mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	On one path, cond_resched_lock() fails to return true if it dropped the lock. We think this might be causing the crashes in JBD's log_do_checkpoint(). Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			5021 lines
		
	
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5021 lines
		
	
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  kernel/sched.c
 | 
						|
 *
 | 
						|
 *  Kernel scheduler and related syscalls
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991-2002  Linus Torvalds
 | 
						|
 *
 | 
						|
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 | 
						|
 *		make semaphores SMP safe
 | 
						|
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 | 
						|
 *		by Andrea Arcangeli
 | 
						|
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 | 
						|
 *		hybrid priority-list and round-robin design with
 | 
						|
 *		an array-switch method of distributing timeslices
 | 
						|
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 | 
						|
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 | 
						|
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 | 
						|
 *  2004-04-02	Scheduler domains code by Nick Piggin
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/nmi.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/smp_lock.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/profile.h>
 | 
						|
#include <linux/suspend.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/threads.h>
 | 
						|
#include <linux/timer.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/times.h>
 | 
						|
#include <linux/acct.h>
 | 
						|
#include <asm/tlb.h>
 | 
						|
 | 
						|
#include <asm/unistd.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 | 
						|
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 | 
						|
 * and back.
 | 
						|
 */
 | 
						|
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
 | 
						|
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
 | 
						|
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
 | 
						|
 | 
						|
/*
 | 
						|
 * 'User priority' is the nice value converted to something we
 | 
						|
 * can work with better when scaling various scheduler parameters,
 | 
						|
 * it's a [ 0 ... 39 ] range.
 | 
						|
 */
 | 
						|
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
 | 
						|
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
 | 
						|
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
 | 
						|
 | 
						|
/*
 | 
						|
 * Some helpers for converting nanosecond timing to jiffy resolution
 | 
						|
 */
 | 
						|
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
 | 
						|
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))
 | 
						|
 | 
						|
/*
 | 
						|
 * These are the 'tuning knobs' of the scheduler:
 | 
						|
 *
 | 
						|
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 | 
						|
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 | 
						|
 * Timeslices get refilled after they expire.
 | 
						|
 */
 | 
						|
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
 | 
						|
#define DEF_TIMESLICE		(100 * HZ / 1000)
 | 
						|
#define ON_RUNQUEUE_WEIGHT	 30
 | 
						|
#define CHILD_PENALTY		 95
 | 
						|
#define PARENT_PENALTY		100
 | 
						|
#define EXIT_WEIGHT		  3
 | 
						|
#define PRIO_BONUS_RATIO	 25
 | 
						|
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
 | 
						|
#define INTERACTIVE_DELTA	  2
 | 
						|
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
 | 
						|
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
 | 
						|
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))
 | 
						|
 | 
						|
/*
 | 
						|
 * If a task is 'interactive' then we reinsert it in the active
 | 
						|
 * array after it has expired its current timeslice. (it will not
 | 
						|
 * continue to run immediately, it will still roundrobin with
 | 
						|
 * other interactive tasks.)
 | 
						|
 *
 | 
						|
 * This part scales the interactivity limit depending on niceness.
 | 
						|
 *
 | 
						|
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 | 
						|
 * Here are a few examples of different nice levels:
 | 
						|
 *
 | 
						|
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 | 
						|
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 | 
						|
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 | 
						|
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 | 
						|
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 | 
						|
 *
 | 
						|
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 | 
						|
 *  priority range a task can explore, a value of '1' means the
 | 
						|
 *  task is rated interactive.)
 | 
						|
 *
 | 
						|
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 | 
						|
 * reinserted into the active array. And only heavily CPU-hog nice -20
 | 
						|
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 | 
						|
 * it takes some effort for them to get interactive, but it's not
 | 
						|
 * too hard.
 | 
						|
 */
 | 
						|
 | 
						|
#define CURRENT_BONUS(p) \
 | 
						|
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
 | 
						|
		MAX_SLEEP_AVG)
 | 
						|
 | 
						|
#define GRANULARITY	(10 * HZ / 1000 ? : 1)
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
 | 
						|
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
 | 
						|
			num_online_cpus())
 | 
						|
#else
 | 
						|
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
 | 
						|
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
 | 
						|
#endif
 | 
						|
 | 
						|
#define SCALE(v1,v1_max,v2_max) \
 | 
						|
	(v1) * (v2_max) / (v1_max)
 | 
						|
 | 
						|
#define DELTA(p) \
 | 
						|
	(SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
 | 
						|
 | 
						|
#define TASK_INTERACTIVE(p) \
 | 
						|
	((p)->prio <= (p)->static_prio - DELTA(p))
 | 
						|
 | 
						|
#define INTERACTIVE_SLEEP(p) \
 | 
						|
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
 | 
						|
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
 | 
						|
 | 
						|
#define TASK_PREEMPTS_CURR(p, rq) \
 | 
						|
	((p)->prio < (rq)->curr->prio)
 | 
						|
 | 
						|
/*
 | 
						|
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 | 
						|
 * to time slice values: [800ms ... 100ms ... 5ms]
 | 
						|
 *
 | 
						|
 * The higher a thread's priority, the bigger timeslices
 | 
						|
 * it gets during one round of execution. But even the lowest
 | 
						|
 * priority thread gets MIN_TIMESLICE worth of execution time.
 | 
						|
 */
 | 
						|
 | 
						|
#define SCALE_PRIO(x, prio) \
 | 
						|
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
 | 
						|
 | 
						|
static inline unsigned int task_timeslice(task_t *p)
 | 
						|
{
 | 
						|
	if (p->static_prio < NICE_TO_PRIO(0))
 | 
						|
		return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
 | 
						|
	else
 | 
						|
		return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
 | 
						|
}
 | 
						|
#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)	\
 | 
						|
				< (long long) (sd)->cache_hot_time)
 | 
						|
 | 
						|
/*
 | 
						|
 * These are the runqueue data structures:
 | 
						|
 */
 | 
						|
 | 
						|
#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
 | 
						|
 | 
						|
typedef struct runqueue runqueue_t;
 | 
						|
 | 
						|
struct prio_array {
 | 
						|
	unsigned int nr_active;
 | 
						|
	unsigned long bitmap[BITMAP_SIZE];
 | 
						|
	struct list_head queue[MAX_PRIO];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the main, per-CPU runqueue data structure.
 | 
						|
 *
 | 
						|
 * Locking rule: those places that want to lock multiple runqueues
 | 
						|
 * (such as the load balancing or the thread migration code), lock
 | 
						|
 * acquire operations must be ordered by ascending &runqueue.
 | 
						|
 */
 | 
						|
struct runqueue {
 | 
						|
	spinlock_t lock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * nr_running and cpu_load should be in the same cacheline because
 | 
						|
	 * remote CPUs use both these fields when doing load calculation.
 | 
						|
	 */
 | 
						|
	unsigned long nr_running;
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	unsigned long cpu_load;
 | 
						|
#endif
 | 
						|
	unsigned long long nr_switches;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is part of a global counter where only the total sum
 | 
						|
	 * over all CPUs matters. A task can increase this counter on
 | 
						|
	 * one CPU and if it got migrated afterwards it may decrease
 | 
						|
	 * it on another CPU. Always updated under the runqueue lock:
 | 
						|
	 */
 | 
						|
	unsigned long nr_uninterruptible;
 | 
						|
 | 
						|
	unsigned long expired_timestamp;
 | 
						|
	unsigned long long timestamp_last_tick;
 | 
						|
	task_t *curr, *idle;
 | 
						|
	struct mm_struct *prev_mm;
 | 
						|
	prio_array_t *active, *expired, arrays[2];
 | 
						|
	int best_expired_prio;
 | 
						|
	atomic_t nr_iowait;
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	struct sched_domain *sd;
 | 
						|
 | 
						|
	/* For active balancing */
 | 
						|
	int active_balance;
 | 
						|
	int push_cpu;
 | 
						|
 | 
						|
	task_t *migration_thread;
 | 
						|
	struct list_head migration_queue;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
	/* latency stats */
 | 
						|
	struct sched_info rq_sched_info;
 | 
						|
 | 
						|
	/* sys_sched_yield() stats */
 | 
						|
	unsigned long yld_exp_empty;
 | 
						|
	unsigned long yld_act_empty;
 | 
						|
	unsigned long yld_both_empty;
 | 
						|
	unsigned long yld_cnt;
 | 
						|
 | 
						|
	/* schedule() stats */
 | 
						|
	unsigned long sched_switch;
 | 
						|
	unsigned long sched_cnt;
 | 
						|
	unsigned long sched_goidle;
 | 
						|
 | 
						|
	/* try_to_wake_up() stats */
 | 
						|
	unsigned long ttwu_cnt;
 | 
						|
	unsigned long ttwu_local;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct runqueue, runqueues);
 | 
						|
 | 
						|
#define for_each_domain(cpu, domain) \
 | 
						|
	for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
 | 
						|
 | 
						|
#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 | 
						|
#define this_rq()		(&__get_cpu_var(runqueues))
 | 
						|
#define task_rq(p)		cpu_rq(task_cpu(p))
 | 
						|
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 | 
						|
 | 
						|
/*
 | 
						|
 * Default context-switch locking:
 | 
						|
 */
 | 
						|
#ifndef prepare_arch_switch
 | 
						|
# define prepare_arch_switch(rq, next)	do { } while (0)
 | 
						|
# define finish_arch_switch(rq, next)	spin_unlock_irq(&(rq)->lock)
 | 
						|
# define task_running(rq, p)		((rq)->curr == (p))
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * task_rq_lock - lock the runqueue a given task resides on and disable
 | 
						|
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 | 
						|
 * explicitly disabling preemption.
 | 
						|
 */
 | 
						|
static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
 | 
						|
	__acquires(rq->lock)
 | 
						|
{
 | 
						|
	struct runqueue *rq;
 | 
						|
 | 
						|
repeat_lock_task:
 | 
						|
	local_irq_save(*flags);
 | 
						|
	rq = task_rq(p);
 | 
						|
	spin_lock(&rq->lock);
 | 
						|
	if (unlikely(rq != task_rq(p))) {
 | 
						|
		spin_unlock_irqrestore(&rq->lock, *flags);
 | 
						|
		goto repeat_lock_task;
 | 
						|
	}
 | 
						|
	return rq;
 | 
						|
}
 | 
						|
 | 
						|
static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
 | 
						|
	__releases(rq->lock)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&rq->lock, *flags);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
/*
 | 
						|
 * bump this up when changing the output format or the meaning of an existing
 | 
						|
 * format, so that tools can adapt (or abort)
 | 
						|
 */
 | 
						|
#define SCHEDSTAT_VERSION 11
 | 
						|
 | 
						|
static int show_schedstat(struct seq_file *seq, void *v)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
 | 
						|
	seq_printf(seq, "timestamp %lu\n", jiffies);
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		runqueue_t *rq = cpu_rq(cpu);
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		struct sched_domain *sd;
 | 
						|
		int dcnt = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
		/* runqueue-specific stats */
 | 
						|
		seq_printf(seq,
 | 
						|
		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
 | 
						|
		    cpu, rq->yld_both_empty,
 | 
						|
		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
 | 
						|
		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
 | 
						|
		    rq->ttwu_cnt, rq->ttwu_local,
 | 
						|
		    rq->rq_sched_info.cpu_time,
 | 
						|
		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
 | 
						|
 | 
						|
		seq_printf(seq, "\n");
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		/* domain-specific stats */
 | 
						|
		for_each_domain(cpu, sd) {
 | 
						|
			enum idle_type itype;
 | 
						|
			char mask_str[NR_CPUS];
 | 
						|
 | 
						|
			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
 | 
						|
			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
 | 
						|
			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
 | 
						|
					itype++) {
 | 
						|
				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
 | 
						|
				    sd->lb_cnt[itype],
 | 
						|
				    sd->lb_balanced[itype],
 | 
						|
				    sd->lb_failed[itype],
 | 
						|
				    sd->lb_imbalance[itype],
 | 
						|
				    sd->lb_gained[itype],
 | 
						|
				    sd->lb_hot_gained[itype],
 | 
						|
				    sd->lb_nobusyq[itype],
 | 
						|
				    sd->lb_nobusyg[itype]);
 | 
						|
			}
 | 
						|
			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
 | 
						|
			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
 | 
						|
			    sd->sbe_pushed, sd->sbe_attempts,
 | 
						|
			    sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int schedstat_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
 | 
						|
	char *buf = kmalloc(size, GFP_KERNEL);
 | 
						|
	struct seq_file *m;
 | 
						|
	int res;
 | 
						|
 | 
						|
	if (!buf)
 | 
						|
		return -ENOMEM;
 | 
						|
	res = single_open(file, show_schedstat, NULL);
 | 
						|
	if (!res) {
 | 
						|
		m = file->private_data;
 | 
						|
		m->buf = buf;
 | 
						|
		m->size = size;
 | 
						|
	} else
 | 
						|
		kfree(buf);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
struct file_operations proc_schedstat_operations = {
 | 
						|
	.open    = schedstat_open,
 | 
						|
	.read    = seq_read,
 | 
						|
	.llseek  = seq_lseek,
 | 
						|
	.release = single_release,
 | 
						|
};
 | 
						|
 | 
						|
# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
 | 
						|
# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
 | 
						|
#else /* !CONFIG_SCHEDSTATS */
 | 
						|
# define schedstat_inc(rq, field)	do { } while (0)
 | 
						|
# define schedstat_add(rq, field, amt)	do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * rq_lock - lock a given runqueue and disable interrupts.
