mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	read_hv_sched_clock_tsc() assumes that the Hyper-V clock counter is bigger than the variable hv_sched_clock_offset, which is cached during early boot, but depending on the timing this assumption may be false when a hibernated VM starts again (the clock counter starts from 0 again) and is resuming back (Note: hv_init_tsc_clocksource() is not called during hibernation/resume); consequently, read_hv_sched_clock_tsc() may return a negative integer (which is interpreted as a huge positive integer since the return type is u64) and new kernel messages are prefixed with huge timestamps before read_hv_sched_clock_tsc() grows big enough (which typically takes several seconds). Fix the issue by saving the Hyper-V clock counter just before the suspend, and using it to correct the hv_sched_clock_offset in resume. This makes hv tsc page based sched_clock continuous and ensures that post resume, it starts from where it left off during suspend. Override x86_platform.save_sched_clock_state and x86_platform.restore_sched_clock_state routines to correct this as soon as possible. Note: if Invariant TSC is available, the issue doesn't happen because 1) we don't register read_hv_sched_clock_tsc() for sched clock: See commite5313f1c54("clocksource/drivers/hyper-v: Rework clocksource and sched clock setup"); 2) the common x86 code adjusts TSC similarly: see __restore_processor_state() -> tsc_verify_tsc_adjust(true) and x86_platform.restore_sched_clock_state(). Cc: stable@vger.kernel.org Fixes:1349401ff1("clocksource/drivers/hyper-v: Suspend/resume Hyper-V clocksource for hibernation") Co-developed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Naman Jain <namjain@linux.microsoft.com> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/20240917053917.76787-1-namjain@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <20240917053917.76787-1-namjain@linux.microsoft.com>
		
			
				
	
	
		
			640 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			640 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
 | 
						|
/*
 | 
						|
 * Clocksource driver for the synthetic counter and timers
 | 
						|
 * provided by the Hyper-V hypervisor to guest VMs, as described
 | 
						|
 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
 | 
						|
 * is instruction set architecture independent.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2019, Microsoft, Inc.
 | 
						|
 *
 | 
						|
 * Author:  Michael Kelley <mikelley@microsoft.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/clockchips.h>
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/sched_clock.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/cpuhotplug.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/irq.h>
 | 
						|
#include <linux/acpi.h>
 | 
						|
#include <linux/hyperv.h>
 | 
						|
#include <clocksource/hyperv_timer.h>
 | 
						|
#include <asm/hyperv-tlfs.h>
 | 
						|
#include <asm/mshyperv.h>
 | 
						|
 | 
						|
static struct clock_event_device __percpu *hv_clock_event;
 | 
						|
/* Note: offset can hold negative values after hibernation. */
 | 
						|
static u64 hv_sched_clock_offset __read_mostly;
 | 
						|
 | 
						|
/*
 | 
						|
 * If false, we're using the old mechanism for stimer0 interrupts
 | 
						|
 * where it sends a VMbus message when it expires. The old
 | 
						|
 * mechanism is used when running on older versions of Hyper-V
 | 
						|
 * that don't support Direct Mode. While Hyper-V provides
 | 
						|
 * four stimer's per CPU, Linux uses only stimer0.
 | 
						|
 *
 | 
						|
 * Because Direct Mode does not require processing a VMbus
 | 
						|
 * message, stimer interrupts can be enabled earlier in the
 | 
						|
 * process of booting a CPU, and consistent with when timer
 | 
						|
 * interrupts are enabled for other clocksource drivers.
 | 
						|
 * However, for legacy versions of Hyper-V when Direct Mode
 | 
						|
 * is not enabled, setting up stimer interrupts must be
 | 
						|
 * delayed until VMbus is initialized and can process the
 | 
						|
 * interrupt message.
 | 
						|
 */
 | 
						|
static bool direct_mode_enabled;
 | 
						|
 | 
						|
static int stimer0_irq = -1;
 | 
						|
static int stimer0_message_sint;
 | 
						|
static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
 | 
						|
 | 
						|
/*
 | 
						|
 * Common code for stimer0 interrupts coming via Direct Mode or
 | 
						|
 * as a VMbus message.
