mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Patch series "mm: Convert sysfs sprintf family to sysfs_emit", v2.
Use the new sysfs_emit family and not the sprintf family.
This patch (of 5):
Use the sysfs_emit function instead of the sprintf family.
Done with cocci script as in commit 3c6bff3cf9 ("RDMA: Convert sysfs
kobject * show functions to use sysfs_emit()")
Link: https://lkml.kernel.org/r/cover.1605376435.git.joe@perches.com
Link: https://lkml.kernel.org/r/9c249215bad6df616ba0410ad980042694970c1b.1605376435.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			5664 lines
		
	
	
	
		
			154 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5664 lines
		
	
	
	
		
			154 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * Generic hugetlb support.
 | 
						|
 * (C) Nadia Yvette Chambers, April 2004
 | 
						|
 */
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/sysctl.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/mmu_notifier.h>
 | 
						|
#include <linux/nodemask.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/sysfs.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/sched/mm.h>
 | 
						|
#include <linux/mmdebug.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/string_helpers.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/jhash.h>
 | 
						|
#include <linux/numa.h>
 | 
						|
#include <linux/llist.h>
 | 
						|
#include <linux/cma.h>
 | 
						|
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/tlb.h>
 | 
						|
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/hugetlb_cgroup.h>
 | 
						|
#include <linux/node.h>
 | 
						|
#include <linux/userfaultfd_k.h>
 | 
						|
#include <linux/page_owner.h>
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
int hugetlb_max_hstate __read_mostly;
 | 
						|
unsigned int default_hstate_idx;
 | 
						|
struct hstate hstates[HUGE_MAX_HSTATE];
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
static struct cma *hugetlb_cma[MAX_NUMNODES];
 | 
						|
#endif
 | 
						|
static unsigned long hugetlb_cma_size __initdata;
 | 
						|
 | 
						|
/*
 | 
						|
 * Minimum page order among possible hugepage sizes, set to a proper value
 | 
						|
 * at boot time.
 | 
						|
 */
 | 
						|
static unsigned int minimum_order __read_mostly = UINT_MAX;
 | 
						|
 | 
						|
__initdata LIST_HEAD(huge_boot_pages);
 | 
						|
 | 
						|
/* for command line parsing */
 | 
						|
static struct hstate * __initdata parsed_hstate;
 | 
						|
static unsigned long __initdata default_hstate_max_huge_pages;
 | 
						|
static bool __initdata parsed_valid_hugepagesz = true;
 | 
						|
static bool __initdata parsed_default_hugepagesz;
 | 
						|
 | 
						|
/*
 | 
						|
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 | 
						|
 * free_huge_pages, and surplus_huge_pages.
 | 
						|
 */
 | 
						|
DEFINE_SPINLOCK(hugetlb_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * Serializes faults on the same logical page.  This is used to
 | 
						|
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 | 
						|
 */
 | 
						|
static int num_fault_mutexes;
 | 
						|
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
 | 
						|
 | 
						|
/* Forward declaration */
 | 
						|
static int hugetlb_acct_memory(struct hstate *h, long delta);
 | 
						|
 | 
						|
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
 | 
						|
{
 | 
						|
	bool free = (spool->count == 0) && (spool->used_hpages == 0);
 | 
						|
 | 
						|
	spin_unlock(&spool->lock);
 | 
						|
 | 
						|
	/* If no pages are used, and no other handles to the subpool
 | 
						|
	 * remain, give up any reservations based on minimum size and
 | 
						|
	 * free the subpool */
 | 
						|
	if (free) {
 | 
						|
		if (spool->min_hpages != -1)
 | 
						|
			hugetlb_acct_memory(spool->hstate,
 | 
						|
						-spool->min_hpages);
 | 
						|
		kfree(spool);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 | 
						|
						long min_hpages)
 | 
						|
{
 | 
						|
	struct hugepage_subpool *spool;
 | 
						|
 | 
						|
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 | 
						|
	if (!spool)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock_init(&spool->lock);
 | 
						|
	spool->count = 1;
 | 
						|
	spool->max_hpages = max_hpages;
 | 
						|
	spool->hstate = h;
 | 
						|
	spool->min_hpages = min_hpages;
 | 
						|
 | 
						|
	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 | 
						|
		kfree(spool);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	spool->rsv_hpages = min_hpages;
 | 
						|
 | 
						|
	return spool;
 | 
						|
}
 | 
						|
 | 
						|
void hugepage_put_subpool(struct hugepage_subpool *spool)
 | 
						|
{
 | 
						|
	spin_lock(&spool->lock);
 | 
						|
	BUG_ON(!spool->count);
 | 
						|
	spool->count--;
 | 
						|
	unlock_or_release_subpool(spool);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Subpool accounting for allocating and reserving pages.
 | 
						|
 * Return -ENOMEM if there are not enough resources to satisfy the
 | 
						|
 * request.  Otherwise, return the number of pages by which the
 | 
						|
 * global pools must be adjusted (upward).  The returned value may
 | 
						|
 * only be different than the passed value (delta) in the case where
 | 
						|
 * a subpool minimum size must be maintained.
 | 
						|
 */
 | 
						|
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 | 
						|
				      long delta)
 | 
						|
{
 | 
						|
	long ret = delta;
 | 
						|
 | 
						|
	if (!spool)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	spin_lock(&spool->lock);
 | 
						|
 | 
						|
	if (spool->max_hpages != -1) {		/* maximum size accounting */
 | 
						|
		if ((spool->used_hpages + delta) <= spool->max_hpages)
 | 
						|
			spool->used_hpages += delta;
 | 
						|
		else {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto unlock_ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* minimum size accounting */
 | 
						|
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 | 
						|
		if (delta > spool->rsv_hpages) {
 | 
						|
			/*
 | 
						|
			 * Asking for more reserves than those already taken on
 | 
						|
			 * behalf of subpool.  Return difference.
 | 
						|
			 */
 | 
						|
			ret = delta - spool->rsv_hpages;
 | 
						|
			spool->rsv_hpages = 0;
 | 
						|
		} else {
 | 
						|
			ret = 0;	/* reserves already accounted for */
 | 
						|
			spool->rsv_hpages -= delta;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
unlock_ret:
 | 
						|
	spin_unlock(&spool->lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Subpool accounting for freeing and unreserving pages.
 | 
						|
 * Return the number of global page reservations that must be dropped.
 | 
						|
 * The return value may only be different than the passed value (delta)
 | 
						|
 * in the case where a subpool minimum size must be maintained.
 | 
						|
 */
 | 
						|
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 | 
						|
				       long delta)
 | 
						|
{
 | 
						|
	long ret = delta;
 | 
						|
 | 
						|
	if (!spool)
 | 
						|
		return delta;
 | 
						|
 | 
						|
	spin_lock(&spool->lock);
 | 
						|
 | 
						|
	if (spool->max_hpages != -1)		/* maximum size accounting */
 | 
						|
		spool->used_hpages -= delta;
 | 
						|
 | 
						|
	 /* minimum size accounting */
 | 
						|
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 | 
						|
		if (spool->rsv_hpages + delta <= spool->min_hpages)
 | 
						|
			ret = 0;
 | 
						|
		else
 | 
						|
			ret = spool->rsv_hpages + delta - spool->min_hpages;
 | 
						|
 | 
						|
		spool->rsv_hpages += delta;
 | 
						|
		if (spool->rsv_hpages > spool->min_hpages)
 | 
						|
			spool->rsv_hpages = spool->min_hpages;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 | 
						|
	 * quota reference, free it now.
 | 
						|
	 */
 | 
						|
	unlock_or_release_subpool(spool);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	return HUGETLBFS_SB(inode->i_sb)->spool;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return subpool_inode(file_inode(vma->vm_file));
 | 
						|
}
 | 
						|
 | 
						|
/* Helper that removes a struct file_region from the resv_map cache and returns
 | 
						|
 * it for use.
 | 
						|
 */
 | 
						|
static struct file_region *
 | 
						|
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 | 
						|
{
 | 
						|
	struct file_region *nrg = NULL;
 | 
						|
 | 
						|
	VM_BUG_ON(resv->region_cache_count <= 0);
 | 
						|
 | 
						|
	resv->region_cache_count--;
 | 
						|
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 | 
						|
	list_del(&nrg->link);
 | 
						|
 | 
						|
	nrg->from = from;
 | 
						|
	nrg->to = to;
 | 
						|
 | 
						|
	return nrg;
 | 
						|
}
 | 
						|
 | 
						|
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 | 
						|
					      struct file_region *rg)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	nrg->reservation_counter = rg->reservation_counter;
 | 
						|
	nrg->css = rg->css;
 | 
						|
	if (rg->css)
 | 
						|
		css_get(rg->css);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Helper that records hugetlb_cgroup uncharge info. */
 | 
						|
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 | 
						|
						struct hstate *h,
 | 
						|
						struct resv_map *resv,
 | 
						|
						struct file_region *nrg)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	if (h_cg) {
 | 
						|
		nrg->reservation_counter =
 | 
						|
			&h_cg->rsvd_hugepage[hstate_index(h)];
 | 
						|
		nrg->css = &h_cg->css;
 | 
						|
		if (!resv->pages_per_hpage)
 | 
						|
			resv->pages_per_hpage = pages_per_huge_page(h);
 | 
						|
		/* pages_per_hpage should be the same for all entries in
 | 
						|
		 * a resv_map.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 | 
						|
	} else {
 | 
						|
		nrg->reservation_counter = NULL;
 | 
						|
		nrg->css = NULL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static bool has_same_uncharge_info(struct file_region *rg,
 | 
						|
				   struct file_region *org)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	return rg && org &&
 | 
						|
	       rg->reservation_counter == org->reservation_counter &&
 | 
						|
	       rg->css == org->css;
 | 
						|
 | 
						|
#else
 | 
						|
	return true;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 | 
						|
{
 | 
						|
	struct file_region *nrg = NULL, *prg = NULL;
 | 
						|
 | 
						|
	prg = list_prev_entry(rg, link);
 | 
						|
	if (&prg->link != &resv->regions && prg->to == rg->from &&
 | 
						|
	    has_same_uncharge_info(prg, rg)) {
 | 
						|
		prg->to = rg->to;
 | 
						|
 | 
						|
		list_del(&rg->link);
 | 
						|
		kfree(rg);
 | 
						|
 | 
						|
		rg = prg;
 | 
						|
	}
 | 
						|
 | 
						|
	nrg = list_next_entry(rg, link);
 | 
						|
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 | 
						|
	    has_same_uncharge_info(nrg, rg)) {
 | 
						|
		nrg->from = rg->from;
 | 
						|
 | 
						|
		list_del(&rg->link);
 | 
						|
		kfree(rg);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Must be called with resv->lock held.
 | 
						|
 *
 | 
						|
 * Calling this with regions_needed != NULL will count the number of pages
 | 
						|
 * to be added but will not modify the linked list. And regions_needed will
 | 
						|
 * indicate the number of file_regions needed in the cache to carry out to add
 | 
						|
 * the regions for this range.
 | 
						|
 */
 | 
						|
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 | 
						|
				     struct hugetlb_cgroup *h_cg,
 | 
						|
				     struct hstate *h, long *regions_needed)
 | 
						|
{
 | 
						|
	long add = 0;
 | 
						|
	struct list_head *head = &resv->regions;
 | 
						|
	long last_accounted_offset = f;
 | 
						|
	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
 | 
						|
 | 
						|
	if (regions_needed)
 | 
						|
		*regions_needed = 0;
 | 
						|
 | 
						|
	/* In this loop, we essentially handle an entry for the range
 | 
						|
	 * [last_accounted_offset, rg->from), at every iteration, with some
 | 
						|
	 * bounds checking.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_safe(rg, trg, head, link) {
 | 
						|
		/* Skip irrelevant regions that start before our range. */
 | 
						|
		if (rg->from < f) {
 | 
						|
			/* If this region ends after the last accounted offset,
 | 
						|
			 * then we need to update last_accounted_offset.
 | 
						|
			 */
 | 
						|
			if (rg->to > last_accounted_offset)
 | 
						|
				last_accounted_offset = rg->to;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* When we find a region that starts beyond our range, we've
 | 
						|
		 * finished.
 | 
						|
		 */
 | 
						|
		if (rg->from > t)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* Add an entry for last_accounted_offset -> rg->from, and
 | 
						|
		 * update last_accounted_offset.
 | 
						|
		 */
 | 
						|
		if (rg->from > last_accounted_offset) {
 | 
						|
			add += rg->from - last_accounted_offset;
 | 
						|
			if (!regions_needed) {
 | 
						|
				nrg = get_file_region_entry_from_cache(
 | 
						|
					resv, last_accounted_offset, rg->from);
 | 
						|
				record_hugetlb_cgroup_uncharge_info(h_cg, h,
 | 
						|
								    resv, nrg);
 | 
						|
				list_add(&nrg->link, rg->link.prev);
 | 
						|
				coalesce_file_region(resv, nrg);
 | 
						|
			} else
 | 
						|
				*regions_needed += 1;
 | 
						|
		}
 | 
						|
 | 
						|
		last_accounted_offset = rg->to;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Handle the case where our range extends beyond
 | 
						|
	 * last_accounted_offset.
 | 
						|
	 */
 | 
						|
	if (last_accounted_offset < t) {
 | 
						|
		add += t - last_accounted_offset;
 | 
						|
		if (!regions_needed) {
 | 
						|
			nrg = get_file_region_entry_from_cache(
 | 
						|
				resv, last_accounted_offset, t);
 | 
						|
			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
 | 
						|
			list_add(&nrg->link, rg->link.prev);
 | 
						|
			coalesce_file_region(resv, nrg);
 | 
						|
		} else
 | 
						|
			*regions_needed += 1;
 | 
						|
	}
 | 
						|
 | 
						|
	VM_BUG_ON(add < 0);
 | 
						|
	return add;
 | 
						|
}
 | 
						|
 | 
						|
/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 | 
						|
 */
 | 
						|
static int allocate_file_region_entries(struct resv_map *resv,
 | 
						|
					int regions_needed)
 | 
						|
	__must_hold(&resv->lock)
 | 
						|
{
 | 
						|
	struct list_head allocated_regions;
 | 
						|
	int to_allocate = 0, i = 0;
 | 
						|
	struct file_region *trg = NULL, *rg = NULL;
 | 
						|
 | 
						|
	VM_BUG_ON(regions_needed < 0);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&allocated_regions);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for sufficient descriptors in the cache to accommodate
 | 
						|
	 * the number of in progress add operations plus regions_needed.
 | 
						|
	 *
 | 
						|
	 * This is a while loop because when we drop the lock, some other call
 | 
						|
	 * to region_add or region_del may have consumed some region_entries,
 | 
						|
	 * so we keep looping here until we finally have enough entries for
 | 
						|
	 * (adds_in_progress + regions_needed).
 | 
						|
	 */
 | 
						|
	while (resv->region_cache_count <
 | 
						|
	       (resv->adds_in_progress + regions_needed)) {
 | 
						|
		to_allocate = resv->adds_in_progress + regions_needed -
 | 
						|
			      resv->region_cache_count;
 | 
						|
 | 
						|
		/* At this point, we should have enough entries in the cache
 | 
						|
		 * for all the existings adds_in_progress. We should only be
 | 
						|
		 * needing to allocate for regions_needed.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 | 
						|
 | 
						|
		spin_unlock(&resv->lock);
 | 
						|
		for (i = 0; i < to_allocate; i++) {
 | 
						|
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 | 
						|
			if (!trg)
 | 
						|
				goto out_of_memory;
 | 
						|
			list_add(&trg->link, &allocated_regions);
 | 
						|
		}
 | 
						|
 | 
						|
		spin_lock(&resv->lock);
 | 
						|
 | 
						|
		list_splice(&allocated_regions, &resv->region_cache);
 | 
						|
		resv->region_cache_count += to_allocate;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_of_memory:
 | 
						|
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 | 
						|
		list_del(&rg->link);
 | 
						|
		kfree(rg);
 | 
						|
	}
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add the huge page range represented by [f, t) to the reserve
 | 
						|
 * map.  Regions will be taken from the cache to fill in this range.
 | 
						|
 * Sufficient regions should exist in the cache due to the previous
 | 
						|
 * call to region_chg with the same range, but in some cases the cache will not
 | 
						|
 * have sufficient entries due to races with other code doing region_add or
 | 
						|
 * region_del.  The extra needed entries will be allocated.
 | 
						|
 *
 | 
						|
 * regions_needed is the out value provided by a previous call to region_chg.
 | 
						|
 *
 | 
						|
 * Return the number of new huge pages added to the map.  This number is greater
 | 
						|
 * than or equal to zero.  If file_region entries needed to be allocated for
 | 
						|
 * this operation and we were not able to allocate, it returns -ENOMEM.
 | 
						|
 * region_add of regions of length 1 never allocate file_regions and cannot
 | 
						|
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 | 
						|
 * 1 page will only require at most 1 entry.
 | 
						|
 */
 | 
						|
static long region_add(struct resv_map *resv, long f, long t,
 | 
						|
		       long in_regions_needed, struct hstate *h,
 | 
						|
		       struct hugetlb_cgroup *h_cg)
 | 
						|
{
 | 
						|
	long add = 0, actual_regions_needed = 0;
 | 
						|
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
retry:
 | 
						|
 | 
						|
	/* Count how many regions are actually needed to execute this add. */
 | 
						|
	add_reservation_in_range(resv, f, t, NULL, NULL,
 | 
						|
				 &actual_regions_needed);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for sufficient descriptors in the cache to accommodate
 | 
						|
	 * this add operation. Note that actual_regions_needed may be greater
 | 
						|
	 * than in_regions_needed, as the resv_map may have been modified since
 | 
						|
	 * the region_chg call. In this case, we need to make sure that we
 | 
						|
	 * allocate extra entries, such that we have enough for all the
 | 
						|
	 * existing adds_in_progress, plus the excess needed for this
 | 
						|
	 * operation.
 | 
						|
	 */
 | 
						|
	if (actual_regions_needed > in_regions_needed &&
 | 
						|
	    resv->region_cache_count <
 | 
						|
		    resv->adds_in_progress +
 | 
						|
			    (actual_regions_needed - in_regions_needed)) {
 | 
						|
		/* region_add operation of range 1 should never need to
 | 
						|
		 * allocate file_region entries.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(t - f <= 1);
 | 
						|
 | 
						|
		if (allocate_file_region_entries(
 | 
						|
			    resv, actual_regions_needed - in_regions_needed)) {
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 | 
						|
 | 
						|
	resv->adds_in_progress -= in_regions_needed;
 | 
						|
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
	VM_BUG_ON(add < 0);
 | 
						|
	return add;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Examine the existing reserve map and determine how many
 | 
						|
 * huge pages in the specified range [f, t) are NOT currently
 | 
						|
 * represented.  This routine is called before a subsequent
 | 
						|
 * call to region_add that will actually modify the reserve
 | 
						|
 * map to add the specified range [f, t).  region_chg does
 | 
						|
 * not change the number of huge pages represented by the
 | 
						|
 * map.  A number of new file_region structures is added to the cache as a
 | 
						|
 * placeholder, for the subsequent region_add call to use. At least 1
 | 
						|
 * file_region structure is added.
 | 
						|
 *
 | 
						|
 * out_regions_needed is the number of regions added to the
 | 
						|
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 | 
						|
 * to region_add or region_abort for proper accounting.
 | 
						|
 *
 | 
						|
 * Returns the number of huge pages that need to be added to the existing
 | 
						|
 * reservation map for the range [f, t).  This number is greater or equal to
 | 
						|
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 | 
						|
 * is needed and can not be allocated.
 | 
						|
 */
 | 
						|
static long region_chg(struct resv_map *resv, long f, long t,
 | 
						|
		       long *out_regions_needed)
 | 
						|
{
 | 
						|
	long chg = 0;
 | 
						|
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
 | 
						|
	/* Count how many hugepages in this range are NOT represented. */
 | 
						|
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 | 
						|
				       out_regions_needed);
 | 
						|
 | 
						|
	if (*out_regions_needed == 0)
 | 
						|
		*out_regions_needed = 1;
 | 
						|
 | 
						|
	if (allocate_file_region_entries(resv, *out_regions_needed))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	resv->adds_in_progress += *out_regions_needed;
 | 
						|
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
	return chg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Abort the in progress add operation.  The adds_in_progress field
 | 
						|
 * of the resv_map keeps track of the operations in progress between
 | 
						|
 * calls to region_chg and region_add.  Operations are sometimes
 | 
						|
 * aborted after the call to region_chg.  In such cases, region_abort
 | 
						|
 * is called to decrement the adds_in_progress counter. regions_needed
 | 
						|
 * is the value returned by the region_chg call, it is used to decrement
 | 
						|
 * the adds_in_progress counter.
 | 
						|
 *
 | 
						|
 * NOTE: The range arguments [f, t) are not needed or used in this
 | 
						|
 * routine.  They are kept to make reading the calling code easier as
 | 
						|
 * arguments will match the associated region_chg call.
 | 
						|
 */
 | 
						|
static void region_abort(struct resv_map *resv, long f, long t,
 | 
						|
			 long regions_needed)
 | 
						|
{
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
	VM_BUG_ON(!resv->region_cache_count);
 | 
						|
	resv->adds_in_progress -= regions_needed;
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Delete the specified range [f, t) from the reserve map.  If the
 | 
						|
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 | 
						|
 * should be deleted.  Locate the regions which intersect [f, t)
 | 
						|
 * and either trim, delete or split the existing regions.
 | 
						|
 *
 | 
						|
 * Returns the number of huge pages deleted from the reserve map.
 | 
						|
 * In the normal case, the return value is zero or more.  In the
 | 
						|
 * case where a region must be split, a new region descriptor must
 | 
						|
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 | 
						|
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 | 
						|
 * a region and possibly return -ENOMEM.  Callers specifying
 | 
						|
 * t == LONG_MAX do not need to check for -ENOMEM error.
 | 
						|
 */
 | 
						|
static long region_del(struct resv_map *resv, long f, long t)
 | 
						|
{
 | 
						|
	struct list_head *head = &resv->regions;
 | 
						|
	struct file_region *rg, *trg;
 | 
						|
	struct file_region *nrg = NULL;
 | 
						|
	long del = 0;
 | 
						|
 | 
						|
retry:
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
	list_for_each_entry_safe(rg, trg, head, link) {
 | 
						|
		/*
 | 
						|
		 * Skip regions before the range to be deleted.  file_region
 | 
						|
		 * ranges are normally of the form [from, to).  However, there
 | 
						|
		 * may be a "placeholder" entry in the map which is of the form
 | 
						|
		 * (from, to) with from == to.  Check for placeholder entries
 | 
						|
		 * at the beginning of the range to be deleted.
 | 
						|
		 */
 | 
						|
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (rg->from >= t)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (f > rg->from && t < rg->to) { /* Must split region */
 | 
						|
			/*
 | 
						|
			 * Check for an entry in the cache before dropping
 | 
						|
			 * lock and attempting allocation.