 | 
						|
 */
 | 
						|
static inline runqueue_t *this_rq_lock(void)
 | 
						|
	__acquires(rq->lock)
 | 
						|
{
 | 
						|
	runqueue_t *rq;
 | 
						|
 | 
						|
	local_irq_disable();
 | 
						|
	rq = this_rq();
 | 
						|
	spin_lock(&rq->lock);
 | 
						|
 | 
						|
	return rq;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
static int cpu_and_siblings_are_idle(int cpu)
 | 
						|
{
 | 
						|
	int sib;
 | 
						|
	for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
 | 
						|
		if (idle_cpu(sib))
 | 
						|
			continue;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#else
 | 
						|
#define cpu_and_siblings_are_idle(A) idle_cpu(A)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
/*
 | 
						|
 * Called when a process is dequeued from the active array and given
 | 
						|
 * the cpu.  We should note that with the exception of interactive
 | 
						|
 * tasks, the expired queue will become the active queue after the active
 | 
						|
 * queue is empty, without explicitly dequeuing and requeuing tasks in the
 | 
						|
 * expired queue.  (Interactive tasks may be requeued directly to the
 | 
						|
 * active queue, thus delaying tasks in the expired queue from running;
 | 
						|
 * see scheduler_tick()).
 | 
						|
 *
 | 
						|
 * This function is only called from sched_info_arrive(), rather than
 | 
						|
 * dequeue_task(). Even though a task may be queued and dequeued multiple
 | 
						|
 * times as it is shuffled about, we're really interested in knowing how
 | 
						|
 * long it was from the *first* time it was queued to the time that it
 | 
						|
 * finally hit a cpu.
 | 
						|
 */
 | 
						|
static inline void sched_info_dequeued(task_t *t)
 | 
						|
{
 | 
						|
	t->sched_info.last_queued = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when a task finally hits the cpu.  We can now calculate how
 | 
						|
 * long it was waiting to run.  We also note when it began so that we
 | 
						|
 * can keep stats on how long its timeslice is.
 | 
						|
 */
 | 
						|
static inline void sched_info_arrive(task_t *t)
 | 
						|
{
 | 
						|
	unsigned long now = jiffies, diff = 0;
 | 
						|
	struct runqueue *rq = task_rq(t);
 | 
						|
 | 
						|
	if (t->sched_info.last_queued)
 | 
						|
		diff = now - t->sched_info.last_queued;
 | 
						|
	sched_info_dequeued(t);
 | 
						|
	t->sched_info.run_delay += diff;
 | 
						|
	t->sched_info.last_arrival = now;
 | 
						|
	t->sched_info.pcnt++;
 | 
						|
 | 
						|
	if (!rq)
 | 
						|
		return;
 | 
						|
 | 
						|
	rq->rq_sched_info.run_delay += diff;
 | 
						|
	rq->rq_sched_info.pcnt++;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when a process is queued into either the active or expired
 | 
						|
 * array.  The time is noted and later used to determine how long we
 | 
						|
 * had to wait for us to reach the cpu.  Since the expired queue will
 | 
						|
 * become the active queue after active queue is empty, without dequeuing
 | 
						|
 * and requeuing any tasks, we are interested in queuing to either. It
 | 
						|
 * is unusual but not impossible for tasks to be dequeued and immediately
 | 
						|
 * requeued in the same or another array: this can happen in sched_yield(),
 | 
						|
 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
 | 
						|
 * to runqueue.
 | 
						|
 *
 | 
						|
 * This function is only called from enqueue_task(), but also only updates
 | 
						|
 * the timestamp if it is already not set.  It's assumed that
 | 
						|
 * sched_info_dequeued() will clear that stamp when appropriate.
 | 
						|
 */
 | 
						|
static inline void sched_info_queued(task_t *t)
 | 
						|
{
 | 
						|
	if (!t->sched_info.last_queued)
 | 
						|
		t->sched_info.last_queued = jiffies;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when a process ceases being the active-running process, either
 | 
						|
 * voluntarily or involuntarily.  Now we can calculate how long we ran.
 | 
						|
 */
 | 
						|
static inline void sched_info_depart(task_t *t)
 | 
						|
{
 | 
						|
	struct runqueue *rq = task_rq(t);
 | 
						|
	unsigned long diff = jiffies - t->sched_info.last_arrival;
 | 
						|
 | 
						|
	t->sched_info.cpu_time += diff;
 | 
						|
 | 
						|
	if (rq)
 | 
						|
		rq->rq_sched_info.cpu_time += diff;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when tasks are switched involuntarily due, typically, to expiring
 | 
						|
 * their time slice.  (This may also be called when switching to or from
 | 
						|
 * the idle task.)  We are only called when prev != next.
 | 
						|
 */
 | 
						|
static inline void sched_info_switch(task_t *prev, task_t *next)
 | 
						|
{
 | 
						|
	struct runqueue *rq = task_rq(prev);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * prev now departs the cpu.  It's not interesting to record
 | 
						|
	 * stats about how efficient we were at scheduling the idle
 | 
						|
	 * process, however.
 | 
						|
	 */
 | 
						|
	if (prev != rq->idle)
 | 
						|
		sched_info_depart(prev);
 | 
						|
 | 
						|
	if (next != rq->idle)
 | 
						|
		sched_info_arrive(next);
 | 
						|
}
 | 
						|
#else
 | 
						|
#define sched_info_queued(t)		do { } while (0)
 | 
						|
#define sched_info_switch(t, next)	do { } while (0)
 | 
						|
#endif /* CONFIG_SCHEDSTATS */
 | 
						|
 | 
						|
/*
 | 
						|
 * Adding/removing a task to/from a priority array:
 | 
						|
 */
 | 
						|
static void dequeue_task(struct task_struct *p, prio_array_t *array)
 | 
						|
{
 | 
						|
	array->nr_active--;
 | 
						|
	list_del(&p->run_list);
 | 
						|
	if (list_empty(array->queue + p->prio))
 | 
						|
		__clear_bit(p->prio, array->bitmap);
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_task(struct task_struct *p, prio_array_t *array)
 | 
						|
{
 | 
						|
	sched_info_queued(p);
 | 
						|
	list_add_tail(&p->run_list, array->queue + p->prio);
 | 
						|
	__set_bit(p->prio, array->bitmap);
 | 
						|
	array->nr_active++;
 | 
						|
	p->array = array;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put task to the end of the run list without the overhead of dequeue
 | 
						|
 * followed by enqueue.
 | 
						|
 */
 | 
						|
static void requeue_task(struct task_struct *p, prio_array_t *array)
 | 
						|
{
 | 
						|
	list_move_tail(&p->run_list, array->queue + p->prio);
 | 
						|
}
 | 
						|
 | 
						|
static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
 | 
						|
{
 | 
						|
	list_add(&p->run_list, array->queue + p->prio);
 | 
						|
	__set_bit(p->prio, array->bitmap);
 | 
						|
	array->nr_active++;
 | 
						|
	p->array = array;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * effective_prio - return the priority that is based on the static
 | 
						|
 * priority but is modified by bonuses/penalties.
 | 
						|
 *
 | 
						|
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 | 
						|
 * into the -5 ... 0 ... +5 bonus/penalty range.
 | 
						|
 *
 | 
						|
 * We use 25% of the full 0...39 priority range so that:
 | 
						|
 *
 | 
						|
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 | 
						|
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 | 
						|
 *
 | 
						|
 * Both properties are important to certain workloads.
 | 
						|
 */
 | 
						|
static int effective_prio(task_t *p)
 | 
						|
{
 | 
						|
	int bonus, prio;
 | 
						|
 | 
						|
	if (rt_task(p))
 | 
						|
		return p->prio;
 | 
						|
 | 
						|
	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
 | 
						|
 | 
						|
	prio = p->static_prio - bonus;
 | 
						|
	if (prio < MAX_RT_PRIO)
 | 
						|
		prio = MAX_RT_PRIO;
 | 
						|
	if (prio > MAX_PRIO-1)
 | 
						|
		prio = MAX_PRIO-1;
 | 
						|
	return prio;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __activate_task - move a task to the runqueue.
 | 
						|
 */
 | 
						|
static inline void __activate_task(task_t *p, runqueue_t *rq)
 | 
						|
{
 | 
						|
	enqueue_task(p, rq->active);
 | 
						|
	rq->nr_running++;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 | 
						|
 */
 | 
						|
static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
 | 
						|
{
 | 
						|
	enqueue_task_head(p, rq->active);
 | 
						|
	rq->nr_running++;
 | 
						|
}
 | 
						|
 | 
						|
static void recalc_task_prio(task_t *p, unsigned long long now)
 | 
						|
{
 | 
						|
	/* Caller must always ensure 'now >= p->timestamp' */
 | 
						|
	unsigned long long __sleep_time = now - p->timestamp;
 | 
						|
	unsigned long sleep_time;
 | 
						|
 | 
						|
	if (__sleep_time > NS_MAX_SLEEP_AVG)
 | 
						|
		sleep_time = NS_MAX_SLEEP_AVG;
 | 
						|
	else
 | 
						|
		sleep_time = (unsigned long)__sleep_time;
 | 
						|
 | 
						|
	if (likely(sleep_time > 0)) {
 | 
						|
		/*
 | 
						|
		 * User tasks that sleep a long time are categorised as
 | 
						|
		 * idle and will get just interactive status to stay active &
 | 
						|
		 * prevent them suddenly becoming cpu hogs and starving
 | 
						|
		 * other processes.
 | 
						|
		 */
 | 
						|
		if (p->mm && p->activated != -1 &&
 | 
						|
			sleep_time > INTERACTIVE_SLEEP(p)) {
 | 
						|
				p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
 | 
						|
						DEF_TIMESLICE);
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * The lower the sleep avg a task has the more
 | 
						|
			 * rapidly it will rise with sleep time.
 | 
						|
			 */
 | 
						|
			sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Tasks waking from uninterruptible sleep are
 | 
						|
			 * limited in their sleep_avg rise as they
 | 
						|
			 * are likely to be waiting on I/O
 | 
						|
			 */
 | 
						|
			if (p->activated == -1 && p->mm) {
 | 
						|
				if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
 | 
						|
					sleep_time = 0;
 | 
						|
				else if (p->sleep_avg + sleep_time >=
 | 
						|
						INTERACTIVE_SLEEP(p)) {
 | 
						|
					p->sleep_avg = INTERACTIVE_SLEEP(p);
 | 
						|
					sleep_time = 0;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * This code gives a bonus to interactive tasks.
 | 
						|
			 *
 | 
						|
			 * The boost works by updating the 'average sleep time'
 | 
						|
			 * value here, based on ->timestamp. The more time a
 | 
						|
			 * task spends sleeping, the higher the average gets -
 | 
						|
			 * and the higher the priority boost gets as well.
