mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	strncpy() is deprecated for use on NUL-terminated destination strings
[1] and as such we should prefer more robust and less ambiguous string
interfaces.
bpf sym names get looked up and compared/cleaned with various string
apis. This suggests they need to be NUL-terminated (strncpy() suggests
this but does not guarantee it).
|	static int compare_symbol_name(const char *name, char *namebuf)
|	{
|		cleanup_symbol_name(namebuf);
|		return strcmp(name, namebuf);
|	}
|	static void cleanup_symbol_name(char *s)
|	{
|		...
|		res = strstr(s, ".llvm.");
|		...
|	}
Use strscpy() as this method guarantees NUL-termination on the
destination buffer.
This patch also replaces two uses of strncpy() used in log.c. These are
simple replacements as postfix has been zero-initialized on the stack
and has source arguments with a size less than the destination's size.
Note that this patch uses the new 2-argument version of strscpy
introduced in commit e6584c3964 ("string: Allow 2-argument strscpy()").
Signed-off-by: Justin Stitt <justinstitt@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1]
Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2]
Link: https://github.com/KSPP/linux/issues/90
Link: https://lore.kernel.org/bpf/20240402-strncpy-kernel-bpf-core-c-v1-1-7cb07a426e78@google.com
		
	
			
		
			
				
	
	
		
			876 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			876 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 | 
						|
 * Copyright (c) 2016 Facebook
 | 
						|
 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
 | 
						|
 */
 | 
						|
#include <uapi/linux/btf.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/bpf.h>
 | 
						|
#include <linux/bpf_verifier.h>
 | 
						|
#include <linux/math64.h>
 | 
						|
#include <linux/string.h>
 | 
						|
 | 
						|
#define verbose(env, fmt, args...) bpf_verifier_log_write(env, fmt, ##args)
 | 
						|
 | 
						|
static bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
 | 
						|
{
 | 
						|
	/* ubuf and len_total should both be specified (or not) together */
 | 
						|
	if (!!log->ubuf != !!log->len_total)
 | 
						|
		return false;
 | 
						|
	/* log buf without log_level is meaningless */
 | 
						|
	if (log->ubuf && log->level == 0)
 | 
						|
		return false;
 | 
						|
	if (log->level & ~BPF_LOG_MASK)
 | 
						|
		return false;
 | 
						|
	if (log->len_total > UINT_MAX >> 2)
 | 
						|
		return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
 | 
						|
		  char __user *log_buf, u32 log_size)
 | 
						|
{
 | 
						|
	log->level = log_level;
 | 
						|
	log->ubuf = log_buf;
 | 
						|
	log->len_total = log_size;
 | 
						|
 | 
						|
	/* log attributes have to be sane */
 | 
						|
	if (!bpf_verifier_log_attr_valid(log))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void bpf_vlog_update_len_max(struct bpf_verifier_log *log, u32 add_len)
 | 
						|
{
 | 
						|
	/* add_len includes terminal \0, so no need for +1. */
 | 
						|
	u64 len = log->end_pos + add_len;
 | 
						|
 | 
						|
	/* log->len_max could be larger than our current len due to
 | 
						|
	 * bpf_vlog_reset() calls, so we maintain the max of any length at any
 | 
						|
	 * previous point
 | 
						|
	 */
 | 
						|
	if (len > UINT_MAX)
 | 
						|
		log->len_max = UINT_MAX;
 | 
						|
	else if (len > log->len_max)
 | 
						|
		log->len_max = len;
 | 
						|
}
 | 
						|
 | 
						|
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
 | 
						|
		       va_list args)
 | 
						|
{
 | 
						|
	u64 cur_pos;
 | 
						|
	u32 new_n, n;
 | 
						|
 | 
						|
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
 | 
						|
 | 
						|
	if (log->level == BPF_LOG_KERNEL) {
 | 
						|
		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
 | 
						|
 | 
						|
		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	n += 1; /* include terminating zero */
 | 
						|
	bpf_vlog_update_len_max(log, n);
 | 
						|
 | 
						|
	if (log->level & BPF_LOG_FIXED) {
 | 
						|
		/* check if we have at least something to put into user buf */
 | 
						|
		new_n = 0;
 | 
						|
		if (log->end_pos < log->len_total) {
 | 
						|
			new_n = min_t(u32, log->len_total - log->end_pos, n);
 | 
						|
			log->kbuf[new_n - 1] = '\0';
 | 
						|
		}
 | 
						|
 | 
						|
		cur_pos = log->end_pos;
 | 