 | 
						|
			 */
 | 
						|
			if (!nrg &&
 | 
						|
			    resv->region_cache_count > resv->adds_in_progress) {
 | 
						|
				nrg = list_first_entry(&resv->region_cache,
 | 
						|
							struct file_region,
 | 
						|
							link);
 | 
						|
				list_del(&nrg->link);
 | 
						|
				resv->region_cache_count--;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!nrg) {
 | 
						|
				spin_unlock(&resv->lock);
 | 
						|
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 | 
						|
				if (!nrg)
 | 
						|
					return -ENOMEM;
 | 
						|
				goto retry;
 | 
						|
			}
 | 
						|
 | 
						|
			del += t - f;
 | 
						|
			hugetlb_cgroup_uncharge_file_region(
 | 
						|
				resv, rg, t - f);
 | 
						|
 | 
						|
			/* New entry for end of split region */
 | 
						|
			nrg->from = t;
 | 
						|
			nrg->to = rg->to;
 | 
						|
 | 
						|
			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 | 
						|
 | 
						|
			INIT_LIST_HEAD(&nrg->link);
 | 
						|
 | 
						|
			/* Original entry is trimmed */
 | 
						|
			rg->to = f;
 | 
						|
 | 
						|
			list_add(&nrg->link, &rg->link);
 | 
						|
			nrg = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 | 
						|
			del += rg->to - rg->from;
 | 
						|
			hugetlb_cgroup_uncharge_file_region(resv, rg,
 | 
						|
							    rg->to - rg->from);
 | 
						|
			list_del(&rg->link);
 | 
						|
			kfree(rg);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (f <= rg->from) {	/* Trim beginning of region */
 | 
						|
			hugetlb_cgroup_uncharge_file_region(resv, rg,
 | 
						|
							    t - rg->from);
 | 
						|
 | 
						|
			del += t - rg->from;
 | 
						|
			rg->from = t;
 | 
						|
		} else {		/* Trim end of region */
 | 
						|
			hugetlb_cgroup_uncharge_file_region(resv, rg,
 | 
						|
							    rg->to - f);
 | 
						|
 | 
						|
			del += rg->to - f;
 | 
						|
			rg->to = f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
	kfree(nrg);
 | 
						|
	return del;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A rare out of memory error was encountered which prevented removal of
 | 
						|
 * the reserve map region for a page.  The huge page itself was free'ed
 | 
						|
 * and removed from the page cache.  This routine will adjust the subpool
 | 
						|
 * usage count, and the global reserve count if needed.  By incrementing
 | 
						|
 * these counts, the reserve map entry which could not be deleted will
 | 
						|
 * appear as a "reserved" entry instead of simply dangling with incorrect
 | 
						|
 * counts.
 | 
						|
 */
 | 
						|
void hugetlb_fix_reserve_counts(struct inode *inode)
 | 
						|
{
 | 
						|
	struct hugepage_subpool *spool = subpool_inode(inode);
 | 
						|
	long rsv_adjust;
 | 
						|
 | 
						|
	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 | 
						|
	if (rsv_adjust) {
 | 
						|
		struct hstate *h = hstate_inode(inode);
 | 
						|
 | 
						|
		hugetlb_acct_memory(h, 1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Count and return the number of huge pages in the reserve map
 | 
						|
 * that intersect with the range [f, t).
 | 
						|
 */
 | 
						|
static long region_count(struct resv_map *resv, long f, long t)
 | 
						|
{
 | 
						|
	struct list_head *head = &resv->regions;
 | 
						|
	struct file_region *rg;
 | 
						|
	long chg = 0;
 | 
						|
 | 
						|
	spin_lock(&resv->lock);
 | 
						|
	/* Locate each segment we overlap with, and count that overlap. */
 | 
						|
	list_for_each_entry(rg, head, link) {
 | 
						|
		long seg_from;
 | 
						|
		long seg_to;
 | 
						|
 | 
						|
		if (rg->to <= f)
 | 
						|
			continue;
 | 
						|
		if (rg->from >= t)
 | 
						|
			break;
 | 
						|
 | 
						|
		seg_from = max(rg->from, f);
 | 
						|
		seg_to = min(rg->to, t);
 | 
						|
 | 
						|
		chg += seg_to - seg_from;
 | 
						|
	}
 | 
						|
	spin_unlock(&resv->lock);
 | 
						|
 | 
						|
	return chg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert the address within this vma to the page offset within
 | 
						|
 * the mapping, in pagecache page units; huge pages here.
 | 
						|
 */
 | 
						|
static pgoff_t vma_hugecache_offset(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 | 
						|
			(vma->vm_pgoff >> huge_page_order(h));
 | 
						|
}
 | 
						|
 | 
						|
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 | 
						|
				     unsigned long address)
 | 
						|
{
 | 
						|
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(linear_hugepage_index);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the size of the pages allocated when backing a VMA. In the majority
 | 
						|
 * cases this will be same size as used by the page table entries.
 | 
						|
 */
 | 
						|
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (vma->vm_ops && vma->vm_ops->pagesize)
 | 
						|
		return vma->vm_ops->pagesize(vma);
 | 
						|
	return PAGE_SIZE;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the page size being used by the MMU to back a VMA. In the majority
 | 
						|
 * of cases, the page size used by the kernel matches the MMU size. On
 | 
						|
 * architectures where it differs, an architecture-specific 'strong'
 | 
						|
 * version of this symbol is required.
 | 
						|
 */
 | 
						|
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return vma_kernel_pagesize(vma);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 | 
						|
 * bits of the reservation map pointer, which are always clear due to
 | 
						|
 * alignment.
 | 
						|
 */
 | 
						|
#define HPAGE_RESV_OWNER    (1UL << 0)
 | 
						|
#define HPAGE_RESV_UNMAPPED (1UL << 1)
 | 
						|
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 | 
						|
 | 
						|
/*
 | 
						|
 * These helpers are used to track how many pages are reserved for
 | 
						|
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 | 
						|
 * is guaranteed to have their future faults succeed.
 | 
						|
 *
 | 
						|
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 | 
						|
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 | 
						|
 * to reset the VMA at fork() time as it is not in use yet and there is no
 | 
						|
 * chance of the global counters getting corrupted as a result of the values.
 | 
						|
 *
 | 
						|
 * The private mapping reservation is represented in a subtly different
 | 
						|
 * manner to a shared mapping.  A shared mapping has a region map associated
 | 
						|
 * with the underlying file, this region map represents the backing file
 | 
						|
 * pages which have ever had a reservation assigned which this persists even
 | 
						|
 * after the page is instantiated.  A private mapping has a region map
 | 
						|
 * associated with the original mmap which is attached to all VMAs which
 | 
						|
 * reference it, this region map represents those offsets which have consumed
 | 
						|
 * reservation ie. where pages have been instantiated.
 | 
						|
 */
 | 
						|
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return (unsigned long)vma->vm_private_data;
 | 
						|
}
 | 
						|
 | 
						|
static void set_vma_private_data(struct vm_area_struct *vma,
 | 
						|
							unsigned long value)
 | 
						|
{
 | 
						|
	vma->vm_private_data = (void *)value;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 | 
						|
					  struct hugetlb_cgroup *h_cg,
 | 
						|
					  struct hstate *h)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUP_HUGETLB
 | 
						|
	if (!h_cg || !h) {
 | 
						|
		resv_map->reservation_counter = NULL;
 | 
						|
		resv_map->pages_per_hpage = 0;
 | 
						|
		resv_map->css = NULL;
 | 
						|
	} else {
 | 
						|
		resv_map->reservation_counter =
 | 
						|
			&h_cg->rsvd_hugepage[hstate_index(h)];
 | 
						|
		resv_map->pages_per_hpage = pages_per_huge_page(h);
 | 
						|
		resv_map->css = &h_cg->css;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
struct resv_map *resv_map_alloc(void)
 | 
						|
{
 | 
						|
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 | 
						|
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 | 
						|
 | 
						|
	if (!resv_map || !rg) {
 | 
						|
		kfree(resv_map);
 | 
						|
		kfree(rg);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	kref_init(&resv_map->refs);
 | 
						|
	spin_lock_init(&resv_map->lock);
 | 
						|
	INIT_LIST_HEAD(&resv_map->regions);
 | 
						|
 | 
						|
	resv_map->adds_in_progress = 0;
 | 
						|
	/*
 | 
						|
	 * Initialize these to 0. On shared mappings, 0's here indicate these
 | 
						|
	 * fields don't do cgroup accounting. On private mappings, these will be
 | 
						|
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
 | 
						|
	 * reservations are to be un-charged from here.
 | 
						|
	 */
 | 
						|
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&resv_map->region_cache);
 | 
						|
	list_add(&rg->link, &resv_map->region_cache);
 | 
						|
	resv_map->region_cache_count = 1;
 | 
						|
 | 
						|
	return resv_map;
 | 
						|
}
 | 
						|
 | 
						|
void resv_map_release(struct kref *ref)
 | 
						|
{
 | 
						|
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 | 
						|
	struct list_head *head = &resv_map->region_cache;
 | 
						|
	struct file_region *rg, *trg;
 | 
						|
 | 
						|
	/* Clear out any active regions before we release the map. */
 | 
						|
	region_del(resv_map, 0, LONG_MAX);
 | 
						|
 | 
						|
	/* ... and any entries left in the cache */
 | 
						|
	list_for_each_entry_safe(rg, trg, head, link) {
 | 
						|
		list_del(&rg->link);
 | 
						|
		kfree(rg);
 | 
						|
	}
 | 
						|
 | 
						|
	VM_BUG_ON(resv_map->adds_in_progress);
 | 
						|
 | 
						|
	kfree(resv_map);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct resv_map *inode_resv_map(struct inode *inode)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * At inode evict time, i_mapping may not point to the original
 | 
						|
	 * address space within the inode.  This original address space
 | 
						|
	 * contains the pointer to the resv_map.  So, always use the
 | 
						|
	 * address space embedded within the inode.
 | 
						|
	 * The VERY common case is inode->mapping == &inode->i_data but,
 | 
						|
	 * this may not be true for device special inodes.
 | 
						|
	 */
 | 
						|
	return (struct resv_map *)(&inode->i_data)->private_data;
 | 
						|
}
 | 
						|
 | 
						|
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
		struct inode *inode = mapping->host;
 | 
						|
 | 
						|
		return inode_resv_map(inode);
 | 
						|
 | 
						|
	} else {
 | 
						|
		return (struct resv_map *)(get_vma_private_data(vma) &
 | 
						|
							~HPAGE_RESV_MASK);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 | 
						|
 | 
						|
	set_vma_private_data(vma, (get_vma_private_data(vma) &
 | 
						|
				HPAGE_RESV_MASK) | (unsigned long)map);
 | 
						|
}
 | 
						|
 | 
						|
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 | 
						|
 | 
						|
	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 | 
						|
}
 | 
						|
 | 
						|
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
 | 
						|
	return (get_vma_private_data(vma) & flag) != 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 | 
						|
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | 
						|
	if (!(vma->vm_flags & VM_MAYSHARE))
 | 
						|
		vma->vm_private_data = (void *)0;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if the VMA has associated reserve pages */
 | 
						|
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 | 
						|
{
 | 
						|
	if (vma->vm_flags & VM_NORESERVE) {
 | 
						|
		/*
 | 
						|
		 * This address is already reserved by other process(chg == 0),
 | 
						|
		 * so, we should decrement reserved count. Without decrementing,
 | 
						|
		 * reserve count remains after releasing inode, because this
 | 
						|
		 * allocated page will go into page cache and is regarded as
 | 
						|
		 * coming from reserved pool in releasing step.  Currently, we
 | 
						|
		 * don't have any other solution to deal with this situation
 | 
						|
		 * properly, so add work-around here.
 | 
						|
		 */
 | 
						|
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 | 
						|
			return true;
 | 
						|
		else
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Shared mappings always use reserves */
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		/*
 | 
						|
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 | 
						|
		 * be a region map for all pages.  The only situation where
 | 
						|
		 * there is no region map is if a hole was punched via
 | 
						|
		 * fallocate.  In this case, there really are no reserves to
 | 
						|
		 * use.  This situation is indicated if chg != 0.
 | 
						|
		 */
 | 
						|
		if (chg)
 | 
						|
			return false;
 | 
						|
		else
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only the process that called mmap() has reserves for
 | 
						|
	 * private mappings.
 | 
						|
	 */
 | 
						|
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 | 
						|
		/*
 | 
						|
		 * Like the shared case above, a hole punch or truncate
 | 
						|
		 * could have been performed on the private mapping.
 | 
						|
		 * Examine the value of chg to determine if reserves
 | 
						|
		 * actually exist or were previously consumed.
 | 
						|
		 * Very Subtle - The value of chg comes from a previous
 | 
						|
		 * call to vma_needs_reserves().  The reserve map for
 | 
						|
		 * private mappings has different (opposite) semantics
 | 
						|
		 * than that of shared mappings.  vma_needs_reserves()
 | 
						|
		 * has already taken this difference in semantics into
 | 
						|
		 * account.  Therefore, the meaning of chg is the same
 | 
						|
		 * as in the shared case above.  Code could easily be
 | 
						|
		 * combined, but keeping it separate draws attention to
 | 
						|
		 * subtle differences.
 | 
						|
		 */
 | 
						|
		if (chg)
 | 
						|
			return false;
 | 
						|
		else
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_huge_page(struct hstate *h, struct page *page)
 | 
						|
{
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	list_move(&page->lru, &h->hugepage_freelists[nid]);
 | 
						|
	h->free_huge_pages++;
 | 
						|
	h->free_huge_pages_node[nid]++;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
 | 
						|
 | 
						|
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
 | 
						|
		if (nocma && is_migrate_cma_page(page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (PageHWPoison(page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		list_move(&page->lru, &h->hugepage_activelist);
 | 
						|
		set_page_refcounted(page);
 | 
						|
		h->free_huge_pages--;
 | 
						|
		h->free_huge_pages_node[nid]--;
 | 
						|
		return page;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 | 
						|
		nodemask_t *nmask)
 | 
						|
{
 | 
						|
	unsigned int cpuset_mems_cookie;
 | 
						|
	struct zonelist *zonelist;
 | 
						|
	struct zone *zone;
 | 
						|
	struct zoneref *z;
 | 
						|
	int node = NUMA_NO_NODE;
 | 
						|
 | 
						|
	zonelist = node_zonelist(nid, gfp_mask);
 | 
						|
 | 
						|
retry_cpuset:
 | 
						|
	cpuset_mems_cookie = read_mems_allowed_begin();
 | 
						|
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		if (!cpuset_zone_allowed(zone, gfp_mask))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * no need to ask again on the same node. Pool is node rather than
 | 
						|
		 * zone aware
 | 
						|
		 */
 | 
						|
		if (zone_to_nid(zone) == node)
 | 
						|
			continue;
 | 
						|
		node = zone_to_nid(zone);
 | 
						|
 | 
						|
		page = dequeue_huge_page_node_exact(h, node);
 | 
						|
		if (page)
 | 
						|
			return page;
 | 
						|
	}
 | 
						|
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 | 
						|
		goto retry_cpuset;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *dequeue_huge_page_vma(struct hstate *h,
 | 
						|
				struct vm_area_struct *vma,
 | 
						|
				unsigned long address, int avoid_reserve,
 | 
						|
				long chg)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	struct mempolicy *mpol;
 | 
						|
	gfp_t gfp_mask;
 | 
						|
	nodemask_t *nodemask;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A child process with MAP_PRIVATE mappings created by their parent
 | 
						|
	 * have no page reserves. This check ensures that reservations are
 | 
						|
	 * not "stolen". The child may still get SIGKILLed
 | 
						|
	 */
 | 
						|
	if (!vma_has_reserves(vma, chg) &&
 | 
						|
			h->free_huge_pages - h->resv_huge_pages == 0)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	/* If reserves cannot be used, ensure enough pages are in the pool */
 | 
						|
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	gfp_mask = htlb_alloc_mask(h);
 | 
						|
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 | 
						|
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 | 
						|
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 | 
						|
		SetPagePrivate(page);
 | 
						|
		h->resv_huge_pages--;
 | 
						|
	}
 | 
						|
 | 
						|
	mpol_cond_put(mpol);
 | 
						|
	return page;
 | 
						|
 | 
						|
err:
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * common helper functions for hstate_next_node_to_{alloc|free}.
 | 
						|
 * We may have allocated or freed a huge page based on a different
 | 
						|
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 | 
						|
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 | 
						|
 * node for alloc or free.
 | 
						|
 */
 | 
						|
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	nid = next_node_in(nid, *nodes_allowed);
 | 
						|
	VM_BUG_ON(nid >= MAX_NUMNODES);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	if (!node_isset(nid, *nodes_allowed))
 | 
						|
		nid = next_node_allowed(nid, nodes_allowed);
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * returns the previously saved node ["this node"] from which to
 | 
						|
 * allocate a persistent huge page for the pool and advance the
 | 
						|
 * next node from which to allocate, handling wrap at end of node
 | 
						|
 * mask.
 | 
						|
 */
 | 
						|
static int hstate_next_node_to_alloc(struct hstate *h,
 | 
						|
					nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	VM_BUG_ON(!nodes_allowed);
 | 
						|
 | 
						|
	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 | 
						|
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper for free_pool_huge_page() - return the previously saved
 | 
						|
 * node ["this node"] from which to free a huge page.  Advance the
 | 
						|
 * next node id whether or not we find a free huge page to free so
 | 
						|
 * that the next attempt to free addresses the next node.
 | 
						|
 */
 | 
						|
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	VM_BUG_ON(!nodes_allowed);
 | 
						|
 | 
						|
	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 | 
						|
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 | 
						|
	for (nr_nodes = nodes_weight(*mask);				\
 | 
						|
		nr_nodes > 0 &&						\
 | 
						|
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 | 
						|
		nr_nodes--)
 | 
						|
 | 
						|
#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 | 
						|
	for (nr_nodes = nodes_weight(*mask);				\
 | 
						|
		nr_nodes > 0 &&						\
 | 
						|
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
 | 
						|
		nr_nodes--)
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
 | 
						|
static void destroy_compound_gigantic_page(struct page *page,
 | 
						|
					unsigned int order)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int nr_pages = 1 << order;
 | 
						|
	struct page *p = page + 1;
 | 
						|
 | 
						|
	atomic_set(compound_mapcount_ptr(page), 0);
 | 
						|
	if (hpage_pincount_available(page))
 | 
						|
		atomic_set(compound_pincount_ptr(page), 0);
 | 
						|
 | 
						|
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 | 
						|
		clear_compound_head(p);
 | 
						|
		set_page_refcounted(p);
 | 
						|
	}
 | 
						|
 | 
						|
	set_compound_order(page, 0);
 | 
						|
	page[1].compound_nr = 0;
 | 
						|
	__ClearPageHead(page);
 | 
						|
}
 | 
						|
 | 
						|
static void free_gigantic_page(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If the page isn't allocated using the cma allocator,
 | 
						|
	 * cma_release() returns false.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
 | 
						|
		return;
 | 
						|
#endif
 | 
						|
 | 
						|
	free_contig_range(page_to_pfn(page), 1 << order);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_CONTIG_ALLOC
 | 
						|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
 | 
						|
		int nid, nodemask_t *nodemask)
 | 
						|
{
 | 
						|
	unsigned long nr_pages = 1UL << huge_page_order(h);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		nid = numa_mem_id();
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
	{
 | 
						|
		struct page *page;
 | 
						|
		int node;
 | 
						|
 | 
						|
		if (hugetlb_cma[nid]) {
 | 
						|
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
 | 
						|
					huge_page_order(h), true);
 | 
						|
			if (page)
 | 
						|
				return page;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!(gfp_mask & __GFP_THISNODE)) {
 | 
						|
			for_each_node_mask(node, *nodemask) {
 | 
						|
				if (node == nid || !hugetlb_cma[node])
 | 
						|
					continue;
 | 
						|
 | 
						|
				page = cma_alloc(hugetlb_cma[node], nr_pages,
 | 
						|
						huge_page_order(h), true);
 | 
						|
				if (page)
 | 
						|
					return page;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
 | 
						|
}
 | 
						|
 | 
						|
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
 | 
						|
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
 | 
						|
#else /* !CONFIG_CONTIG_ALLOC */
 | 
						|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
 | 
						|
					int nid, nodemask_t *nodemask)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
#endif /* CONFIG_CONTIG_ALLOC */
 | 
						|
 | 
						|
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
 | 
						|
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
 | 
						|
					int nid, nodemask_t *nodemask)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
 | 
						|
static inline void destroy_compound_gigantic_page(struct page *page,
 | 
						|
						unsigned int order) { }
 | 
						|
#endif
 | 
						|
 | 
						|
static void update_and_free_page(struct hstate *h, struct page *page)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 | 
						|
		return;
 | 
						|
 | 
						|
	h->nr_huge_pages--;
 | 
						|
	h->nr_huge_pages_node[page_to_nid(page)]--;
 | 
						|
	for (i = 0; i < pages_per_huge_page(h); i++) {
 | 
						|
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
 | 
						|
				1 << PG_referenced | 1 << PG_dirty |
 | 
						|
				1 << PG_active | 1 << PG_private |
 | 
						|
				1 << PG_writeback);
 | 
						|
	}
 | 
						|
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
 | 
						|
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
 | 
						|
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
 | 
						|
	set_page_refcounted(page);
 | 
						|
	if (hstate_is_gigantic(h)) {
 | 
						|
		/*
 | 
						|
		 * Temporarily drop the hugetlb_lock, because
 | 
						|
		 * we might block in free_gigantic_page().
 | 
						|
		 */
 | 
						|
		spin_unlock(&hugetlb_lock);
 | 
						|
		destroy_compound_gigantic_page(page, huge_page_order(h));
 | 
						|
		free_gigantic_page(page, huge_page_order(h));
 | 
						|
		spin_lock(&hugetlb_lock);
 | 
						|
	} else {
 | 
						|
		__free_pages(page, huge_page_order(h));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct hstate *size_to_hstate(unsigned long size)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		if (huge_page_size(h) == size)
 | 
						|
			return h;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 | 
						|
 * to hstate->hugepage_activelist.)
 | 
						|
 *
 | 
						|
 * This function can be called for tail pages, but never returns true for them.
 | 
						|
 */
 | 
						|
bool page_huge_active(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(!PageHuge(page), page);
 | 
						|
	return PageHead(page) && PagePrivate(&page[1]);
 | 
						|
}
 | 
						|
 | 
						|
/* never called for tail page */
 | 
						|
static void set_page_huge_active(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
 | 
						|
	SetPagePrivate(&page[1]);
 | 
						|
}
 | 
						|
 | 
						|
static void clear_page_huge_active(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
 | 
						|
	ClearPagePrivate(&page[1]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 | 
						|
 * code
 | 
						|
 */
 | 
						|
static inline bool PageHugeTemporary(struct page *page)
 | 
						|
{
 | 
						|
	if (!PageHuge(page))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return (unsigned long)page[2].mapping == -1U;
 | 
						|
}
 | 
						|
 | 
						|
static inline void SetPageHugeTemporary(struct page *page)
 | 
						|
{
 | 
						|
	page[2].mapping = (void *)-1U;
 | 
						|
}
 | 
						|
 | 
						|
static inline void ClearPageHugeTemporary(struct page *page)
 | 
						|
{
 | 
						|
	page[2].mapping = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void __free_huge_page(struct page *page)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Can't pass hstate in here because it is called from the
 | 
						|
	 * compound page destructor.
 | 
						|
	 */
 | 
						|
	struct hstate *h = page_hstate(page);
 | 
						|
	int nid = page_to_nid(page);
 | 
						|
	struct hugepage_subpool *spool =
 | 
						|
		(struct hugepage_subpool *)page_private(page);
 | 
						|
	bool restore_reserve;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(page_count(page), page);
 | 
						|
	VM_BUG_ON_PAGE(page_mapcount(page), page);
 | 
						|
 | 
						|
	set_page_private(page, 0);
 | 
						|
	page->mapping = NULL;
 | 
						|
	restore_reserve = PagePrivate(page);
 | 
						|
	ClearPagePrivate(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If PagePrivate() was set on page, page allocation consumed a
 | 
						|
	 * reservation.  If the page was associated with a subpool, there
 | 
						|
	 * would have been a page reserved in the subpool before allocation
 | 
						|
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
 | 
						|
	 * reservtion, do not call hugepage_subpool_put_pages() as this will
 | 
						|
	 * remove the reserved page from the subpool.