 | 
						|
 */
 | 
						|
void hv_stimer0_isr(void)
 | 
						|
{
 | 
						|
	struct clock_event_device *ce;
 | 
						|
 | 
						|
	ce = this_cpu_ptr(hv_clock_event);
 | 
						|
	ce->event_handler(ce);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_stimer0_isr);
 | 
						|
 | 
						|
/*
 | 
						|
 * stimer0 interrupt handler for architectures that support
 | 
						|
 * per-cpu interrupts, which also implies Direct Mode.
 | 
						|
 */
 | 
						|
static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
 | 
						|
{
 | 
						|
	hv_stimer0_isr();
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
static int hv_ce_set_next_event(unsigned long delta,
 | 
						|
				struct clock_event_device *evt)
 | 
						|
{
 | 
						|
	u64 current_tick;
 | 
						|
 | 
						|
	current_tick = hv_read_reference_counter();
 | 
						|
	current_tick += delta;
 | 
						|
	hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hv_ce_shutdown(struct clock_event_device *evt)
 | 
						|
{
 | 
						|
	hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
 | 
						|
	hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
 | 
						|
	if (direct_mode_enabled && stimer0_irq >= 0)
 | 
						|
		disable_percpu_irq(stimer0_irq);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hv_ce_set_oneshot(struct clock_event_device *evt)
 | 
						|
{
 | 
						|
	union hv_stimer_config timer_cfg;
 | 
						|
 | 
						|
	timer_cfg.as_uint64 = 0;
 | 
						|
	timer_cfg.enable = 1;
 | 
						|
	timer_cfg.auto_enable = 1;
 | 
						|
	if (direct_mode_enabled) {
 | 
						|
		/*
 | 
						|
		 * When it expires, the timer will directly interrupt
 | 
						|
		 * on the specified hardware vector/IRQ.
 | 
						|
		 */
 | 
						|
		timer_cfg.direct_mode = 1;
 | 
						|
		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
 | 
						|
		if (stimer0_irq >= 0)
 | 
						|
			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * When it expires, the timer will generate a VMbus message,
 | 
						|
		 * to be handled by the normal VMbus interrupt handler.
 | 
						|
		 */
 | 
						|
		timer_cfg.direct_mode = 0;
 | 
						|
		timer_cfg.sintx = stimer0_message_sint;
 | 
						|
	}
 | 
						|
	hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hv_stimer_init - Per-cpu initialization of the clockevent
 | 
						|
 */
 | 
						|
static int hv_stimer_init(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct clock_event_device *ce;
 | 
						|
 | 
						|
	if (!hv_clock_event)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ce = per_cpu_ptr(hv_clock_event, cpu);
 | 
						|
	ce->name = "Hyper-V clockevent";
 | 
						|
	ce->features = CLOCK_EVT_FEAT_ONESHOT;
 | 
						|
	ce->cpumask = cpumask_of(cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
 | 
						|
	 * so the local APIC timer (lapic_clockevent) is the default timer in
 | 
						|
	 * such a VM. The Hyper-V timer is not preferred in such a VM because
 | 
						|
	 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
 | 
						|
	 * page is not enbled in such a VM because the VM uses Invariant TSC
 | 
						|
	 * as a better clocksource and it's challenging to mark the Hyper-V
 | 
						|
	 * TSC page shared in very early boot).
 | 
						|
	 */
 | 
						|
	if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
 | 
						|
		ce->rating = 90;
 | 
						|
	else
 | 
						|
		ce->rating = 1000;
 | 
						|
 | 
						|
	ce->set_state_shutdown = hv_ce_shutdown;
 | 
						|
	ce->set_state_oneshot = hv_ce_set_oneshot;
 | 
						|
	ce->set_next_event = hv_ce_set_next_event;
 | 
						|
 | 
						|
	clockevents_config_and_register(ce,
 | 
						|
					HV_CLOCK_HZ,
 | 
						|
					HV_MIN_DELTA_TICKS,
 | 
						|
					HV_MAX_MAX_DELTA_TICKS);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
 | 
						|
 */
 | 
						|
int hv_stimer_cleanup(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct clock_event_device *ce;
 | 
						|
 | 
						|
	if (!hv_clock_event)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the legacy case where Direct Mode is not enabled
 | 
						|
	 * (which can only be on x86/64), stimer cleanup happens
 | 
						|
	 * relatively early in the CPU offlining process. We
 | 
						|
	 * must unbind the stimer-based clockevent device so
 | 
						|
	 * that the LAPIC timer can take over until clockevents
 | 
						|
	 * are no longer needed in the offlining process. Note
 | 
						|
	 * that clockevents_unbind_device() eventually calls
 | 
						|
	 * hv_ce_shutdown().