						|
		log->end_pos += n - 1; /* don't count terminating '\0' */
 | 
						|
 | 
						|
		if (log->ubuf && new_n &&
 | 
						|
		    copy_to_user(log->ubuf + cur_pos, log->kbuf, new_n))
 | 
						|
			goto fail;
 | 
						|
	} else {
 | 
						|
		u64 new_end, new_start;
 | 
						|
		u32 buf_start, buf_end, new_n;
 | 
						|
 | 
						|
		new_end = log->end_pos + n;
 | 
						|
		if (new_end - log->start_pos >= log->len_total)
 | 
						|
			new_start = new_end - log->len_total;
 | 
						|
		else
 | 
						|
			new_start = log->start_pos;
 | 
						|
 | 
						|
		log->start_pos = new_start;
 | 
						|
		log->end_pos = new_end - 1; /* don't count terminating '\0' */
 | 
						|
 | 
						|
		if (!log->ubuf)
 | 
						|
			return;
 | 
						|
 | 
						|
		new_n = min(n, log->len_total);
 | 
						|
		cur_pos = new_end - new_n;
 | 
						|
		div_u64_rem(cur_pos, log->len_total, &buf_start);
 | 
						|
		div_u64_rem(new_end, log->len_total, &buf_end);
 | 
						|
		/* new_end and buf_end are exclusive indices, so if buf_end is
 | 
						|
		 * exactly zero, then it actually points right to the end of
 | 
						|
		 * ubuf and there is no wrap around
 | 
						|
		 */
 | 
						|
		if (buf_end == 0)
 | 
						|
			buf_end = log->len_total;
 | 
						|
 | 
						|
		/* if buf_start > buf_end, we wrapped around;
 | 
						|
		 * if buf_start == buf_end, then we fill ubuf completely; we
 | 
						|
		 * can't have buf_start == buf_end to mean that there is
 | 
						|
		 * nothing to write, because we always write at least
 | 
						|
		 * something, even if terminal '\0'
 | 
						|
		 */
 | 
						|
		if (buf_start < buf_end) {
 | 
						|
			/* message fits within contiguous chunk of ubuf */
 | 
						|
			if (copy_to_user(log->ubuf + buf_start,
 | 
						|
					 log->kbuf + n - new_n,
 | 
						|
					 buf_end - buf_start))
 | 
						|
				goto fail;
 | 
						|
		} else {
 | 
						|
			/* message wraps around the end of ubuf, copy in two chunks */
 | 
						|
			if (copy_to_user(log->ubuf + buf_start,
 | 
						|
					 log->kbuf + n - new_n,
 | 
						|
					 log->len_total - buf_start))
 | 
						|
				goto fail;
 | 
						|
			if (copy_to_user(log->ubuf,
 | 
						|
					 log->kbuf + n - buf_end,
 | 
						|
					 buf_end))
 | 
						|
				goto fail;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return;
 | 
						|
fail:
 | 
						|
	log->ubuf = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos)
 | 
						|
{
 | 
						|
	char zero = 0;
 | 
						|
	u32 pos;
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(new_pos > log->end_pos))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!bpf_verifier_log_needed(log) || log->level == BPF_LOG_KERNEL)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* if position to which we reset is beyond current log window,
 | 
						|
	 * then we didn't preserve any useful content and should adjust
 | 
						|
	 * start_pos to end up with an empty log (start_pos == end_pos)
 | 
						|
	 */
 | 
						|
	log->end_pos = new_pos;
 | 
						|
	if (log->end_pos < log->start_pos)
 | 
						|
		log->start_pos = log->end_pos;
 | 
						|
 | 
						|
	if (!log->ubuf)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (log->level & BPF_LOG_FIXED)
 | 
						|
		pos = log->end_pos + 1;
 | 
						|
	else
 | 
						|
		div_u64_rem(new_pos, log->len_total, &pos);
 | 
						|
 | 
						|
	if (pos < log->len_total && put_user(zero, log->ubuf + pos))
 | 
						|
		log->ubuf = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void bpf_vlog_reverse_kbuf(char *buf, int len)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0, j = len - 1; i < j; i++, j--)
 | 
						|
		swap(buf[i], buf[j]);
 | 
						|
}
 | 
						|
 | 
						|
static int bpf_vlog_reverse_ubuf(struct bpf_verifier_log *log, int start, int end)
 | 
						|
{
 | 
						|
	/* we split log->kbuf into two equal parts for both ends of array */
 | 
						|
	int n = sizeof(log->kbuf) / 2, nn;
 | 
						|
	char *lbuf = log->kbuf, *rbuf = log->kbuf + n;
 | 
						|
 | 
						|
	/* Read ubuf's section [start, end) two chunks at a time, from left
 | 
						|
	 * and right side; within each chunk, swap all the bytes; after that
 | 
						|
	 * reverse the order of lbuf and rbuf and write result back to ubuf.
 | 
						|
	 * This way we'll end up with swapped contents of specified
 | 
						|
	 * [start, end) ubuf segment.