 | 
						|
	 */
 | 
						|
	if (!restore_reserve) {
 | 
						|
		/*
 | 
						|
		 * A return code of zero implies that the subpool will be
 | 
						|
		 * under its minimum size if the reservation is not restored
 | 
						|
		 * after page is free.  Therefore, force restore_reserve
 | 
						|
		 * operation.
 | 
						|
		 */
 | 
						|
		if (hugepage_subpool_put_pages(spool, 1) == 0)
 | 
						|
			restore_reserve = true;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	clear_page_huge_active(page);
 | 
						|
	hugetlb_cgroup_uncharge_page(hstate_index(h),
 | 
						|
				     pages_per_huge_page(h), page);
 | 
						|
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
 | 
						|
					  pages_per_huge_page(h), page);
 | 
						|
	if (restore_reserve)
 | 
						|
		h->resv_huge_pages++;
 | 
						|
 | 
						|
	if (PageHugeTemporary(page)) {
 | 
						|
		list_del(&page->lru);
 | 
						|
		ClearPageHugeTemporary(page);
 | 
						|
		update_and_free_page(h, page);
 | 
						|
	} else if (h->surplus_huge_pages_node[nid]) {
 | 
						|
		/* remove the page from active list */
 | 
						|
		list_del(&page->lru);
 | 
						|
		update_and_free_page(h, page);
 | 
						|
		h->surplus_huge_pages--;
 | 
						|
		h->surplus_huge_pages_node[nid]--;
 | 
						|
	} else {
 | 
						|
		arch_clear_hugepage_flags(page);
 | 
						|
		enqueue_huge_page(h, page);
 | 
						|
	}
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * As free_huge_page() can be called from a non-task context, we have
 | 
						|
 * to defer the actual freeing in a workqueue to prevent potential
 | 
						|
 * hugetlb_lock deadlock.
 | 
						|
 *
 | 
						|
 * free_hpage_workfn() locklessly retrieves the linked list of pages to
 | 
						|
 * be freed and frees them one-by-one. As the page->mapping pointer is
 | 
						|
 * going to be cleared in __free_huge_page() anyway, it is reused as the
 | 
						|
 * llist_node structure of a lockless linked list of huge pages to be freed.
 | 
						|
 */
 | 
						|
static LLIST_HEAD(hpage_freelist);
 | 
						|
 | 
						|
static void free_hpage_workfn(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct llist_node *node;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	node = llist_del_all(&hpage_freelist);
 | 
						|
 | 
						|
	while (node) {
 | 
						|
		page = container_of((struct address_space **)node,
 | 
						|
				     struct page, mapping);
 | 
						|
		node = node->next;
 | 
						|
		__free_huge_page(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
 | 
						|
 | 
						|
void free_huge_page(struct page *page)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
 | 
						|
	 */
 | 
						|
	if (!in_task()) {
 | 
						|
		/*
 | 
						|
		 * Only call schedule_work() if hpage_freelist is previously
 | 
						|
		 * empty. Otherwise, schedule_work() had been called but the
 | 
						|
		 * workfn hasn't retrieved the list yet.
 | 
						|
		 */
 | 
						|
		if (llist_add((struct llist_node *)&page->mapping,
 | 
						|
			      &hpage_freelist))
 | 
						|
			schedule_work(&free_hpage_work);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	__free_huge_page(page);
 | 
						|
}
 | 
						|
 | 
						|
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 | 
						|
{
 | 
						|
	INIT_LIST_HEAD(&page->lru);
 | 
						|
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
 | 
						|
	set_hugetlb_cgroup(page, NULL);
 | 
						|
	set_hugetlb_cgroup_rsvd(page, NULL);
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	h->nr_huge_pages++;
 | 
						|
	h->nr_huge_pages_node[nid]++;
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int nr_pages = 1 << order;
 | 
						|
	struct page *p = page + 1;
 | 
						|
 | 
						|
	/* we rely on prep_new_huge_page to set the destructor */
 | 
						|
	set_compound_order(page, order);
 | 
						|
	__ClearPageReserved(page);
 | 
						|
	__SetPageHead(page);
 | 
						|
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 | 
						|
		/*
 | 
						|
		 * For gigantic hugepages allocated through bootmem at
 | 
						|
		 * boot, it's safer to be consistent with the not-gigantic
 | 
						|
		 * hugepages and clear the PG_reserved bit from all tail pages
 | 
						|
		 * too.  Otherwise drivers using get_user_pages() to access tail
 | 
						|
		 * pages may get the reference counting wrong if they see
 | 
						|
		 * PG_reserved set on a tail page (despite the head page not
 | 
						|
		 * having PG_reserved set).  Enforcing this consistency between
 | 
						|
		 * head and tail pages allows drivers to optimize away a check
 | 
						|
		 * on the head page when they need know if put_page() is needed
 | 
						|
		 * after get_user_pages().
 | 
						|
		 */
 | 
						|
		__ClearPageReserved(p);
 | 
						|
		set_page_count(p, 0);
 | 
						|
		set_compound_head(p, page);
 | 
						|
	}
 | 
						|
	atomic_set(compound_mapcount_ptr(page), -1);
 | 
						|
 | 
						|
	if (hpage_pincount_available(page))
 | 
						|
		atomic_set(compound_pincount_ptr(page), 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 | 
						|
 * transparent huge pages.  See the PageTransHuge() documentation for more
 | 
						|
 * details.
 | 
						|
 */
 | 
						|
int PageHuge(struct page *page)
 | 
						|
{
 | 
						|
	if (!PageCompound(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	page = compound_head(page);
 | 
						|
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(PageHuge);
 | 
						|
 | 
						|
/*
 | 
						|
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 | 
						|
 * normal or transparent huge pages.
 | 
						|
 */
 | 
						|
int PageHeadHuge(struct page *page_head)
 | 
						|
{
 | 
						|
	if (!PageHead(page_head))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find and lock address space (mapping) in write mode.
 | 
						|
 *
 | 
						|
 * Upon entry, the page is locked which means that page_mapping() is
 | 
						|
 * stable.  Due to locking order, we can only trylock_write.  If we can
 | 
						|
 * not get the lock, simply return NULL to caller.
 | 
						|
 */
 | 
						|
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
 | 
						|
{
 | 
						|
	struct address_space *mapping = page_mapping(hpage);
 | 
						|
 | 
						|
	if (!mapping)
 | 
						|
		return mapping;
 | 
						|
 | 
						|
	if (i_mmap_trylock_write(mapping))
 | 
						|
		return mapping;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
pgoff_t __basepage_index(struct page *page)
 | 
						|
{
 | 
						|
	struct page *page_head = compound_head(page);
 | 
						|
	pgoff_t index = page_index(page_head);
 | 
						|
	unsigned long compound_idx;
 | 
						|
 | 
						|
	if (!PageHuge(page_head))
 | 
						|
		return page_index(page);
 | 
						|
 | 
						|
	if (compound_order(page_head) >= MAX_ORDER)
 | 
						|
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
 | 
						|
	else
 | 
						|
		compound_idx = page - page_head;
 | 
						|
 | 
						|
	return (index << compound_order(page_head)) + compound_idx;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *alloc_buddy_huge_page(struct hstate *h,
 | 
						|
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
 | 
						|
		nodemask_t *node_alloc_noretry)
 | 
						|
{
 | 
						|
	int order = huge_page_order(h);
 | 
						|
	struct page *page;
 | 
						|
	bool alloc_try_hard = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * By default we always try hard to allocate the page with
 | 
						|
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
 | 
						|
	 * a loop (to adjust global huge page counts) and previous allocation
 | 
						|
	 * failed, do not continue to try hard on the same node.  Use the
 | 
						|
	 * node_alloc_noretry bitmap to manage this state information.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
 | 
						|
		alloc_try_hard = false;
 | 
						|
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
 | 
						|
	if (alloc_try_hard)
 | 
						|
		gfp_mask |= __GFP_RETRY_MAYFAIL;
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		nid = numa_mem_id();
 | 
						|
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
 | 
						|
	if (page)
 | 
						|
		__count_vm_event(HTLB_BUDDY_PGALLOC);
 | 
						|
	else
 | 
						|
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
 | 
						|
	 * indicates an overall state change.  Clear bit so that we resume
 | 
						|
	 * normal 'try hard' allocations.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry && page && !alloc_try_hard)
 | 
						|
		node_clear(nid, *node_alloc_noretry);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we tried hard to get a page but failed, set bit so that
 | 
						|
	 * subsequent attempts will not try as hard until there is an
 | 
						|
	 * overall state change.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry && !page && alloc_try_hard)
 | 
						|
		node_set(nid, *node_alloc_noretry);
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 | 
						|
 * should use this function to get new hugetlb pages
 | 
						|
 */
 | 
						|
static struct page *alloc_fresh_huge_page(struct hstate *h,
 | 
						|
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
 | 
						|
		nodemask_t *node_alloc_noretry)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
 | 
						|
	else
 | 
						|
		page = alloc_buddy_huge_page(h, gfp_mask,
 | 
						|
				nid, nmask, node_alloc_noretry);
 | 
						|
	if (!page)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		prep_compound_gigantic_page(page, huge_page_order(h));
 | 
						|
	prep_new_huge_page(h, page, page_to_nid(page));
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 | 
						|
 * manner.
 | 
						|
 */
 | 
						|
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 | 
						|
				nodemask_t *node_alloc_noretry)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	int nr_nodes, node;
 | 
						|
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
 | 
						|
 | 
						|
	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 | 
						|
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
 | 
						|
						node_alloc_noretry);
 | 
						|
		if (page)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!page)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	put_page(page); /* free it into the hugepage allocator */
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free huge page from pool from next node to free.
 | 
						|
 * Attempt to keep persistent huge pages more or less
 | 
						|
 * balanced over allowed nodes.
 | 
						|
 * Called with hugetlb_lock locked.
 | 
						|
 */
 | 
						|
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 | 
						|
							 bool acct_surplus)
 | 
						|
{
 | 
						|
	int nr_nodes, node;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 | 
						|
		/*
 | 
						|
		 * If we're returning unused surplus pages, only examine
 | 
						|
		 * nodes with surplus pages.
 | 
						|
		 */
 | 
						|
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
 | 
						|
		    !list_empty(&h->hugepage_freelists[node])) {
 | 
						|
			struct page *page =
 | 
						|
				list_entry(h->hugepage_freelists[node].next,
 | 
						|
					  struct page, lru);
 | 
						|
			list_del(&page->lru);
 | 
						|
			h->free_huge_pages--;
 | 
						|
			h->free_huge_pages_node[node]--;
 | 
						|
			if (acct_surplus) {
 | 
						|
				h->surplus_huge_pages--;
 | 
						|
				h->surplus_huge_pages_node[node]--;
 | 
						|
			}
 | 
						|
			update_and_free_page(h, page);
 | 
						|
			ret = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dissolve a given free hugepage into free buddy pages. This function does
 | 
						|
 * nothing for in-use hugepages and non-hugepages.
 | 
						|
 * This function returns values like below:
 | 
						|
 *
 | 
						|
 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
 | 
						|
 *          (allocated or reserved.)
 | 
						|
 *       0: successfully dissolved free hugepages or the page is not a
 | 
						|
 *          hugepage (considered as already dissolved)
 | 
						|
 */
 | 
						|
int dissolve_free_huge_page(struct page *page)
 | 
						|
{
 | 
						|
	int rc = -EBUSY;
 | 
						|
 | 
						|
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
 | 
						|
	if (!PageHuge(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	if (!PageHuge(page)) {
 | 
						|
		rc = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!page_count(page)) {
 | 
						|
		struct page *head = compound_head(page);
 | 
						|
		struct hstate *h = page_hstate(head);
 | 
						|
		int nid = page_to_nid(head);
 | 
						|
		if (h->free_huge_pages - h->resv_huge_pages == 0)
 | 
						|
			goto out;
 | 
						|
		/*
 | 
						|
		 * Move PageHWPoison flag from head page to the raw error page,
 | 
						|
		 * which makes any subpages rather than the error page reusable.
 | 
						|
		 */
 | 
						|
		if (PageHWPoison(head) && page != head) {
 | 
						|
			SetPageHWPoison(page);
 | 
						|
			ClearPageHWPoison(head);
 | 
						|
		}
 | 
						|
		list_del(&head->lru);
 | 
						|
		h->free_huge_pages--;
 | 
						|
		h->free_huge_pages_node[nid]--;
 | 
						|
		h->max_huge_pages--;
 | 
						|
		update_and_free_page(h, head);
 | 
						|
		rc = 0;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 | 
						|
 * make specified memory blocks removable from the system.
 | 
						|
 * Note that this will dissolve a free gigantic hugepage completely, if any
 | 
						|
 * part of it lies within the given range.
 | 
						|
 * Also note that if dissolve_free_huge_page() returns with an error, all
 | 
						|
 * free hugepages that were dissolved before that error are lost.
 | 
						|
 */
 | 
						|
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
 | 
						|
{
 | 
						|
	unsigned long pfn;
 | 
						|
	struct page *page;
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return rc;
 | 
						|
 | 
						|
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
 | 
						|
		page = pfn_to_page(pfn);
 | 
						|
		rc = dissolve_free_huge_page(page);
 | 
						|
		if (rc)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocates a fresh surplus page from the page allocator.
 | 
						|
 */
 | 
						|
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
 | 
						|
		int nid, nodemask_t *nmask)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
 | 
						|
		goto out_unlock;
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
 | 
						|
	if (!page)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	/*
 | 
						|
	 * We could have raced with the pool size change.
 | 
						|
	 * Double check that and simply deallocate the new page
 | 
						|
	 * if we would end up overcommiting the surpluses. Abuse
 | 
						|
	 * temporary page to workaround the nasty free_huge_page
 | 
						|
	 * codeflow
 | 
						|
	 */
 | 
						|
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 | 
						|
		SetPageHugeTemporary(page);
 | 
						|
		spin_unlock(&hugetlb_lock);
 | 
						|
		put_page(page);
 | 
						|
		return NULL;
 | 
						|
	} else {
 | 
						|
		h->surplus_huge_pages++;
 | 
						|
		h->surplus_huge_pages_node[page_to_nid(page)]++;
 | 
						|
	}
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
 | 
						|
				     int nid, nodemask_t *nmask)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
 | 
						|
	if (!page)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We do not account these pages as surplus because they are only
 | 
						|
	 * temporary and will be released properly on the last reference
 | 
						|
	 */
 | 
						|
	SetPageHugeTemporary(page);
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 | 
						|
 */
 | 
						|
static
 | 
						|
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
 | 
						|
		struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	struct mempolicy *mpol;
 | 
						|
	gfp_t gfp_mask = htlb_alloc_mask(h);
 | 
						|
	int nid;
 | 
						|
	nodemask_t *nodemask;
 | 
						|
 | 
						|
	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
 | 
						|
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
 | 
						|
	mpol_cond_put(mpol);
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/* page migration callback function */
 | 
						|
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
 | 
						|
		nodemask_t *nmask, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
 | 
						|
		if (page) {
 | 
						|
			spin_unlock(&hugetlb_lock);
 | 
						|
			return page;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
 | 
						|
}
 | 
						|
 | 
						|
/* mempolicy aware migration callback */
 | 
						|
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
 | 
						|
		unsigned long address)
 | 
						|
{
 | 
						|
	struct mempolicy *mpol;
 | 
						|
	nodemask_t *nodemask;
 | 
						|
	struct page *page;
 | 
						|
	gfp_t gfp_mask;
 | 
						|
	int node;
 | 
						|
 | 
						|
	gfp_mask = htlb_alloc_mask(h);
 | 
						|
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 | 
						|
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
 | 
						|
	mpol_cond_put(mpol);
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Increase the hugetlb pool such that it can accommodate a reservation
 | 
						|
 * of size 'delta'.
 | 
						|
 */
 | 
						|
static int gather_surplus_pages(struct hstate *h, long delta)
 | 
						|
	__must_hold(&hugetlb_lock)
 | 
						|
{
 | 
						|
	struct list_head surplus_list;
 | 
						|
	struct page *page, *tmp;
 | 
						|
	int ret;
 | 
						|
	long i;
 | 
						|
	long needed, allocated;
 | 
						|
	bool alloc_ok = true;
 | 
						|
 | 
						|
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
 | 
						|
	if (needed <= 0) {
 | 
						|
		h->resv_huge_pages += delta;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	allocated = 0;
 | 
						|
	INIT_LIST_HEAD(&surplus_list);
 | 
						|
 | 
						|
	ret = -ENOMEM;
 | 
						|
retry:
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
	for (i = 0; i < needed; i++) {
 | 
						|
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
 | 
						|
				NUMA_NO_NODE, NULL);
 | 
						|
		if (!page) {
 | 
						|
			alloc_ok = false;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		list_add(&page->lru, &surplus_list);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	allocated += i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
 | 
						|
	 * because either resv_huge_pages or free_huge_pages may have changed.
 | 
						|
	 */
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	needed = (h->resv_huge_pages + delta) -
 | 
						|
			(h->free_huge_pages + allocated);
 | 
						|
	if (needed > 0) {
 | 
						|
		if (alloc_ok)
 | 
						|
			goto retry;
 | 
						|
		/*
 | 
						|
		 * We were not able to allocate enough pages to
 | 
						|
		 * satisfy the entire reservation so we free what
 | 
						|
		 * we've allocated so far.
 | 
						|
		 */
 | 
						|
		goto free;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * The surplus_list now contains _at_least_ the number of extra pages
 | 
						|
	 * needed to accommodate the reservation.  Add the appropriate number
 | 
						|
	 * of pages to the hugetlb pool and free the extras back to the buddy
 | 
						|
	 * allocator.  Commit the entire reservation here to prevent another
 | 
						|
	 * process from stealing the pages as they are added to the pool but
 | 
						|
	 * before they are reserved.
 | 
						|
	 */
 | 
						|
	needed += allocated;
 | 
						|
	h->resv_huge_pages += delta;
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	/* Free the needed pages to the hugetlb pool */
 | 
						|
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 | 
						|
		if ((--needed) < 0)
 | 
						|
			break;
 | 
						|
		/*
 | 
						|
		 * This page is now managed by the hugetlb allocator and has
 | 
						|
		 * no users -- drop the buddy allocator's reference.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON_PAGE(!put_page_testzero(page), page);
 | 
						|
		enqueue_huge_page(h, page);
 | 
						|
	}
 | 
						|
free:
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
	/* Free unnecessary surplus pages to the buddy allocator */
 | 
						|
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
 | 
						|
		put_page(page);
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine has two main purposes:
 | 
						|
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 | 
						|
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 | 
						|
 *    to the associated reservation map.
 | 
						|
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 | 
						|
 *    the reservation.  As many as unused_resv_pages may be freed.
 | 
						|
 *
 | 
						|
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 | 
						|
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 | 
						|
 * we must make sure nobody else can claim pages we are in the process of
 | 
						|
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 | 
						|
 * number of huge pages we plan to free when dropping the lock.
 | 
						|
 */
 | 
						|
static void return_unused_surplus_pages(struct hstate *h,
 | 
						|
					unsigned long unused_resv_pages)
 | 
						|
{
 | 
						|
	unsigned long nr_pages;
 | 
						|
 | 
						|
	/* Cannot return gigantic pages currently */
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Part (or even all) of the reservation could have been backed
 | 
						|
	 * by pre-allocated pages. Only free surplus pages.
 | 
						|
	 */
 | 
						|
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We want to release as many surplus pages as possible, spread
 | 
						|
	 * evenly across all nodes with memory. Iterate across these nodes
 | 
						|
	 * until we can no longer free unreserved surplus pages. This occurs
 | 
						|
	 * when the nodes with surplus pages have no free pages.
 | 
						|
	 * free_pool_huge_page() will balance the freed pages across the
 | 
						|
	 * on-line nodes with memory and will handle the hstate accounting.
 | 
						|
	 *
 | 
						|
	 * Note that we decrement resv_huge_pages as we free the pages.  If
 | 
						|
	 * we drop the lock, resv_huge_pages will still be sufficiently large
 | 
						|
	 * to cover subsequent pages we may free.
 | 
						|
	 */
 | 
						|
	while (nr_pages--) {
 | 
						|
		h->resv_huge_pages--;
 | 
						|
		unused_resv_pages--;
 | 
						|
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
 | 
						|
			goto out;
 | 
						|
		cond_resched_lock(&hugetlb_lock);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	/* Fully uncommit the reservation */
 | 
						|
	h->resv_huge_pages -= unused_resv_pages;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
 | 
						|
 * are used by the huge page allocation routines to manage reservations.
 | 
						|
 *
 | 
						|
 * vma_needs_reservation is called to determine if the huge page at addr
 | 
						|
 * within the vma has an associated reservation.  If a reservation is
 | 
						|
 * needed, the value 1 is returned.  The caller is then responsible for
 | 
						|
 * managing the global reservation and subpool usage counts.  After
 | 
						|
 * the huge page has been allocated, vma_commit_reservation is called
 | 
						|
 * to add the page to the reservation map.  If the page allocation fails,
 | 
						|
 * the reservation must be ended instead of committed.  vma_end_reservation
 | 
						|
 * is called in such cases.
 | 
						|
 *
 | 
						|
 * In the normal case, vma_commit_reservation returns the same value
 | 
						|
 * as the preceding vma_needs_reservation call.  The only time this
 | 
						|
 * is not the case is if a reserve map was changed between calls.  It
 | 
						|
 * is the responsibility of the caller to notice the difference and
 | 
						|
 * take appropriate action.
 | 
						|
 *
 | 
						|
 * vma_add_reservation is used in error paths where a reservation must
 | 
						|
 * be restored when a newly allocated huge page must be freed.  It is
 | 
						|
 * to be called after calling vma_needs_reservation to determine if a
 | 
						|
 * reservation exists.
 | 
						|
 */
 | 
						|
enum vma_resv_mode {
 | 
						|
	VMA_NEEDS_RESV,
 | 
						|
	VMA_COMMIT_RESV,
 | 
						|
	VMA_END_RESV,
 | 
						|
	VMA_ADD_RESV,
 | 
						|
};
 | 
						|
static long __vma_reservation_common(struct hstate *h,
 | 
						|
				struct vm_area_struct *vma, unsigned long addr,
 | 
						|
				enum vma_resv_mode mode)
 | 
						|
{
 | 
						|
	struct resv_map *resv;
 | 
						|
	pgoff_t idx;
 | 
						|
	long ret;
 | 
						|
	long dummy_out_regions_needed;
 | 
						|
 | 
						|
	resv = vma_resv_map(vma);
 | 
						|
	if (!resv)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	idx = vma_hugecache_offset(h, vma, addr);
 | 
						|
	switch (mode) {
 | 
						|
	case VMA_NEEDS_RESV:
 | 
						|
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
 | 
						|
		/* We assume that vma_reservation_* routines always operate on
 | 
						|
		 * 1 page, and that adding to resv map a 1 page entry can only
 | 
						|
		 * ever require 1 region.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(dummy_out_regions_needed != 1);
 | 
						|
		break;
 | 
						|
	case VMA_COMMIT_RESV:
 | 
						|
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
 | 
						|
		/* region_add calls of range 1 should never fail. */
 | 
						|
		VM_BUG_ON(ret < 0);
 | 
						|
		break;
 | 
						|
	case VMA_END_RESV:
 | 
						|
		region_abort(resv, idx, idx + 1, 1);
 | 
						|
		ret = 0;
 | 
						|
		break;
 | 
						|
	case VMA_ADD_RESV:
 | 
						|
		if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
 | 
						|
			/* region_add calls of range 1 should never fail. */
 | 
						|
			VM_BUG_ON(ret < 0);
 | 
						|
		} else {
 | 
						|
			region_abort(resv, idx, idx + 1, 1);
 | 
						|
			ret = region_del(resv, idx, idx + 1);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE)
 | 
						|
		return ret;
 | 
						|
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
 | 
						|
		/*
 | 
						|
		 * In most cases, reserves always exist for private mappings.