 | 
						|
			 */
 | 
						|
			p->sleep_avg += sleep_time;
 | 
						|
 | 
						|
			if (p->sleep_avg > NS_MAX_SLEEP_AVG)
 | 
						|
				p->sleep_avg = NS_MAX_SLEEP_AVG;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	p->prio = effective_prio(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * activate_task - move a task to the runqueue and do priority recalculation
 | 
						|
 *
 | 
						|
 * Update all the scheduling statistics stuff. (sleep average
 | 
						|
 * calculation, priority modifiers, etc.)
 | 
						|
 */
 | 
						|
static void activate_task(task_t *p, runqueue_t *rq, int local)
 | 
						|
{
 | 
						|
	unsigned long long now;
 | 
						|
 | 
						|
	now = sched_clock();
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (!local) {
 | 
						|
		/* Compensate for drifting sched_clock */
 | 
						|
		runqueue_t *this_rq = this_rq();
 | 
						|
		now = (now - this_rq->timestamp_last_tick)
 | 
						|
			+ rq->timestamp_last_tick;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	recalc_task_prio(p, now);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This checks to make sure it's not an uninterruptible task
 | 
						|
	 * that is now waking up.
 | 
						|
	 */
 | 
						|
	if (!p->activated) {
 | 
						|
		/*
 | 
						|
		 * Tasks which were woken up by interrupts (ie. hw events)
 | 
						|
		 * are most likely of interactive nature. So we give them
 | 
						|
		 * the credit of extending their sleep time to the period
 | 
						|
		 * of time they spend on the runqueue, waiting for execution
 | 
						|
		 * on a CPU, first time around:
 | 
						|
		 */
 | 
						|
		if (in_interrupt())
 | 
						|
			p->activated = 2;
 | 
						|
		else {
 | 
						|
			/*
 | 
						|
			 * Normal first-time wakeups get a credit too for
 | 
						|
			 * on-runqueue time, but it will be weighted down:
 | 
						|
			 */
 | 
						|
			p->activated = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	p->timestamp = now;
 | 
						|
 | 
						|
	__activate_task(p, rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * deactivate_task - remove a task from the runqueue.
 | 
						|
 */
 | 
						|
static void deactivate_task(struct task_struct *p, runqueue_t *rq)
 | 
						|
{
 | 
						|
	rq->nr_running--;
 | 
						|
	dequeue_task(p, p->array);
 | 
						|
	p->array = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * resched_task - mark a task 'to be rescheduled now'.
 | 
						|
 *
 | 
						|
 * On UP this means the setting of the need_resched flag, on SMP it
 | 
						|
 * might also involve a cross-CPU call to trigger the scheduler on
 | 
						|
 * the target CPU.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static void resched_task(task_t *p)
 | 
						|
{
 | 
						|
	int need_resched, nrpolling;
 | 
						|
 | 
						|
	assert_spin_locked(&task_rq(p)->lock);
 | 
						|
 | 
						|
	/* minimise the chance of sending an interrupt to poll_idle() */
 | 
						|
	nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
 | 
						|
	need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
 | 
						|
	nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
 | 
						|
 | 
						|
	if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
 | 
						|
		smp_send_reschedule(task_cpu(p));
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void resched_task(task_t *p)
 | 
						|
{
 | 
						|
	set_tsk_need_resched(p);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * task_curr - is this task currently executing on a CPU?
 | 
						|
 * @p: the task in question.
 | 
						|
 */
 | 
						|
inline int task_curr(const task_t *p)
 | 
						|
{
 | 
						|
	return cpu_curr(task_cpu(p)) == p;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
enum request_type {
 | 
						|
	REQ_MOVE_TASK,
 | 
						|
	REQ_SET_DOMAIN,
 | 
						|
};
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	struct list_head list;
 | 
						|
	enum request_type type;
 | 
						|
 | 
						|
	/* For REQ_MOVE_TASK */
 | 
						|
	task_t *task;
 | 
						|
	int dest_cpu;
 | 
						|
 | 
						|
	/* For REQ_SET_DOMAIN */
 | 
						|
	struct sched_domain *sd;
 | 
						|
 | 
						|
	struct completion done;
 | 
						|
} migration_req_t;
 | 
						|
 | 
						|
/*
 | 
						|
 * The task's runqueue lock must be held.
 | 
						|
 * Returns true if you have to wait for migration thread.
 | 
						|
 */
 | 
						|
static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
 | 
						|
{
 | 
						|
	runqueue_t *rq = task_rq(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the task is not on a runqueue (and not running), then
 | 
						|
	 * it is sufficient to simply update the task's cpu field.
 | 
						|
	 */
 | 
						|
	if (!p->array && !task_running(rq, p)) {
 | 
						|
		set_task_cpu(p, dest_cpu);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	init_completion(&req->done);
 | 
						|
	req->type = REQ_MOVE_TASK;
 | 
						|
	req->task = p;
 | 
						|
	req->dest_cpu = dest_cpu;
 | 
						|
	list_add(&req->list, &rq->migration_queue);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * wait_task_inactive - wait for a thread to unschedule.
 | 
						|
 *
 | 
						|
 * The caller must ensure that the task *will* unschedule sometime soon,
 | 
						|
 * else this function might spin for a *long* time. This function can't
 | 
						|
 * be called with interrupts off, or it may introduce deadlock with
 | 
						|
 * smp_call_function() if an IPI is sent by the same process we are
 | 
						|
 * waiting to become inactive.
 | 
						|
 */
 | 
						|
void wait_task_inactive(task_t * p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	runqueue_t *rq;
 | 
						|
	int preempted;
 | 
						|
 | 
						|
repeat:
 | 
						|
	rq = task_rq_lock(p, &flags);
 | 
						|
	/* Must be off runqueue entirely, not preempted. */
 | 
						|
	if (unlikely(p->array || task_running(rq, p))) {
 | 
						|
		/* If it's preempted, we yield.  It could be a while. */
 | 
						|
		preempted = !task_running(rq, p);
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		cpu_relax();
 | 
						|
		if (preempted)
 | 
						|
			yield();
 | 
						|
		goto repeat;
 | 
						|
	}
 | 
						|
	task_rq_unlock(rq, &flags);
 | 
						|
}
 | 
						|
 | 
						|
/***
 | 
						|
 * kick_process - kick a running thread to enter/exit the kernel
 | 
						|
 * @p: the to-be-kicked thread
 | 
						|
 *
 | 
						|
 * Cause a process which is running on another CPU to enter
 | 
						|
 * kernel-mode, without any delay. (to get signals handled.)
 | 
						|
 *
 | 
						|
 * NOTE: this function doesnt have to take the runqueue lock,
 | 
						|
 * because all it wants to ensure is that the remote task enters
 | 
						|
 * the kernel. If the IPI races and the task has been migrated
 | 
						|
 * to another CPU then no harm is done and the purpose has been
 | 
						|
 * achieved as well.
 | 
						|
 */
 | 
						|
void kick_process(task_t *p)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	preempt_disable();
 | 
						|
	cpu = task_cpu(p);
 | 
						|
	if ((cpu != smp_processor_id()) && task_curr(p))
 | 
						|
		smp_send_reschedule(cpu);
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a low guess at the load of a migration-source cpu.
 | 
						|
 *
 | 
						|
 * We want to under-estimate the load of migration sources, to
 | 
						|
 * balance conservatively.
 | 
						|
 */
 | 
						|
static inline unsigned long source_load(int cpu)
 | 
						|
{
 | 
						|
	runqueue_t *rq = cpu_rq(cpu);
 | 
						|
	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
	return min(rq->cpu_load, load_now);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a high guess at the load of a migration-target cpu
 | 
						|
 */
 | 
						|
static inline unsigned long target_load(int cpu)
 | 
						|
{
 | 
						|
	runqueue_t *rq = cpu_rq(cpu);
 | 
						|
	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
	return max(rq->cpu_load, load_now);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 | 
						|
 * not idle and an idle cpu is available.  The span of cpus to
 | 
						|
 * search starts with cpus closest then further out as needed,
 | 
						|
 * so we always favor a closer, idle cpu.
 | 
						|
 *
 | 
						|
 * Returns the CPU we should wake onto.
 | 
						|
 */
 | 
						|
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
 | 
						|
static int wake_idle(int cpu, task_t *p)
 | 
						|
{
 | 
						|
	cpumask_t tmp;
 | 
						|
	struct sched_domain *sd;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (idle_cpu(cpu))
 | 
						|
		return cpu;
 | 
						|
 | 
						|
	for_each_domain(cpu, sd) {
 | 
						|
		if (sd->flags & SD_WAKE_IDLE) {
 | 
						|
			cpus_and(tmp, sd->span, cpu_online_map);
 | 
						|
			cpus_and(tmp, tmp, p->cpus_allowed);
 | 
						|
			for_each_cpu_mask(i, tmp) {
 | 
						|
				if (idle_cpu(i))
 | 
						|
					return i;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else break;
 | 
						|
	}
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int wake_idle(int cpu, task_t *p)
 | 
						|
{
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/***
 | 
						|
 * try_to_wake_up - wake up a thread
 | 
						|
 * @p: the to-be-woken-up thread
 | 
						|
 * @state: the mask of task states that can be woken
 | 
						|
 * @sync: do a synchronous wakeup?
 | 
						|
 *
 | 
						|
 * Put it on the run-queue if it's not already there. The "current"
 | 
						|
 * thread is always on the run-queue (except when the actual
 | 
						|
 * re-schedule is in progress), and as such you're allowed to do
 | 
						|
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 | 
						|
 * runnable without the overhead of this.
 | 
						|
 *
 | 
						|
 * returns failure only if the task is already active.
 | 
						|
 */
 | 
						|
static int try_to_wake_up(task_t * p, unsigned int state, int sync)
 | 
						|
{
 | 
						|
	int cpu, this_cpu, success = 0;
 | 
						|
	unsigned long flags;
 | 
						|
	long old_state;
 | 
						|
	runqueue_t *rq;
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	unsigned long load, this_load;
 | 
						|
	struct sched_domain *sd;
 | 
						|
	int new_cpu;
 | 
						|
#endif
 | 
						|
 | 
						|
	rq = task_rq_lock(p, &flags);
 | 
						|
	old_state = p->state;
 | 
						|
	if (!(old_state & state))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (p->array)
 | 
						|
		goto out_running;
 | 
						|
 | 
						|
	cpu = task_cpu(p);
 | 
						|
	this_cpu = smp_processor_id();
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (unlikely(task_running(rq, p)))
 | 
						|
		goto out_activate;
 | 
						|
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
	schedstat_inc(rq, ttwu_cnt);
 | 
						|
	if (cpu == this_cpu) {
 | 
						|
		schedstat_inc(rq, ttwu_local);
 | 
						|
	} else {
 | 
						|
		for_each_domain(this_cpu, sd) {
 | 
						|
			if (cpu_isset(cpu, sd->span)) {
 | 
						|
				schedstat_inc(sd, ttwu_wake_remote);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	new_cpu = cpu;
 | 
						|
	if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
 | 
						|
		goto out_set_cpu;
 | 
						|
 | 
						|
	load = source_load(cpu);
 | 
						|
	this_load = target_load(this_cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If sync wakeup then subtract the (maximum possible) effect of
 | 
						|
	 * the currently running task from the load of the current CPU:
 | 
						|
	 */
 | 
						|
	if (sync)
 | 
						|
		this_load -= SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
	/* Don't pull the task off an idle CPU to a busy one */
 | 
						|
	if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
 | 
						|
		goto out_set_cpu;
 | 
						|
 | 
						|
	new_cpu = this_cpu; /* Wake to this CPU if we can */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Scan domains for affine wakeup and passive balancing
 | 
						|
	 * possibilities.
 | 
						|
	 */
 | 
						|
	for_each_domain(this_cpu, sd) {
 | 
						|
		unsigned int imbalance;
 | 
						|
		/*
 | 
						|
		 * Start passive balancing when half the imbalance_pct
 | 
						|
		 * limit is reached.
 | 
						|
		 */
 | 
						|
		imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
 | 
						|
 | 
						|
		if ((sd->flags & SD_WAKE_AFFINE) &&
 | 
						|
				!task_hot(p, rq->timestamp_last_tick, sd)) {
 | 
						|
			/*
 | 
						|
			 * This domain has SD_WAKE_AFFINE and p is cache cold
 | 
						|
			 * in this domain.