 | 
						|
	 *
 | 
						|
	 * The unbind should not be done when Direct Mode is
 | 
						|
	 * enabled because we may be on an architecture where
 | 
						|
	 * there are no other clockevent devices to fallback to.
 | 
						|
	 */
 | 
						|
	ce = per_cpu_ptr(hv_clock_event, cpu);
 | 
						|
	if (direct_mode_enabled)
 | 
						|
		hv_ce_shutdown(ce);
 | 
						|
	else
 | 
						|
		clockevents_unbind_device(ce, cpu);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
 | 
						|
 | 
						|
/*
 | 
						|
 * These placeholders are overridden by arch specific code on
 | 
						|
 * architectures that need special setup of the stimer0 IRQ because
 | 
						|
 * they don't support per-cpu IRQs (such as x86/x64).
 | 
						|
 */
 | 
						|
void __weak hv_setup_stimer0_handler(void (*handler)(void))
 | 
						|
{
 | 
						|
};
 | 
						|
 | 
						|
void __weak hv_remove_stimer0_handler(void)
 | 
						|
{
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_ACPI
 | 
						|
/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
 | 
						|
static int hv_setup_stimer0_irq(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
 | 
						|
			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
 | 
						|
	if (ret < 0) {
 | 
						|
		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	stimer0_irq = ret;
 | 
						|
 | 
						|
	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
 | 
						|
		"Hyper-V stimer0", &stimer0_evt);
 | 
						|
	if (ret) {
 | 
						|
		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
 | 
						|
			stimer0_irq, ret);
 | 
						|
		acpi_unregister_gsi(stimer0_irq);
 | 
						|
		stimer0_irq = -1;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void hv_remove_stimer0_irq(void)
 | 
						|
{
 | 
						|
	if (stimer0_irq == -1) {
 | 
						|
		hv_remove_stimer0_handler();
 | 
						|
	} else {
 | 
						|
		free_percpu_irq(stimer0_irq, &stimer0_evt);
 | 
						|
		acpi_unregister_gsi(stimer0_irq);
 | 
						|
		stimer0_irq = -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static int hv_setup_stimer0_irq(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void hv_remove_stimer0_irq(void)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
 | 
						|
int hv_stimer_alloc(bool have_percpu_irqs)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Synthetic timers are always available except on old versions of
 | 
						|
	 * Hyper-V on x86.  In that case, return as error as Linux will use a
 | 
						|
	 * clockevent based on emulated LAPIC timer hardware.
 | 
						|
	 */
 | 
						|
	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	hv_clock_event = alloc_percpu(struct clock_event_device);
 | 
						|
	if (!hv_clock_event)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	direct_mode_enabled = ms_hyperv.misc_features &
 | 
						|
			HV_STIMER_DIRECT_MODE_AVAILABLE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If Direct Mode isn't enabled, the remainder of the initialization
 | 
						|
	 * is done later by hv_stimer_legacy_init()
 | 
						|
	 */
 | 
						|
	if (!direct_mode_enabled)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (have_percpu_irqs) {
 | 
						|
		ret = hv_setup_stimer0_irq();
 | 
						|
		if (ret)
 | 
						|
			goto free_clock_event;
 | 
						|
	} else {
 | 
						|
		hv_setup_stimer0_handler(hv_stimer0_isr);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we are in Direct Mode, stimer initialization
 | 
						|
	 * can be done now with a CPUHP value in the same range
 | 
						|
	 * as other clockevent devices.
