mirror of
https://github.com/torvalds/linux.git
synced 2025-11-06 19:50:24 +02:00
documented (hopefully adequately) in the respective changelogs. Notable
series include:
- Lucas Stach has provided some page-mapping
cleanup/consolidation/maintainability work in the series "mm/treewide:
Remove pXd_huge() API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being allocated:
number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in largely
similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
Weiner has fixed the page allocator's handling of migratetype requests,
with resulting improvements in compaction efficiency.
- In the series "make the hugetlb migration strategy consistent" Baolin
Wang has fixed a hugetlb migration issue, which should improve hugetlb
allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when memory
almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting" Kairui
Song has optimized pagecache insertion, yielding ~10% performance
improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various page->flags
cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
"mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs. This
is a simple first-cut implementation for now. The series is "support
multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in the
series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts in
the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes
the initialization code so that migration between different memory types
works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant driver
in the series "mm: follow_pte() improvements and acrn follow_pte()
fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to folio
in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size THP's
in the series "mm: add per-order mTHP alloc and swpout counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His series
"mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback instrumentation
in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series "Fix
and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
series "Improve anon_vma scalability for anon VMAs". Intel's test bot
reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
=V3R/
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
399 lines
9.8 KiB
C
399 lines
9.8 KiB
C
/*
|
|
* arch/sh/mm/cache-sh4.c
|
|
*
|
|
* Copyright (C) 1999, 2000, 2002 Niibe Yutaka
|
|
* Copyright (C) 2001 - 2009 Paul Mundt
|
|
* Copyright (C) 2003 Richard Curnow
|
|
* Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cache_insns.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
/*
|
|
* The maximum number of pages we support up to when doing ranged dcache
|
|
* flushing. Anything exceeding this will simply flush the dcache in its
|
|
* entirety.
|
|
*/
|
|
#define MAX_ICACHE_PAGES 32
|
|
|
|
static void __flush_cache_one(unsigned long addr, unsigned long phys,
|
|
unsigned long exec_offset);
|
|
|
|
/*
|
|
* Write back the range of D-cache, and purge the I-cache.
|
|
*
|
|
* Called from kernel/module.c:sys_init_module and routine for a.out format,
|
|
* signal handler code and kprobes code
|
|
*/
|
|
static void sh4_flush_icache_range(void *args)
|
|
{
|
|
struct flusher_data *data = args;
|
|
unsigned long start, end;
|
|
unsigned long flags, v;
|
|
int i;
|
|
|
|
start = data->addr1;
|
|
end = data->addr2;
|
|
|
|
/* If there are too many pages then just blow away the caches */
|
|
if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
|
|
local_flush_cache_all(NULL);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Selectively flush d-cache then invalidate the i-cache.
|
|
* This is inefficient, so only use this for small ranges.
|
|
*/
|
|
start &= ~(L1_CACHE_BYTES-1);
|
|
end += L1_CACHE_BYTES-1;
|
|
end &= ~(L1_CACHE_BYTES-1);
|
|
|
|
local_irq_save(flags);
|
|
jump_to_uncached();
|
|
|
|
for (v = start; v < end; v += L1_CACHE_BYTES) {
|
|
unsigned long icacheaddr;
|
|
int j, n;
|
|
|
|
__ocbwb(v);
|
|
|
|
icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
|
|
cpu_data->icache.entry_mask);
|
|
|
|
/* Clear i-cache line valid-bit */
|
|
n = boot_cpu_data.icache.n_aliases;
|
|
for (i = 0; i < cpu_data->icache.ways; i++) {
|
|
for (j = 0; j < n; j++)
|
|
__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
|
|
icacheaddr += cpu_data->icache.way_incr;
|
|
}
|
|
}
|
|
|
|
back_to_cached();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void flush_cache_one(unsigned long start, unsigned long phys)
|
|
{
|
|
unsigned long flags, exec_offset = 0;
|
|
|
|
/*
|
|
* All types of SH-4 require PC to be uncached to operate on the I-cache.
|
|
* Some types of SH-4 require PC to be uncached to operate on the D-cache.
|
|
*/
|
|
if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
|
|
(start < CACHE_OC_ADDRESS_ARRAY))
|
|
exec_offset = cached_to_uncached;
|
|
|
|
local_irq_save(flags);
|
|
__flush_cache_one(start, phys, exec_offset);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Write back & invalidate the D-cache of the page.