 | 
						|
		 * However, a file associated with mapping could have been
 | 
						|
		 * hole punched or truncated after reserves were consumed.
 | 
						|
		 * As subsequent fault on such a range will not use reserves.
 | 
						|
		 * Subtle - The reserve map for private mappings has the
 | 
						|
		 * opposite meaning than that of shared mappings.  If NO
 | 
						|
		 * entry is in the reserve map, it means a reservation exists.
 | 
						|
		 * If an entry exists in the reserve map, it means the
 | 
						|
		 * reservation has already been consumed.  As a result, the
 | 
						|
		 * return value of this routine is the opposite of the
 | 
						|
		 * value returned from reserve map manipulation routines above.
 | 
						|
		 */
 | 
						|
		if (ret)
 | 
						|
			return 0;
 | 
						|
		else
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return ret < 0 ? ret : 0;
 | 
						|
}
 | 
						|
 | 
						|
static long vma_needs_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
 | 
						|
}
 | 
						|
 | 
						|
static long vma_commit_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
 | 
						|
}
 | 
						|
 | 
						|
static void vma_end_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
 | 
						|
}
 | 
						|
 | 
						|
static long vma_add_reservation(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called to restore a reservation on error paths.  In the
 | 
						|
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 | 
						|
 * and is about to be freed.  If a reservation for the page existed,
 | 
						|
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 | 
						|
 * in the newly allocated page.  When the page is freed via free_huge_page,
 | 
						|
 * the global reservation count will be incremented if PagePrivate is set.
 | 
						|
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 | 
						|
 * reserve map here to be consistent with global reserve count adjustments
 | 
						|
 * to be made by free_huge_page.
 | 
						|
 */
 | 
						|
static void restore_reserve_on_error(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long address,
 | 
						|
			struct page *page)
 | 
						|
{
 | 
						|
	if (unlikely(PagePrivate(page))) {
 | 
						|
		long rc = vma_needs_reservation(h, vma, address);
 | 
						|
 | 
						|
		if (unlikely(rc < 0)) {
 | 
						|
			/*
 | 
						|
			 * Rare out of memory condition in reserve map
 | 
						|
			 * manipulation.  Clear PagePrivate so that
 | 
						|
			 * global reserve count will not be incremented
 | 
						|
			 * by free_huge_page.  This will make it appear
 | 
						|
			 * as though the reservation for this page was
 | 
						|
			 * consumed.  This may prevent the task from
 | 
						|
			 * faulting in the page at a later time.  This
 | 
						|
			 * is better than inconsistent global huge page
 | 
						|
			 * accounting of reserve counts.
 | 
						|
			 */
 | 
						|
			ClearPagePrivate(page);
 | 
						|
		} else if (rc) {
 | 
						|
			rc = vma_add_reservation(h, vma, address);
 | 
						|
			if (unlikely(rc < 0))
 | 
						|
				/*
 | 
						|
				 * See above comment about rare out of
 | 
						|
				 * memory condition.
 | 
						|
				 */
 | 
						|
				ClearPagePrivate(page);
 | 
						|
		} else
 | 
						|
			vma_end_reservation(h, vma, address);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct page *alloc_huge_page(struct vm_area_struct *vma,
 | 
						|
				    unsigned long addr, int avoid_reserve)
 | 
						|
{
 | 
						|
	struct hugepage_subpool *spool = subpool_vma(vma);
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct page *page;
 | 
						|
	long map_chg, map_commit;
 | 
						|
	long gbl_chg;
 | 
						|
	int ret, idx;
 | 
						|
	struct hugetlb_cgroup *h_cg;
 | 
						|
	bool deferred_reserve;
 | 
						|
 | 
						|
	idx = hstate_index(h);
 | 
						|
	/*
 | 
						|
	 * Examine the region/reserve map to determine if the process
 | 
						|
	 * has a reservation for the page to be allocated.  A return
 | 
						|
	 * code of zero indicates a reservation exists (no change).
 | 
						|
	 */
 | 
						|
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
 | 
						|
	if (map_chg < 0)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Processes that did not create the mapping will have no
 | 
						|
	 * reserves as indicated by the region/reserve map. Check
 | 
						|
	 * that the allocation will not exceed the subpool limit.
 | 
						|
	 * Allocations for MAP_NORESERVE mappings also need to be
 | 
						|
	 * checked against any subpool limit.
 | 
						|
	 */
 | 
						|
	if (map_chg || avoid_reserve) {
 | 
						|
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
 | 
						|
		if (gbl_chg < 0) {
 | 
						|
			vma_end_reservation(h, vma, addr);
 | 
						|
			return ERR_PTR(-ENOSPC);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Even though there was no reservation in the region/reserve
 | 
						|
		 * map, there could be reservations associated with the
 | 
						|
		 * subpool that can be used.  This would be indicated if the
 | 
						|
		 * return value of hugepage_subpool_get_pages() is zero.
 | 
						|
		 * However, if avoid_reserve is specified we still avoid even
 | 
						|
		 * the subpool reservations.
 | 
						|
		 */
 | 
						|
		if (avoid_reserve)
 | 
						|
			gbl_chg = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If this allocation is not consuming a reservation, charge it now.
 | 
						|
	 */
 | 
						|
	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
 | 
						|
	if (deferred_reserve) {
 | 
						|
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
 | 
						|
			idx, pages_per_huge_page(h), &h_cg);
 | 
						|
		if (ret)
 | 
						|
			goto out_subpool_put;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
 | 
						|
	if (ret)
 | 
						|
		goto out_uncharge_cgroup_reservation;
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	/*
 | 
						|
	 * glb_chg is passed to indicate whether or not a page must be taken
 | 
						|
	 * from the global free pool (global change).  gbl_chg == 0 indicates
 | 
						|
	 * a reservation exists for the allocation.
 | 
						|
	 */
 | 
						|
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
 | 
						|
	if (!page) {
 | 
						|
		spin_unlock(&hugetlb_lock);
 | 
						|
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
 | 
						|
		if (!page)
 | 
						|
			goto out_uncharge_cgroup;
 | 
						|
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
 | 
						|
			SetPagePrivate(page);
 | 
						|
			h->resv_huge_pages--;
 | 
						|
		}
 | 
						|
		spin_lock(&hugetlb_lock);
 | 
						|
		list_add(&page->lru, &h->hugepage_activelist);
 | 
						|
		/* Fall through */
 | 
						|
	}
 | 
						|
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
 | 
						|
	/* If allocation is not consuming a reservation, also store the
 | 
						|
	 * hugetlb_cgroup pointer on the page.
 | 
						|
	 */
 | 
						|
	if (deferred_reserve) {
 | 
						|
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
 | 
						|
						  h_cg, page);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
	set_page_private(page, (unsigned long)spool);
 | 
						|
 | 
						|
	map_commit = vma_commit_reservation(h, vma, addr);
 | 
						|
	if (unlikely(map_chg > map_commit)) {
 | 
						|
		/*
 | 
						|
		 * The page was added to the reservation map between
 | 
						|
		 * vma_needs_reservation and vma_commit_reservation.
 | 
						|
		 * This indicates a race with hugetlb_reserve_pages.
 | 
						|
		 * Adjust for the subpool count incremented above AND
 | 
						|
		 * in hugetlb_reserve_pages for the same page.  Also,
 | 
						|
		 * the reservation count added in hugetlb_reserve_pages
 | 
						|
		 * no longer applies.
 | 
						|
		 */
 | 
						|
		long rsv_adjust;
 | 
						|
 | 
						|
		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
 | 
						|
		hugetlb_acct_memory(h, -rsv_adjust);
 | 
						|
		if (deferred_reserve)
 | 
						|
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
 | 
						|
					pages_per_huge_page(h), page);
 | 
						|
	}
 | 
						|
	return page;
 | 
						|
 | 
						|
out_uncharge_cgroup:
 | 
						|
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
 | 
						|
out_uncharge_cgroup_reservation:
 | 
						|
	if (deferred_reserve)
 | 
						|
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
 | 
						|
						    h_cg);
 | 
						|
out_subpool_put:
 | 
						|
	if (map_chg || avoid_reserve)
 | 
						|
		hugepage_subpool_put_pages(spool, 1);
 | 
						|
	vma_end_reservation(h, vma, addr);
 | 
						|
	return ERR_PTR(-ENOSPC);
 | 
						|
}
 | 
						|
 | 
						|
int alloc_bootmem_huge_page(struct hstate *h)
 | 
						|
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
 | 
						|
int __alloc_bootmem_huge_page(struct hstate *h)
 | 
						|
{
 | 
						|
	struct huge_bootmem_page *m;
 | 
						|
	int nr_nodes, node;
 | 
						|
 | 
						|
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
 | 
						|
		void *addr;
 | 
						|
 | 
						|
		addr = memblock_alloc_try_nid_raw(
 | 
						|
				huge_page_size(h), huge_page_size(h),
 | 
						|
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
 | 
						|
		if (addr) {
 | 
						|
			/*
 | 
						|
			 * Use the beginning of the huge page to store the
 | 
						|
			 * huge_bootmem_page struct (until gather_bootmem
 | 
						|
			 * puts them into the mem_map).
 | 
						|
			 */
 | 
						|
			m = addr;
 | 
						|
			goto found;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
found:
 | 
						|
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
 | 
						|
	/* Put them into a private list first because mem_map is not up yet */
 | 
						|
	INIT_LIST_HEAD(&m->list);
 | 
						|
	list_add(&m->list, &huge_boot_pages);
 | 
						|
	m->hstate = h;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void __init prep_compound_huge_page(struct page *page,
 | 
						|
		unsigned int order)
 | 
						|
{
 | 
						|
	if (unlikely(order > (MAX_ORDER - 1)))
 | 
						|
		prep_compound_gigantic_page(page, order);
 | 
						|
	else
 | 
						|
		prep_compound_page(page, order);
 | 
						|
}
 | 
						|
 | 
						|
/* Put bootmem huge pages into the standard lists after mem_map is up */
 | 
						|
static void __init gather_bootmem_prealloc(void)
 | 
						|
{
 | 
						|
	struct huge_bootmem_page *m;
 | 
						|
 | 
						|
	list_for_each_entry(m, &huge_boot_pages, list) {
 | 
						|
		struct page *page = virt_to_page(m);
 | 
						|
		struct hstate *h = m->hstate;
 | 
						|
 | 
						|
		WARN_ON(page_count(page) != 1);
 | 
						|
		prep_compound_huge_page(page, h->order);
 | 
						|
		WARN_ON(PageReserved(page));
 | 
						|
		prep_new_huge_page(h, page, page_to_nid(page));
 | 
						|
		put_page(page); /* free it into the hugepage allocator */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we had gigantic hugepages allocated at boot time, we need
 | 
						|
		 * to restore the 'stolen' pages to totalram_pages in order to
 | 
						|
		 * fix confusing memory reports from free(1) and another
 | 
						|
		 * side-effects, like CommitLimit going negative.
 | 
						|
		 */
 | 
						|
		if (hstate_is_gigantic(h))
 | 
						|
			adjust_managed_page_count(page, 1 << h->order);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	nodemask_t *node_alloc_noretry;
 | 
						|
 | 
						|
	if (!hstate_is_gigantic(h)) {
 | 
						|
		/*
 | 
						|
		 * Bit mask controlling how hard we retry per-node allocations.
 | 
						|
		 * Ignore errors as lower level routines can deal with
 | 
						|
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
 | 
						|
		 * time, we are likely in bigger trouble.
 | 
						|
		 */
 | 
						|
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
 | 
						|
						GFP_KERNEL);
 | 
						|
	} else {
 | 
						|
		/* allocations done at boot time */
 | 
						|
		node_alloc_noretry = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* bit mask controlling how hard we retry per-node allocations */
 | 
						|
	if (node_alloc_noretry)
 | 
						|
		nodes_clear(*node_alloc_noretry);
 | 
						|
 | 
						|
	for (i = 0; i < h->max_huge_pages; ++i) {
 | 
						|
		if (hstate_is_gigantic(h)) {
 | 
						|
			if (hugetlb_cma_size) {
 | 
						|
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (!alloc_bootmem_huge_page(h))
 | 
						|
				break;
 | 
						|
		} else if (!alloc_pool_huge_page(h,
 | 
						|
					 &node_states[N_MEMORY],
 | 
						|
					 node_alloc_noretry))
 | 
						|
			break;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	if (i < h->max_huge_pages) {
 | 
						|
		char buf[32];
 | 
						|
 | 
						|
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
 | 
						|
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
 | 
						|
			h->max_huge_pages, buf, i);
 | 
						|
		h->max_huge_pages = i;
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(node_alloc_noretry);
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugetlb_init_hstates(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		if (minimum_order > huge_page_order(h))
 | 
						|
			minimum_order = huge_page_order(h);
 | 
						|
 | 
						|
		/* oversize hugepages were init'ed in early boot */
 | 
						|
		if (!hstate_is_gigantic(h))
 | 
						|
			hugetlb_hstate_alloc_pages(h);
 | 
						|
	}
 | 
						|
	VM_BUG_ON(minimum_order == UINT_MAX);
 | 
						|
}
 | 
						|
 | 
						|
static void __init report_hugepages(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		char buf[32];
 | 
						|
 | 
						|
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
 | 
						|
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
 | 
						|
			buf, h->free_huge_pages);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HIGHMEM
 | 
						|
static void try_to_free_low(struct hstate *h, unsigned long count,
 | 
						|
						nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_node_mask(i, *nodes_allowed) {
 | 
						|
		struct page *page, *next;
 | 
						|
		struct list_head *freel = &h->hugepage_freelists[i];
 | 
						|
		list_for_each_entry_safe(page, next, freel, lru) {
 | 
						|
			if (count >= h->nr_huge_pages)
 | 
						|
				return;
 | 
						|
			if (PageHighMem(page))
 | 
						|
				continue;
 | 
						|
			list_del(&page->lru);
 | 
						|
			update_and_free_page(h, page);
 | 
						|
			h->free_huge_pages--;
 | 
						|
			h->free_huge_pages_node[page_to_nid(page)]--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void try_to_free_low(struct hstate *h, unsigned long count,
 | 
						|
						nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 | 
						|
 * balanced by operating on them in a round-robin fashion.
 | 
						|
 * Returns 1 if an adjustment was made.
 | 
						|
 */
 | 
						|
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
 | 
						|
				int delta)
 | 
						|
{
 | 
						|
	int nr_nodes, node;
 | 
						|
 | 
						|
	VM_BUG_ON(delta != -1 && delta != 1);
 | 
						|
 | 
						|
	if (delta < 0) {
 | 
						|
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 | 
						|
			if (h->surplus_huge_pages_node[node])
 | 
						|
				goto found;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 | 
						|
			if (h->surplus_huge_pages_node[node] <
 | 
						|
					h->nr_huge_pages_node[node])
 | 
						|
				goto found;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
found:
 | 
						|
	h->surplus_huge_pages += delta;
 | 
						|
	h->surplus_huge_pages_node[node] += delta;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
 | 
						|
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
 | 
						|
			      nodemask_t *nodes_allowed)
 | 
						|
{
 | 
						|
	unsigned long min_count, ret;
 | 
						|
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Bit mask controlling how hard we retry per-node allocations.
 | 
						|
	 * If we can not allocate the bit mask, do not attempt to allocate
 | 
						|
	 * the requested huge pages.
 | 
						|
	 */
 | 
						|
	if (node_alloc_noretry)
 | 
						|
		nodes_clear(*node_alloc_noretry);
 | 
						|
	else
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for a node specific request.
 | 
						|
	 * Changing node specific huge page count may require a corresponding
 | 
						|
	 * change to the global count.  In any case, the passed node mask
 | 
						|
	 * (nodes_allowed) will restrict alloc/free to the specified node.
 | 
						|
	 */
 | 
						|
	if (nid != NUMA_NO_NODE) {
 | 
						|
		unsigned long old_count = count;
 | 
						|
 | 
						|
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
 | 
						|
		/*
 | 
						|
		 * User may have specified a large count value which caused the
 | 
						|
		 * above calculation to overflow.  In this case, they wanted
 | 
						|
		 * to allocate as many huge pages as possible.  Set count to
 | 
						|
		 * largest possible value to align with their intention.
 | 
						|
		 */
 | 
						|
		if (count < old_count)
 | 
						|
			count = ULONG_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Gigantic pages runtime allocation depend on the capability for large
 | 
						|
	 * page range allocation.
 | 
						|
	 * If the system does not provide this feature, return an error when
 | 
						|
	 * the user tries to allocate gigantic pages but let the user free the
 | 
						|
	 * boottime allocated gigantic pages.
 | 
						|
	 */
 | 
						|
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
 | 
						|
		if (count > persistent_huge_pages(h)) {
 | 
						|
			spin_unlock(&hugetlb_lock);
 | 
						|
			NODEMASK_FREE(node_alloc_noretry);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		/* Fall through to decrease pool */
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Increase the pool size
 | 
						|
	 * First take pages out of surplus state.  Then make up the
 | 
						|
	 * remaining difference by allocating fresh huge pages.
 | 
						|
	 *
 | 
						|
	 * We might race with alloc_surplus_huge_page() here and be unable
 | 
						|
	 * to convert a surplus huge page to a normal huge page. That is
 | 
						|
	 * not critical, though, it just means the overall size of the
 | 
						|
	 * pool might be one hugepage larger than it needs to be, but
 | 
						|
	 * within all the constraints specified by the sysctls.
 | 
						|
	 */
 | 
						|
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
 | 
						|
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	while (count > persistent_huge_pages(h)) {
 | 
						|
		/*
 | 
						|
		 * If this allocation races such that we no longer need the
 | 
						|
		 * page, free_huge_page will handle it by freeing the page
 | 
						|
		 * and reducing the surplus.
 | 
						|
		 */
 | 
						|
		spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
		/* yield cpu to avoid soft lockup */
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		ret = alloc_pool_huge_page(h, nodes_allowed,
 | 
						|
						node_alloc_noretry);
 | 
						|
		spin_lock(&hugetlb_lock);
 | 
						|
		if (!ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/* Bail for signals. Probably ctrl-c from user */
 | 
						|
		if (signal_pending(current))
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Decrease the pool size
 | 
						|
	 * First return free pages to the buddy allocator (being careful
 | 
						|
	 * to keep enough around to satisfy reservations).  Then place
 | 
						|
	 * pages into surplus state as needed so the pool will shrink
 | 
						|
	 * to the desired size as pages become free.
 | 
						|
	 *
 | 
						|
	 * By placing pages into the surplus state independent of the
 | 
						|
	 * overcommit value, we are allowing the surplus pool size to
 | 
						|
	 * exceed overcommit. There are few sane options here. Since
 | 
						|
	 * alloc_surplus_huge_page() is checking the global counter,
 | 
						|
	 * though, we'll note that we're not allowed to exceed surplus
 | 
						|
	 * and won't grow the pool anywhere else. Not until one of the
 | 
						|
	 * sysctls are changed, or the surplus pages go out of use.
 | 
						|
	 */
 | 
						|
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
 | 
						|
	min_count = max(count, min_count);
 | 
						|
	try_to_free_low(h, min_count, nodes_allowed);
 | 
						|
	while (min_count < persistent_huge_pages(h)) {
 | 
						|
		if (!free_pool_huge_page(h, nodes_allowed, 0))
 | 
						|
			break;
 | 
						|
		cond_resched_lock(&hugetlb_lock);
 | 
						|
	}
 | 
						|
	while (count < persistent_huge_pages(h)) {
 | 
						|
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	h->max_huge_pages = persistent_huge_pages(h);
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
	NODEMASK_FREE(node_alloc_noretry);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define HSTATE_ATTR_RO(_name) \
 | 
						|
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
 | 
						|
 | 
						|
#define HSTATE_ATTR(_name) \
 | 
						|
	static struct kobj_attribute _name##_attr = \
 | 
						|
		__ATTR(_name, 0644, _name##_show, _name##_store)
 | 
						|
 | 
						|
static struct kobject *hugepages_kobj;
 | 
						|
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
 | 
						|
 | 
						|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
 | 
						|
 | 
						|
static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
 | 
						|
		if (hstate_kobjs[i] == kobj) {
 | 
						|
			if (nidp)
 | 
						|
				*nidp = NUMA_NO_NODE;
 | 
						|
			return &hstates[i];
 | 
						|
		}
 | 
						|
 | 
						|
	return kobj_to_node_hstate(kobj, nidp);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long nr_huge_pages;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		nr_huge_pages = h->nr_huge_pages;
 | 
						|
	else
 | 
						|
		nr_huge_pages = h->nr_huge_pages_node[nid];
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
 | 
						|
					   struct hstate *h, int nid,
 | 
						|
					   unsigned long count, size_t len)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	nodemask_t nodes_allowed, *n_mask;
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (nid == NUMA_NO_NODE) {
 | 
						|
		/*
 | 
						|
		 * global hstate attribute
 | 
						|
		 */
 | 
						|
		if (!(obey_mempolicy &&
 | 
						|
				init_nodemask_of_mempolicy(&nodes_allowed)))
 | 
						|
			n_mask = &node_states[N_MEMORY];
 | 
						|
		else
 | 
						|
			n_mask = &nodes_allowed;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Node specific request.  count adjustment happens in
 | 
						|
		 * set_max_huge_pages() after acquiring hugetlb_lock.
 | 
						|
		 */
 | 
						|
		init_nodemask_of_node(&nodes_allowed, nid);
 | 
						|
		n_mask = &nodes_allowed;
 | 
						|
	}
 | 
						|
 | 
						|
	err = set_max_huge_pages(h, count, nid, n_mask);
 | 
						|
 | 
						|
	return err ? err : len;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
 | 
						|
					 struct kobject *kobj, const char *buf,
 | 
						|
					 size_t len)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long count;
 | 
						|
	int nid;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = kstrtoul(buf, 10, &count);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_show(struct kobject *kobj,
 | 
						|
				       struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	return nr_hugepages_show_common(kobj, attr, buf);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_store(struct kobject *kobj,
 | 
						|
	       struct kobj_attribute *attr, const char *buf, size_t len)
 | 
						|
{
 | 
						|
	return nr_hugepages_store_common(false, kobj, buf, len);
 | 
						|
}
 | 
						|
HSTATE_ATTR(nr_hugepages);
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
 | 
						|
/*
 | 
						|
 * hstate attribute for optionally mempolicy-based constraint on persistent
 | 
						|
 * huge page alloc/free.