 | 
						|
	 */
 | 
						|
	while (end - start > 1) {
 | 
						|
		nn = min(n, (end - start ) / 2);
 | 
						|
 | 
						|
		if (copy_from_user(lbuf, log->ubuf + start, nn))
 | 
						|
			return -EFAULT;
 | 
						|
		if (copy_from_user(rbuf, log->ubuf + end - nn, nn))
 | 
						|
			return -EFAULT;
 | 
						|
 | 
						|
		bpf_vlog_reverse_kbuf(lbuf, nn);
 | 
						|
		bpf_vlog_reverse_kbuf(rbuf, nn);
 | 
						|
 | 
						|
		/* we write lbuf to the right end of ubuf, while rbuf to the
 | 
						|
		 * left one to end up with properly reversed overall ubuf
 | 
						|
		 */
 | 
						|
		if (copy_to_user(log->ubuf + start, rbuf, nn))
 | 
						|
			return -EFAULT;
 | 
						|
		if (copy_to_user(log->ubuf + end - nn, lbuf, nn))
 | 
						|
			return -EFAULT;
 | 
						|
 | 
						|
		start += nn;
 | 
						|
		end -= nn;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual)
 | 
						|
{
 | 
						|
	u32 sublen;
 | 
						|
	int err;
 | 
						|
 | 
						|
	*log_size_actual = 0;
 | 
						|
	if (!log || log->level == 0 || log->level == BPF_LOG_KERNEL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!log->ubuf)
 | 
						|
		goto skip_log_rotate;
 | 
						|
	/* If we never truncated log, there is nothing to move around. */
 | 
						|
	if (log->start_pos == 0)
 | 
						|
		goto skip_log_rotate;
 | 
						|
 | 
						|
	/* Otherwise we need to rotate log contents to make it start from the
 | 
						|
	 * buffer beginning and be a continuous zero-terminated string. Note
 | 
						|
	 * that if log->start_pos != 0 then we definitely filled up entire log
 | 
						|
	 * buffer with no gaps, and we just need to shift buffer contents to
 | 
						|
	 * the left by (log->start_pos % log->len_total) bytes.
 | 
						|
	 *
 | 
						|
	 * Unfortunately, user buffer could be huge and we don't want to
 | 
						|
	 * allocate temporary kernel memory of the same size just to shift
 | 
						|
	 * contents in a straightforward fashion. Instead, we'll be clever and
 | 
						|
	 * do in-place array rotation. This is a leetcode-style problem, which
 | 
						|
	 * could be solved by three rotations.
 | 
						|
	 *
 | 
						|
	 * Let's say we have log buffer that has to be shifted left by 7 bytes
 | 
						|
	 * (spaces and vertical bar is just for demonstrative purposes):
 | 
						|
	 *   E F G H I J K | A B C D
 | 
						|
	 *
 | 
						|
	 * First, we reverse entire array:
 | 
						|
	 *   D C B A | K J I H G F E
 | 
						|
	 *
 | 
						|
	 * Then we rotate first 4 bytes (DCBA) and separately last 7 bytes
 | 
						|
	 * (KJIHGFE), resulting in a properly rotated array:
 | 
						|
	 *   A B C D | E F G H I J K
 | 
						|
	 *
 | 
						|
	 * We'll utilize log->kbuf to read user memory chunk by chunk, swap
 | 
						|
	 * bytes, and write them back. Doing it byte-by-byte would be
 | 
						|
	 * unnecessarily inefficient. Altogether we are going to read and
 | 
						|
	 * write each byte twice, for total 4 memory copies between kernel and
 | 
						|
	 * user space.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* length of the chopped off part that will be the beginning;
 | 
						|
	 * len(ABCD) in the example above
 | 
						|
	 */
 | 
						|
	div_u64_rem(log->start_pos, log->len_total, &sublen);
 | 
						|
	sublen = log->len_total - sublen;
 | 
						|
 | 
						|
	err = bpf_vlog_reverse_ubuf(log, 0, log->len_total);
 | 
						|
	err = err ?: bpf_vlog_reverse_ubuf(log, 0, sublen);
 | 
						|
	err = err ?: bpf_vlog_reverse_ubuf(log, sublen, log->len_total);
 | 
						|
	if (err)
 | 
						|
		log->ubuf = NULL;
 | 
						|
 | 
						|
skip_log_rotate:
 | 
						|
	*log_size_actual = log->len_max;
 | 
						|
 | 
						|
	/* properly initialized log has either both ubuf!=NULL and len_total>0
 | 
						|
	 * or ubuf==NULL and len_total==0, so if this condition doesn't hold,
 | 
						|
	 * we got a fault somewhere along the way, so report it back
 | 
						|
	 */
 | 
						|
	if (!!log->ubuf != !!log->len_total)
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	/* did truncation actually happen? */
 | 
						|
	if (log->ubuf && log->len_max > log->len_total)
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* log_level controls verbosity level of eBPF verifier.
 | 
						|
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 | 
						|
 * so the user can figure out what's wrong with the program
 | 
						|
 */
 | 
						|
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 | 
						|
					   const char *fmt, ...)
 | 
						|
{
 | 
						|
	va_list args;
 | 
						|
 | 
						|
	if (!bpf_verifier_log_needed(&env->log))
 | 
						|
		return;
 | 
						|
 | 
						|
	va_start(args, fmt);
 | 
						|
	bpf_verifier_vlog(&env->log, fmt, args);
 | 
						|
	va_end(args);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
 | 
						|
 | 
						|
__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 | 
						|
			    const char *fmt, ...)