|
|
* (To avoid "alias" issues)
|
|
*/
|
|
static void sh4_flush_dcache_folio(void *arg)
|
|
{
|
|
struct folio *folio = arg;
|
|
#ifndef CONFIG_SMP
|
|
struct address_space *mapping = folio_flush_mapping(folio);
|
|
|
|
if (mapping && !mapping_mapped(mapping))
|
|
clear_bit(PG_dcache_clean, &folio->flags);
|
|
else
|
|
#endif
|
|
{
|
|
unsigned long pfn = folio_pfn(folio);
|
|
unsigned long addr = (unsigned long)folio_address(folio);
|
|
unsigned int i, nr = folio_nr_pages(folio);
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
|
|
(addr & shm_align_mask),
|
|
pfn * PAGE_SIZE);
|
|
addr += PAGE_SIZE;
|
|
pfn++;
|
|
}
|
|
}
|
|
|
|
wmb();
|
|
}
|
|
|
|
/* TODO: Selective icache invalidation through IC address array.. */
|
|
static void flush_icache_all(void)
|
|
{
|
|
unsigned long flags, ccr;
|
|
|
|
local_irq_save(flags);
|
|
jump_to_uncached();
|
|
|
|
/* Flush I-cache */
|
|
ccr = __raw_readl(SH_CCR);
|
|
ccr |= CCR_CACHE_ICI;
|
|
__raw_writel(ccr, SH_CCR);
|
|
|
|
/*
|
|
* back_to_cached() will take care of the barrier for us, don't add
|
|
* another one!
|
|
*/
|
|
|
|
back_to_cached();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void flush_dcache_all(void)
|
|
{
|
|
unsigned long addr, end_addr, entry_offset;
|
|
|
|
end_addr = CACHE_OC_ADDRESS_ARRAY +
|
|
(current_cpu_data.dcache.sets <<
|
|
current_cpu_data.dcache.entry_shift) *
|
|
current_cpu_data.dcache.ways;
|
|
|
|
entry_offset = 1 << current_cpu_data.dcache.entry_shift;
|
|
|
|
for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
__raw_writel(0, addr); addr += entry_offset;
|
|
}
|
|
}
|
|
|
|
static void sh4_flush_cache_all(void *unused)
|
|
{
|
|
flush_dcache_all();
|
|
flush_icache_all();
|
|
}
|
|
|
|
/*
|
|
* Note : (RPC) since the caches are physically tagged, the only point
|
|
* of flush_cache_mm for SH-4 is to get rid of aliases from the
|
|
* D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
|
|
* lines can stay resident so long as the virtual address they were
|
|
* accessed with (hence cache set) is in accord with the physical
|
|
* address (i.e. tag). It's no different here.
|
|
*
|
|
* Caller takes mm->mmap_lock.
|
|
*/
|
|
static void sh4_flush_cache_mm(void *arg)
|
|
{
|
|
struct mm_struct *mm = arg;
|
|
|
|
if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
|
|
return;
|
|
|
|
flush_dcache_all();
|
|
}
|
|
|
|
/*
|
|
* Write back and invalidate I/D-caches for the page.
|
|
*
|
|
* ADDR: Virtual Address (U0 address)
|
|
* PFN: Physical page number
|
|
*/
|
|
static void sh4_flush_cache_page(void *args)
|
|
{
|
|
struct flusher_data *data = args;
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
unsigned long address, pfn, phys;
|
|
int map_coherent = 0;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
void *vaddr;
|
|
|
|
vma = data->vma;
|
|
address = data->addr1 & PAGE_MASK;
|
|
pfn = data->addr2;
|
|
phys = pfn << PAGE_SHIFT;
|
|
page = pfn_to_page(pfn);
|
|
|
|
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
|
|
return;
|
|
|
|
pmd = pmd_off(vma->vm_mm, address);
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
/* If the page isn't present, there is nothing to do here. */
|
|
if (!(pte_val(*pte) & _PAGE_PRESENT))
|
|
return;
|
|
|
|
if ((vma->vm_mm == current->active_mm))
|
|
vaddr = NULL;
|
|
else {
|
|
struct folio *folio = page_folio(page);
|
|
/*
|
|
* Use kmap_coherent or kmap_atomic to do flushes for
|
|
* another ASID than the current one.
|
|
*/
|
|
map_coherent = (current_cpu_data.dcache.n_aliases &&
|
|
test_bit(PG_dcache_clean, folio_flags(folio, 0)) &&
|
|
page_mapped(page));
|
|
if (map_coherent)
|
|
vaddr = kmap_coherent(page, address);
|
|
else
|
|
vaddr = kmap_atomic(page);
|
|
|
|
address = (unsigned long)vaddr;
|
|
}
|
|
|
|
flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
|
|
(address & shm_align_mask), phys);
|
|
|
|
if (vma->vm_flags & VM_EXEC)
|
|
flush_icache_all();
|
|
|
|
if (vaddr) {
|
|
if (map_coherent)
|
|
kunmap_coherent(vaddr);
|
|
else
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write back and invalidate D-caches.