 | 
						|
 */
 | 
						|
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
 | 
						|
					   struct kobj_attribute *attr,
 | 
						|
					   char *buf)
 | 
						|
{
 | 
						|
	return nr_hugepages_show_common(kobj, attr, buf);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
 | 
						|
	       struct kobj_attribute *attr, const char *buf, size_t len)
 | 
						|
{
 | 
						|
	return nr_hugepages_store_common(true, kobj, buf, len);
 | 
						|
}
 | 
						|
HSTATE_ATTR(nr_hugepages_mempolicy);
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | 
						|
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
 | 
						|
		struct kobj_attribute *attr, const char *buf, size_t count)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	unsigned long input;
 | 
						|
	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | 
						|
 | 
						|
	if (hstate_is_gigantic(h))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	err = kstrtoul(buf, 10, &input);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	h->nr_overcommit_huge_pages = input;
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
HSTATE_ATTR(nr_overcommit_hugepages);
 | 
						|
 | 
						|
static ssize_t free_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long free_huge_pages;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		free_huge_pages = h->free_huge_pages;
 | 
						|
	else
 | 
						|
		free_huge_pages = h->free_huge_pages_node[nid];
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
 | 
						|
}
 | 
						|
HSTATE_ATTR_RO(free_hugepages);
 | 
						|
 | 
						|
static ssize_t resv_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | 
						|
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
 | 
						|
}
 | 
						|
HSTATE_ATTR_RO(resv_hugepages);
 | 
						|
 | 
						|
static ssize_t surplus_hugepages_show(struct kobject *kobj,
 | 
						|
					struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long surplus_huge_pages;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	h = kobj_to_hstate(kobj, &nid);
 | 
						|
	if (nid == NUMA_NO_NODE)
 | 
						|
		surplus_huge_pages = h->surplus_huge_pages;
 | 
						|
	else
 | 
						|
		surplus_huge_pages = h->surplus_huge_pages_node[nid];
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
 | 
						|
}
 | 
						|
HSTATE_ATTR_RO(surplus_hugepages);
 | 
						|
 | 
						|
static struct attribute *hstate_attrs[] = {
 | 
						|
	&nr_hugepages_attr.attr,
 | 
						|
	&nr_overcommit_hugepages_attr.attr,
 | 
						|
	&free_hugepages_attr.attr,
 | 
						|
	&resv_hugepages_attr.attr,
 | 
						|
	&surplus_hugepages_attr.attr,
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	&nr_hugepages_mempolicy_attr.attr,
 | 
						|
#endif
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group hstate_attr_group = {
 | 
						|
	.attrs = hstate_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
 | 
						|
				    struct kobject **hstate_kobjs,
 | 
						|
				    const struct attribute_group *hstate_attr_group)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	int hi = hstate_index(h);
 | 
						|
 | 
						|
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
 | 
						|
	if (!hstate_kobjs[hi])
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
 | 
						|
	if (retval)
 | 
						|
		kobject_put(hstate_kobjs[hi]);
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugetlb_sysfs_init(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	int err;
 | 
						|
 | 
						|
	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
 | 
						|
	if (!hugepages_kobj)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
 | 
						|
					 hstate_kobjs, &hstate_attr_group);
 | 
						|
		if (err)
 | 
						|
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
 | 
						|
/*
 | 
						|
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 | 
						|
 * with node devices in node_devices[] using a parallel array.  The array
 | 
						|
 * index of a node device or _hstate == node id.
 | 
						|
 * This is here to avoid any static dependency of the node device driver, in
 | 
						|
 * the base kernel, on the hugetlb module.
 | 
						|
 */
 | 
						|
struct node_hstate {
 | 
						|
	struct kobject		*hugepages_kobj;
 | 
						|
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
 | 
						|
};
 | 
						|
static struct node_hstate node_hstates[MAX_NUMNODES];
 | 
						|
 | 
						|
/*
 | 
						|
 * A subset of global hstate attributes for node devices
 | 
						|
 */
 | 
						|
static struct attribute *per_node_hstate_attrs[] = {
 | 
						|
	&nr_hugepages_attr.attr,
 | 
						|
	&free_hugepages_attr.attr,
 | 
						|
	&surplus_hugepages_attr.attr,
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group per_node_hstate_attr_group = {
 | 
						|
	.attrs = per_node_hstate_attrs,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
 | 
						|
 * Returns node id via non-NULL nidp.
 | 
						|
 */
 | 
						|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	for (nid = 0; nid < nr_node_ids; nid++) {
 | 
						|
		struct node_hstate *nhs = &node_hstates[nid];
 | 
						|
		int i;
 | 
						|
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
 | 
						|
			if (nhs->hstate_kobjs[i] == kobj) {
 | 
						|
				if (nidp)
 | 
						|
					*nidp = nid;
 | 
						|
				return &hstates[i];
 | 
						|
			}
 | 
						|
	}
 | 
						|
 | 
						|
	BUG();
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unregister hstate attributes from a single node device.
 | 
						|
 * No-op if no hstate attributes attached.
 | 
						|
 */
 | 
						|
static void hugetlb_unregister_node(struct node *node)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	struct node_hstate *nhs = &node_hstates[node->dev.id];
 | 
						|
 | 
						|
	if (!nhs->hugepages_kobj)
 | 
						|
		return;		/* no hstate attributes */
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		int idx = hstate_index(h);
 | 
						|
		if (nhs->hstate_kobjs[idx]) {
 | 
						|
			kobject_put(nhs->hstate_kobjs[idx]);
 | 
						|
			nhs->hstate_kobjs[idx] = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kobject_put(nhs->hugepages_kobj);
 | 
						|
	nhs->hugepages_kobj = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Register hstate attributes for a single node device.
 | 
						|
 * No-op if attributes already registered.
 | 
						|
 */
 | 
						|
static void hugetlb_register_node(struct node *node)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	struct node_hstate *nhs = &node_hstates[node->dev.id];
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (nhs->hugepages_kobj)
 | 
						|
		return;		/* already allocated */
 | 
						|
 | 
						|
	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
 | 
						|
							&node->dev.kobj);
 | 
						|
	if (!nhs->hugepages_kobj)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
 | 
						|
						nhs->hstate_kobjs,
 | 
						|
						&per_node_hstate_attr_group);
 | 
						|
		if (err) {
 | 
						|
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
 | 
						|
				h->name, node->dev.id);
 | 
						|
			hugetlb_unregister_node(node);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hugetlb init time:  register hstate attributes for all registered node
 | 
						|
 * devices of nodes that have memory.  All on-line nodes should have
 | 
						|
 * registered their associated device by this time.
 | 
						|
 */
 | 
						|
static void __init hugetlb_register_all_nodes(void)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	for_each_node_state(nid, N_MEMORY) {
 | 
						|
		struct node *node = node_devices[nid];
 | 
						|
		if (node->dev.id == nid)
 | 
						|
			hugetlb_register_node(node);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Let the node device driver know we're here so it can
 | 
						|
	 * [un]register hstate attributes on node hotplug.
 | 
						|
	 */
 | 
						|
	register_hugetlbfs_with_node(hugetlb_register_node,
 | 
						|
				     hugetlb_unregister_node);
 | 
						|
}
 | 
						|
#else	/* !CONFIG_NUMA */
 | 
						|
 | 
						|
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	if (nidp)
 | 
						|
		*nidp = -1;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_register_all_nodes(void) { }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static int __init hugetlb_init(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!hugepages_supported()) {
 | 
						|
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
 | 
						|
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
 | 
						|
	 * architectures depend on setup being done here.
 | 
						|
	 */
 | 
						|
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
 | 
						|
	if (!parsed_default_hugepagesz) {
 | 
						|
		/*
 | 
						|
		 * If we did not parse a default huge page size, set
 | 
						|
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
 | 
						|
		 * number of huge pages for this default size was implicitly
 | 
						|
		 * specified, set that here as well.
 | 
						|
		 * Note that the implicit setting will overwrite an explicit
 | 
						|
		 * setting.  A warning will be printed in this case.
 | 
						|
		 */
 | 
						|
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
 | 
						|
		if (default_hstate_max_huge_pages) {
 | 
						|
			if (default_hstate.max_huge_pages) {
 | 
						|
				char buf[32];
 | 
						|
 | 
						|
				string_get_size(huge_page_size(&default_hstate),
 | 
						|
					1, STRING_UNITS_2, buf, 32);
 | 
						|
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
 | 
						|
					default_hstate.max_huge_pages, buf);
 | 
						|
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
 | 
						|
					default_hstate_max_huge_pages);
 | 
						|
			}
 | 
						|
			default_hstate.max_huge_pages =
 | 
						|
				default_hstate_max_huge_pages;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_cma_check();
 | 
						|
	hugetlb_init_hstates();
 | 
						|
	gather_bootmem_prealloc();
 | 
						|
	report_hugepages();
 | 
						|
 | 
						|
	hugetlb_sysfs_init();
 | 
						|
	hugetlb_register_all_nodes();
 | 
						|
	hugetlb_cgroup_file_init();
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
 | 
						|
#else
 | 
						|
	num_fault_mutexes = 1;
 | 
						|
#endif
 | 
						|
	hugetlb_fault_mutex_table =
 | 
						|
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
 | 
						|
			      GFP_KERNEL);
 | 
						|
	BUG_ON(!hugetlb_fault_mutex_table);
 | 
						|
 | 
						|
	for (i = 0; i < num_fault_mutexes; i++)
 | 
						|
		mutex_init(&hugetlb_fault_mutex_table[i]);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
subsys_initcall(hugetlb_init);
 | 
						|
 | 
						|
/* Overwritten by architectures with more huge page sizes */
 | 
						|
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
 | 
						|
{
 | 
						|
	return size == HPAGE_SIZE;
 | 
						|
}
 | 
						|
 | 
						|
void __init hugetlb_add_hstate(unsigned int order)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long i;
 | 
						|
 | 
						|
	if (size_to_hstate(PAGE_SIZE << order)) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
 | 
						|
	BUG_ON(order == 0);
 | 
						|
	h = &hstates[hugetlb_max_hstate++];
 | 
						|
	h->order = order;
 | 
						|
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
 | 
						|
	for (i = 0; i < MAX_NUMNODES; ++i)
 | 
						|
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
 | 
						|
	INIT_LIST_HEAD(&h->hugepage_activelist);
 | 
						|
	h->next_nid_to_alloc = first_memory_node;
 | 
						|
	h->next_nid_to_free = first_memory_node;
 | 
						|
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
 | 
						|
					huge_page_size(h)/1024);
 | 
						|
 | 
						|
	parsed_hstate = h;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * hugepages command line processing
 | 
						|
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 | 
						|
 * specification.  If not, ignore the hugepages value.  hugepages can also
 | 
						|
 * be the first huge page command line  option in which case it implicitly
 | 
						|
 * specifies the number of huge pages for the default size.
 | 
						|
 */
 | 
						|
static int __init hugepages_setup(char *s)
 | 
						|
{
 | 
						|
	unsigned long *mhp;
 | 
						|
	static unsigned long *last_mhp;
 | 
						|
 | 
						|
	if (!parsed_valid_hugepagesz) {
 | 
						|
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
 | 
						|
		parsed_valid_hugepagesz = true;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
 | 
						|
	 * yet, so this hugepages= parameter goes to the "default hstate".
 | 
						|
	 * Otherwise, it goes with the previously parsed hugepagesz or
 | 
						|
	 * default_hugepagesz.
 | 
						|
	 */
 | 
						|
	else if (!hugetlb_max_hstate)
 | 
						|
		mhp = &default_hstate_max_huge_pages;
 | 
						|
	else
 | 
						|
		mhp = &parsed_hstate->max_huge_pages;
 | 
						|
 | 
						|
	if (mhp == last_mhp) {
 | 
						|
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (sscanf(s, "%lu", mhp) <= 0)
 | 
						|
		*mhp = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Global state is always initialized later in hugetlb_init.
 | 
						|
	 * But we need to allocate >= MAX_ORDER hstates here early to still
 | 
						|
	 * use the bootmem allocator.
 | 
						|
	 */
 | 
						|
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
 | 
						|
		hugetlb_hstate_alloc_pages(parsed_hstate);
 | 
						|
 | 
						|
	last_mhp = mhp;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("hugepages=", hugepages_setup);
 | 
						|
 | 
						|
/*
 | 
						|
 * hugepagesz command line processing
 | 
						|
 * A specific huge page size can only be specified once with hugepagesz.
 | 
						|
 * hugepagesz is followed by hugepages on the command line.  The global
 | 
						|
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 | 
						|
 * hugepagesz argument was valid.
 | 
						|
 */
 | 
						|
static int __init hugepagesz_setup(char *s)
 | 
						|
{
 | 
						|
	unsigned long size;
 | 
						|
	struct hstate *h;
 | 
						|
 | 
						|
	parsed_valid_hugepagesz = false;
 | 
						|
	size = (unsigned long)memparse(s, NULL);
 | 
						|
 | 
						|
	if (!arch_hugetlb_valid_size(size)) {
 | 
						|
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	h = size_to_hstate(size);
 | 
						|
	if (h) {
 | 
						|
		/*
 | 
						|
		 * hstate for this size already exists.  This is normally
 | 
						|
		 * an error, but is allowed if the existing hstate is the
 | 
						|
		 * default hstate.  More specifically, it is only allowed if
 | 
						|
		 * the number of huge pages for the default hstate was not
 | 
						|
		 * previously specified.
 | 
						|
		 */
 | 
						|
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
 | 
						|
		    default_hstate.max_huge_pages) {
 | 
						|
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * No need to call hugetlb_add_hstate() as hstate already
 | 
						|
		 * exists.  But, do set parsed_hstate so that a following
 | 
						|
		 * hugepages= parameter will be applied to this hstate.
 | 
						|
		 */
 | 
						|
		parsed_hstate = h;
 | 
						|
		parsed_valid_hugepagesz = true;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
 | 
						|
	parsed_valid_hugepagesz = true;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("hugepagesz=", hugepagesz_setup);
 | 
						|
 | 
						|
/*
 | 
						|
 * default_hugepagesz command line input
 | 
						|
 * Only one instance of default_hugepagesz allowed on command line.
 | 
						|
 */
 | 
						|
static int __init default_hugepagesz_setup(char *s)
 | 
						|
{
 | 
						|
	unsigned long size;
 | 
						|
 | 
						|
	parsed_valid_hugepagesz = false;
 | 
						|
	if (parsed_default_hugepagesz) {
 | 
						|
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	size = (unsigned long)memparse(s, NULL);
 | 
						|
 | 
						|
	if (!arch_hugetlb_valid_size(size)) {
 | 
						|
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
 | 
						|
	parsed_valid_hugepagesz = true;
 | 
						|
	parsed_default_hugepagesz = true;
 | 
						|
	default_hstate_idx = hstate_index(size_to_hstate(size));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The number of default huge pages (for this size) could have been
 | 
						|
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
 | 
						|
	 * then default_hstate_max_huge_pages is set.  If the default huge
 | 
						|
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
 | 
						|
	 * allocated here from bootmem allocator.
 | 
						|
	 */
 | 
						|
	if (default_hstate_max_huge_pages) {
 | 
						|
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 | 
						|
		if (hstate_is_gigantic(&default_hstate))
 | 
						|
			hugetlb_hstate_alloc_pages(&default_hstate);
 | 
						|
		default_hstate_max_huge_pages = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("default_hugepagesz=", default_hugepagesz_setup);
 | 
						|
 | 
						|
static unsigned int allowed_mems_nr(struct hstate *h)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
	unsigned int nr = 0;
 | 
						|
	nodemask_t *mpol_allowed;
 | 
						|
	unsigned int *array = h->free_huge_pages_node;
 | 
						|
	gfp_t gfp_mask = htlb_alloc_mask(h);
 | 
						|
 | 
						|
	mpol_allowed = policy_nodemask_current(gfp_mask);
 | 
						|
 | 
						|
	for_each_node_mask(node, cpuset_current_mems_allowed) {
 | 
						|
		if (!mpol_allowed ||
 | 
						|
		    (mpol_allowed && node_isset(node, *mpol_allowed)))
 | 
						|
			nr += array[node];
 | 
						|
	}
 | 
						|
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYSCTL
 | 
						|
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
 | 
						|
					  void *buffer, size_t *length,
 | 
						|
					  loff_t *ppos, unsigned long *out)
 | 
						|
{
 | 
						|
	struct ctl_table dup_table;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
 | 
						|
	 * can duplicate the @table and alter the duplicate of it.
 | 
						|
	 */
 | 
						|
	dup_table = *table;
 | 
						|
	dup_table.data = out;
 | 
						|
 | 
						|
	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
 | 
						|
			 struct ctl_table *table, int write,
 | 
						|
			 void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct hstate *h = &default_hstate;
 | 
						|
	unsigned long tmp = h->max_huge_pages;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
 | 
						|
					     &tmp);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (write)
 | 
						|
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
 | 
						|
						  NUMA_NO_NODE, tmp, *length);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
			  void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
 | 
						|
	return hugetlb_sysctl_handler_common(false, table, write,
 | 
						|
							buffer, length, ppos);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
			  void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	return hugetlb_sysctl_handler_common(true, table, write,
 | 
						|
							buffer, length, ppos);
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA */
 | 
						|
 | 
						|
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
 | 
						|
		void *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct hstate *h = &default_hstate;
 | 
						|
	unsigned long tmp;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	tmp = h->nr_overcommit_huge_pages;
 | 
						|
 | 
						|
	if (write && hstate_is_gigantic(h))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
 | 
						|
					     &tmp);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (write) {
 | 
						|
		spin_lock(&hugetlb_lock);
 | 
						|
		h->nr_overcommit_huge_pages = tmp;
 | 
						|
		spin_unlock(&hugetlb_lock);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_SYSCTL */
 | 
						|
 | 
						|
void hugetlb_report_meminfo(struct seq_file *m)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long total = 0;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		unsigned long count = h->nr_huge_pages;
 | 
						|
 | 
						|
		total += (PAGE_SIZE << huge_page_order(h)) * count;
 | 
						|
 | 
						|
		if (h == &default_hstate)
 | 
						|
			seq_printf(m,
 | 
						|
				   "HugePages_Total:   %5lu\n"
 | 
						|
				   "HugePages_Free:    %5lu\n"
 | 
						|
				   "HugePages_Rsvd:    %5lu\n"
 | 
						|
				   "HugePages_Surp:    %5lu\n"
 | 
						|
				   "Hugepagesize:   %8lu kB\n",
 | 
						|
				   count,
 | 
						|
				   h->free_huge_pages,
 | 
						|
				   h->resv_huge_pages,
 | 
						|
				   h->surplus_huge_pages,
 | 
						|
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
 | 
						|
	}
 | 
						|
 | 
						|
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
 | 
						|
}
 | 
						|
 | 
						|
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
 | 
						|
{
 | 
						|
	struct hstate *h = &default_hstate;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return sysfs_emit_at(buf, len,
 | 
						|
			     "Node %d HugePages_Total: %5u\n"
 | 
						|
			     "Node %d HugePages_Free:  %5u\n"
 | 
						|
			     "Node %d HugePages_Surp:  %5u\n",
 | 
						|
			     nid, h->nr_huge_pages_node[nid],
 | 
						|
			     nid, h->free_huge_pages_node[nid],
 | 
						|
			     nid, h->surplus_huge_pages_node[nid]);
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_show_meminfo(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	if (!hugepages_supported())
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_node_state(nid, N_MEMORY)
 | 
						|
		for_each_hstate(h)
 | 
						|
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
 | 
						|
				nid,
 | 
						|
				h->nr_huge_pages_node[nid],
 | 
						|
				h->free_huge_pages_node[nid],
 | 
						|
				h->surplus_huge_pages_node[nid],
 | 
						|
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
 | 
						|
{
 | 
						|
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
 | 
						|
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
 | 
						|
}
 | 
						|
 | 
						|
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
 | 
						|
unsigned long hugetlb_total_pages(void)
 | 
						|
{
 | 
						|
	struct hstate *h;
 | 
						|
	unsigned long nr_total_pages = 0;
 | 
						|
 | 
						|
	for_each_hstate(h)
 | 
						|
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
 | 
						|
	return nr_total_pages;
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_acct_memory(struct hstate *h, long delta)
 | 
						|
{
 | 
						|
	int ret = -ENOMEM;
 | 
						|
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	/*
 | 
						|
	 * When cpuset is configured, it breaks the strict hugetlb page
 | 
						|
	 * reservation as the accounting is done on a global variable. Such
 | 
						|
	 * reservation is completely rubbish in the presence of cpuset because
 | 
						|
	 * the reservation is not checked against page availability for the
 | 
						|
	 * current cpuset. Application can still potentially OOM'ed by kernel
 | 
						|
	 * with lack of free htlb page in cpuset that the task is in.
 | 
						|
	 * Attempt to enforce strict accounting with cpuset is almost
 | 
						|
	 * impossible (or too ugly) because cpuset is too fluid that
 | 
						|
	 * task or memory node can be dynamically moved between cpusets.
 | 
						|
	 *
 | 
						|
	 * The change of semantics for shared hugetlb mapping with cpuset is
 | 
						|
	 * undesirable. However, in order to preserve some of the semantics,
 | 
						|
	 * we fall back to check against current free page availability as
 | 
						|
	 * a best attempt and hopefully to minimize the impact of changing
 | 
						|
	 * semantics that cpuset has.
 | 
						|
	 *
 | 
						|
	 * Apart from cpuset, we also have memory policy mechanism that
 | 
						|
	 * also determines from which node the kernel will allocate memory
 | 
						|
	 * in a NUMA system. So similar to cpuset, we also should consider
 | 
						|
	 * the memory policy of the current task. Similar to the description
 | 
						|
	 * above.
 | 
						|
	 */
 | 
						|
	if (delta > 0) {
 | 
						|
		if (gather_surplus_pages(h, delta) < 0)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (delta > allowed_mems_nr(h)) {
 | 
						|
			return_unused_surplus_pages(h, delta);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	if (delta < 0)
 | 
						|
		return_unused_surplus_pages(h, (unsigned long) -delta);
 | 
						|
 | 
						|
out:
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct resv_map *resv = vma_resv_map(vma);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This new VMA should share its siblings reservation map if present.
 | 
						|
	 * The VMA will only ever have a valid reservation map pointer where
 | 
						|
	 * it is being copied for another still existing VMA.  As that VMA
 | 
						|
	 * has a reference to the reservation map it cannot disappear until
 | 
						|
	 * after this open call completes.  It is therefore safe to take a
 | 
						|
	 * new reference here without additional locking.
 | 
						|
	 */
 | 
						|
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | 
						|
		kref_get(&resv->refs);
 | 
						|
}
 | 
						|
 | 
						|
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct resv_map *resv = vma_resv_map(vma);
 | 
						|
	struct hugepage_subpool *spool = subpool_vma(vma);
 | 
						|
	unsigned long reserve, start, end;
 | 
						|
	long gbl_reserve;
 | 
						|
 | 
						|
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | 
						|
		return;
 | 
						|
 | 
						|
	start = vma_hugecache_offset(h, vma, vma->vm_start);
 | 
						|
	end = vma_hugecache_offset(h, vma, vma->vm_end);
 | 
						|
 | 
						|
	reserve = (end - start) - region_count(resv, start, end);
 | 
						|
	hugetlb_cgroup_uncharge_counter(resv, start, end);
 | 
						|
	if (reserve) {
 | 
						|
		/*
 | 
						|
		 * Decrement reserve counts.  The global reserve count may be
 | 
						|
		 * adjusted if the subpool has a minimum size.
 | 
						|
		 */
 | 
						|
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
 | 
						|
		hugetlb_acct_memory(h, -gbl_reserve);
 | 
						|
	}
 | 
						|
 | 
						|
	kref_put(&resv->refs, resv_map_release);
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
 | 
						|
		return -EINVAL;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct hstate *hstate = hstate_vma(vma);
 | 
						|
 | 
						|
	return 1UL << huge_page_shift(hstate);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 | 
						|
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 | 
						|
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 | 
						|
 * this far.