 | 
						|
	 */
 | 
						|
	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
 | 
						|
			"clockevents/hyperv/stimer:starting",
 | 
						|
			hv_stimer_init, hv_stimer_cleanup);
 | 
						|
	if (ret < 0) {
 | 
						|
		hv_remove_stimer0_irq();
 | 
						|
		goto free_clock_event;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
 | 
						|
free_clock_event:
 | 
						|
	free_percpu(hv_clock_event);
 | 
						|
	hv_clock_event = NULL;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_stimer_alloc);
 | 
						|
 | 
						|
/*
 | 
						|
 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
 | 
						|
 * the case when Direct Mode is not enabled, and the stimer
 | 
						|
 * must be initialized late in the CPU onlining process.
 | 
						|
 *
 | 
						|
 */
 | 
						|
void hv_stimer_legacy_init(unsigned int cpu, int sint)
 | 
						|
{
 | 
						|
	if (direct_mode_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This function gets called by each vCPU, so setting the
 | 
						|
	 * global stimer_message_sint value each time is conceptually
 | 
						|
	 * not ideal, but the value passed in is always the same and
 | 
						|
	 * it avoids introducing yet another interface into this
 | 
						|
	 * clocksource driver just to set the sint in the legacy case.
 | 
						|
	 */
 | 
						|
	stimer0_message_sint = sint;
 | 
						|
	(void)hv_stimer_init(cpu);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
 | 
						|
 | 
						|
/*
 | 
						|
 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
 | 
						|
 * handle the case when Direct Mode is not enabled, and the
 | 
						|
 * stimer must be cleaned up early in the CPU offlining
 | 
						|
 * process.
 | 
						|
 */
 | 
						|
void hv_stimer_legacy_cleanup(unsigned int cpu)
 | 
						|
{
 | 
						|
	if (direct_mode_enabled)
 | 
						|
		return;
 | 
						|
	(void)hv_stimer_cleanup(cpu);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
 | 
						|
 | 
						|
/*
 | 
						|
 * Do a global cleanup of clockevents for the cases of kexec and
 | 
						|
 * vmbus exit
 | 
						|
 */
 | 
						|
void hv_stimer_global_cleanup(void)
 | 
						|
{
 | 
						|
	int	cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
 | 
						|
	 * Mode is not enabled, and fallback to the LAPIC timer.
 | 
						|
	 */
 | 
						|
	for_each_present_cpu(cpu) {
 | 
						|
		hv_stimer_legacy_cleanup(cpu);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!hv_clock_event)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (direct_mode_enabled) {
 | 
						|
		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
 | 
						|
		hv_remove_stimer0_irq();
 | 
						|
		stimer0_irq = -1;
 | 
						|
	}
 | 
						|
	free_percpu(hv_clock_event);
 | 
						|
	hv_clock_event = NULL;
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
 | 
						|
 | 
						|
static __always_inline u64 read_hv_clock_msr(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Read the partition counter to get the current tick count. This count
 | 
						|
	 * is set to 0 when the partition is created and is incremented in 100
 | 
						|
	 * nanosecond units.
 | 
						|
	 *
 | 
						|
	 * Use hv_raw_get_msr() because this function is used from
 | 
						|
	 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
 | 
						|
	 * register it doesn't need the GHCB path.
 | 
						|
	 */
 | 
						|
	return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Code and definitions for the Hyper-V clocksources.  Two
 | 
						|
 * clocksources are defined: one that reads the Hyper-V defined MSR, and
 | 
						|
 * the other that uses the TSC reference page feature as defined in the
 | 
						|
 * TLFS.  The MSR version is for compatibility with old versions of
 | 
						|
 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
 | 
						|
 */
 | 
						|
 | 
						|
static union {
 | 
						|
	struct ms_hyperv_tsc_page page;
 | 
						|
	u8 reserved[PAGE_SIZE];
 | 
						|
} tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
 | 
						|
 | 
						|
static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
 | 
						|
static unsigned long tsc_pfn;
 | 
						|
 | 
						|
unsigned long hv_get_tsc_pfn(void)
 | 
						|
{
 | 
						|
	return tsc_pfn;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
 | 
						|
 | 
						|
struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
 | 
						|
{
 | 
						|
	return tsc_page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_get_tsc_page);
 | 
						|
 | 
						|
static __always_inline u64 read_hv_clock_tsc(void)
 | 
						|
{
 | 
						|
	u64 cur_tsc, time;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
 | 
						|
	 * subsection Refererence Counter, guarantees that the TSC and MSR
 | 
						|
	 * times are in sync and monotonic. Therefore we can fall back
 | 
						|
	 * to the MSR in case the TSC page indicates unavailability.