 | 
						|
			 */
 | 
						|
			if (cpu_isset(cpu, sd->span)) {
 | 
						|
				schedstat_inc(sd, ttwu_move_affine);
 | 
						|
				goto out_set_cpu;
 | 
						|
			}
 | 
						|
		} else if ((sd->flags & SD_WAKE_BALANCE) &&
 | 
						|
				imbalance*this_load <= 100*load) {
 | 
						|
			/*
 | 
						|
			 * This domain has SD_WAKE_BALANCE and there is
 | 
						|
			 * an imbalance.
 | 
						|
			 */
 | 
						|
			if (cpu_isset(cpu, sd->span)) {
 | 
						|
				schedstat_inc(sd, ttwu_move_balance);
 | 
						|
				goto out_set_cpu;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
 | 
						|
out_set_cpu:
 | 
						|
	new_cpu = wake_idle(new_cpu, p);
 | 
						|
	if (new_cpu != cpu) {
 | 
						|
		set_task_cpu(p, new_cpu);
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		/* might preempt at this point */
 | 
						|
		rq = task_rq_lock(p, &flags);
 | 
						|
		old_state = p->state;
 | 
						|
		if (!(old_state & state))
 | 
						|
			goto out;
 | 
						|
		if (p->array)
 | 
						|
			goto out_running;
 | 
						|
 | 
						|
		this_cpu = smp_processor_id();
 | 
						|
		cpu = task_cpu(p);
 | 
						|
	}
 | 
						|
 | 
						|
out_activate:
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
	if (old_state == TASK_UNINTERRUPTIBLE) {
 | 
						|
		rq->nr_uninterruptible--;
 | 
						|
		/*
 | 
						|
		 * Tasks on involuntary sleep don't earn
 | 
						|
		 * sleep_avg beyond just interactive state.
 | 
						|
		 */
 | 
						|
		p->activated = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sync wakeups (i.e. those types of wakeups where the waker
 | 
						|
	 * has indicated that it will leave the CPU in short order)
 | 
						|
	 * don't trigger a preemption, if the woken up task will run on
 | 
						|
	 * this cpu. (in this case the 'I will reschedule' promise of
 | 
						|
	 * the waker guarantees that the freshly woken up task is going
 | 
						|
	 * to be considered on this CPU.)
 | 
						|
	 */
 | 
						|
	activate_task(p, rq, cpu == this_cpu);
 | 
						|
	if (!sync || cpu != this_cpu) {
 | 
						|
		if (TASK_PREEMPTS_CURR(p, rq))
 | 
						|
			resched_task(rq->curr);
 | 
						|
	}
 | 
						|
	success = 1;
 | 
						|
 | 
						|
out_running:
 | 
						|
	p->state = TASK_RUNNING;
 | 
						|
out:
 | 
						|
	task_rq_unlock(rq, &flags);
 | 
						|
 | 
						|
	return success;
 | 
						|
}
 | 
						|
 | 
						|
int fastcall wake_up_process(task_t * p)
 | 
						|
{
 | 
						|
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
 | 
						|
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(wake_up_process);
 | 
						|
 | 
						|
int fastcall wake_up_state(task_t *p, unsigned int state)
 | 
						|
{
 | 
						|
	return try_to_wake_up(p, state, 0);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static int find_idlest_cpu(struct task_struct *p, int this_cpu,
 | 
						|
			   struct sched_domain *sd);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform scheduler related setup for a newly forked process p.
 | 
						|
 * p is forked by current.
 | 
						|
 */
 | 
						|
void fastcall sched_fork(task_t *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We mark the process as running here, but have not actually
 | 
						|
	 * inserted it onto the runqueue yet. This guarantees that
 | 
						|
	 * nobody will actually run it, and a signal or other external
 | 
						|
	 * event cannot wake it up and insert it on the runqueue either.
 | 
						|
	 */
 | 
						|
	p->state = TASK_RUNNING;
 | 
						|
	INIT_LIST_HEAD(&p->run_list);
 | 
						|
	p->array = NULL;
 | 
						|
	spin_lock_init(&p->switch_lock);
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
	memset(&p->sched_info, 0, sizeof(p->sched_info));
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_PREEMPT
 | 
						|
	/*
 | 
						|
	 * During context-switch we hold precisely one spinlock, which
 | 
						|
	 * schedule_tail drops. (in the common case it's this_rq()->lock,
 | 
						|
	 * but it also can be p->switch_lock.) So we compensate with a count
 | 
						|
	 * of 1. Also, we want to start with kernel preemption disabled.
 | 
						|
	 */
 | 
						|
	p->thread_info->preempt_count = 1;
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * Share the timeslice between parent and child, thus the
 | 
						|
	 * total amount of pending timeslices in the system doesn't change,
 | 
						|
	 * resulting in more scheduling fairness.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	p->time_slice = (current->time_slice + 1) >> 1;
 | 
						|
	/*
 | 
						|
	 * The remainder of the first timeslice might be recovered by
 | 
						|
	 * the parent if the child exits early enough.
 | 
						|
	 */
 | 
						|
	p->first_time_slice = 1;
 | 
						|
	current->time_slice >>= 1;
 | 
						|
	p->timestamp = sched_clock();
 | 
						|
	if (unlikely(!current->time_slice)) {
 | 
						|
		/*
 | 
						|
		 * This case is rare, it happens when the parent has only
 | 
						|
		 * a single jiffy left from its timeslice. Taking the
 | 
						|
		 * runqueue lock is not a problem.
 | 
						|
		 */
 | 
						|
		current->time_slice = 1;
 | 
						|
		preempt_disable();
 | 
						|
		scheduler_tick();
 | 
						|
		local_irq_enable();
 | 
						|
		preempt_enable();
 | 
						|
	} else
 | 
						|
		local_irq_enable();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * wake_up_new_task - wake up a newly created task for the first time.
 | 
						|
 *
 | 
						|
 * This function will do some initial scheduler statistics housekeeping
 | 
						|
 * that must be done for every newly created context, then puts the task
 | 
						|
 * on the runqueue and wakes it.
 | 
						|
 */
 | 
						|
void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int this_cpu, cpu;
 | 
						|
	runqueue_t *rq, *this_rq;
 | 
						|
 | 
						|
	rq = task_rq_lock(p, &flags);
 | 
						|
	cpu = task_cpu(p);
 | 
						|
	this_cpu = smp_processor_id();
 | 
						|
 | 
						|
	BUG_ON(p->state != TASK_RUNNING);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We decrease the sleep average of forking parents
 | 
						|
	 * and children as well, to keep max-interactive tasks
 | 
						|
	 * from forking tasks that are max-interactive. The parent
 | 
						|
	 * (current) is done further down, under its lock.
 | 
						|
	 */
 | 
						|
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
 | 
						|
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 | 
						|
 | 
						|
	p->prio = effective_prio(p);
 | 
						|
 | 
						|
	if (likely(cpu == this_cpu)) {
 | 
						|
		if (!(clone_flags & CLONE_VM)) {
 | 
						|
			/*
 | 
						|
			 * The VM isn't cloned, so we're in a good position to
 | 
						|
			 * do child-runs-first in anticipation of an exec. This
 | 
						|
			 * usually avoids a lot of COW overhead.
 | 
						|
			 */
 | 
						|
			if (unlikely(!current->array))
 | 
						|
				__activate_task(p, rq);
 | 
						|
			else {
 | 
						|
				p->prio = current->prio;
 | 
						|
				list_add_tail(&p->run_list, ¤t->run_list);
 | 
						|
				p->array = current->array;
 | 
						|
				p->array->nr_active++;
 | 
						|
				rq->nr_running++;
 | 
						|
			}
 | 
						|
			set_need_resched();
 | 
						|
		} else
 | 
						|
			/* Run child last */
 | 
						|
			__activate_task(p, rq);
 | 
						|
		/*
 | 
						|
		 * We skip the following code due to cpu == this_cpu
 | 
						|
	 	 *
 | 
						|
		 *   task_rq_unlock(rq, &flags);
 | 
						|
		 *   this_rq = task_rq_lock(current, &flags);
 | 
						|
		 */
 | 
						|
		this_rq = rq;
 | 
						|
	} else {
 | 
						|
		this_rq = cpu_rq(this_cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Not the local CPU - must adjust timestamp. This should
 | 
						|
		 * get optimised away in the !CONFIG_SMP case.
 | 
						|
		 */
 | 
						|
		p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
 | 
						|
					+ rq->timestamp_last_tick;
 | 
						|
		__activate_task(p, rq);
 | 
						|
		if (TASK_PREEMPTS_CURR(p, rq))
 | 
						|
			resched_task(rq->curr);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Parent and child are on different CPUs, now get the
 | 
						|
		 * parent runqueue to update the parent's ->sleep_avg:
 | 
						|
		 */
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		this_rq = task_rq_lock(current, &flags);
 | 
						|
	}
 | 
						|
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
 | 
						|
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 | 
						|
	task_rq_unlock(this_rq, &flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Potentially available exiting-child timeslices are
 | 
						|
 * retrieved here - this way the parent does not get
 | 
						|
 * penalized for creating too many threads.
 | 
						|
 *
 | 
						|
 * (this cannot be used to 'generate' timeslices
 | 
						|
 * artificially, because any timeslice recovered here
 | 
						|
 * was given away by the parent in the first place.)
 | 
						|
 */
 | 
						|
void fastcall sched_exit(task_t * p)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	runqueue_t *rq;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the child was a (relative-) CPU hog then decrease
 | 
						|
	 * the sleep_avg of the parent as well.
 | 
						|
	 */
 | 
						|
	rq = task_rq_lock(p->parent, &flags);
 | 
						|
	if (p->first_time_slice) {
 | 
						|
		p->parent->time_slice += p->time_slice;
 | 
						|
		if (unlikely(p->parent->time_slice > task_timeslice(p)))
 | 
						|
			p->parent->time_slice = task_timeslice(p);
 | 
						|
	}
 | 
						|
	if (p->sleep_avg < p->parent->sleep_avg)
 | 
						|
		p->parent->sleep_avg = p->parent->sleep_avg /
 | 
						|
		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
 | 
						|
		(EXIT_WEIGHT + 1);
 | 
						|
	task_rq_unlock(rq, &flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * finish_task_switch - clean up after a task-switch
 | 
						|
 * @prev: the thread we just switched away from.
 | 
						|
 *
 | 
						|
 * We enter this with the runqueue still locked, and finish_arch_switch()
 | 
						|
 * will unlock it along with doing any other architecture-specific cleanup
 | 
						|
 * actions.
 | 
						|
 *
 | 
						|
 * Note that we may have delayed dropping an mm in context_switch(). If
 | 
						|
 * so, we finish that here outside of the runqueue lock.  (Doing it
 | 
						|
 * with the lock held can cause deadlocks; see schedule() for
 | 
						|
 * details.)
 | 
						|
 */
 | 
						|
static inline void finish_task_switch(task_t *prev)
 | 
						|
	__releases(rq->lock)
 | 
						|
{
 | 
						|
	runqueue_t *rq = this_rq();
 | 
						|
	struct mm_struct *mm = rq->prev_mm;
 | 
						|
	unsigned long prev_task_flags;
 | 
						|
 | 
						|
	rq->prev_mm = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A task struct has one reference for the use as "current".
 | 
						|
	 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
 | 
						|
	 * calls schedule one last time. The schedule call will never return,
 | 
						|
	 * and the scheduled task must drop that reference.
 | 
						|
	 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
 | 
						|
	 * still held, otherwise prev could be scheduled on another cpu, die
 | 
						|
	 * there before we look at prev->state, and then the reference would
 | 
						|
	 * be dropped twice.
 | 
						|
	 *		Manfred Spraul <manfred@colorfullife.com>
 | 
						|
	 */
 | 
						|
	prev_task_flags = prev->flags;
 | 
						|
	finish_arch_switch(rq, prev);
 | 
						|
	if (mm)
 | 
						|
		mmdrop(mm);
 | 
						|
	if (unlikely(prev_task_flags & PF_DEAD))
 | 
						|
		put_task_struct(prev);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * schedule_tail - first thing a freshly forked thread must call.
 | 
						|
 * @prev: the thread we just switched away from.