 | 
						|
{
 | 
						|
	va_list args;
 | 
						|
 | 
						|
	if (!bpf_verifier_log_needed(log))
 | 
						|
		return;
 | 
						|
 | 
						|
	va_start(args, fmt);
 | 
						|
	bpf_verifier_vlog(log, fmt, args);
 | 
						|
	va_end(args);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(bpf_log);
 | 
						|
 | 
						|
static const struct bpf_line_info *
 | 
						|
find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
 | 
						|
{
 | 
						|
	const struct bpf_line_info *linfo;
 | 
						|
	const struct bpf_prog *prog;
 | 
						|
	u32 nr_linfo;
 | 
						|
	int l, r, m;
 | 
						|
 | 
						|
	prog = env->prog;
 | 
						|
	nr_linfo = prog->aux->nr_linfo;
 | 
						|
 | 
						|
	if (!nr_linfo || insn_off >= prog->len)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	linfo = prog->aux->linfo;
 | 
						|
	/* Loop invariant: linfo[l].insn_off <= insns_off.
 | 
						|
	 * linfo[0].insn_off == 0 which always satisfies above condition.
 | 
						|
	 * Binary search is searching for rightmost linfo entry that satisfies
 | 
						|
	 * the above invariant, giving us the desired record that covers given
 | 
						|
	 * instruction offset.
 | 
						|
	 */
 | 
						|
	l = 0;
 | 
						|
	r = nr_linfo - 1;
 | 
						|
	while (l < r) {
 | 
						|
		/* (r - l + 1) / 2 means we break a tie to the right, so if:
 | 
						|
		 * l=1, r=2, linfo[l].insn_off <= insn_off, linfo[r].insn_off > insn_off,
 | 
						|
		 * then m=2, we see that linfo[m].insn_off > insn_off, and so
 | 
						|
		 * r becomes 1 and we exit the loop with correct l==1.
 | 
						|
		 * If the tie was broken to the left, m=1 would end us up in
 | 
						|
		 * an endless loop where l and m stay at 1 and r stays at 2.
 | 
						|
		 */
 | 
						|
		m = l + (r - l + 1) / 2;
 | 
						|
		if (linfo[m].insn_off <= insn_off)
 | 
						|
			l = m;
 | 
						|
		else
 | 
						|
			r = m - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return &linfo[l];
 | 
						|
}
 | 
						|
 | 
						|
static const char *ltrim(const char *s)
 | 
						|
{
 | 
						|
	while (isspace(*s))
 | 
						|
		s++;
 | 
						|
 | 
						|
	return s;
 | 
						|
}
 | 
						|
 | 
						|
__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
 | 
						|
				  u32 insn_off,
 | 
						|
				  const char *prefix_fmt, ...)
 | 
						|
{
 | 
						|
	const struct bpf_line_info *linfo, *prev_linfo;
 | 
						|
	const struct btf *btf;
 | 
						|
	const char *s, *fname;
 | 
						|
 | 
						|
	if (!bpf_verifier_log_needed(&env->log))
 | 
						|
		return;
 | 
						|
 | 
						|
	prev_linfo = env->prev_linfo;
 | 
						|
	linfo = find_linfo(env, insn_off);
 | 
						|
	if (!linfo || linfo == prev_linfo)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* It often happens that two separate linfo records point to the same
 | 
						|
	 * source code line, but have differing column numbers. Given verifier
 | 
						|
	 * log doesn't emit column information, from user perspective we just
 | 
						|
	 * end up emitting the same source code line twice unnecessarily.
 | 
						|
	 * So instead check that previous and current linfo record point to
 | 
						|
	 * the same file (file_name_offs match) and the same line number, and
 | 
						|
	 * avoid emitting duplicated source code line in such case.
 | 
						|
	 */
 | 
						|
	if (prev_linfo && linfo->file_name_off == prev_linfo->file_name_off &&
 | 
						|
	    BPF_LINE_INFO_LINE_NUM(linfo->line_col) == BPF_LINE_INFO_LINE_NUM(prev_linfo->line_col))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (prefix_fmt) {
 | 
						|
		va_list args;
 | 
						|
 | 
						|
		va_start(args, prefix_fmt);
 | 
						|
		bpf_verifier_vlog(&env->log, prefix_fmt, args);
 | 
						|
		va_end(args);
 | 
						|
	}
 | 
						|
 | 
						|
	btf = env->prog->aux->btf;
 | 
						|
	s = ltrim(btf_name_by_offset(btf, linfo->line_off));
 | 
						|
	verbose(env, "%s", s); /* source code line */
 | 
						|
 | 
						|
	s = btf_name_by_offset(btf, linfo->file_name_off);
 | 
						|
	/* leave only file name */
 | 
						|
	fname = strrchr(s, '/');
 | 
						|
	fname = fname ? fname + 1 : s;
 | 
						|
	verbose(env, " @ %s:%u\n", fname, BPF_LINE_INFO_LINE_NUM(linfo->line_col));
 | 
						|
 | 
						|
	env->prev_linfo = linfo;
 | 
						|
}
 | 
						|
 | 
						|
static const char *btf_type_name(const struct btf *btf, u32 id)
 | 
						|
{
 | 
						|
	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
 | 
						|
}
 | 
						|
 | 
						|
/* string representation of 'enum bpf_reg_type'
 | 
						|
 *
 | 
						|
 * Note that reg_type_str() can not appear more than once in a single verbose()
 | 
						|
 * statement.