 | 
						|
 */
 | 
						|
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When a new function is introduced to vm_operations_struct and added
 | 
						|
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 | 
						|
 * This is because under System V memory model, mappings created via
 | 
						|
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 | 
						|
 * their original vm_ops are overwritten with shm_vm_ops.
 | 
						|
 */
 | 
						|
const struct vm_operations_struct hugetlb_vm_ops = {
 | 
						|
	.fault = hugetlb_vm_op_fault,
 | 
						|
	.open = hugetlb_vm_op_open,
 | 
						|
	.close = hugetlb_vm_op_close,
 | 
						|
	.may_split = hugetlb_vm_op_split,
 | 
						|
	.pagesize = hugetlb_vm_op_pagesize,
 | 
						|
};
 | 
						|
 | 
						|
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
 | 
						|
				int writable)
 | 
						|
{
 | 
						|
	pte_t entry;
 | 
						|
 | 
						|
	if (writable) {
 | 
						|
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
 | 
						|
					 vma->vm_page_prot)));
 | 
						|
	} else {
 | 
						|
		entry = huge_pte_wrprotect(mk_huge_pte(page,
 | 
						|
					   vma->vm_page_prot));
 | 
						|
	}
 | 
						|
	entry = pte_mkyoung(entry);
 | 
						|
	entry = pte_mkhuge(entry);
 | 
						|
	entry = arch_make_huge_pte(entry, vma, page, writable);
 | 
						|
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
static void set_huge_ptep_writable(struct vm_area_struct *vma,
 | 
						|
				   unsigned long address, pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t entry;
 | 
						|
 | 
						|
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
 | 
						|
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
 | 
						|
		update_mmu_cache(vma, address, ptep);
 | 
						|
}
 | 
						|
 | 
						|
bool is_hugetlb_entry_migration(pte_t pte)
 | 
						|
{
 | 
						|
	swp_entry_t swp;
 | 
						|
 | 
						|
	if (huge_pte_none(pte) || pte_present(pte))
 | 
						|
		return false;
 | 
						|
	swp = pte_to_swp_entry(pte);
 | 
						|
	if (is_migration_entry(swp))
 | 
						|
		return true;
 | 
						|
	else
 | 
						|
		return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
 | 
						|
{
 | 
						|
	swp_entry_t swp;
 | 
						|
 | 
						|
	if (huge_pte_none(pte) || pte_present(pte))
 | 
						|
		return false;
 | 
						|
	swp = pte_to_swp_entry(pte);
 | 
						|
	if (is_hwpoison_entry(swp))
 | 
						|
		return true;
 | 
						|
	else
 | 
						|
		return false;
 | 
						|
}
 | 
						|
 | 
						|
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
 | 
						|
			    struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	pte_t *src_pte, *dst_pte, entry, dst_entry;
 | 
						|
	struct page *ptepage;
 | 
						|
	unsigned long addr;
 | 
						|
	int cow;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	unsigned long sz = huge_page_size(h);
 | 
						|
	struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 | 
						|
 | 
						|
	if (cow) {
 | 
						|
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
 | 
						|
					vma->vm_start,
 | 
						|
					vma->vm_end);
 | 
						|
		mmu_notifier_invalidate_range_start(&range);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * For shared mappings i_mmap_rwsem must be held to call
 | 
						|
		 * huge_pte_alloc, otherwise the returned ptep could go
 | 
						|
		 * away if part of a shared pmd and another thread calls
 | 
						|
		 * huge_pmd_unshare.
 | 
						|
		 */
 | 
						|
		i_mmap_lock_read(mapping);
 | 
						|
	}
 | 
						|
 | 
						|
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
 | 
						|
		spinlock_t *src_ptl, *dst_ptl;
 | 
						|
		src_pte = huge_pte_offset(src, addr, sz);
 | 
						|
		if (!src_pte)
 | 
						|
			continue;
 | 
						|
		dst_pte = huge_pte_alloc(dst, addr, sz);
 | 
						|
		if (!dst_pte) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the pagetables are shared don't copy or take references.
 | 
						|
		 * dst_pte == src_pte is the common case of src/dest sharing.
 | 
						|
		 *
 | 
						|
		 * However, src could have 'unshared' and dst shares with
 | 
						|
		 * another vma.  If dst_pte !none, this implies sharing.
 | 
						|
		 * Check here before taking page table lock, and once again
 | 
						|
		 * after taking the lock below.
 | 
						|
		 */
 | 
						|
		dst_entry = huge_ptep_get(dst_pte);
 | 
						|
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
 | 
						|
			continue;
 | 
						|
 | 
						|
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
 | 
						|
		src_ptl = huge_pte_lockptr(h, src, src_pte);
 | 
						|
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | 
						|
		entry = huge_ptep_get(src_pte);
 | 
						|
		dst_entry = huge_ptep_get(dst_pte);
 | 
						|
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
 | 
						|
			/*
 | 
						|
			 * Skip if src entry none.  Also, skip in the
 | 
						|
			 * unlikely case dst entry !none as this implies
 | 
						|
			 * sharing with another vma.
 | 
						|
			 */
 | 
						|
			;
 | 
						|
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
 | 
						|
				    is_hugetlb_entry_hwpoisoned(entry))) {
 | 
						|
			swp_entry_t swp_entry = pte_to_swp_entry(entry);
 | 
						|
 | 
						|
			if (is_write_migration_entry(swp_entry) && cow) {
 | 
						|
				/*
 | 
						|
				 * COW mappings require pages in both
 | 
						|
				 * parent and child to be set to read.
 | 
						|
				 */
 | 
						|
				make_migration_entry_read(&swp_entry);
 | 
						|
				entry = swp_entry_to_pte(swp_entry);
 | 
						|
				set_huge_swap_pte_at(src, addr, src_pte,
 | 
						|
						     entry, sz);
 | 
						|
			}
 | 
						|
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
 | 
						|
		} else {
 | 
						|
			if (cow) {
 | 
						|
				/*
 | 
						|
				 * No need to notify as we are downgrading page
 | 
						|
				 * table protection not changing it to point
 | 
						|
				 * to a new page.
 | 
						|
				 *
 | 
						|
				 * See Documentation/vm/mmu_notifier.rst
 | 
						|
				 */
 | 
						|
				huge_ptep_set_wrprotect(src, addr, src_pte);
 | 
						|
			}
 | 
						|
			entry = huge_ptep_get(src_pte);
 | 
						|
			ptepage = pte_page(entry);
 | 
						|
			get_page(ptepage);
 | 
						|
			page_dup_rmap(ptepage, true);
 | 
						|
			set_huge_pte_at(dst, addr, dst_pte, entry);
 | 
						|
			hugetlb_count_add(pages_per_huge_page(h), dst);
 | 
						|
		}
 | 
						|
		spin_unlock(src_ptl);
 | 
						|
		spin_unlock(dst_ptl);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cow)
 | 
						|
		mmu_notifier_invalidate_range_end(&range);
 | 
						|
	else
 | 
						|
		i_mmap_unlock_read(mapping);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | 
						|
			    unsigned long start, unsigned long end,
 | 
						|
			    struct page *ref_page)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long address;
 | 
						|
	pte_t *ptep;
 | 
						|
	pte_t pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	struct page *page;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	unsigned long sz = huge_page_size(h);
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
 | 
						|
	WARN_ON(!is_vm_hugetlb_page(vma));
 | 
						|
	BUG_ON(start & ~huge_page_mask(h));
 | 
						|
	BUG_ON(end & ~huge_page_mask(h));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a hugetlb vma, all the pte entries should point
 | 
						|
	 * to huge page.
 | 
						|
	 */
 | 
						|
	tlb_change_page_size(tlb, sz);
 | 
						|
	tlb_start_vma(tlb, vma);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If sharing possible, alert mmu notifiers of worst case.
 | 
						|
	 */
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
 | 
						|
				end);
 | 
						|
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
	address = start;
 | 
						|
	for (; address < end; address += sz) {
 | 
						|
		ptep = huge_pte_offset(mm, address, sz);
 | 
						|
		if (!ptep)
 | 
						|
			continue;
 | 
						|
 | 
						|
		ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			/*
 | 
						|
			 * We just unmapped a page of PMDs by clearing a PUD.
 | 
						|
			 * The caller's TLB flush range should cover this area.
 | 
						|
			 */
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		pte = huge_ptep_get(ptep);
 | 
						|
		if (huge_pte_none(pte)) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Migrating hugepage or HWPoisoned hugepage is already
 | 
						|
		 * unmapped and its refcount is dropped, so just clear pte here.
 | 
						|
		 */
 | 
						|
		if (unlikely(!pte_present(pte))) {
 | 
						|
			huge_pte_clear(mm, address, ptep, sz);
 | 
						|
			spin_unlock(ptl);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		page = pte_page(pte);
 | 
						|
		/*
 | 
						|
		 * If a reference page is supplied, it is because a specific
 | 
						|
		 * page is being unmapped, not a range. Ensure the page we
 | 
						|
		 * are about to unmap is the actual page of interest.
 | 
						|
		 */
 | 
						|
		if (ref_page) {
 | 
						|
			if (page != ref_page) {
 | 
						|
				spin_unlock(ptl);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * Mark the VMA as having unmapped its page so that
 | 
						|
			 * future faults in this VMA will fail rather than
 | 
						|
			 * looking like data was lost
 | 
						|
			 */
 | 
						|
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
 | 
						|
		}
 | 
						|
 | 
						|
		pte = huge_ptep_get_and_clear(mm, address, ptep);
 | 
						|
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
 | 
						|
		if (huge_pte_dirty(pte))
 | 
						|
			set_page_dirty(page);
 | 
						|
 | 
						|
		hugetlb_count_sub(pages_per_huge_page(h), mm);
 | 
						|
		page_remove_rmap(page, true);
 | 
						|
 | 
						|
		spin_unlock(ptl);
 | 
						|
		tlb_remove_page_size(tlb, page, huge_page_size(h));
 | 
						|
		/*
 | 
						|
		 * Bail out after unmapping reference page if supplied
 | 
						|
		 */
 | 
						|
		if (ref_page)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
	tlb_end_vma(tlb, vma);
 | 
						|
}
 | 
						|
 | 
						|
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
 | 
						|
			  struct vm_area_struct *vma, unsigned long start,
 | 
						|
			  unsigned long end, struct page *ref_page)
 | 
						|
{
 | 
						|
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
 | 
						|
	 * test will fail on a vma being torn down, and not grab a page table
 | 
						|
	 * on its way out.  We're lucky that the flag has such an appropriate
 | 
						|
	 * name, and can in fact be safely cleared here. We could clear it
 | 
						|
	 * before the __unmap_hugepage_range above, but all that's necessary
 | 
						|
	 * is to clear it before releasing the i_mmap_rwsem. This works
 | 
						|
	 * because in the context this is called, the VMA is about to be
 | 
						|
	 * destroyed and the i_mmap_rwsem is held.
 | 
						|
	 */
 | 
						|
	vma->vm_flags &= ~VM_MAYSHARE;
 | 
						|
}
 | 
						|
 | 
						|
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
 | 
						|
			  unsigned long end, struct page *ref_page)
 | 
						|
{
 | 
						|
	struct mm_struct *mm;
 | 
						|
	struct mmu_gather tlb;
 | 
						|
	unsigned long tlb_start = start;
 | 
						|
	unsigned long tlb_end = end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If shared PMDs were possibly used within this vma range, adjust
 | 
						|
	 * start/end for worst case tlb flushing.
 | 
						|
	 * Note that we can not be sure if PMDs are shared until we try to
 | 
						|
	 * unmap pages.  However, we want to make sure TLB flushing covers
 | 
						|
	 * the largest possible range.
 | 
						|
	 */
 | 
						|
	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
 | 
						|
 | 
						|
	mm = vma->vm_mm;
 | 
						|
 | 
						|
	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
 | 
						|
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
 | 
						|
	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 | 
						|
 * mappping it owns the reserve page for. The intention is to unmap the page
 | 
						|
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 | 
						|
 * same region.
 | 
						|
 */
 | 
						|
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
			      struct page *page, unsigned long address)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct vm_area_struct *iter_vma;
 | 
						|
	struct address_space *mapping;
 | 
						|
	pgoff_t pgoff;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
 | 
						|
	 * from page cache lookup which is in HPAGE_SIZE units.
 | 
						|
	 */
 | 
						|
	address = address & huge_page_mask(h);
 | 
						|
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
 | 
						|
			vma->vm_pgoff;
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Take the mapping lock for the duration of the table walk. As
 | 
						|
	 * this mapping should be shared between all the VMAs,
 | 
						|
	 * __unmap_hugepage_range() is called as the lock is already held
 | 
						|
	 */
 | 
						|
	i_mmap_lock_write(mapping);
 | 
						|
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
 | 
						|
		/* Do not unmap the current VMA */
 | 
						|
		if (iter_vma == vma)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Shared VMAs have their own reserves and do not affect
 | 
						|
		 * MAP_PRIVATE accounting but it is possible that a shared
 | 
						|
		 * VMA is using the same page so check and skip such VMAs.
 | 
						|
		 */
 | 
						|
		if (iter_vma->vm_flags & VM_MAYSHARE)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Unmap the page from other VMAs without their own reserves.
 | 
						|
		 * They get marked to be SIGKILLed if they fault in these
 | 
						|
		 * areas. This is because a future no-page fault on this VMA
 | 
						|
		 * could insert a zeroed page instead of the data existing
 | 
						|
		 * from the time of fork. This would look like data corruption
 | 
						|
		 */
 | 
						|
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
 | 
						|
			unmap_hugepage_range(iter_vma, address,
 | 
						|
					     address + huge_page_size(h), page);
 | 
						|
	}
 | 
						|
	i_mmap_unlock_write(mapping);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 | 
						|
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 | 
						|
 * cannot race with other handlers or page migration.
 | 
						|
 * Keep the pte_same checks anyway to make transition from the mutex easier.
 | 
						|
 */
 | 
						|
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
		       unsigned long address, pte_t *ptep,
 | 
						|
		       struct page *pagecache_page, spinlock_t *ptl)
 | 
						|
{
 | 
						|
	pte_t pte;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct page *old_page, *new_page;
 | 
						|
	int outside_reserve = 0;
 | 
						|
	vm_fault_t ret = 0;
 | 
						|
	unsigned long haddr = address & huge_page_mask(h);
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
 | 
						|
	pte = huge_ptep_get(ptep);
 | 
						|
	old_page = pte_page(pte);
 | 
						|
 | 
						|
retry_avoidcopy:
 | 
						|
	/* If no-one else is actually using this page, avoid the copy
 | 
						|
	 * and just make the page writable */
 | 
						|
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
 | 
						|
		page_move_anon_rmap(old_page, vma);
 | 
						|
		set_huge_ptep_writable(vma, haddr, ptep);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the process that created a MAP_PRIVATE mapping is about to
 | 
						|
	 * perform a COW due to a shared page count, attempt to satisfy
 | 
						|
	 * the allocation without using the existing reserves. The pagecache
 | 
						|
	 * page is used to determine if the reserve at this address was
 | 
						|
	 * consumed or not. If reserves were used, a partial faulted mapping
 | 
						|
	 * at the time of fork() could consume its reserves on COW instead
 | 
						|
	 * of the full address range.
 | 
						|
	 */
 | 
						|
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
 | 
						|
			old_page != pagecache_page)
 | 
						|
		outside_reserve = 1;
 | 
						|
 | 
						|
	get_page(old_page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Drop page table lock as buddy allocator may be called. It will
 | 
						|
	 * be acquired again before returning to the caller, as expected.
 | 
						|
	 */
 | 
						|
	spin_unlock(ptl);
 | 
						|
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
 | 
						|
 | 
						|
	if (IS_ERR(new_page)) {
 | 
						|
		/*
 | 
						|
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
 | 
						|
		 * it is due to references held by a child and an insufficient
 | 
						|
		 * huge page pool. To guarantee the original mappers
 | 
						|
		 * reliability, unmap the page from child processes. The child
 | 
						|
		 * may get SIGKILLed if it later faults.
 | 
						|
		 */
 | 
						|
		if (outside_reserve) {
 | 
						|
			put_page(old_page);
 | 
						|
			BUG_ON(huge_pte_none(pte));
 | 
						|
			unmap_ref_private(mm, vma, old_page, haddr);
 | 
						|
			BUG_ON(huge_pte_none(pte));
 | 
						|
			spin_lock(ptl);
 | 
						|
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
 | 
						|
			if (likely(ptep &&
 | 
						|
				   pte_same(huge_ptep_get(ptep), pte)))
 | 
						|
				goto retry_avoidcopy;
 | 
						|
			/*
 | 
						|
			 * race occurs while re-acquiring page table
 | 
						|
			 * lock, and our job is done.
 | 
						|
			 */
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = vmf_error(PTR_ERR(new_page));
 | 
						|
		goto out_release_old;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When the original hugepage is shared one, it does not have
 | 
						|
	 * anon_vma prepared.
 | 
						|
	 */
 | 
						|
	if (unlikely(anon_vma_prepare(vma))) {
 | 
						|
		ret = VM_FAULT_OOM;
 | 
						|
		goto out_release_all;
 | 
						|
	}
 | 
						|
 | 
						|
	copy_user_huge_page(new_page, old_page, address, vma,
 | 
						|
			    pages_per_huge_page(h));
 | 
						|
	__SetPageUptodate(new_page);
 | 
						|
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
 | 
						|
				haddr + huge_page_size(h));
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Retake the page table lock to check for racing updates
 | 
						|
	 * before the page tables are altered
 | 
						|
	 */
 | 
						|
	spin_lock(ptl);
 | 
						|
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
 | 
						|
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
 | 
						|
		ClearPagePrivate(new_page);
 | 
						|
 | 
						|
		/* Break COW */
 | 
						|
		huge_ptep_clear_flush(vma, haddr, ptep);
 | 
						|
		mmu_notifier_invalidate_range(mm, range.start, range.end);
 | 
						|
		set_huge_pte_at(mm, haddr, ptep,
 | 
						|
				make_huge_pte(vma, new_page, 1));
 | 
						|
		page_remove_rmap(old_page, true);
 | 
						|
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
 | 
						|
		set_page_huge_active(new_page);
 | 
						|
		/* Make the old page be freed below */
 | 
						|
		new_page = old_page;
 | 
						|
	}
 | 
						|
	spin_unlock(ptl);
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
out_release_all:
 | 
						|
	restore_reserve_on_error(h, vma, haddr, new_page);
 | 
						|
	put_page(new_page);
 | 
						|
out_release_old:
 | 
						|
	put_page(old_page);
 | 
						|
 | 
						|
	spin_lock(ptl); /* Caller expects lock to be held */
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the pagecache page at a given address within a VMA */
 | 
						|
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	struct address_space *mapping;
 | 
						|
	pgoff_t idx;
 | 
						|
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
	idx = vma_hugecache_offset(h, vma, address);
 | 
						|
 | 
						|
	return find_lock_page(mapping, idx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return whether there is a pagecache page to back given address within VMA.
 | 
						|
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 | 
						|
 */
 | 
						|
static bool hugetlbfs_pagecache_present(struct hstate *h,
 | 
						|
			struct vm_area_struct *vma, unsigned long address)
 | 
						|
{
 | 
						|
	struct address_space *mapping;
 | 
						|
	pgoff_t idx;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
	idx = vma_hugecache_offset(h, vma, address);
 | 
						|
 | 
						|
	page = find_get_page(mapping, idx);
 | 
						|
	if (page)
 | 
						|
		put_page(page);
 | 
						|
	return page != NULL;
 | 
						|
}
 | 
						|
 | 
						|
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
 | 
						|
			   pgoff_t idx)
 | 
						|
{
 | 
						|
	struct inode *inode = mapping->host;
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
 | 
						|
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	ClearPagePrivate(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * set page dirty so that it will not be removed from cache/file
 | 
						|
	 * by non-hugetlbfs specific code paths.
 | 
						|
	 */
 | 
						|
	set_page_dirty(page);
 | 
						|
 | 
						|
	spin_lock(&inode->i_lock);
 | 
						|
	inode->i_blocks += blocks_per_huge_page(h);
 | 
						|
	spin_unlock(&inode->i_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
 | 
						|
			struct vm_area_struct *vma,
 | 
						|
			struct address_space *mapping, pgoff_t idx,
 | 
						|
			unsigned long address, pte_t *ptep, unsigned int flags)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	vm_fault_t ret = VM_FAULT_SIGBUS;
 | 
						|
	int anon_rmap = 0;
 | 
						|
	unsigned long size;
 | 
						|
	struct page *page;
 | 
						|
	pte_t new_pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	unsigned long haddr = address & huge_page_mask(h);
 | 
						|
	bool new_page = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Currently, we are forced to kill the process in the event the
 | 
						|
	 * original mapper has unmapped pages from the child due to a failed
 | 
						|
	 * COW. Warn that such a situation has occurred as it may not be obvious
 | 
						|
	 */
 | 
						|
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
 | 
						|
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
 | 
						|
			   current->pid);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can not race with truncation due to holding i_mmap_rwsem.
 | 
						|
	 * i_size is modified when holding i_mmap_rwsem, so check here
 | 
						|
	 * once for faults beyond end of file.
 | 
						|
	 */
 | 
						|
	size = i_size_read(mapping->host) >> huge_page_shift(h);
 | 
						|
	if (idx >= size)
 | 
						|
		goto out;
 | 
						|
 | 
						|
retry:
 | 
						|
	page = find_lock_page(mapping, idx);
 | 
						|
	if (!page) {
 | 
						|
		/*
 | 
						|
		 * Check for page in userfault range
 | 
						|
		 */
 | 
						|
		if (userfaultfd_missing(vma)) {
 | 
						|
			u32 hash;
 | 
						|
			struct vm_fault vmf = {
 | 
						|
				.vma = vma,
 | 
						|
				.address = haddr,
 | 
						|
				.flags = flags,
 | 
						|
				/*
 | 
						|
				 * Hard to debug if it ends up being
 | 
						|
				 * used by a callee that assumes
 | 
						|
				 * something about the other
 | 
						|
				 * uninitialized fields... same as in
 | 
						|
				 * memory.c
 | 
						|
				 */
 | 
						|
			};
 | 
						|
 | 
						|
			/*
 | 
						|
			 * hugetlb_fault_mutex and i_mmap_rwsem must be
 | 
						|
			 * dropped before handling userfault.  Reacquire
 | 
						|
			 * after handling fault to make calling code simpler.
 | 
						|
			 */
 | 
						|
			hash = hugetlb_fault_mutex_hash(mapping, idx);
 | 
						|
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
			i_mmap_unlock_read(mapping);
 | 
						|
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
 | 
						|
			i_mmap_lock_read(mapping);
 | 
						|
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		page = alloc_huge_page(vma, haddr, 0);
 | 
						|
		if (IS_ERR(page)) {
 | 
						|
			/*
 | 
						|
			 * Returning error will result in faulting task being
 | 
						|
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
 | 
						|
			 * tasks from racing to fault in the same page which
 | 
						|
			 * could result in false unable to allocate errors.
 | 
						|
			 * Page migration does not take the fault mutex, but
 | 
						|
			 * does a clear then write of pte's under page table
 | 
						|
			 * lock.  Page fault code could race with migration,
 | 
						|
			 * notice the clear pte and try to allocate a page
 | 
						|
			 * here.  Before returning error, get ptl and make
 | 
						|
			 * sure there really is no pte entry.