 | 
						|
 */
 | 
						|
asmlinkage void schedule_tail(task_t *prev)
 | 
						|
	__releases(rq->lock)
 | 
						|
{
 | 
						|
	finish_task_switch(prev);
 | 
						|
 | 
						|
	if (current->set_child_tid)
 | 
						|
		put_user(current->pid, current->set_child_tid);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * context_switch - switch to the new MM and the new
 | 
						|
 * thread's register state.
 | 
						|
 */
 | 
						|
static inline
 | 
						|
task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = next->mm;
 | 
						|
	struct mm_struct *oldmm = prev->active_mm;
 | 
						|
 | 
						|
	if (unlikely(!mm)) {
 | 
						|
		next->active_mm = oldmm;
 | 
						|
		atomic_inc(&oldmm->mm_count);
 | 
						|
		enter_lazy_tlb(oldmm, next);
 | 
						|
	} else
 | 
						|
		switch_mm(oldmm, mm, next);
 | 
						|
 | 
						|
	if (unlikely(!prev->mm)) {
 | 
						|
		prev->active_mm = NULL;
 | 
						|
		WARN_ON(rq->prev_mm);
 | 
						|
		rq->prev_mm = oldmm;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Here we just switch the register state and the stack. */
 | 
						|
	switch_to(prev, next, prev);
 | 
						|
 | 
						|
	return prev;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * nr_running, nr_uninterruptible and nr_context_switches:
 | 
						|
 *
 | 
						|
 * externally visible scheduler statistics: current number of runnable
 | 
						|
 * threads, current number of uninterruptible-sleeping threads, total
 | 
						|
 * number of context switches performed since bootup.
 | 
						|
 */
 | 
						|
unsigned long nr_running(void)
 | 
						|
{
 | 
						|
	unsigned long i, sum = 0;
 | 
						|
 | 
						|
	for_each_online_cpu(i)
 | 
						|
		sum += cpu_rq(i)->nr_running;
 | 
						|
 | 
						|
	return sum;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long nr_uninterruptible(void)
 | 
						|
{
 | 
						|
	unsigned long i, sum = 0;
 | 
						|
 | 
						|
	for_each_cpu(i)
 | 
						|
		sum += cpu_rq(i)->nr_uninterruptible;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we read the counters lockless, it might be slightly
 | 
						|
	 * inaccurate. Do not allow it to go below zero though:
 | 
						|
	 */
 | 
						|
	if (unlikely((long)sum < 0))
 | 
						|
		sum = 0;
 | 
						|
 | 
						|
	return sum;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long long nr_context_switches(void)
 | 
						|
{
 | 
						|
	unsigned long long i, sum = 0;
 | 
						|
 | 
						|
	for_each_cpu(i)
 | 
						|
		sum += cpu_rq(i)->nr_switches;
 | 
						|
 | 
						|
	return sum;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long nr_iowait(void)
 | 
						|
{
 | 
						|
	unsigned long i, sum = 0;
 | 
						|
 | 
						|
	for_each_cpu(i)
 | 
						|
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
 | 
						|
 | 
						|
	return sum;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
/*
 | 
						|
 * double_rq_lock - safely lock two runqueues
 | 
						|
 *
 | 
						|
 * Note this does not disable interrupts like task_rq_lock,
 | 
						|
 * you need to do so manually before calling.
 | 
						|
 */
 | 
						|
static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
 | 
						|
	__acquires(rq1->lock)
 | 
						|
	__acquires(rq2->lock)
 | 
						|
{
 | 
						|
	if (rq1 == rq2) {
 | 
						|
		spin_lock(&rq1->lock);
 | 
						|
		__acquire(rq2->lock);	/* Fake it out ;) */
 | 
						|
	} else {
 | 
						|
		if (rq1 < rq2) {
 | 
						|
			spin_lock(&rq1->lock);
 | 
						|
			spin_lock(&rq2->lock);
 | 
						|
		} else {
 | 
						|
			spin_lock(&rq2->lock);
 | 
						|
			spin_lock(&rq1->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * double_rq_unlock - safely unlock two runqueues
 | 
						|
 *
 | 
						|
 * Note this does not restore interrupts like task_rq_unlock,
 | 
						|
 * you need to do so manually after calling.
 | 
						|
 */
 | 
						|
static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
 | 
						|
	__releases(rq1->lock)
 | 
						|
	__releases(rq2->lock)
 | 
						|
{
 | 
						|
	spin_unlock(&rq1->lock);
 | 
						|
	if (rq1 != rq2)
 | 
						|
		spin_unlock(&rq2->lock);
 | 
						|
	else
 | 
						|
		__release(rq2->lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 | 
						|
 */
 | 
						|
static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
 | 
						|
	__releases(this_rq->lock)
 | 
						|
	__acquires(busiest->lock)
 | 
						|
	__acquires(this_rq->lock)
 | 
						|
{
 | 
						|
	if (unlikely(!spin_trylock(&busiest->lock))) {
 | 
						|
		if (busiest < this_rq) {
 | 
						|
			spin_unlock(&this_rq->lock);
 | 
						|
			spin_lock(&busiest->lock);
 | 
						|
			spin_lock(&this_rq->lock);
 | 
						|
		} else
 | 
						|
			spin_lock(&busiest->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find_idlest_cpu - find the least busy runqueue.
 | 
						|
 */
 | 
						|
static int find_idlest_cpu(struct task_struct *p, int this_cpu,
 | 
						|
			   struct sched_domain *sd)
 | 
						|
{
 | 
						|
	unsigned long load, min_load, this_load;
 | 
						|
	int i, min_cpu;
 | 
						|
	cpumask_t mask;
 | 
						|
 | 
						|
	min_cpu = UINT_MAX;
 | 
						|
	min_load = ULONG_MAX;
 | 
						|
 | 
						|
	cpus_and(mask, sd->span, p->cpus_allowed);
 | 
						|
 | 
						|
	for_each_cpu_mask(i, mask) {
 | 
						|
		load = target_load(i);
 | 
						|
 | 
						|
		if (load < min_load) {
 | 
						|
			min_cpu = i;
 | 
						|
			min_load = load;
 | 
						|
 | 
						|
			/* break out early on an idle CPU: */
 | 
						|
			if (!min_load)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* add +1 to account for the new task */
 | 
						|
	this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Would with the addition of the new task to the
 | 
						|
	 * current CPU there be an imbalance between this
 | 
						|
	 * CPU and the idlest CPU?
 | 
						|
	 *
 | 
						|
	 * Use half of the balancing threshold - new-context is
 | 
						|
	 * a good opportunity to balance.
 | 
						|
	 */
 | 
						|
	if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
 | 
						|
		return min_cpu;
 | 
						|
 | 
						|
	return this_cpu;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If dest_cpu is allowed for this process, migrate the task to it.
 | 
						|
 * This is accomplished by forcing the cpu_allowed mask to only
 | 
						|
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 | 
						|
 * the cpu_allowed mask is restored.
 | 
						|
 */
 | 
						|
static void sched_migrate_task(task_t *p, int dest_cpu)
 | 
						|
{
 | 
						|
	migration_req_t req;
 | 
						|
	runqueue_t *rq;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	rq = task_rq_lock(p, &flags);
 | 
						|
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
 | 
						|
	    || unlikely(cpu_is_offline(dest_cpu)))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* force the process onto the specified CPU */
 | 
						|
	if (migrate_task(p, dest_cpu, &req)) {
 | 
						|
		/* Need to wait for migration thread (might exit: take ref). */
 | 
						|
		struct task_struct *mt = rq->migration_thread;
 | 
						|
		get_task_struct(mt);
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		wake_up_process(mt);
 | 
						|
		put_task_struct(mt);
 | 
						|
		wait_for_completion(&req.done);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	task_rq_unlock(rq, &flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sched_exec(): find the highest-level, exec-balance-capable
 | 
						|
 * domain and try to migrate the task to the least loaded CPU.
 | 
						|
 *
 | 
						|
 * execve() is a valuable balancing opportunity, because at this point
 | 
						|
 * the task has the smallest effective memory and cache footprint.
 | 
						|
 */
 | 
						|
void sched_exec(void)
 | 
						|
{
 | 
						|
	struct sched_domain *tmp, *sd = NULL;
 | 
						|
	int new_cpu, this_cpu = get_cpu();
 | 
						|
 | 
						|
	/* Prefer the current CPU if there's only this task running */
 | 
						|
	if (this_rq()->nr_running <= 1)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	for_each_domain(this_cpu, tmp)
 | 
						|
		if (tmp->flags & SD_BALANCE_EXEC)
 | 
						|
			sd = tmp;
 | 
						|
 | 
						|
	if (sd) {
 | 
						|
		schedstat_inc(sd, sbe_attempts);
 | 
						|
		new_cpu = find_idlest_cpu(current, this_cpu, sd);
 | 
						|
		if (new_cpu != this_cpu) {
 | 
						|
			schedstat_inc(sd, sbe_pushed);
 | 
						|
			put_cpu();
 | 
						|
			sched_migrate_task(current, new_cpu);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * pull_task - move a task from a remote runqueue to the local runqueue.
 | 
						|
 * Both runqueues must be locked.
 | 
						|
 */
 | 
						|
static inline
 | 
						|
void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
 | 
						|
	       runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 | 
						|
{
 | 
						|
	dequeue_task(p, src_array);
 | 
						|
	src_rq->nr_running--;
 | 
						|
	set_task_cpu(p, this_cpu);
 | 
						|
	this_rq->nr_running++;
 | 
						|
	enqueue_task(p, this_array);
 | 
						|
	p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
 | 
						|
				+ this_rq->timestamp_last_tick;
 | 
						|
	/*
 | 
						|
	 * Note that idle threads have a prio of MAX_PRIO, for this test
 | 
						|
	 * to be always true for them.
 | 
						|
	 */
 | 
						|
	if (TASK_PREEMPTS_CURR(p, this_rq))
 | 
						|
		resched_task(this_rq->curr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 | 
						|
 */
 | 
						|
static inline
 | 
						|
int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
 | 
						|
		     struct sched_domain *sd, enum idle_type idle)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We do not migrate tasks that are:
 | 
						|
	 * 1) running (obviously), or
 | 
						|
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
 | 
						|
	 * 3) are cache-hot on their current CPU.
 | 
						|
	 */
 | 
						|
	if (task_running(rq, p))
 | 
						|
		return 0;
 | 
						|
	if (!cpu_isset(this_cpu, p->cpus_allowed))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Aggressive migration if:
 | 
						|
	 * 1) the [whole] cpu is idle, or
 | 
						|
	 * 2) too many balance attempts have failed.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (cpu_and_siblings_are_idle(this_cpu) || \
 | 
						|
			sd->nr_balance_failed > sd->cache_nice_tries)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (task_hot(p, rq->timestamp_last_tick, sd))
 | 
						|
			return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
 | 
						|
 * as part of a balancing operation within "domain". Returns the number of
 | 
						|
 * tasks moved.
 | 
						|
 *
 | 
						|
 * Called with both runqueues locked.
 | 
						|
 */
 | 
						|
static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
 | 
						|
		      unsigned long max_nr_move, struct sched_domain *sd,
 | 
						|
		      enum idle_type idle)
 | 
						|
{
 | 
						|
	prio_array_t *array, *dst_array;
 | 
						|
	struct list_head *head, *curr;
 | 
						|
	int idx, pulled = 0;
 | 
						|
	task_t *tmp;
 | 
						|
 | 
						|
	if (max_nr_move <= 0 || busiest->nr_running <= 1)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We first consider expired tasks. Those will likely not be
 | 
						|
	 * executed in the near future, and they are most likely to
 | 
						|
	 * be cache-cold, thus switching CPUs has the least effect
 | 
						|
	 * on them.
