
						   &rcu_node_class[i], buf[i]);
 | 
						|
			raw_spin_lock_init(&rnp->fqslock);
 | 
						|
			lockdep_set_class_and_name(&rnp->fqslock,
 | 
						|
						   &rcu_fqs_class[i], fqs[i]);
 | 
						|
			rnp->gp_seq = rcu_state.gp_seq;
 | 
						|
			rnp->gp_seq_needed = rcu_state.gp_seq;
 | 
						|
			rnp->completedqs = rcu_state.gp_seq;
 | 
						|
			rnp->qsmask = 0;
 | 
						|
			rnp->qsmaskinit = 0;
 | 
						|
			rnp->grplo = j * cpustride;
 | 
						|
			rnp->grphi = (j + 1) * cpustride - 1;
 | 
						|
			if (rnp->grphi >= nr_cpu_ids)
 | 
						|
				rnp->grphi = nr_cpu_ids - 1;
 | 
						|
			if (i == 0) {
 | 
						|
				rnp->grpnum = 0;
 | 
						|
				rnp->grpmask = 0;
 | 
						|
				rnp->parent = NULL;
 | 
						|
			} else {
 | 
						|
				rnp->grpnum = j % levelspread[i - 1];
 | 
						|
				rnp->grpmask = BIT(rnp->grpnum);
 | 
						|
				rnp->parent = rcu_state.level[i - 1] +
 | 
						|
					      j / levelspread[i - 1];
 | 
						|
			}
 | 
						|
			rnp->level = i;
 | 
						|
			INIT_LIST_HEAD(&rnp->blkd_tasks);
 | 
						|
			rcu_init_one_nocb(rnp);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[0]);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[1]);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[2]);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[3]);
 | 
						|
			spin_lock_init(&rnp->exp_lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	init_swait_queue_head(&rcu_state.gp_wq);
 | 
						|
	init_swait_queue_head(&rcu_state.expedited_wq);
 | 
						|
	rnp = rcu_first_leaf_node();
 | 
						|
	for_each_possible_cpu(i) {
 | 
						|
		while (i > rnp->grphi)
 | 
						|
			rnp++;
 | 
						|
		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
 | 
						|
		rcu_boot_init_percpu_data(i);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 | 
						|
 * replace the definitions in tree.h because those are needed to size
 | 
						|
 * the ->node array in the rcu_state structure.
 | 
						|
 */
 | 
						|
static void __init rcu_init_geometry(void)
 | 
						|
{
 | 
						|
	ulong d;
 | 
						|
	int i;
 | 
						|
	int rcu_capacity[RCU_NUM_LVLS];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize any unspecified boot parameters.
 | 
						|
	 * The default values of jiffies_till_first_fqs and
 | 
						|
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
 | 
						|
	 * value, which is a function of HZ, then adding one for each
 | 
						|
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
 | 
						|
	 */
 | 
						|
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 | 
						|
	if (jiffies_till_first_fqs == ULONG_MAX)
 | 
						|
		jiffies_till_first_fqs = d;
 | 
						|
	if (jiffies_till_next_fqs == ULONG_MAX)
 | 
						|
		jiffies_till_next_fqs = d;
 | 
						|
	adjust_jiffies_till_sched_qs();
 | 
						|
 | 
						|
	/* If the compile-time values are accurate, just leave. */
 | 
						|
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
 | 
						|
	    nr_cpu_ids == NR_CPUS)
 | 
						|
		return;
 | 
						|
	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
 | 
						|
		rcu_fanout_leaf, nr_cpu_ids);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The boot-time rcu_fanout_leaf parameter must be at least two
 | 
						|
	 * and cannot exceed the number of bits in the rcu_node masks.
 | 
						|
	 * Complain and fall back to the compile-time values if this
 | 
						|
	 * limit is exceeded.
 | 
						|
	 */
 | 
						|
	if (rcu_fanout_leaf < 2 ||
 | 
						|
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
 | 
						|
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | 
						|
		WARN_ON(1);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute number of nodes that can be handled an rcu_node tree
 | 
						|
	 * with the given number of levels.
 | 
						|
	 */
 | 
						|
	rcu_capacity[0] = rcu_fanout_leaf;
 | 
						|
	for (i = 1; i < RCU_NUM_LVLS; i++)
 | 
						|
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The tree must be able to accommodate the configured number of CPUs.
 | 
						|
	 * If this limit is exceeded, fall back to the compile-time values.
 | 
						|
	 */
 | 
						|
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
 | 
						|
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | 
						|
		WARN_ON(1);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the number of levels in the tree. */
 | 
						|
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
 | 
						|
	}
 | 
						|
	rcu_num_lvls = i + 1;
 | 
						|
 | 
						|
	/* Calculate the number of rcu_nodes at each level of the tree. */
 | 
						|
	for (i = 0; i < rcu_num_lvls; i++) {
 | 
						|
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
 | 
						|
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the total number of rcu_node structures. */
 | 
						|
	rcu_num_nodes = 0;
 | 
						|
	for (i = 0; i < rcu_num_lvls; i++)
 | 
						|
		rcu_num_nodes += num_rcu_lvl[i];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dump out the structure of the rcu_node combining tree associated
 | 
						|
 * with the rcu_state structure.
 | 
						|
 */
 | 
						|
static void __init rcu_dump_rcu_node_tree(void)
 | 
						|
{
 | 
						|
	int level = 0;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	pr_info("rcu_node tree layout dump\n");
 | 
						|
	pr_info(" ");
 | 
						|
	rcu_for_each_node_breadth_first(rnp) {
 | 
						|
		if (rnp->level != level) {
 | 
						|
			pr_cont("\n");
 | 
						|
			pr_info(" ");
 | 
						|
			level = rnp->level;
 | 
						|
		}
 | 
						|
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
 | 
						|
	}
 | 
						|
	pr_cont("\n");
 | 
						|
}
 | 
						|
 | 
						|
struct workqueue_struct *rcu_gp_wq;
 | 
						|
struct workqueue_struct *rcu_par_gp_wq;
 | 
						|
 | 
						|
void __init rcu_init(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	rcu_early_boot_tests();
 | 
						|
 | 
						|
	rcu_bootup_announce();
 | 
						|
	rcu_init_geometry();
 | 
						|
	rcu_init_one();
 | 
						|
	if (dump_tree)
 | 
						|
		rcu_dump_rcu_node_tree();
 | 
						|
	if (use_softirq)
 | 
						|
		open_softirq(RCU_SOFTIRQ, rcu_core_si);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't need protection against CPU-hotplug here because
 | 
						|
	 * this is called early in boot, before either interrupts
 | 
						|
	 * or the scheduler are operational.
 | 
						|
	 */
 | 
						|
	pm_notifier(rcu_pm_notify, 0);
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		rcutree_prepare_cpu(cpu);
 | 
						|
		rcu_cpu_starting(cpu);
 | 
						|
		rcutree_online_cpu(cpu);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Create workqueue for expedited GPs and for Tree SRCU. */
 | 
						|
	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
 | 
						|
	WARN_ON(!rcu_gp_wq);
 | 
						|
	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
 | 
						|
	WARN_ON(!rcu_par_gp_wq);
 | 
						|
	srcu_init();
 | 
						|
}
 | 
						|
 | 
						|
#include "tree_stall.h"
 | 
						|
#include "tree_exp.h"
 | 
						|
#include "tree_plugin.h"
 |