 | 
						|
			 */
 | 
						|
			ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
			if (!huge_pte_none(huge_ptep_get(ptep))) {
 | 
						|
				ret = 0;
 | 
						|
				spin_unlock(ptl);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			spin_unlock(ptl);
 | 
						|
			ret = vmf_error(PTR_ERR(page));
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		clear_huge_page(page, address, pages_per_huge_page(h));
 | 
						|
		__SetPageUptodate(page);
 | 
						|
		new_page = true;
 | 
						|
 | 
						|
		if (vma->vm_flags & VM_MAYSHARE) {
 | 
						|
			int err = huge_add_to_page_cache(page, mapping, idx);
 | 
						|
			if (err) {
 | 
						|
				put_page(page);
 | 
						|
				if (err == -EEXIST)
 | 
						|
					goto retry;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			lock_page(page);
 | 
						|
			if (unlikely(anon_vma_prepare(vma))) {
 | 
						|
				ret = VM_FAULT_OOM;
 | 
						|
				goto backout_unlocked;
 | 
						|
			}
 | 
						|
			anon_rmap = 1;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * If memory error occurs between mmap() and fault, some process
 | 
						|
		 * don't have hwpoisoned swap entry for errored virtual address.
 | 
						|
		 * So we need to block hugepage fault by PG_hwpoison bit check.
 | 
						|
		 */
 | 
						|
		if (unlikely(PageHWPoison(page))) {
 | 
						|
			ret = VM_FAULT_HWPOISON |
 | 
						|
				VM_FAULT_SET_HINDEX(hstate_index(h));
 | 
						|
			goto backout_unlocked;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are going to COW a private mapping later, we examine the
 | 
						|
	 * pending reservations for this page now. This will ensure that
 | 
						|
	 * any allocations necessary to record that reservation occur outside
 | 
						|
	 * the spinlock.
 | 
						|
	 */
 | 
						|
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 | 
						|
		if (vma_needs_reservation(h, vma, haddr) < 0) {
 | 
						|
			ret = VM_FAULT_OOM;
 | 
						|
			goto backout_unlocked;
 | 
						|
		}
 | 
						|
		/* Just decrements count, does not deallocate */
 | 
						|
		vma_end_reservation(h, vma, haddr);
 | 
						|
	}
 | 
						|
 | 
						|
	ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
	ret = 0;
 | 
						|
	if (!huge_pte_none(huge_ptep_get(ptep)))
 | 
						|
		goto backout;
 | 
						|
 | 
						|
	if (anon_rmap) {
 | 
						|
		ClearPagePrivate(page);
 | 
						|
		hugepage_add_new_anon_rmap(page, vma, haddr);
 | 
						|
	} else
 | 
						|
		page_dup_rmap(page, true);
 | 
						|
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
 | 
						|
				&& (vma->vm_flags & VM_SHARED)));
 | 
						|
	set_huge_pte_at(mm, haddr, ptep, new_pte);
 | 
						|
 | 
						|
	hugetlb_count_add(pages_per_huge_page(h), mm);
 | 
						|
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 | 
						|
		/* Optimization, do the COW without a second fault */
 | 
						|
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(ptl);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only make newly allocated pages active.  Existing pages found
 | 
						|
	 * in the pagecache could be !page_huge_active() if they have been
 | 
						|
	 * isolated for migration.
 | 
						|
	 */
 | 
						|
	if (new_page)
 | 
						|
		set_page_huge_active(page);
 | 
						|
 | 
						|
	unlock_page(page);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
 | 
						|
backout:
 | 
						|
	spin_unlock(ptl);
 | 
						|
backout_unlocked:
 | 
						|
	unlock_page(page);
 | 
						|
	restore_reserve_on_error(h, vma, haddr, page);
 | 
						|
	put_page(page);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 | 
						|
{
 | 
						|
	unsigned long key[2];
 | 
						|
	u32 hash;
 | 
						|
 | 
						|
	key[0] = (unsigned long) mapping;
 | 
						|
	key[1] = idx;
 | 
						|
 | 
						|
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
 | 
						|
 | 
						|
	return hash & (num_fault_mutexes - 1);
 | 
						|
}
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * For uniprocesor systems we always use a single mutex, so just
 | 
						|
 * return 0 and avoid the hashing overhead.
 | 
						|
 */
 | 
						|
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
			unsigned long address, unsigned int flags)
 | 
						|
{
 | 
						|
	pte_t *ptep, entry;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	vm_fault_t ret;
 | 
						|
	u32 hash;
 | 
						|
	pgoff_t idx;
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct page *pagecache_page = NULL;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	struct address_space *mapping;
 | 
						|
	int need_wait_lock = 0;
 | 
						|
	unsigned long haddr = address & huge_page_mask(h);
 | 
						|
 | 
						|
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
 | 
						|
	if (ptep) {
 | 
						|
		/*
 | 
						|
		 * Since we hold no locks, ptep could be stale.  That is
 | 
						|
		 * OK as we are only making decisions based on content and
 | 
						|
		 * not actually modifying content here.
 | 
						|
		 */
 | 
						|
		entry = huge_ptep_get(ptep);
 | 
						|
		if (unlikely(is_hugetlb_entry_migration(entry))) {
 | 
						|
			migration_entry_wait_huge(vma, mm, ptep);
 | 
						|
			return 0;
 | 
						|
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
 | 
						|
			return VM_FAULT_HWPOISON_LARGE |
 | 
						|
				VM_FAULT_SET_HINDEX(hstate_index(h));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
 | 
						|
	 * until finished with ptep.  This serves two purposes:
 | 
						|
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
 | 
						|
	 *    and making the ptep no longer valid.
 | 
						|
	 * 2) It synchronizes us with i_size modifications during truncation.
 | 
						|
	 *
 | 
						|
	 * ptep could have already be assigned via huge_pte_offset.  That
 | 
						|
	 * is OK, as huge_pte_alloc will return the same value unless
 | 
						|
	 * something has changed.
 | 
						|
	 */
 | 
						|
	mapping = vma->vm_file->f_mapping;
 | 
						|
	i_mmap_lock_read(mapping);
 | 
						|
	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
 | 
						|
	if (!ptep) {
 | 
						|
		i_mmap_unlock_read(mapping);
 | 
						|
		return VM_FAULT_OOM;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Serialize hugepage allocation and instantiation, so that we don't
 | 
						|
	 * get spurious allocation failures if two CPUs race to instantiate
 | 
						|
	 * the same page in the page cache.
 | 
						|
	 */
 | 
						|
	idx = vma_hugecache_offset(h, vma, haddr);
 | 
						|
	hash = hugetlb_fault_mutex_hash(mapping, idx);
 | 
						|
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
 | 
						|
	entry = huge_ptep_get(ptep);
 | 
						|
	if (huge_pte_none(entry)) {
 | 
						|
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
 | 
						|
		goto out_mutex;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * entry could be a migration/hwpoison entry at this point, so this
 | 
						|
	 * check prevents the kernel from going below assuming that we have
 | 
						|
	 * an active hugepage in pagecache. This goto expects the 2nd page
 | 
						|
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
 | 
						|
	 * properly handle it.
 | 
						|
	 */
 | 
						|
	if (!pte_present(entry))
 | 
						|
		goto out_mutex;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are going to COW the mapping later, we examine the pending
 | 
						|
	 * reservations for this page now. This will ensure that any
 | 
						|
	 * allocations necessary to record that reservation occur outside the
 | 
						|
	 * spinlock. For private mappings, we also lookup the pagecache
 | 
						|
	 * page now as it is used to determine if a reservation has been
 | 
						|
	 * consumed.
 | 
						|
	 */
 | 
						|
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
 | 
						|
		if (vma_needs_reservation(h, vma, haddr) < 0) {
 | 
						|
			ret = VM_FAULT_OOM;
 | 
						|
			goto out_mutex;
 | 
						|
		}
 | 
						|
		/* Just decrements count, does not deallocate */
 | 
						|
		vma_end_reservation(h, vma, haddr);
 | 
						|
 | 
						|
		if (!(vma->vm_flags & VM_MAYSHARE))
 | 
						|
			pagecache_page = hugetlbfs_pagecache_page(h,
 | 
						|
								vma, haddr);
 | 
						|
	}
 | 
						|
 | 
						|
	ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
 | 
						|
	/* Check for a racing update before calling hugetlb_cow */
 | 
						|
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
 | 
						|
		goto out_ptl;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hugetlb_cow() requires page locks of pte_page(entry) and
 | 
						|
	 * pagecache_page, so here we need take the former one
 | 
						|
	 * when page != pagecache_page or !pagecache_page.
 | 
						|
	 */
 | 
						|
	page = pte_page(entry);
 | 
						|
	if (page != pagecache_page)
 | 
						|
		if (!trylock_page(page)) {
 | 
						|
			need_wait_lock = 1;
 | 
						|
			goto out_ptl;
 | 
						|
		}
 | 
						|
 | 
						|
	get_page(page);
 | 
						|
 | 
						|
	if (flags & FAULT_FLAG_WRITE) {
 | 
						|
		if (!huge_pte_write(entry)) {
 | 
						|
			ret = hugetlb_cow(mm, vma, address, ptep,
 | 
						|
					  pagecache_page, ptl);
 | 
						|
			goto out_put_page;
 | 
						|
		}
 | 
						|
		entry = huge_pte_mkdirty(entry);
 | 
						|
	}
 | 
						|
	entry = pte_mkyoung(entry);
 | 
						|
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
 | 
						|
						flags & FAULT_FLAG_WRITE))
 | 
						|
		update_mmu_cache(vma, haddr, ptep);
 | 
						|
out_put_page:
 | 
						|
	if (page != pagecache_page)
 | 
						|
		unlock_page(page);
 | 
						|
	put_page(page);
 | 
						|
out_ptl:
 | 
						|
	spin_unlock(ptl);
 | 
						|
 | 
						|
	if (pagecache_page) {
 | 
						|
		unlock_page(pagecache_page);
 | 
						|
		put_page(pagecache_page);
 | 
						|
	}
 | 
						|
out_mutex:
 | 
						|
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | 
						|
	i_mmap_unlock_read(mapping);
 | 
						|
	/*
 | 
						|
	 * Generally it's safe to hold refcount during waiting page lock. But
 | 
						|
	 * here we just wait to defer the next page fault to avoid busy loop and
 | 
						|
	 * the page is not used after unlocked before returning from the current
 | 
						|
	 * page fault. So we are safe from accessing freed page, even if we wait
 | 
						|
	 * here without taking refcount.
 | 
						|
	 */
 | 
						|
	if (need_wait_lock)
 | 
						|
		wait_on_page_locked(page);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 | 
						|
 * modifications for huge pages.
 | 
						|
 */
 | 
						|
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
 | 
						|
			    pte_t *dst_pte,
 | 
						|
			    struct vm_area_struct *dst_vma,
 | 
						|
			    unsigned long dst_addr,
 | 
						|
			    unsigned long src_addr,
 | 
						|
			    struct page **pagep)
 | 
						|
{
 | 
						|
	struct address_space *mapping;
 | 
						|
	pgoff_t idx;
 | 
						|
	unsigned long size;
 | 
						|
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
 | 
						|
	struct hstate *h = hstate_vma(dst_vma);
 | 
						|
	pte_t _dst_pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	int ret;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (!*pagep) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		page = alloc_huge_page(dst_vma, dst_addr, 0);
 | 
						|
		if (IS_ERR(page))
 | 
						|
			goto out;
 | 
						|
 | 
						|
		ret = copy_huge_page_from_user(page,
 | 
						|
						(const void __user *) src_addr,
 | 
						|
						pages_per_huge_page(h), false);
 | 
						|
 | 
						|
		/* fallback to copy_from_user outside mmap_lock */
 | 
						|
		if (unlikely(ret)) {
 | 
						|
			ret = -ENOENT;
 | 
						|
			*pagep = page;
 | 
						|
			/* don't free the page */
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		page = *pagep;
 | 
						|
		*pagep = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The memory barrier inside __SetPageUptodate makes sure that
 | 
						|
	 * preceding stores to the page contents become visible before
 | 
						|
	 * the set_pte_at() write.
 | 
						|
	 */
 | 
						|
	__SetPageUptodate(page);
 | 
						|
 | 
						|
	mapping = dst_vma->vm_file->f_mapping;
 | 
						|
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If shared, add to page cache
 | 
						|
	 */
 | 
						|
	if (vm_shared) {
 | 
						|
		size = i_size_read(mapping->host) >> huge_page_shift(h);
 | 
						|
		ret = -EFAULT;
 | 
						|
		if (idx >= size)
 | 
						|
			goto out_release_nounlock;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Serialization between remove_inode_hugepages() and
 | 
						|
		 * huge_add_to_page_cache() below happens through the
 | 
						|
		 * hugetlb_fault_mutex_table that here must be hold by
 | 
						|
		 * the caller.
 | 
						|
		 */
 | 
						|
		ret = huge_add_to_page_cache(page, mapping, idx);
 | 
						|
		if (ret)
 | 
						|
			goto out_release_nounlock;
 | 
						|
	}
 | 
						|
 | 
						|
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
 | 
						|
	spin_lock(ptl);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Recheck the i_size after holding PT lock to make sure not
 | 
						|
	 * to leave any page mapped (as page_mapped()) beyond the end
 | 
						|
	 * of the i_size (remove_inode_hugepages() is strict about
 | 
						|
	 * enforcing that). If we bail out here, we'll also leave a
 | 
						|
	 * page in the radix tree in the vm_shared case beyond the end
 | 
						|
	 * of the i_size, but remove_inode_hugepages() will take care
 | 
						|
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
 | 
						|
	 */
 | 
						|
	size = i_size_read(mapping->host) >> huge_page_shift(h);
 | 
						|
	ret = -EFAULT;
 | 
						|
	if (idx >= size)
 | 
						|
		goto out_release_unlock;
 | 
						|
 | 
						|
	ret = -EEXIST;
 | 
						|
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
 | 
						|
		goto out_release_unlock;
 | 
						|
 | 
						|
	if (vm_shared) {
 | 
						|
		page_dup_rmap(page, true);
 | 
						|
	} else {
 | 
						|
		ClearPagePrivate(page);
 | 
						|
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
 | 
						|
	}
 | 
						|
 | 
						|
	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
 | 
						|
	if (dst_vma->vm_flags & VM_WRITE)
 | 
						|
		_dst_pte = huge_pte_mkdirty(_dst_pte);
 | 
						|
	_dst_pte = pte_mkyoung(_dst_pte);
 | 
						|
 | 
						|
	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
 | 
						|
 | 
						|
	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
 | 
						|
					dst_vma->vm_flags & VM_WRITE);
 | 
						|
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
 | 
						|
 | 
						|
	/* No need to invalidate - it was non-present before */
 | 
						|
	update_mmu_cache(dst_vma, dst_addr, dst_pte);
 | 
						|
 | 
						|
	spin_unlock(ptl);
 | 
						|
	set_page_huge_active(page);
 | 
						|
	if (vm_shared)
 | 
						|
		unlock_page(page);
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
out_release_unlock:
 | 
						|
	spin_unlock(ptl);
 | 
						|
	if (vm_shared)
 | 
						|
		unlock_page(page);
 | 
						|
out_release_nounlock:
 | 
						|
	put_page(page);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
			 struct page **pages, struct vm_area_struct **vmas,
 | 
						|
			 unsigned long *position, unsigned long *nr_pages,
 | 
						|
			 long i, unsigned int flags, int *locked)
 | 
						|
{
 | 
						|
	unsigned long pfn_offset;
 | 
						|
	unsigned long vaddr = *position;
 | 
						|
	unsigned long remainder = *nr_pages;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	int err = -EFAULT;
 | 
						|
 | 
						|
	while (vaddr < vma->vm_end && remainder) {
 | 
						|
		pte_t *pte;
 | 
						|
		spinlock_t *ptl = NULL;
 | 
						|
		int absent;
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we have a pending SIGKILL, don't keep faulting pages and
 | 
						|
		 * potentially allocating memory.
 | 
						|
		 */
 | 
						|
		if (fatal_signal_pending(current)) {
 | 
						|
			remainder = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Some archs (sparc64, sh*) have multiple pte_ts to
 | 
						|
		 * each hugepage.  We have to make sure we get the
 | 
						|
		 * first, for the page indexing below to work.
 | 
						|
		 *
 | 
						|
		 * Note that page table lock is not held when pte is null.
 | 
						|
		 */
 | 
						|
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
 | 
						|
				      huge_page_size(h));
 | 
						|
		if (pte)
 | 
						|
			ptl = huge_pte_lock(h, mm, pte);
 | 
						|
		absent = !pte || huge_pte_none(huge_ptep_get(pte));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When coredumping, it suits get_dump_page if we just return
 | 
						|
		 * an error where there's an empty slot with no huge pagecache
 | 
						|
		 * to back it.  This way, we avoid allocating a hugepage, and
 | 
						|
		 * the sparse dumpfile avoids allocating disk blocks, but its
 | 
						|
		 * huge holes still show up with zeroes where they need to be.
 | 
						|
		 */
 | 
						|
		if (absent && (flags & FOLL_DUMP) &&
 | 
						|
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
 | 
						|
			if (pte)
 | 
						|
				spin_unlock(ptl);
 | 
						|
			remainder = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need call hugetlb_fault for both hugepages under migration
 | 
						|
		 * (in which case hugetlb_fault waits for the migration,) and
 | 
						|
		 * hwpoisoned hugepages (in which case we need to prevent the
 | 
						|
		 * caller from accessing to them.) In order to do this, we use
 | 
						|
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
 | 
						|
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
 | 
						|
		 * both cases, and because we can't follow correct pages
 | 
						|
		 * directly from any kind of swap entries.
 | 
						|
		 */
 | 
						|
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
 | 
						|
		    ((flags & FOLL_WRITE) &&
 | 
						|
		      !huge_pte_write(huge_ptep_get(pte)))) {
 | 
						|
			vm_fault_t ret;
 | 
						|
			unsigned int fault_flags = 0;
 | 
						|
 | 
						|
			if (pte)
 | 
						|
				spin_unlock(ptl);
 | 
						|
			if (flags & FOLL_WRITE)
 | 
						|
				fault_flags |= FAULT_FLAG_WRITE;
 | 
						|
			if (locked)
 | 
						|
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
 | 
						|
					FAULT_FLAG_KILLABLE;
 | 
						|
			if (flags & FOLL_NOWAIT)
 | 
						|
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
 | 
						|
					FAULT_FLAG_RETRY_NOWAIT;
 | 
						|
			if (flags & FOLL_TRIED) {
 | 
						|
				/*
 | 
						|
				 * Note: FAULT_FLAG_ALLOW_RETRY and
 | 
						|
				 * FAULT_FLAG_TRIED can co-exist
 | 
						|
				 */
 | 
						|
				fault_flags |= FAULT_FLAG_TRIED;
 | 
						|
			}
 | 
						|
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
 | 
						|
			if (ret & VM_FAULT_ERROR) {
 | 
						|
				err = vm_fault_to_errno(ret, flags);
 | 
						|
				remainder = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (ret & VM_FAULT_RETRY) {
 | 
						|
				if (locked &&
 | 
						|
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 | 
						|
					*locked = 0;
 | 
						|
				*nr_pages = 0;
 | 
						|
				/*
 | 
						|
				 * VM_FAULT_RETRY must not return an
 | 
						|
				 * error, it will return zero
 | 
						|
				 * instead.
 | 
						|
				 *
 | 
						|
				 * No need to update "position" as the
 | 
						|
				 * caller will not check it after
 | 
						|
				 * *nr_pages is set to 0.
 | 
						|
				 */
 | 
						|
				return i;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
 | 
						|
		page = pte_page(huge_ptep_get(pte));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If subpage information not requested, update counters
 | 
						|
		 * and skip the same_page loop below.
 | 
						|
		 */
 | 
						|
		if (!pages && !vmas && !pfn_offset &&
 | 
						|
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
 | 
						|
		    (remainder >= pages_per_huge_page(h))) {
 | 
						|
			vaddr += huge_page_size(h);
 | 
						|
			remainder -= pages_per_huge_page(h);
 | 
						|
			i += pages_per_huge_page(h);
 | 
						|
			spin_unlock(ptl);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
same_page:
 | 
						|
		if (pages) {
 | 
						|
			pages[i] = mem_map_offset(page, pfn_offset);
 | 
						|
			/*
 | 
						|
			 * try_grab_page() should always succeed here, because:
 | 
						|
			 * a) we hold the ptl lock, and b) we've just checked
 | 
						|
			 * that the huge page is present in the page tables. If
 | 
						|
			 * the huge page is present, then the tail pages must
 | 
						|
			 * also be present. The ptl prevents the head page and
 | 
						|
			 * tail pages from being rearranged in any way. So this
 | 
						|
			 * page must be available at this point, unless the page
 | 
						|
			 * refcount overflowed:
 | 
						|
			 */
 | 
						|
			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
 | 
						|
				spin_unlock(ptl);
 | 
						|
				remainder = 0;
 | 
						|
				err = -ENOMEM;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (vmas)
 | 
						|
			vmas[i] = vma;
 | 
						|
 | 
						|
		vaddr += PAGE_SIZE;
 | 
						|
		++pfn_offset;
 | 
						|
		--remainder;
 | 
						|
		++i;
 | 
						|
		if (vaddr < vma->vm_end && remainder &&
 | 
						|
				pfn_offset < pages_per_huge_page(h)) {
 | 
						|
			/*
 | 
						|
			 * We use pfn_offset to avoid touching the pageframes
 | 
						|
			 * of this compound page.
 | 
						|
			 */
 | 
						|
			goto same_page;
 | 
						|
		}
 | 
						|
		spin_unlock(ptl);
 | 
						|
	}
 | 
						|
	*nr_pages = remainder;
 | 
						|
	/*
 | 
						|
	 * setting position is actually required only if remainder is
 | 
						|
	 * not zero but it's faster not to add a "if (remainder)"
 | 
						|
	 * branch.
 | 
						|
	 */
 | 
						|
	*position = vaddr;
 | 
						|
 | 
						|
	return i ? i : err;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
 | 
						|
/*
 | 
						|
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 | 
						|
 * implement this.
 | 
						|
 */
 | 
						|
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
 | 
						|
		unsigned long address, unsigned long end, pgprot_t newprot)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long start = address;
 | 
						|
	pte_t *ptep;
 | 
						|
	pte_t pte;
 | 
						|
	struct hstate *h = hstate_vma(vma);
 | 
						|
	unsigned long pages = 0;
 | 
						|
	bool shared_pmd = false;
 | 
						|
	struct mmu_notifier_range range;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the case of shared PMDs, the area to flush could be beyond
 | 
						|
	 * start/end.  Set range.start/range.end to cover the maximum possible
 | 
						|
	 * range if PMD sharing is possible.