 | 
						|
	 */
 | 
						|
	if (busiest->expired->nr_active) {
 | 
						|
		array = busiest->expired;
 | 
						|
		dst_array = this_rq->expired;
 | 
						|
	} else {
 | 
						|
		array = busiest->active;
 | 
						|
		dst_array = this_rq->active;
 | 
						|
	}
 | 
						|
 | 
						|
new_array:
 | 
						|
	/* Start searching at priority 0: */
 | 
						|
	idx = 0;
 | 
						|
skip_bitmap:
 | 
						|
	if (!idx)
 | 
						|
		idx = sched_find_first_bit(array->bitmap);
 | 
						|
	else
 | 
						|
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
 | 
						|
	if (idx >= MAX_PRIO) {
 | 
						|
		if (array == busiest->expired && busiest->active->nr_active) {
 | 
						|
			array = busiest->active;
 | 
						|
			dst_array = this_rq->active;
 | 
						|
			goto new_array;
 | 
						|
		}
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	head = array->queue + idx;
 | 
						|
	curr = head->prev;
 | 
						|
skip_queue:
 | 
						|
	tmp = list_entry(curr, task_t, run_list);
 | 
						|
 | 
						|
	curr = curr->prev;
 | 
						|
 | 
						|
	if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
 | 
						|
		if (curr != head)
 | 
						|
			goto skip_queue;
 | 
						|
		idx++;
 | 
						|
		goto skip_bitmap;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_SCHEDSTATS
 | 
						|
	if (task_hot(tmp, busiest->timestamp_last_tick, sd))
 | 
						|
		schedstat_inc(sd, lb_hot_gained[idle]);
 | 
						|
#endif
 | 
						|
 | 
						|
	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
 | 
						|
	pulled++;
 | 
						|
 | 
						|
	/* We only want to steal up to the prescribed number of tasks. */
 | 
						|
	if (pulled < max_nr_move) {
 | 
						|
		if (curr != head)
 | 
						|
			goto skip_queue;
 | 
						|
		idx++;
 | 
						|
		goto skip_bitmap;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Right now, this is the only place pull_task() is called,
 | 
						|
	 * so we can safely collect pull_task() stats here rather than
 | 
						|
	 * inside pull_task().
 | 
						|
	 */
 | 
						|
	schedstat_add(sd, lb_gained[idle], pulled);
 | 
						|
	return pulled;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find_busiest_group finds and returns the busiest CPU group within the
 | 
						|
 * domain. It calculates and returns the number of tasks which should be
 | 
						|
 * moved to restore balance via the imbalance parameter.
 | 
						|
 */
 | 
						|
static struct sched_group *
 | 
						|
find_busiest_group(struct sched_domain *sd, int this_cpu,
 | 
						|
		   unsigned long *imbalance, enum idle_type idle)
 | 
						|
{
 | 
						|
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
 | 
						|
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
 | 
						|
 | 
						|
	max_load = this_load = total_load = total_pwr = 0;
 | 
						|
 | 
						|
	do {
 | 
						|
		unsigned long load;
 | 
						|
		int local_group;
 | 
						|
		int i;
 | 
						|
 | 
						|
		local_group = cpu_isset(this_cpu, group->cpumask);
 | 
						|
 | 
						|
		/* Tally up the load of all CPUs in the group */
 | 
						|
		avg_load = 0;
 | 
						|
 | 
						|
		for_each_cpu_mask(i, group->cpumask) {
 | 
						|
			/* Bias balancing toward cpus of our domain */
 | 
						|
			if (local_group)
 | 
						|
				load = target_load(i);
 | 
						|
			else
 | 
						|
				load = source_load(i);
 | 
						|
 | 
						|
			avg_load += load;
 | 
						|
		}
 | 
						|
 | 
						|
		total_load += avg_load;
 | 
						|
		total_pwr += group->cpu_power;
 | 
						|
 | 
						|
		/* Adjust by relative CPU power of the group */
 | 
						|
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
 | 
						|
 | 
						|
		if (local_group) {
 | 
						|
			this_load = avg_load;
 | 
						|
			this = group;
 | 
						|
			goto nextgroup;
 | 
						|
		} else if (avg_load > max_load) {
 | 
						|
			max_load = avg_load;
 | 
						|
			busiest = group;
 | 
						|
		}
 | 
						|
nextgroup:
 | 
						|
		group = group->next;
 | 
						|
	} while (group != sd->groups);
 | 
						|
 | 
						|
	if (!busiest || this_load >= max_load)
 | 
						|
		goto out_balanced;
 | 
						|
 | 
						|
	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
 | 
						|
 | 
						|
	if (this_load >= avg_load ||
 | 
						|
			100*max_load <= sd->imbalance_pct*this_load)
 | 
						|
		goto out_balanced;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're trying to get all the cpus to the average_load, so we don't
 | 
						|
	 * want to push ourselves above the average load, nor do we wish to
 | 
						|
	 * reduce the max loaded cpu below the average load, as either of these
 | 
						|
	 * actions would just result in more rebalancing later, and ping-pong
 | 
						|
	 * tasks around. Thus we look for the minimum possible imbalance.
 | 
						|
	 * Negative imbalances (*we* are more loaded than anyone else) will
 | 
						|
	 * be counted as no imbalance for these purposes -- we can't fix that
 | 
						|
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
 | 
						|
	 * appear as very large values with unsigned longs.
 | 
						|
	 */
 | 
						|
	/* How much load to actually move to equalise the imbalance */
 | 
						|
	*imbalance = min((max_load - avg_load) * busiest->cpu_power,
 | 
						|
				(avg_load - this_load) * this->cpu_power)
 | 
						|
			/ SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
	if (*imbalance < SCHED_LOAD_SCALE) {
 | 
						|
		unsigned long pwr_now = 0, pwr_move = 0;
 | 
						|
		unsigned long tmp;
 | 
						|
 | 
						|
		if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
 | 
						|
			*imbalance = 1;
 | 
						|
			return busiest;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * OK, we don't have enough imbalance to justify moving tasks,
 | 
						|
		 * however we may be able to increase total CPU power used by
 | 
						|
		 * moving them.
 | 
						|
		 */
 | 
						|
 | 
						|
		pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
 | 
						|
		pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
 | 
						|
		pwr_now /= SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
		/* Amount of load we'd subtract */
 | 
						|
		tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
 | 
						|
		if (max_load > tmp)
 | 
						|
			pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
 | 
						|
							max_load - tmp);
 | 
						|
 | 
						|
		/* Amount of load we'd add */
 | 
						|
		if (max_load*busiest->cpu_power <
 | 
						|
				SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
 | 
						|
			tmp = max_load*busiest->cpu_power/this->cpu_power;
 | 
						|
		else
 | 
						|
			tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
 | 
						|
		pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
 | 
						|
		pwr_move /= SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
		/* Move if we gain throughput */
 | 
						|
		if (pwr_move <= pwr_now)
 | 
						|
			goto out_balanced;
 | 
						|
 | 
						|
		*imbalance = 1;
 | 
						|
		return busiest;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Get rid of the scaling factor, rounding down as we divide */
 | 
						|
	*imbalance = *imbalance / SCHED_LOAD_SCALE;
 | 
						|
 | 
						|
	return busiest;
 | 
						|
 | 
						|
out_balanced:
 | 
						|
	if (busiest && (idle == NEWLY_IDLE ||
 | 
						|
			(idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) {
 | 
						|
		*imbalance = 1;
 | 
						|
		return busiest;
 | 
						|
	}
 | 
						|
 | 
						|
	*imbalance = 0;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 | 
						|
 */
 | 
						|
static runqueue_t *find_busiest_queue(struct sched_group *group)
 | 
						|
{
 | 
						|
	unsigned long load, max_load = 0;
 | 
						|
	runqueue_t *busiest = NULL;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_cpu_mask(i, group->cpumask) {
 | 
						|
		load = source_load(i);
 | 
						|
 | 
						|
		if (load > max_load) {
 | 
						|
			max_load = load;
 | 
						|
			busiest = cpu_rq(i);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return busiest;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 | 
						|
 * tasks if there is an imbalance.
 | 
						|
 *
 | 
						|
 * Called with this_rq unlocked.
 | 
						|
 */
 | 
						|
static int load_balance(int this_cpu, runqueue_t *this_rq,
 | 
						|
			struct sched_domain *sd, enum idle_type idle)
 | 
						|
{
 | 
						|
	struct sched_group *group;
 | 
						|
	runqueue_t *busiest;
 | 
						|
	unsigned long imbalance;
 | 
						|
	int nr_moved;
 | 
						|
 | 
						|
	spin_lock(&this_rq->lock);
 | 
						|
	schedstat_inc(sd, lb_cnt[idle]);
 | 
						|
 | 
						|
	group = find_busiest_group(sd, this_cpu, &imbalance, idle);
 | 
						|
	if (!group) {
 | 
						|
		schedstat_inc(sd, lb_nobusyg[idle]);
 | 
						|
		goto out_balanced;
 | 
						|
	}
 | 
						|
 | 
						|
	busiest = find_busiest_queue(group);
 | 
						|
	if (!busiest) {
 | 
						|
		schedstat_inc(sd, lb_nobusyq[idle]);
 | 
						|
		goto out_balanced;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This should be "impossible", but since load
 | 
						|
	 * balancing is inherently racy and statistical,
 | 
						|
	 * it could happen in theory.
 | 
						|
	 */
 | 
						|
	if (unlikely(busiest == this_rq)) {
 | 
						|
		WARN_ON(1);
 | 
						|
		goto out_balanced;
 | 
						|
	}
 | 
						|
 | 
						|
	schedstat_add(sd, lb_imbalance[idle], imbalance);
 | 
						|
 | 
						|
	nr_moved = 0;
 | 
						|
	if (busiest->nr_running > 1) {
 | 
						|
		/*
 | 
						|
		 * Attempt to move tasks. If find_busiest_group has found
 | 
						|
		 * an imbalance but busiest->nr_running <= 1, the group is
 | 
						|
		 * still unbalanced. nr_moved simply stays zero, so it is
 | 
						|
		 * correctly treated as an imbalance.
 | 
						|
		 */
 | 
						|
		double_lock_balance(this_rq, busiest);
 | 
						|
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
 | 
						|
						imbalance, sd, idle);
 | 
						|
		spin_unlock(&busiest->lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&this_rq->lock);
 | 
						|
 | 
						|
	if (!nr_moved) {
 | 
						|
		schedstat_inc(sd, lb_failed[idle]);
 | 
						|
		sd->nr_balance_failed++;
 | 
						|
 | 
						|
		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
 | 
						|
			int wake = 0;
 | 
						|
 | 
						|
			spin_lock(&busiest->lock);
 | 
						|
			if (!busiest->active_balance) {
 | 
						|
				busiest->active_balance = 1;
 | 
						|
				busiest->push_cpu = this_cpu;
 | 
						|
				wake = 1;
 | 
						|
			}
 | 
						|
			spin_unlock(&busiest->lock);
 | 
						|
			if (wake)
 | 
						|
				wake_up_process(busiest->migration_thread);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We've kicked active balancing, reset the failure
 | 
						|
			 * counter.
 | 
						|
			 */
 | 
						|
			sd->nr_balance_failed = sd->cache_nice_tries;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We were unbalanced, but unsuccessful in move_tasks(),
 | 
						|
		 * so bump the balance_interval to lessen the lock contention.
 | 
						|
		 */
 | 
						|
		if (sd->balance_interval < sd->max_interval)
 | 
						|
			sd->balance_interval++;
 | 
						|
	} else {
 | 
						|
		sd->nr_balance_failed = 0;
 | 
						|
 | 
						|
		/* We were unbalanced, so reset the balancing interval */
 | 
						|
		sd->balance_interval = sd->min_interval;
 | 
						|
	}
 | 
						|
 | 
						|
	return nr_moved;
 | 
						|
 | 
						|
out_balanced:
 | 
						|
	spin_unlock(&this_rq->lock);
 | 
						|
 | 
						|
	schedstat_inc(sd, lb_balanced[idle]);
 | 
						|
 | 
						|
	/* tune up the balancing interval */
 | 
						|
	if (sd->balance_interval < sd->max_interval)
 | 
						|
		sd->balance_interval *= 2;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 | 
						|
 * tasks if there is an imbalance.
 | 
						|
 *
 | 
						|
 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
 | 
						|
 * this_rq is locked.