 | 
						|
 */
 | 
						|
const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type)
 | 
						|
{
 | 
						|
	char postfix[16] = {0}, prefix[64] = {0};
 | 
						|
	static const char * const str[] = {
 | 
						|
		[NOT_INIT]		= "?",
 | 
						|
		[SCALAR_VALUE]		= "scalar",
 | 
						|
		[PTR_TO_CTX]		= "ctx",
 | 
						|
		[CONST_PTR_TO_MAP]	= "map_ptr",
 | 
						|
		[PTR_TO_MAP_VALUE]	= "map_value",
 | 
						|
		[PTR_TO_STACK]		= "fp",
 | 
						|
		[PTR_TO_PACKET]		= "pkt",
 | 
						|
		[PTR_TO_PACKET_META]	= "pkt_meta",
 | 
						|
		[PTR_TO_PACKET_END]	= "pkt_end",
 | 
						|
		[PTR_TO_FLOW_KEYS]	= "flow_keys",
 | 
						|
		[PTR_TO_SOCKET]		= "sock",
 | 
						|
		[PTR_TO_SOCK_COMMON]	= "sock_common",
 | 
						|
		[PTR_TO_TCP_SOCK]	= "tcp_sock",
 | 
						|
		[PTR_TO_TP_BUFFER]	= "tp_buffer",
 | 
						|
		[PTR_TO_XDP_SOCK]	= "xdp_sock",
 | 
						|
		[PTR_TO_BTF_ID]		= "ptr_",
 | 
						|
		[PTR_TO_MEM]		= "mem",
 | 
						|
		[PTR_TO_ARENA]		= "arena",
 | 
						|
		[PTR_TO_BUF]		= "buf",
 | 
						|
		[PTR_TO_FUNC]		= "func",
 | 
						|
		[PTR_TO_MAP_KEY]	= "map_key",
 | 
						|
		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
 | 
						|
	};
 | 
						|
 | 
						|
	if (type & PTR_MAYBE_NULL) {
 | 
						|
		if (base_type(type) == PTR_TO_BTF_ID)
 | 
						|
			strscpy(postfix, "or_null_");
 | 
						|
		else
 | 
						|
			strscpy(postfix, "_or_null");
 | 
						|
	}
 | 
						|
 | 
						|
	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
 | 
						|
		 type & MEM_RDONLY ? "rdonly_" : "",
 | 
						|
		 type & MEM_RINGBUF ? "ringbuf_" : "",
 | 
						|
		 type & MEM_USER ? "user_" : "",
 | 
						|
		 type & MEM_PERCPU ? "percpu_" : "",
 | 
						|
		 type & MEM_RCU ? "rcu_" : "",
 | 
						|
		 type & PTR_UNTRUSTED ? "untrusted_" : "",
 | 
						|
		 type & PTR_TRUSTED ? "trusted_" : ""
 | 
						|
	);
 | 
						|
 | 
						|
	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
 | 
						|
		 prefix, str[base_type(type)], postfix);
 | 
						|
	return env->tmp_str_buf;
 | 
						|
}
 | 
						|
 | 
						|
const char *dynptr_type_str(enum bpf_dynptr_type type)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case BPF_DYNPTR_TYPE_LOCAL:
 | 
						|
		return "local";
 | 
						|
	case BPF_DYNPTR_TYPE_RINGBUF:
 | 
						|
		return "ringbuf";
 | 
						|
	case BPF_DYNPTR_TYPE_SKB:
 | 
						|
		return "skb";
 | 
						|
	case BPF_DYNPTR_TYPE_XDP:
 | 
						|
		return "xdp";
 | 
						|
	case BPF_DYNPTR_TYPE_INVALID:
 | 
						|
		return "<invalid>";
 | 
						|
	default:
 | 
						|
		WARN_ONCE(1, "unknown dynptr type %d\n", type);
 | 
						|
		return "<unknown>";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
const char *iter_type_str(const struct btf *btf, u32 btf_id)
 | 
						|
{
 | 
						|
	if (!btf || btf_id == 0)
 | 
						|
		return "<invalid>";
 | 
						|
 | 
						|
	/* we already validated that type is valid and has conforming name */
 | 
						|
	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
 | 
						|
}
 | 
						|
 | 
						|
const char *iter_state_str(enum bpf_iter_state state)
 | 
						|
{
 | 
						|
	switch (state) {
 | 
						|
	case BPF_ITER_STATE_ACTIVE:
 | 
						|
		return "active";
 | 
						|
	case BPF_ITER_STATE_DRAINED:
 | 
						|
		return "drained";
 | 
						|
	case BPF_ITER_STATE_INVALID:
 | 
						|
		return "<invalid>";
 | 
						|
	default:
 | 
						|
		WARN_ONCE(1, "unknown iter state %d\n", state);
 | 
						|
		return "<unknown>";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static char slot_type_char[] = {
 | 
						|
	[STACK_INVALID]	= '?',
 | 
						|
	[STACK_SPILL]	= 'r',
 | 
						|
	[STACK_MISC]	= 'm',
 | 
						|
	[STACK_ZERO]	= '0',
 | 
						|
	[STACK_DYNPTR]	= 'd',
 | 
						|
	[STACK_ITER]	= 'i',
 | 
						|
};
 | 
						|
 | 
						|
static void print_liveness(struct bpf_verifier_env *env,
 | 
						|
			   enum bpf_reg_liveness live)
 | 
						|
{
 | 
						|
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
 | 
						|
	    verbose(env, "_");
 | 
						|
	if (live & REG_LIVE_READ)
 | 
						|
		verbose(env, "r");
 | 
						|
	if (live & REG_LIVE_WRITTEN)
 | 
						|
		verbose(env, "w");
 | 
						|
	if (live & REG_LIVE_DONE)
 | 
						|
		verbose(env, "D");
 | 
						|
}
 | 
						|
 | 
						|
#define UNUM_MAX_DECIMAL U16_MAX
 | 
						|
#define SNUM_MAX_DECIMAL S16_MAX
 | 
						|
#define SNUM_MIN_DECIMAL S16_MIN
 | 
						|
 | 
						|
static bool is_unum_decimal(u64 num)
 | 
						|
{
 | 
						|
	return num <= UNUM_MAX_DECIMAL;