 | 
						|
	 */
 | 
						|
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
 | 
						|
				0, vma, mm, start, end);
 | 
						|
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
 | 
						|
 | 
						|
	BUG_ON(address >= end);
 | 
						|
	flush_cache_range(vma, range.start, range.end);
 | 
						|
 | 
						|
	mmu_notifier_invalidate_range_start(&range);
 | 
						|
	i_mmap_lock_write(vma->vm_file->f_mapping);
 | 
						|
	for (; address < end; address += huge_page_size(h)) {
 | 
						|
		spinlock_t *ptl;
 | 
						|
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
 | 
						|
		if (!ptep)
 | 
						|
			continue;
 | 
						|
		ptl = huge_pte_lock(h, mm, ptep);
 | 
						|
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
 | 
						|
			pages++;
 | 
						|
			spin_unlock(ptl);
 | 
						|
			shared_pmd = true;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		pte = huge_ptep_get(ptep);
 | 
						|
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (unlikely(is_hugetlb_entry_migration(pte))) {
 | 
						|
			swp_entry_t entry = pte_to_swp_entry(pte);
 | 
						|
 | 
						|
			if (is_write_migration_entry(entry)) {
 | 
						|
				pte_t newpte;
 | 
						|
 | 
						|
				make_migration_entry_read(&entry);
 | 
						|
				newpte = swp_entry_to_pte(entry);
 | 
						|
				set_huge_swap_pte_at(mm, address, ptep,
 | 
						|
						     newpte, huge_page_size(h));
 | 
						|
				pages++;
 | 
						|
			}
 | 
						|
			spin_unlock(ptl);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (!huge_pte_none(pte)) {
 | 
						|
			pte_t old_pte;
 | 
						|
 | 
						|
			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
 | 
						|
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
 | 
						|
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
 | 
						|
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
 | 
						|
			pages++;
 | 
						|
		}
 | 
						|
		spin_unlock(ptl);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
 | 
						|
	 * may have cleared our pud entry and done put_page on the page table:
 | 
						|
	 * once we release i_mmap_rwsem, another task can do the final put_page
 | 
						|
	 * and that page table be reused and filled with junk.  If we actually
 | 
						|
	 * did unshare a page of pmds, flush the range corresponding to the pud.
 | 
						|
	 */
 | 
						|
	if (shared_pmd)
 | 
						|
		flush_hugetlb_tlb_range(vma, range.start, range.end);
 | 
						|
	else
 | 
						|
		flush_hugetlb_tlb_range(vma, start, end);
 | 
						|
	/*
 | 
						|
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
 | 
						|
	 * page table protection not changing it to point to a new page.
 | 
						|
	 *
 | 
						|
	 * See Documentation/vm/mmu_notifier.rst
 | 
						|
	 */
 | 
						|
	i_mmap_unlock_write(vma->vm_file->f_mapping);
 | 
						|
	mmu_notifier_invalidate_range_end(&range);
 | 
						|
 | 
						|
	return pages << h->order;
 | 
						|
}
 | 
						|
 | 
						|
int hugetlb_reserve_pages(struct inode *inode,
 | 
						|
					long from, long to,
 | 
						|
					struct vm_area_struct *vma,
 | 
						|
					vm_flags_t vm_flags)
 | 
						|
{
 | 
						|
	long ret, chg, add = -1;
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	struct hugepage_subpool *spool = subpool_inode(inode);
 | 
						|
	struct resv_map *resv_map;
 | 
						|
	struct hugetlb_cgroup *h_cg = NULL;
 | 
						|
	long gbl_reserve, regions_needed = 0;
 | 
						|
 | 
						|
	/* This should never happen */
 | 
						|
	if (from > to) {
 | 
						|
		VM_WARN(1, "%s called with a negative range\n", __func__);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only apply hugepage reservation if asked. At fault time, an
 | 
						|
	 * attempt will be made for VM_NORESERVE to allocate a page
 | 
						|
	 * without using reserves
 | 
						|
	 */
 | 
						|
	if (vm_flags & VM_NORESERVE)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Shared mappings base their reservation on the number of pages that
 | 
						|
	 * are already allocated on behalf of the file. Private mappings need
 | 
						|
	 * to reserve the full area even if read-only as mprotect() may be
 | 
						|
	 * called to make the mapping read-write. Assume !vma is a shm mapping
 | 
						|
	 */
 | 
						|
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		/*
 | 
						|
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
 | 
						|
		 * called for inodes for which resv_maps were created (see
 | 
						|
		 * hugetlbfs_get_inode).
 | 
						|
		 */
 | 
						|
		resv_map = inode_resv_map(inode);
 | 
						|
 | 
						|
		chg = region_chg(resv_map, from, to, ®ions_needed);
 | 
						|
 | 
						|
	} else {
 | 
						|
		/* Private mapping. */
 | 
						|
		resv_map = resv_map_alloc();
 | 
						|
		if (!resv_map)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		chg = to - from;
 | 
						|
 | 
						|
		set_vma_resv_map(vma, resv_map);
 | 
						|
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
 | 
						|
	}
 | 
						|
 | 
						|
	if (chg < 0) {
 | 
						|
		ret = chg;
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = hugetlb_cgroup_charge_cgroup_rsvd(
 | 
						|
		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
 | 
						|
 | 
						|
	if (ret < 0) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
 | 
						|
	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
 | 
						|
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
 | 
						|
		 * of the resv_map.
 | 
						|
		 */
 | 
						|
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There must be enough pages in the subpool for the mapping. If
 | 
						|
	 * the subpool has a minimum size, there may be some global
 | 
						|
	 * reservations already in place (gbl_reserve).
 | 
						|
	 */
 | 
						|
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
 | 
						|
	if (gbl_reserve < 0) {
 | 
						|
		ret = -ENOSPC;
 | 
						|
		goto out_uncharge_cgroup;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check enough hugepages are available for the reservation.
 | 
						|
	 * Hand the pages back to the subpool if there are not
 | 
						|
	 */
 | 
						|
	ret = hugetlb_acct_memory(h, gbl_reserve);
 | 
						|
	if (ret < 0) {
 | 
						|
		goto out_put_pages;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Account for the reservations made. Shared mappings record regions
 | 
						|
	 * that have reservations as they are shared by multiple VMAs.
 | 
						|
	 * When the last VMA disappears, the region map says how much
 | 
						|
	 * the reservation was and the page cache tells how much of
 | 
						|
	 * the reservation was consumed. Private mappings are per-VMA and
 | 
						|
	 * only the consumed reservations are tracked. When the VMA
 | 
						|
	 * disappears, the original reservation is the VMA size and the
 | 
						|
	 * consumed reservations are stored in the map. Hence, nothing
 | 
						|
	 * else has to be done for private mappings here
 | 
						|
	 */
 | 
						|
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
 | 
						|
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
 | 
						|
 | 
						|
		if (unlikely(add < 0)) {
 | 
						|
			hugetlb_acct_memory(h, -gbl_reserve);
 | 
						|
			ret = add;
 | 
						|
			goto out_put_pages;
 | 
						|
		} else if (unlikely(chg > add)) {
 | 
						|
			/*
 | 
						|
			 * pages in this range were added to the reserve
 | 
						|
			 * map between region_chg and region_add.  This
 | 
						|
			 * indicates a race with alloc_huge_page.  Adjust
 | 
						|
			 * the subpool and reserve counts modified above
 | 
						|
			 * based on the difference.
 | 
						|
			 */
 | 
						|
			long rsv_adjust;
 | 
						|
 | 
						|
			hugetlb_cgroup_uncharge_cgroup_rsvd(
 | 
						|
				hstate_index(h),
 | 
						|
				(chg - add) * pages_per_huge_page(h), h_cg);
 | 
						|
 | 
						|
			rsv_adjust = hugepage_subpool_put_pages(spool,
 | 
						|
								chg - add);
 | 
						|
			hugetlb_acct_memory(h, -rsv_adjust);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
out_put_pages:
 | 
						|
	/* put back original number of pages, chg */
 | 
						|
	(void)hugepage_subpool_put_pages(spool, chg);
 | 
						|
out_uncharge_cgroup:
 | 
						|
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
 | 
						|
					    chg * pages_per_huge_page(h), h_cg);
 | 
						|
out_err:
 | 
						|
	if (!vma || vma->vm_flags & VM_MAYSHARE)
 | 
						|
		/* Only call region_abort if the region_chg succeeded but the
 | 
						|
		 * region_add failed or didn't run.
 | 
						|
		 */
 | 
						|
		if (chg >= 0 && add < 0)
 | 
						|
			region_abort(resv_map, from, to, regions_needed);
 | 
						|
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | 
						|
		kref_put(&resv_map->refs, resv_map_release);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
 | 
						|
								long freed)
 | 
						|
{
 | 
						|
	struct hstate *h = hstate_inode(inode);
 | 
						|
	struct resv_map *resv_map = inode_resv_map(inode);
 | 
						|
	long chg = 0;
 | 
						|
	struct hugepage_subpool *spool = subpool_inode(inode);
 | 
						|
	long gbl_reserve;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since this routine can be called in the evict inode path for all
 | 
						|
	 * hugetlbfs inodes, resv_map could be NULL.
 | 
						|
	 */
 | 
						|
	if (resv_map) {
 | 
						|
		chg = region_del(resv_map, start, end);
 | 
						|
		/*
 | 
						|
		 * region_del() can fail in the rare case where a region
 | 
						|
		 * must be split and another region descriptor can not be
 | 
						|
		 * allocated.  If end == LONG_MAX, it will not fail.
 | 
						|
		 */
 | 
						|
		if (chg < 0)
 | 
						|
			return chg;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&inode->i_lock);
 | 
						|
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
 | 
						|
	spin_unlock(&inode->i_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the subpool has a minimum size, the number of global
 | 
						|
	 * reservations to be released may be adjusted.
 | 
						|
	 */
 | 
						|
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
 | 
						|
	hugetlb_acct_memory(h, -gbl_reserve);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
 | 
						|
static unsigned long page_table_shareable(struct vm_area_struct *svma,
 | 
						|
				struct vm_area_struct *vma,
 | 
						|
				unsigned long addr, pgoff_t idx)
 | 
						|
{
 | 
						|
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
 | 
						|
				svma->vm_start;
 | 
						|
	unsigned long sbase = saddr & PUD_MASK;
 | 
						|
	unsigned long s_end = sbase + PUD_SIZE;
 | 
						|
 | 
						|
	/* Allow segments to share if only one is marked locked */
 | 
						|
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 | 
						|
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * match the virtual addresses, permission and the alignment of the
 | 
						|
	 * page table page.
 | 
						|
	 */
 | 
						|
	if (pmd_index(addr) != pmd_index(saddr) ||
 | 
						|
	    vm_flags != svm_flags ||
 | 
						|
	    sbase < svma->vm_start || svma->vm_end < s_end)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return saddr;
 | 
						|
}
 | 
						|
 | 
						|
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
 | 
						|
{
 | 
						|
	unsigned long base = addr & PUD_MASK;
 | 
						|
	unsigned long end = base + PUD_SIZE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * check on proper vm_flags and page table alignment
 | 
						|
	 */
 | 
						|
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if start,end range within vma could be mapped by shared pmd.
 | 
						|
 * If yes, adjust start and end to cover range associated with possible
 | 
						|
 * shared pmd mappings.
 | 
						|
 */
 | 
						|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
 | 
						|
				unsigned long *start, unsigned long *end)
 | 
						|
{
 | 
						|
	unsigned long a_start, a_end;
 | 
						|
 | 
						|
	if (!(vma->vm_flags & VM_MAYSHARE))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Extend the range to be PUD aligned for a worst case scenario */
 | 
						|
	a_start = ALIGN_DOWN(*start, PUD_SIZE);
 | 
						|
	a_end = ALIGN(*end, PUD_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Intersect the range with the vma range, since pmd sharing won't be
 | 
						|
	 * across vma after all
 | 
						|
	 */
 | 
						|
	*start = max(vma->vm_start, a_start);
 | 
						|
	*end = min(vma->vm_end, a_end);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 | 
						|
 * and returns the corresponding pte. While this is not necessary for the
 | 
						|
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 | 
						|
 * code much cleaner.
 | 
						|
 *
 | 
						|
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 | 
						|
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 | 
						|
 * table entries associated with the address space.  This is important as we
 | 
						|
 * are setting up sharing based on existing page table entries (mappings).
 | 
						|
 *
 | 
						|
 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
 | 
						|
 * huge_pte_alloc know that sharing is not possible and do not take
 | 
						|
 * i_mmap_rwsem as a performance optimization.  This is handled by the
 | 
						|
 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
 | 
						|
 * only required for subsequent processing.
 | 
						|
 */
 | 
						|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = find_vma(mm, addr);
 | 
						|
	struct address_space *mapping = vma->vm_file->f_mapping;
 | 
						|
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
 | 
						|
			vma->vm_pgoff;
 | 
						|
	struct vm_area_struct *svma;
 | 
						|
	unsigned long saddr;
 | 
						|
	pte_t *spte = NULL;
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	if (!vma_shareable(vma, addr))
 | 
						|
		return (pte_t *)pmd_alloc(mm, pud, addr);
 | 
						|
 | 
						|
	i_mmap_assert_locked(mapping);
 | 
						|
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
 | 
						|
		if (svma == vma)
 | 
						|
			continue;
 | 
						|
 | 
						|
		saddr = page_table_shareable(svma, vma, addr, idx);
 | 
						|
		if (saddr) {
 | 
						|
			spte = huge_pte_offset(svma->vm_mm, saddr,
 | 
						|
					       vma_mmu_pagesize(svma));
 | 
						|
			if (spte) {
 | 
						|
				get_page(virt_to_page(spte));
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!spte)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
 | 
						|
	if (pud_none(*pud)) {
 | 
						|
		pud_populate(mm, pud,
 | 
						|
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
 | 
						|
		mm_inc_nr_pmds(mm);
 | 
						|
	} else {
 | 
						|
		put_page(virt_to_page(spte));
 | 
						|
	}
 | 
						|
	spin_unlock(ptl);
 | 
						|
out:
 | 
						|
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * unmap huge page backed by shared pte.
 | 
						|
 *
 | 
						|
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 | 
						|
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 | 
						|
 * decrementing the ref count. If count == 1, the pte page is not shared.
 | 
						|
 *
 | 
						|
 * Called with page table lock held and i_mmap_rwsem held in write mode.
 | 
						|
 *
 | 
						|
 * returns: 1 successfully unmapped a shared pte page
 | 
						|
 *	    0 the underlying pte page is not shared, or it is the last user
 | 
						|
 */
 | 
						|
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
					unsigned long *addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	pgd_t *pgd = pgd_offset(mm, *addr);
 | 
						|
	p4d_t *p4d = p4d_offset(pgd, *addr);
 | 
						|
	pud_t *pud = pud_offset(p4d, *addr);
 | 
						|
 | 
						|
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
 | 
						|
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
 | 
						|
	if (page_count(virt_to_page(ptep)) == 1)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pud_clear(pud);
 | 
						|
	put_page(virt_to_page(ptep));
 | 
						|
	mm_dec_nr_pmds(mm);
 | 
						|
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#define want_pmd_share()	(1)
 | 
						|
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
 | 
						|
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
				unsigned long *addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
 | 
						|
				unsigned long *start, unsigned long *end)
 | 
						|
{
 | 
						|
}
 | 
						|
#define want_pmd_share()	(0)
 | 
						|
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
 | 
						|
pte_t *huge_pte_alloc(struct mm_struct *mm,
 | 
						|
			unsigned long addr, unsigned long sz)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	p4d_t *p4d;
 | 
						|
	pud_t *pud;
 | 
						|
	pte_t *pte = NULL;
 | 
						|
 | 
						|
	pgd = pgd_offset(mm, addr);
 | 
						|
	p4d = p4d_alloc(mm, pgd, addr);
 | 
						|
	if (!p4d)
 | 
						|
		return NULL;
 | 
						|
	pud = pud_alloc(mm, p4d, addr);
 | 
						|
	if (pud) {
 | 
						|
		if (sz == PUD_SIZE) {
 | 
						|
			pte = (pte_t *)pud;
 | 
						|
		} else {
 | 
						|
			BUG_ON(sz != PMD_SIZE);
 | 
						|
			if (want_pmd_share() && pud_none(*pud))
 | 
						|
				pte = huge_pmd_share(mm, addr, pud);
 | 
						|
			else
 | 
						|
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
 | 
						|
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 | 
						|
 * entry at address @addr
 | 
						|
 *
 | 
						|
 * Return: Pointer to page table entry (PUD or PMD) for
 | 
						|
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
 | 
						|
 * size @sz doesn't match the hugepage size at this level of the page
 | 
						|
 * table.
 | 
						|
 */
 | 
						|
pte_t *huge_pte_offset(struct mm_struct *mm,
 | 
						|
		       unsigned long addr, unsigned long sz)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	p4d_t *p4d;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
 | 
						|
	pgd = pgd_offset(mm, addr);
 | 
						|
	if (!pgd_present(*pgd))
 | 
						|
		return NULL;
 | 
						|
	p4d = p4d_offset(pgd, addr);
 | 
						|
	if (!p4d_present(*p4d))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pud = pud_offset(p4d, addr);
 | 
						|
	if (sz == PUD_SIZE)
 | 
						|
		/* must be pud huge, non-present or none */
 | 
						|
		return (pte_t *)pud;
 | 
						|
	if (!pud_present(*pud))
 | 
						|
		return NULL;
 | 
						|
	/* must have a valid entry and size to go further */
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, addr);
 | 
						|
	/* must be pmd huge, non-present or none */
 | 
						|
	return (pte_t *)pmd;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
 | 
						|
 | 
						|
/*
 | 
						|
 * These functions are overwritable if your architecture needs its own
 | 
						|
 * behavior.
 | 
						|
 */
 | 
						|
struct page * __weak
 | 
						|
follow_huge_addr(struct mm_struct *mm, unsigned long address,
 | 
						|
			      int write)
 | 
						|
{
 | 
						|
	return ERR_PTR(-EINVAL);
 | 
						|
}
 | 
						|
 | 
						|
struct page * __weak
 | 
						|
follow_huge_pd(struct vm_area_struct *vma,
 | 
						|
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
 | 
						|
{
 | 
						|
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
struct page * __weak
 | 
						|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 | 
						|
		pmd_t *pmd, int flags)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	pte_t pte;
 | 
						|
 | 
						|
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 | 
						|
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 | 
						|
			 (FOLL_PIN | FOLL_GET)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
retry:
 | 
						|
	ptl = pmd_lockptr(mm, pmd);
 | 
						|
	spin_lock(ptl);
 | 
						|
	/*
 | 
						|
	 * make sure that the address range covered by this pmd is not
 | 
						|
	 * unmapped from other threads.
 | 
						|
	 */
 | 
						|
	if (!pmd_huge(*pmd))
 | 
						|
		goto out;
 | 
						|
	pte = huge_ptep_get((pte_t *)pmd);
 | 
						|
	if (pte_present(pte)) {
 | 
						|
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
 | 
						|
		/*
 | 
						|
		 * try_grab_page() should always succeed here, because: a) we
 | 
						|
		 * hold the pmd (ptl) lock, and b) we've just checked that the
 | 
						|
		 * huge pmd (head) page is present in the page tables. The ptl
 | 
						|
		 * prevents the head page and tail pages from being rearranged
 | 
						|
		 * in any way. So this page must be available at this point,
 | 
						|
		 * unless the page refcount overflowed:
 | 
						|
		 */
 | 
						|
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
 | 
						|
			page = NULL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (is_hugetlb_entry_migration(pte)) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * hwpoisoned entry is treated as no_page_table in
 | 
						|
		 * follow_page_mask().
 | 
						|
		 */
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock(ptl);
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
struct page * __weak
 | 
						|
follow_huge_pud(struct mm_struct *mm, unsigned long address,
 | 
						|
		pud_t *pud, int flags)
 | 
						|
{
 | 
						|
	if (flags & (FOLL_GET | FOLL_PIN))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
struct page * __weak
 | 
						|
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
 | 
						|
{
 | 
						|
	if (flags & (FOLL_GET | FOLL_PIN))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
bool isolate_huge_page(struct page *page, struct list_head *list)
 | 
						|
{
 | 
						|
	bool ret = true;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageHead(page), page);
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
 | 
						|
		ret = false;
 | 
						|
		goto unlock;
 | 
						|
	}
 | 
						|
	clear_page_huge_active(page);
 | 
						|
	list_move_tail(&page->lru, list);
 | 
						|
unlock:
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void putback_active_hugepage(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(!PageHead(page), page);
 | 
						|
	spin_lock(&hugetlb_lock);
 | 
						|
	set_page_huge_active(page);
 | 
						|
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
 | 
						|
	spin_unlock(&hugetlb_lock);
 | 
						|
	put_page(page);
 | 
						|
}
 | 
						|
 | 
						|
void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
 | 
						|
{
 | 
						|
	struct hstate *h = page_hstate(oldpage);
 | 
						|
 | 
						|
	hugetlb_cgroup_migrate(oldpage, newpage);
 | 
						|
	set_page_owner_migrate_reason(newpage, reason);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * transfer temporary state of the new huge page. This is
 | 
						|
	 * reverse to other transitions because the newpage is going to
 | 
						|
	 * be final while the old one will be freed so it takes over
 | 
						|
	 * the temporary status.
 | 
						|
	 *
 | 
						|
	 * Also note that we have to transfer the per-node surplus state
 | 
						|
	 * here as well otherwise the global surplus count will not match
 | 
						|
	 * the per-node's.
 | 
						|
	 */
 | 
						|
	if (PageHugeTemporary(newpage)) {
 | 
						|
		int old_nid = page_to_nid(oldpage);
 | 
						|
		int new_nid = page_to_nid(newpage);
 | 
						|
 | 
						|
		SetPageHugeTemporary(oldpage);
 | 
						|
		ClearPageHugeTemporary(newpage);
 | 
						|
 | 
						|
		spin_lock(&hugetlb_lock);
 | 
						|
		if (h->surplus_huge_pages_node[old_nid]) {
 | 
						|
			h->surplus_huge_pages_node[old_nid]--;
 | 
						|
			h->surplus_huge_pages_node[new_nid]++;
 | 
						|
		}
 | 
						|
		spin_unlock(&hugetlb_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
static bool cma_reserve_called __initdata;
 | 
						|
 | 
						|
static int __init cmdline_parse_hugetlb_cma(char *p)
 | 
						|
{
 | 
						|
	hugetlb_cma_size = memparse(p, &p);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
 | 
						|
 | 
						|
void __init hugetlb_cma_reserve(int order)
 | 
						|
{
 | 
						|
	unsigned long size, reserved, per_node;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	cma_reserve_called = true;
 | 
						|
 | 
						|
	if (!hugetlb_cma_size)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
 | 
						|
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
 | 
						|
			(PAGE_SIZE << order) / SZ_1M);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If 3 GB area is requested on a machine with 4 numa nodes,
 | 
						|
	 * let's allocate 1 GB on first three nodes and ignore the last one.
 | 
						|
	 */
 | 
						|
	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
 | 
						|
	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
 | 
						|
		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
 | 
						|
 | 
						|
	reserved = 0;
 | 
						|
	for_each_node_state(nid, N_ONLINE) {
 | 
						|
		int res;
 | 
						|
		char name[CMA_MAX_NAME];
 | 
						|
 | 
						|
		size = min(per_node, hugetlb_cma_size - reserved);
 | 
						|
		size = round_up(size, PAGE_SIZE << order);
 | 
						|
 | 
						|
		snprintf(name, sizeof(name), "hugetlb%d", nid);
 | 
						|
		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
 | 
						|
						 0, false, name,
 | 
						|
						 &hugetlb_cma[nid], nid);
 | 
						|
		if (res) {
 | 
						|
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
 | 
						|
				res, nid);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		reserved += size;
 | 
						|
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
 | 
						|
			size / SZ_1M, nid);
 | 
						|
 | 
						|
		if (reserved >= hugetlb_cma_size)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init hugetlb_cma_check(void)
 | 
						|
{
 | 
						|
	if (!hugetlb_cma_size || cma_reserve_called)
 | 
						|
		return;
 | 
						|
 | 
						|
	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_CMA */
 |