 | 
						|
 */
 | 
						|
static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
 | 
						|
				struct sched_domain *sd)
 | 
						|
{
 | 
						|
	struct sched_group *group;
 | 
						|
	runqueue_t *busiest = NULL;
 | 
						|
	unsigned long imbalance;
 | 
						|
	int nr_moved = 0;
 | 
						|
 | 
						|
	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
 | 
						|
	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
 | 
						|
	if (!group) {
 | 
						|
		schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
 | 
						|
		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	busiest = find_busiest_queue(group);
 | 
						|
	if (!busiest || busiest == this_rq) {
 | 
						|
		schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
 | 
						|
		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Attempt to move tasks */
 | 
						|
	double_lock_balance(this_rq, busiest);
 | 
						|
 | 
						|
	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
 | 
						|
	nr_moved = move_tasks(this_rq, this_cpu, busiest,
 | 
						|
					imbalance, sd, NEWLY_IDLE);
 | 
						|
	if (!nr_moved)
 | 
						|
		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
 | 
						|
 | 
						|
	spin_unlock(&busiest->lock);
 | 
						|
 | 
						|
out:
 | 
						|
	return nr_moved;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * idle_balance is called by schedule() if this_cpu is about to become
 | 
						|
 * idle. Attempts to pull tasks from other CPUs.
 | 
						|
 */
 | 
						|
static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
 | 
						|
{
 | 
						|
	struct sched_domain *sd;
 | 
						|
 | 
						|
	for_each_domain(this_cpu, sd) {
 | 
						|
		if (sd->flags & SD_BALANCE_NEWIDLE) {
 | 
						|
			if (load_balance_newidle(this_cpu, this_rq, sd)) {
 | 
						|
				/* We've pulled tasks over so stop searching */
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * active_load_balance is run by migration threads. It pushes running tasks
 | 
						|
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 | 
						|
 * running on each physical CPU where possible, and avoids physical /
 | 
						|
 * logical imbalances.
 | 
						|
 *
 | 
						|
 * Called with busiest_rq locked.
 | 
						|
 */
 | 
						|
static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
 | 
						|
{
 | 
						|
	struct sched_domain *sd;
 | 
						|
	struct sched_group *cpu_group;
 | 
						|
	runqueue_t *target_rq;
 | 
						|
	cpumask_t visited_cpus;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search for suitable CPUs to push tasks to in successively higher
 | 
						|
	 * domains with SD_LOAD_BALANCE set.
 | 
						|
	 */
 | 
						|
	visited_cpus = CPU_MASK_NONE;
 | 
						|
	for_each_domain(busiest_cpu, sd) {
 | 
						|
		if (!(sd->flags & SD_LOAD_BALANCE))
 | 
						|
			/* no more domains to search */
 | 
						|
			break;
 | 
						|
 | 
						|
		schedstat_inc(sd, alb_cnt);
 | 
						|
 | 
						|
		cpu_group = sd->groups;
 | 
						|
		do {
 | 
						|
			for_each_cpu_mask(cpu, cpu_group->cpumask) {
 | 
						|
				if (busiest_rq->nr_running <= 1)
 | 
						|
					/* no more tasks left to move */
 | 
						|
					return;
 | 
						|
				if (cpu_isset(cpu, visited_cpus))
 | 
						|
					continue;
 | 
						|
				cpu_set(cpu, visited_cpus);
 | 
						|
				if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu)
 | 
						|
					continue;
 | 
						|
 | 
						|
				target_rq = cpu_rq(cpu);
 | 
						|
				/*
 | 
						|
				 * This condition is "impossible", if it occurs
 | 
						|
				 * we need to fix it.  Originally reported by
 | 
						|
				 * Bjorn Helgaas on a 128-cpu setup.
 | 
						|
				 */
 | 
						|
				BUG_ON(busiest_rq == target_rq);
 | 
						|
 | 
						|
				/* move a task from busiest_rq to target_rq */
 | 
						|
				double_lock_balance(busiest_rq, target_rq);
 | 
						|
				if (move_tasks(target_rq, cpu, busiest_rq,
 | 
						|
						1, sd, SCHED_IDLE)) {
 | 
						|
					schedstat_inc(sd, alb_pushed);
 | 
						|
				} else {
 | 
						|
					schedstat_inc(sd, alb_failed);
 | 
						|
				}
 | 
						|
				spin_unlock(&target_rq->lock);
 | 
						|
			}
 | 
						|
			cpu_group = cpu_group->next;
 | 
						|
		} while (cpu_group != sd->groups);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * rebalance_tick will get called every timer tick, on every CPU.
 | 
						|
 *
 | 
						|
 * It checks each scheduling domain to see if it is due to be balanced,
 | 
						|
 * and initiates a balancing operation if so.
 | 
						|
 *
 | 
						|
 * Balancing parameters are set up in arch_init_sched_domains.
 | 
						|
 */
 | 
						|
 | 
						|
/* Don't have all balancing operations going off at once */
 | 
						|
#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
 | 
						|
 | 
						|
static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
 | 
						|
			   enum idle_type idle)
 | 
						|
{
 | 
						|
	unsigned long old_load, this_load;
 | 
						|
	unsigned long j = jiffies + CPU_OFFSET(this_cpu);
 | 
						|
	struct sched_domain *sd;
 | 
						|
 | 
						|
	/* Update our load */
 | 
						|
	old_load = this_rq->cpu_load;
 | 
						|
	this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
 | 
						|
	/*
 | 
						|
	 * Round up the averaging division if load is increasing. This
 | 
						|
	 * prevents us from getting stuck on 9 if the load is 10, for
 | 
						|
	 * example.
 | 
						|
	 */
 | 
						|
	if (this_load > old_load)
 | 
						|
		old_load++;
 | 
						|
	this_rq->cpu_load = (old_load + this_load) / 2;
 | 
						|
 | 
						|
	for_each_domain(this_cpu, sd) {
 | 
						|
		unsigned long interval;
 | 
						|
 | 
						|
		if (!(sd->flags & SD_LOAD_BALANCE))
 | 
						|
			continue;
 | 
						|
 | 
						|
		interval = sd->balance_interval;
 | 
						|
		if (idle != SCHED_IDLE)
 | 
						|
			interval *= sd->busy_factor;
 | 
						|
 | 
						|
		/* scale ms to jiffies */
 | 
						|
		interval = msecs_to_jiffies(interval);
 | 
						|
		if (unlikely(!interval))
 | 
						|
			interval = 1;
 | 
						|
 | 
						|
		if (j - sd->last_balance >= interval) {
 | 
						|
			if (load_balance(this_cpu, this_rq, sd, idle)) {
 | 
						|
				/* We've pulled tasks over so no longer idle */
 | 
						|
				idle = NOT_IDLE;
 | 
						|
			}
 | 
						|
			sd->last_balance += interval;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * on UP we do not need to balance between CPUs:
 | 
						|
 */
 | 
						|
static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
 | 
						|
{
 | 
						|
}
 | 
						|
static inline void idle_balance(int cpu, runqueue_t *rq)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static inline int wake_priority_sleeper(runqueue_t *rq)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
	spin_lock(&rq->lock);
 | 
						|
	/*
 | 
						|
	 * If an SMT sibling task has been put to sleep for priority
 | 
						|
	 * reasons reschedule the idle task to see if it can now run.
 | 
						|
	 */
 | 
						|
	if (rq->nr_running) {
 | 
						|
		resched_task(rq->idle);
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
	spin_unlock(&rq->lock);
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_PER_CPU(struct kernel_stat, kstat);
 | 
						|
 | 
						|
EXPORT_PER_CPU_SYMBOL(kstat);
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called on clock ticks and on context switches.
 | 
						|
 * Bank in p->sched_time the ns elapsed since the last tick or switch.
 | 
						|
 */
 | 
						|
static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
 | 
						|
				    unsigned long long now)
 | 
						|
{
 | 
						|
	unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
 | 
						|
	p->sched_time += now - last;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return current->sched_time plus any more ns on the sched_clock
 | 
						|
 * that have not yet been banked.
 | 
						|
 */
 | 
						|
unsigned long long current_sched_time(const task_t *tsk)
 | 
						|
{
 | 
						|
	unsigned long long ns;
 | 
						|
	unsigned long flags;
 | 
						|
	local_irq_save(flags);
 | 
						|
	ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
 | 
						|
	ns = tsk->sched_time + (sched_clock() - ns);
 | 
						|
	local_irq_restore(flags);
 | 
						|
	return ns;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We place interactive tasks back into the active array, if possible.
 | 
						|
 *
 | 
						|
 * To guarantee that this does not starve expired tasks we ignore the
 | 
						|
 * interactivity of a task if the first expired task had to wait more
 | 
						|
 * than a 'reasonable' amount of time. This deadline timeout is
 | 
						|
 * load-dependent, as the frequency of array switched decreases with
 | 
						|
 * increasing number of running tasks. We also ignore the interactivity
 | 
						|
 * if a better static_prio task has expired:
 | 
						|
 */
 | 
						|
#define EXPIRED_STARVING(rq) \
 | 
						|
	((STARVATION_LIMIT && ((rq)->expired_timestamp && \
 | 
						|
		(jiffies - (rq)->expired_timestamp >= \
 | 
						|
			STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
 | 
						|
			((rq)->curr->static_prio > (rq)->best_expired_prio))
 | 
						|
 | 
						|
/*
 | 
						|
 * Account user cpu time to a process.
 | 
						|
 * @p: the process that the cpu time gets accounted to
 | 
						|
 * @hardirq_offset: the offset to subtract from hardirq_count()
 | 
						|
 * @cputime: the cpu time spent in user space since the last update
 | 
						|
 */
 | 
						|
void account_user_time(struct task_struct *p, cputime_t cputime)
 | 
						|
{
 | 
						|
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | 
						|
	cputime64_t tmp;
 | 
						|
 | 
						|
	p->utime = cputime_add(p->utime, cputime);
 | 
						|
 | 
						|
	/* Add user time to cpustat. */
 | 
						|
	tmp = cputime_to_cputime64(cputime);
 | 
						|
	if (TASK_NICE(p) > 0)
 | 
						|
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
 | 
						|
	else
 | 
						|
		cpustat->user = cputime64_add(cpustat->user, tmp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Account system cpu time to a process.
 | 
						|
 * @p: the process that the cpu time gets accounted to
 | 
						|
 * @hardirq_offset: the offset to subtract from hardirq_count()
 | 
						|
 * @cputime: the cpu time spent in kernel space since the last update
 | 
						|
 */
 | 
						|
void account_system_time(struct task_struct *p, int hardirq_offset,
 | 
						|
			 cputime_t cputime)
 | 
						|
{
 | 
						|
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | 
						|
	runqueue_t *rq = this_rq();
 | 
						|
	cputime64_t tmp;
 | 
						|
 | 
						|
	p->stime = cputime_add(p->stime, cputime);
 | 
						|
 | 
						|
	/* Add system time to cpustat. */
 | 
						|
	tmp = cputime_to_cputime64(cputime);
 | 
						|
	if (hardirq_count() - hardirq_offset)
 | 
						|
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
 | 
						|
	else if (softirq_count())
 | 
						|
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
 | 
						|
	else if (p != rq->idle)
 | 
						|
		cpustat->system = cputime64_add(cpustat->system, tmp);
 | 
						|
	else if (atomic_read(&rq->nr_iowait) > 0)
 | 
						|
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
 | 
						|
	else
 | 
						|
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
 | 
						|
	/* Account for system time used */
 | 
						|
	acct_update_integrals(p);
 | 
						|
	/* Update rss highwater mark */
 | 
						|
	update_mem_hiwater(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Account for involuntary wait time.
 | 
						|
 * @p: the process from which the cpu time has been stolen
 | 
						|
 * @steal: the cpu time spent in involuntary wait
 | 
						|
 */
 | 
						|
void account_steal_time(struct task_struct *p, cputime_t steal)
 | 
						|
{
 | 
						|
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | 
						|
	cputime64_t tmp = cputime_to_cputime64(steal);
 | 
						|
	runqueue_t *rq = this_rq();
 | 
						|
 | 
						|
	if (p == rq->idle) {
 | 
						|
		p->stime = cputime_add(p->stime, steal);
 | 
						|
		if (atomic_read(&rq->nr_iowait) > 0)
 | 
						|
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
 | 
						|
		else
 | 
						|
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
 | 
						|
	} else
 | 
						|
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function gets called by the timer code, with HZ frequency.
 | 
						|
 * We call it with interrupts disabled.