 | 
						|
}
 | 
						|
 | 
						|
static bool is_snum_decimal(s64 num)
 | 
						|
{
 | 
						|
	return num >= SNUM_MIN_DECIMAL && num <= SNUM_MAX_DECIMAL;
 | 
						|
}
 | 
						|
 | 
						|
static void verbose_unum(struct bpf_verifier_env *env, u64 num)
 | 
						|
{
 | 
						|
	if (is_unum_decimal(num))
 | 
						|
		verbose(env, "%llu", num);
 | 
						|
	else
 | 
						|
		verbose(env, "%#llx", num);
 | 
						|
}
 | 
						|
 | 
						|
static void verbose_snum(struct bpf_verifier_env *env, s64 num)
 | 
						|
{
 | 
						|
	if (is_snum_decimal(num))
 | 
						|
		verbose(env, "%lld", num);
 | 
						|
	else
 | 
						|
		verbose(env, "%#llx", num);
 | 
						|
}
 | 
						|
 | 
						|
int tnum_strn(char *str, size_t size, struct tnum a)
 | 
						|
{
 | 
						|
	/* print as a constant, if tnum is fully known */
 | 
						|
	if (a.mask == 0) {
 | 
						|
		if (is_unum_decimal(a.value))
 | 
						|
			return snprintf(str, size, "%llu", a.value);
 | 
						|
		else
 | 
						|
			return snprintf(str, size, "%#llx", a.value);
 | 
						|
	}
 | 
						|
	return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(tnum_strn);
 | 
						|
 | 
						|
static void print_scalar_ranges(struct bpf_verifier_env *env,
 | 
						|
				const struct bpf_reg_state *reg,
 | 
						|
				const char **sep)
 | 
						|
{
 | 
						|
	/* For signed ranges, we want to unify 64-bit and 32-bit values in the
 | 
						|
	 * output as much as possible, but there is a bit of a complication.
 | 
						|
	 * If we choose to print values as decimals, this is natural to do,
 | 
						|
	 * because negative 64-bit and 32-bit values >= -S32_MIN have the same
 | 
						|
	 * representation due to sign extension. But if we choose to print
 | 
						|
	 * them in hex format (see is_snum_decimal()), then sign extension is
 | 
						|
	 * misleading.
 | 
						|
	 * E.g., smin=-2 and smin32=-2 are exactly the same in decimal, but in
 | 
						|
	 * hex they will be smin=0xfffffffffffffffe and smin32=0xfffffffe, two
 | 
						|
	 * very different numbers.
 | 
						|
	 * So we avoid sign extension if we choose to print values in hex.
 | 
						|
	 */
 | 
						|
	struct {
 | 
						|
		const char *name;
 | 
						|
		u64 val;
 | 
						|
		bool omit;
 | 
						|
	} minmaxs[] = {
 | 
						|
		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
 | 
						|
		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
 | 
						|
		{"umin",   reg->umin_value,         reg->umin_value == 0},
 | 
						|
		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
 | 
						|
		{"smin32",
 | 
						|
		 is_snum_decimal((s64)reg->s32_min_value)
 | 
						|
			 ? (s64)reg->s32_min_value
 | 
						|
			 : (u32)reg->s32_min_value, reg->s32_min_value == S32_MIN},
 | 
						|
		{"smax32",
 | 
						|
		 is_snum_decimal((s64)reg->s32_max_value)
 | 
						|
			 ? (s64)reg->s32_max_value
 | 
						|
			 : (u32)reg->s32_max_value, reg->s32_max_value == S32_MAX},
 | 
						|
		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
 | 
						|
		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
 | 
						|
	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
 | 
						|
	bool neg1, neg2;
 | 
						|
 | 
						|
	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
 | 
						|
		if (m1->omit)
 | 
						|
			continue;
 | 
						|
 | 
						|
		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
 | 
						|
 | 
						|
		verbose(env, "%s%s=", *sep, m1->name);
 | 
						|
		*sep = ",";
 | 
						|
 | 
						|
		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
 | 
						|
			if (m2->omit || m2->val != m1->val)
 | 
						|
				continue;
 | 
						|
			/* don't mix negatives with positives */
 | 
						|
			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
 | 
						|
			if (neg2 != neg1)
 | 
						|
				continue;
 | 
						|
			m2->omit = true;
 | 
						|
			verbose(env, "%s=", m2->name);
 | 
						|
		}
 | 
						|
 | 
						|
		if (m1->name[0] == 's')
 | 
						|
			verbose_snum(env, m1->val);
 | 
						|
		else
 | 
						|
			verbose_unum(env, m1->val);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static bool type_is_map_ptr(enum bpf_reg_type t) {
 | 
						|
	switch (base_type(t)) {
 | 
						|
	case CONST_PTR_TO_MAP:
 | 
						|
	case PTR_TO_MAP_KEY:
 | 
						|
	case PTR_TO_MAP_VALUE:
 | 
						|
		return true;
 | 
						|
	default:
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * _a stands for append, was shortened to avoid multiline statements below.