 | 
						|
	 */
 | 
						|
	if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
 | 
						|
		time = read_hv_clock_msr();
 | 
						|
 | 
						|
	return time;
 | 
						|
}
 | 
						|
 | 
						|
static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
 | 
						|
{
 | 
						|
	return read_hv_clock_tsc();
 | 
						|
}
 | 
						|
 | 
						|
static u64 noinstr read_hv_sched_clock_tsc(void)
 | 
						|
{
 | 
						|
	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
 | 
						|
		(NSEC_PER_SEC / HV_CLOCK_HZ);
 | 
						|
}
 | 
						|
 | 
						|
static void suspend_hv_clock_tsc(struct clocksource *arg)
 | 
						|
{
 | 
						|
	union hv_reference_tsc_msr tsc_msr;
 | 
						|
 | 
						|
	/* Disable the TSC page */
 | 
						|
	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
 | 
						|
	tsc_msr.enable = 0;
 | 
						|
	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void resume_hv_clock_tsc(struct clocksource *arg)
 | 
						|
{
 | 
						|
	union hv_reference_tsc_msr tsc_msr;
 | 
						|
 | 
						|
	/* Re-enable the TSC page */
 | 
						|
	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
 | 
						|
	tsc_msr.enable = 1;
 | 
						|
	tsc_msr.pfn = tsc_pfn;
 | 
						|
	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called during resume from hibernation, from overridden
 | 
						|
 * x86_platform.restore_sched_clock_state routine. This is to adjust offsets
 | 
						|
 * used to calculate time for hv tsc page based sched_clock, to account for
 | 
						|
 * time spent before hibernation.
 | 
						|
 */
 | 
						|
void hv_adj_sched_clock_offset(u64 offset)
 | 
						|
{
 | 
						|
	hv_sched_clock_offset -= offset;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
 | 
						|
static int hv_cs_enable(struct clocksource *cs)
 | 
						|
{
 | 
						|
	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct clocksource hyperv_cs_tsc = {
 | 
						|
	.name	= "hyperv_clocksource_tsc_page",
 | 
						|
	.rating	= 500,
 | 
						|
	.read	= read_hv_clock_tsc_cs,
 | 
						|
	.mask	= CLOCKSOURCE_MASK(64),
 | 
						|
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 | 
						|
	.suspend= suspend_hv_clock_tsc,
 | 
						|
	.resume	= resume_hv_clock_tsc,
 | 
						|
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
 | 
						|
	.enable = hv_cs_enable,
 | 
						|
	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
 | 
						|
#else
 | 
						|
	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
 | 
						|
{
 | 
						|
	return read_hv_clock_msr();
 | 
						|
}
 | 
						|
 | 
						|
static struct clocksource hyperv_cs_msr = {
 | 
						|
	.name	= "hyperv_clocksource_msr",
 | 
						|
	.rating	= 495,
 | 
						|
	.read	= read_hv_clock_msr_cs,
 | 
						|
	.mask	= CLOCKSOURCE_MASK(64),
 | 
						|
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Reference to pv_ops must be inline so objtool
 | 
						|
 * detection of noinstr violations can work correctly.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_GENERIC_SCHED_CLOCK
 | 
						|
static __always_inline void hv_setup_sched_clock(void *sched_clock)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We're on an architecture with generic sched clock (not x86/x64).
 | 
						|
	 * The Hyper-V sched clock read function returns nanoseconds, not
 | 
						|
	 * the normal 100ns units of the Hyper-V synthetic clock.