|
|
*
|
|
* START, END: Virtual Address (U0 address)
|
|
*
|
|
* NOTE: We need to flush the _physical_ page entry.
|
|
* Flushing the cache lines for U0 only isn't enough.
|
|
* We need to flush for P1 too, which may contain aliases.
|
|
*/
|
|
static void sh4_flush_cache_range(void *args)
|
|
{
|
|
struct flusher_data *data = args;
|
|
struct vm_area_struct *vma;
|
|
unsigned long start, end;
|
|
|
|
vma = data->vma;
|
|
start = data->addr1;
|
|
end = data->addr2;
|
|
|
|
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
|
|
return;
|
|
|
|
/*
|
|
* If cache is only 4k-per-way, there are never any 'aliases'. Since
|
|
* the cache is physically tagged, the data can just be left in there.
|
|
*/
|
|
if (boot_cpu_data.dcache.n_aliases == 0)
|
|
return;
|
|
|
|
flush_dcache_all();
|
|
|
|
if (vma->vm_flags & VM_EXEC)
|
|
flush_icache_all();
|
|
}
|
|
|
|
/**
|
|
* __flush_cache_one
|
|
*
|
|
* @addr: address in memory mapped cache array
|
|
* @phys: P1 address to flush (has to match tags if addr has 'A' bit
|
|
* set i.e. associative write)
|
|
* @exec_offset: set to 0x20000000 if flush has to be executed from P2
|
|
* region else 0x0
|
|
*
|
|
* The offset into the cache array implied by 'addr' selects the
|
|
* 'colour' of the virtual address range that will be flushed. The
|
|
* operation (purge/write-back) is selected by the lower 2 bits of
|
|
* 'phys'.
|
|
*/
|
|
static void __flush_cache_one(unsigned long addr, unsigned long phys,
|
|
unsigned long exec_offset)
|
|
{
|
|
int way_count;
|
|
unsigned long base_addr = addr;
|
|
struct cache_info *dcache;
|
|
unsigned long way_incr;
|
|
unsigned long a, ea, p;
|
|
unsigned long temp_pc;
|
|
|
|
dcache = &boot_cpu_data.dcache;
|
|
/* Write this way for better assembly. */
|
|
way_count = dcache->ways;
|
|
way_incr = dcache->way_incr;
|
|
|
|
/*
|
|
* Apply exec_offset (i.e. branch to P2 if required.).
|
|
*
|
|
* FIXME:
|
|
*
|
|
* If I write "=r" for the (temp_pc), it puts this in r6 hence
|
|
* trashing exec_offset before it's been added on - why? Hence
|
|
* "=&r" as a 'workaround'
|
|
*/
|
|
asm volatile("mov.l 1f, %0\n\t"
|
|
"add %1, %0\n\t"
|
|
"jmp @%0\n\t"
|
|
"nop\n\t"
|
|
".balign 4\n\t"
|
|
"1: .long 2f\n\t"
|
|
"2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
|
|
|
|
/*
|
|
* We know there will be >=1 iteration, so write as do-while to avoid
|
|
* pointless nead-of-loop check for 0 iterations.
|
|
*/
|
|
do {
|
|
ea = base_addr + PAGE_SIZE;
|
|
a = base_addr;
|
|
p = phys;
|
|
|
|
do {
|
|
*(volatile unsigned long *)a = p;
|
|
/*
|
|
* Next line: intentionally not p+32, saves an add, p
|
|
* will do since only the cache tag bits need to
|
|
* match.
|
|
*/
|
|
*(volatile unsigned long *)(a+32) = p;
|
|
a += 64;
|
|
p += 64;
|
|
} while (a < ea);
|
|
|
|
base_addr += way_incr;
|
|
} while (--way_count != 0);
|
|
}
|
|
|
|
/*
|
|
* SH-4 has virtually indexed and physically tagged cache.
|
|
*/
|
|
void __init sh4_cache_init(void)
|
|
{
|
|
printk("PVR=%08x CVR=%08x PRR=%08x\n",
|
|
__raw_readl(CCN_PVR),
|
|
__raw_readl(CCN_CVR),
|
|
__raw_readl(CCN_PRR));
|
|
|
|
local_flush_icache_range = sh4_flush_icache_range;
|
|
local_flush_dcache_folio = sh4_flush_dcache_folio;
|
|
local_flush_cache_all = sh4_flush_cache_all;
|
|
local_flush_cache_mm = sh4_flush_cache_mm;
|
|
local_flush_cache_dup_mm = sh4_flush_cache_mm;
|
|
local_flush_cache_page = sh4_flush_cache_page;
|
|
local_flush_cache_range = sh4_flush_cache_range;
|
|
|
|
sh4__flush_region_init();
|
|
}
|