 | 
						|
 * This macro is used to output a comma separated list of attributes.
 | 
						|
 */
 | 
						|
#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, ##__VA_ARGS__); sep = ","; })
 | 
						|
 | 
						|
static void print_reg_state(struct bpf_verifier_env *env,
 | 
						|
			    const struct bpf_func_state *state,
 | 
						|
			    const struct bpf_reg_state *reg)
 | 
						|
{
 | 
						|
	enum bpf_reg_type t;
 | 
						|
	const char *sep = "";
 | 
						|
 | 
						|
	t = reg->type;
 | 
						|
	if (t == SCALAR_VALUE && reg->precise)
 | 
						|
		verbose(env, "P");
 | 
						|
	if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) {
 | 
						|
		/* reg->off should be 0 for SCALAR_VALUE */
 | 
						|
		verbose_snum(env, reg->var_off.value + reg->off);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	verbose(env, "%s", reg_type_str(env, t));
 | 
						|
	if (t == PTR_TO_ARENA)
 | 
						|
		return;
 | 
						|
	if (t == PTR_TO_STACK) {
 | 
						|
		if (state->frameno != reg->frameno)
 | 
						|
			verbose(env, "[%d]", reg->frameno);
 | 
						|
		if (tnum_is_const(reg->var_off)) {
 | 
						|
			verbose_snum(env, reg->var_off.value + reg->off);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (base_type(t) == PTR_TO_BTF_ID)
 | 
						|
		verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
 | 
						|
	verbose(env, "(");
 | 
						|
	if (reg->id)
 | 
						|
		verbose_a("id=%d", reg->id);
 | 
						|
	if (reg->ref_obj_id)
 | 
						|
		verbose_a("ref_obj_id=%d", reg->ref_obj_id);
 | 
						|
	if (type_is_non_owning_ref(reg->type))
 | 
						|
		verbose_a("%s", "non_own_ref");
 | 
						|
	if (type_is_map_ptr(t)) {
 | 
						|
		if (reg->map_ptr->name[0])
 | 
						|
			verbose_a("map=%s", reg->map_ptr->name);
 | 
						|
		verbose_a("ks=%d,vs=%d",
 | 
						|
			  reg->map_ptr->key_size,
 | 
						|
			  reg->map_ptr->value_size);
 | 
						|
	}
 | 
						|
	if (t != SCALAR_VALUE && reg->off) {
 | 
						|
		verbose_a("off=");
 | 
						|
		verbose_snum(env, reg->off);
 | 
						|
	}
 | 
						|
	if (type_is_pkt_pointer(t)) {
 | 
						|
		verbose_a("r=");
 | 
						|
		verbose_unum(env, reg->range);
 | 
						|
	}
 | 
						|
	if (base_type(t) == PTR_TO_MEM) {
 | 
						|
		verbose_a("sz=");
 | 
						|
		verbose_unum(env, reg->mem_size);
 | 
						|
	}
 | 
						|
	if (t == CONST_PTR_TO_DYNPTR)
 | 
						|
		verbose_a("type=%s",  dynptr_type_str(reg->dynptr.type));
 | 
						|
	if (tnum_is_const(reg->var_off)) {
 | 
						|
		/* a pointer register with fixed offset */
 | 
						|
		if (reg->var_off.value) {
 | 
						|
			verbose_a("imm=");
 | 
						|
			verbose_snum(env, reg->var_off.value);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		print_scalar_ranges(env, reg, &sep);
 | 
						|
		if (!tnum_is_unknown(reg->var_off)) {
 | 
						|
			char tn_buf[48];
 | 
						|
 | 
						|
			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | 
						|
			verbose_a("var_off=%s", tn_buf);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	verbose(env, ")");
 | 
						|
}
 | 
						|
 | 
						|
void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state,
 | 
						|
			  bool print_all)
 | 
						|
{
 | 
						|
	const struct bpf_reg_state *reg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (state->frameno)
 | 
						|
		verbose(env, " frame%d:", state->frameno);
 | 
						|
	for (i = 0; i < MAX_BPF_REG; i++) {
 | 
						|
		reg = &state->regs[i];
 | 
						|
		if (reg->type == NOT_INIT)
 | 
						|
			continue;
 | 
						|
		if (!print_all && !reg_scratched(env, i))
 | 
						|
			continue;
 | 
						|
		verbose(env, " R%d", i);
 | 
						|
		print_liveness(env, reg->live);
 | 
						|
		verbose(env, "=");
 | 
						|
		print_reg_state(env, state, reg);
 | 
						|
	}
 | 
						|
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
 | 
						|
		char types_buf[BPF_REG_SIZE + 1];
 | 
						|
		const char *sep = "";
 | 
						|
		bool valid = false;
 | 
						|