 | 
						|
	 */
 | 
						|
	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
 | 
						|
}
 | 
						|
#elif defined CONFIG_PARAVIRT
 | 
						|
static __always_inline void hv_setup_sched_clock(void *sched_clock)
 | 
						|
{
 | 
						|
	/* We're on x86/x64 *and* using PV ops */
 | 
						|
	paravirt_set_sched_clock(sched_clock);
 | 
						|
}
 | 
						|
#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
 | 
						|
static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
 | 
						|
#endif /* CONFIG_GENERIC_SCHED_CLOCK */
 | 
						|
 | 
						|
static void __init hv_init_tsc_clocksource(void)
 | 
						|
{
 | 
						|
	union hv_reference_tsc_msr tsc_msr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
 | 
						|
	 * handles frequency and offset changes due to live migration,
 | 
						|
	 * pause/resume, and other VM management operations.  So lower the
 | 
						|
	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
 | 
						|
	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
 | 
						|
	 * TSC will be preferred over the virtualized ARM64 arch counter.
 | 
						|
	 */
 | 
						|
	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
 | 
						|
		hyperv_cs_tsc.rating = 250;
 | 
						|
		hyperv_cs_msr.rating = 245;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
 | 
						|
		return;
 | 
						|
 | 
						|
	hv_read_reference_counter = read_hv_clock_tsc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * TSC page mapping works differently in root compared to guest.
 | 
						|
	 * - In guest partition the guest PFN has to be passed to the
 | 
						|
	 *   hypervisor.
 | 
						|
	 * - In root partition it's other way around: it has to map the PFN
 | 
						|
	 *   provided by the hypervisor.
 | 
						|
	 *   But it can't be mapped right here as it's too early and MMU isn't
 | 
						|
	 *   ready yet. So, we only set the enable bit here and will remap the
 | 
						|
	 *   page later in hv_remap_tsc_clocksource().
 | 
						|
	 *
 | 
						|
	 * It worth mentioning, that TSC clocksource read function
 | 
						|
	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
 | 
						|
	 * TSC page is zeroed (which is the case until the PFN is remapped) and
 | 
						|
	 * thus TSC clocksource will work even without the real TSC page
 | 
						|
	 * mapped.
 | 
						|
	 */
 | 
						|
	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
 | 
						|
	if (hv_root_partition)
 | 
						|
		tsc_pfn = tsc_msr.pfn;
 | 
						|
	else
 | 
						|
		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
 | 
						|
	tsc_msr.enable = 1;
 | 
						|
	tsc_msr.pfn = tsc_pfn;
 | 
						|
	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
 | 
						|
 | 
						|
	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If TSC is invariant, then let it stay as the sched clock since it
 | 
						|
	 * will be faster than reading the TSC page. But if not invariant, use
 | 
						|
	 * the TSC page so that live migrations across hosts with different
 | 
						|
	 * frequencies is handled correctly.
 | 
						|
	 */
 | 
						|
	if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
 | 
						|
		hv_sched_clock_offset = hv_read_reference_counter();
 | 
						|
		hv_setup_sched_clock(read_hv_sched_clock_tsc);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init hv_init_clocksource(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Try to set up the TSC page clocksource, then the MSR clocksource.
 | 
						|
	 * At least one of these will always be available except on very old
 | 
						|
	 * versions of Hyper-V on x86.  In that case we won't have a Hyper-V
 | 
						|
	 * clocksource, but Linux will still run with a clocksource based
 | 
						|
	 * on the emulated PIT or LAPIC timer.
 | 
						|
	 *
 | 
						|
	 * Never use the MSR clocksource as sched clock.  It's too slow.
 | 
						|
	 * Better to use the native sched clock as the fallback.
 | 
						|
	 */
 | 
						|
	hv_init_tsc_clocksource();
 | 
						|
 | 
						|
	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
 | 
						|
		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
 | 
						|
}
 | 
						|
 | 
						|
void __init hv_remap_tsc_clocksource(void)
 | 
						|
{
 | 
						|
	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!hv_root_partition) {
 | 
						|
		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
 | 
						|
		     __func__);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
 | 
						|
			    MEMREMAP_WB);
 | 
						|
	if (!tsc_page)
 | 
						|
		pr_err("Failed to remap Hyper-V TSC page.\n");
 | 
						|
}
 |