		u8 slot_type;
 | 
						|
		int j;
 | 
						|
 | 
						|
		if (!print_all && !stack_slot_scratched(env, i))
 | 
						|
			continue;
 | 
						|
 | 
						|
		for (j = 0; j < BPF_REG_SIZE; j++) {
 | 
						|
			slot_type = state->stack[i].slot_type[j];
 | 
						|
			if (slot_type != STACK_INVALID)
 | 
						|
				valid = true;
 | 
						|
			types_buf[j] = slot_type_char[slot_type];
 | 
						|
		}
 | 
						|
		types_buf[BPF_REG_SIZE] = 0;
 | 
						|
		if (!valid)
 | 
						|
			continue;
 | 
						|
 | 
						|
		reg = &state->stack[i].spilled_ptr;
 | 
						|
		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
 | 
						|
		case STACK_SPILL:
 | 
						|
			/* print MISC/ZERO/INVALID slots above subreg spill */
 | 
						|
			for (j = 0; j < BPF_REG_SIZE; j++)
 | 
						|
				if (state->stack[i].slot_type[j] == STACK_SPILL)
 | 
						|
					break;
 | 
						|
			types_buf[j] = '\0';
 | 
						|
 | 
						|
			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 | 
						|
			print_liveness(env, reg->live);
 | 
						|
			verbose(env, "=%s", types_buf);
 | 
						|
			print_reg_state(env, state, reg);
 | 
						|
			break;
 | 
						|
		case STACK_DYNPTR:
 | 
						|
			/* skip to main dynptr slot */
 | 
						|
			i += BPF_DYNPTR_NR_SLOTS - 1;
 | 
						|
			reg = &state->stack[i].spilled_ptr;
 | 
						|
 | 
						|
			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 | 
						|
			print_liveness(env, reg->live);
 | 
						|
			verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type));
 | 
						|
			if (reg->id)
 | 
						|
				verbose_a("id=%d", reg->id);
 | 
						|
			if (reg->ref_obj_id)
 | 
						|
				verbose_a("ref_id=%d", reg->ref_obj_id);
 | 
						|
			if (reg->dynptr_id)
 | 
						|
				verbose_a("dynptr_id=%d", reg->dynptr_id);
 | 
						|
			verbose(env, ")");
 | 
						|
			break;
 | 
						|
		case STACK_ITER:
 | 
						|
			/* only main slot has ref_obj_id set; skip others */
 | 
						|
			if (!reg->ref_obj_id)
 | 
						|
				continue;
 | 
						|
 | 
						|
			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 | 
						|
			print_liveness(env, reg->live);
 | 
						|
			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
 | 
						|
				iter_type_str(reg->iter.btf, reg->iter.btf_id),
 | 
						|
				reg->ref_obj_id, iter_state_str(reg->iter.state),
 | 
						|
				reg->iter.depth);
 | 
						|
			break;
 | 
						|
		case STACK_MISC:
 | 
						|
		case STACK_ZERO:
 | 
						|
		default:
 | 
						|
			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 | 
						|
			print_liveness(env, reg->live);
 | 
						|
			verbose(env, "=%s", types_buf);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (state->acquired_refs && state->refs[0].id) {
 | 
						|
		verbose(env, " refs=%d", state->refs[0].id);
 | 
						|
		for (i = 1; i < state->acquired_refs; i++)
 | 
						|
			if (state->refs[i].id)
 | 
						|
				verbose(env, ",%d", state->refs[i].id);
 | 
						|
	}
 | 
						|
	if (state->in_callback_fn)
 | 
						|
		verbose(env, " cb");
 | 
						|
	if (state->in_async_callback_fn)
 | 
						|
		verbose(env, " async_cb");
 | 
						|
	verbose(env, "\n");
 | 
						|
	if (!print_all)
 | 
						|
		mark_verifier_state_clean(env);
 | 
						|
}
 | 
						|
 | 
						|
static inline u32 vlog_alignment(u32 pos)
 | 
						|
{
 | 
						|
	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
 | 
						|
			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
 | 
						|
}
 | 
						|
 | 
						|
void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state)
 | 
						|
{
 | 
						|
	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
 | 
						|
		/* remove new line character */
 | 
						|
		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
 | 
						|
		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
 | 
						|
	} else {
 | 
						|
		verbose(env, "%d:", env->insn_idx);
 | 
						|
	}
 | 
						|
	print_verifier_state(env, state, false);
 | 
						|
}
 |