 | 
						|
 *
 | 
						|
 * It also gets called by the fork code, when changing the parent's
 | 
						|
 * timeslices.
 | 
						|
 */
 | 
						|
void scheduler_tick(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
	runqueue_t *rq = this_rq();
 | 
						|
	task_t *p = current;
 | 
						|
	unsigned long long now = sched_clock();
 | 
						|
 | 
						|
	update_cpu_clock(p, rq, now);
 | 
						|
 | 
						|
	rq->timestamp_last_tick = now;
 | 
						|
 | 
						|
	if (p == rq->idle) {
 | 
						|
		if (wake_priority_sleeper(rq))
 | 
						|
			goto out;
 | 
						|
		rebalance_tick(cpu, rq, SCHED_IDLE);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Task might have expired already, but not scheduled off yet */
 | 
						|
	if (p->array != rq->active) {
 | 
						|
		set_tsk_need_resched(p);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	spin_lock(&rq->lock);
 | 
						|
	/*
 | 
						|
	 * The task was running during this tick - update the
 | 
						|
	 * time slice counter. Note: we do not update a thread's
 | 
						|
	 * priority until it either goes to sleep or uses up its
 | 
						|
	 * timeslice. This makes it possible for interactive tasks
 | 
						|
	 * to use up their timeslices at their highest priority levels.
 | 
						|
	 */
 | 
						|
	if (rt_task(p)) {
 | 
						|
		/*
 | 
						|
		 * RR tasks need a special form of timeslice management.
 | 
						|
		 * FIFO tasks have no timeslices.
 | 
						|
		 */
 | 
						|
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
 | 
						|
			p->time_slice = task_timeslice(p);
 | 
						|
			p->first_time_slice = 0;
 | 
						|
			set_tsk_need_resched(p);
 | 
						|
 | 
						|
			/* put it at the end of the queue: */
 | 
						|
			requeue_task(p, rq->active);
 | 
						|
		}
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
	if (!--p->time_slice) {
 | 
						|
		dequeue_task(p, rq->active);
 | 
						|
		set_tsk_need_resched(p);
 | 
						|
		p->prio = effective_prio(p);
 | 
						|
		p->time_slice = task_timeslice(p);
 | 
						|
		p->first_time_slice = 0;
 | 
						|
 | 
						|
		if (!rq->expired_timestamp)
 | 
						|
			rq->expired_timestamp = jiffies;
 | 
						|
		if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
 | 
						|
			enqueue_task(p, rq->expired);
 | 
						|
			if (p->static_prio < rq->best_expired_prio)
 | 
						|
				rq->best_expired_prio = p->static_prio;
 | 
						|
		} else
 | 
						|
			enqueue_task(p, rq->active);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Prevent a too long timeslice allowing a task to monopolize
 | 
						|
		 * the CPU. We do this by splitting up the timeslice into
 | 
						|
		 * smaller pieces.
 | 
						|
		 *
 | 
						|
		 * Note: this does not mean the task's timeslices expire or
 | 
						|
		 * get lost in any way, they just might be preempted by
 | 
						|
		 * another task of equal priority. (one with higher
 | 
						|
		 * priority would have preempted this task already.) We
 | 
						|
		 * requeue this task to the end of the list on this priority
 | 
						|
		 * level, which is in essence a round-robin of tasks with
 | 
						|
		 * equal priority.
 | 
						|
		 *
 | 
						|
		 * This only applies to tasks in the interactive
 | 
						|
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
 | 
						|
		 */
 | 
						|
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
 | 
						|
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
 | 
						|
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
 | 
						|
			(p->array == rq->active)) {
 | 
						|
 | 
						|
			requeue_task(p, rq->active);
 | 
						|
			set_tsk_need_resched(p);
 | 
						|
		}
 | 
						|
	}
 | 
						|
out_unlock:
 | 
						|
	spin_unlock(&rq->lock);
 | 
						|
out:
 | 
						|
	rebalance_tick(cpu, rq, NOT_IDLE);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
 | 
						|
{
 | 
						|
	struct sched_domain *sd = this_rq->sd;
 | 
						|
	cpumask_t sibling_map;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!(sd->flags & SD_SHARE_CPUPOWER))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unlock the current runqueue because we have to lock in
 | 
						|
	 * CPU order to avoid deadlocks. Caller knows that we might
 | 
						|
	 * unlock. We keep IRQs disabled.
 | 
						|
	 */
 | 
						|
	spin_unlock(&this_rq->lock);
 | 
						|
 | 
						|
	sibling_map = sd->span;
 | 
						|
 | 
						|
	for_each_cpu_mask(i, sibling_map)
 | 
						|
		spin_lock(&cpu_rq(i)->lock);
 | 
						|
	/*
 | 
						|
	 * We clear this CPU from the mask. This both simplifies the
 | 
						|
	 * inner loop and keps this_rq locked when we exit:
 | 
						|
	 */
 | 
						|
	cpu_clear(this_cpu, sibling_map);
 | 
						|
 | 
						|
	for_each_cpu_mask(i, sibling_map) {
 | 
						|
		runqueue_t *smt_rq = cpu_rq(i);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If an SMT sibling task is sleeping due to priority
 | 
						|
		 * reasons wake it up now.
 | 
						|
		 */
 | 
						|
		if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
 | 
						|
			resched_task(smt_rq->idle);
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_cpu_mask(i, sibling_map)
 | 
						|
		spin_unlock(&cpu_rq(i)->lock);
 | 
						|
	/*
 | 
						|
	 * We exit with this_cpu's rq still held and IRQs
 | 
						|
	 * still disabled:
 | 
						|
	 */
 | 
						|
}
 | 
						|
 | 
						|
static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 | 
						|
{
 | 
						|
	struct sched_domain *sd = this_rq->sd;
 | 
						|
	cpumask_t sibling_map;
 | 
						|
	prio_array_t *array;
 | 
						|
	int ret = 0, i;
 | 
						|
	task_t *p;
 | 
						|
 | 
						|
	if (!(sd->flags & SD_SHARE_CPUPOWER))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The same locking rules and details apply as for
 | 
						|
	 * wake_sleeping_dependent():
 | 
						|
	 */
 | 
						|
	spin_unlock(&this_rq->lock);
 | 
						|
	sibling_map = sd->span;
 | 
						|
	for_each_cpu_mask(i, sibling_map)
 | 
						|
		spin_lock(&cpu_rq(i)->lock);
 | 
						|
	cpu_clear(this_cpu, sibling_map);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Establish next task to be run - it might have gone away because
 | 
						|
	 * we released the runqueue lock above:
 | 
						|
	 */
 | 
						|
	if (!this_rq->nr_running)
 | 
						|
		goto out_unlock;
 | 
						|
	array = this_rq->active;
 | 
						|
	if (!array->nr_active)
 | 
						|
		array = this_rq->expired;
 | 
						|
	BUG_ON(!array->nr_active);
 | 
						|
 | 
						|
	p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
 | 
						|
		task_t, run_list);
 | 
						|
 | 
						|
	for_each_cpu_mask(i, sibling_map) {
 | 
						|
		runqueue_t *smt_rq = cpu_rq(i);
 | 
						|
		task_t *smt_curr = smt_rq->curr;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If a user task with lower static priority than the
 | 
						|
		 * running task on the SMT sibling is trying to schedule,
 | 
						|
		 * delay it till there is proportionately less timeslice
 | 
						|
		 * left of the sibling task to prevent a lower priority
 | 
						|
		 * task from using an unfair proportion of the
 | 
						|
		 * physical cpu's resources. -ck
 | 
						|
		 */
 | 
						|
		if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
 | 
						|
			task_timeslice(p) || rt_task(smt_curr)) &&
 | 
						|
			p->mm && smt_curr->mm && !rt_task(p))
 | 
						|
				ret = 1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Reschedule a lower priority task on the SMT sibling,
 | 
						|
		 * or wake it up if it has been put to sleep for priority
 | 
						|
		 * reasons.
 | 
						|
		 */
 | 
						|
		if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
 | 
						|
			task_timeslice(smt_curr) || rt_task(p)) &&
 | 
						|
			smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
 | 
						|
			(smt_curr == smt_rq->idle && smt_rq->nr_running))
 | 
						|
				resched_task(smt_curr);
 | 
						|
	}
 | 
						|
out_unlock:
 | 
						|
	for_each_cpu_mask(i, sibling_map)
 | 
						|
		spin_unlock(&cpu_rq(i)->lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
 | 
						|
 | 
						|
void fastcall add_preempt_count(int val)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Underflow?
 | 
						|
	 */
 | 
						|
	BUG_ON(((int)preempt_count() < 0));
 | 
						|
	preempt_count() += val;
 | 
						|
	/*
 | 
						|
	 * Spinlock count overflowing soon?
 | 
						|
	 */
 | 
						|
	BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(add_preempt_count);
 | 
						|
 | 
						|
void fastcall sub_preempt_count(int val)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Underflow?
 | 
						|
	 */
 | 
						|
	BUG_ON(val > preempt_count());
 | 
						|
	/*
 | 
						|
	 * Is the spinlock portion underflowing?
 | 
						|
	 */
 | 
						|
	BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
 | 
						|
	preempt_count() -= val;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(sub_preempt_count);
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * schedule() is the main scheduler function.
 | 
						|
 */
 | 
						|
asmlinkage void __sched schedule(void)
 | 
						|
{
 | 
						|
	long *switch_count;
 | 
						|
	task_t *prev, *next;
 | 
						|
	runqueue_t *rq;
 | 
						|
	prio_array_t *array;
 | 
						|
	struct list_head *queue;
 | 
						|
	unsigned long long now;
 | 
						|
	unsigned long run_time;
 | 
						|
	int cpu, idx;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Test if we are atomic.  Since do_exit() needs to call into
 | 
						|
	 * schedule() atomically, we ignore that path for now.
 | 
						|
	 * Otherwise, whine if we are scheduling when we should not be.
 | 
						|
	 */
 | 
						|
	if (likely(!current->exit_state)) {
 | 
						|
		if (unlikely(in_atomic())) {
 | 
						|
			printk(KERN_ERR "scheduling while atomic: "
 | 
						|
				"%s/0x%08x/%d\n",
 | 
						|
				current->comm, preempt_count(), current->pid);
 | 
						|
			dump_stack();
 | 
						|
		}
 | 
						|
	}
 | 
						|
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 | 
						|
 | 
						|
need_resched:
 | 
						|
	preempt_disable();
 | 
						|
	prev = current;
 | 
						|
	release_kernel_lock(prev);
 | 
						|
need_resched_nonpreemptible:
 | 
						|
	rq = this_rq();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The idle thread is not allowed to schedule!
 | 
						|
	 * Remove this check after it has been exercised a bit.
 | 
						|
	 */
 | 
						|
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
 | 
						|
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
 | 
						|
		dump_stack();
 | 
						|
	}
 | 
						|
 | 
						|
	schedstat_inc(rq, sched_cnt);
 | 
						|
	now = sched_clock();
 | 
						|
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
 | 
						|
		run_time = now - prev->timestamp;
 | 
						|
		if (unlikely((long long)(now - prev->timestamp) < 0))
 | 
						|
			run_time = 0;
 | 
						|
	} else
 | 
						|
		run_time = NS_MAX_SLEEP_AVG;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Tasks charged proportionately less run_time at high sleep_avg to
 | 
						|
	 * delay them losing their interactive status
 | 
						|
	 */
 | 
						|
	run_time /= (CURRENT_BONUS(prev) ? : 1);
 | 
						|
 | 
						|
	spin_lock_irq(&rq->lock);
 | 
						|
 | 
						|
	if (unlikely(prev->flags & PF_DEAD))
 | 
						|
		prev->state = EXIT_DEAD;
 | 
						|
 | 
						|
	switch_count = &prev->nivcsw;
 | 
						|
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 | 
						|
		switch_count = &prev->nvcsw;
 | 
						|
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
 | 
						|
				unlikely(signal_pending(prev))))
 | 
						|
			prev->state = TASK_RUNNING;
 | 
						|
		else {
 | 
						|
			if (prev->state == TASK_UNINTERRUPTIBLE)
 | 
						|
				rq->nr_uninterruptible++;
 | 
						|
			deactivate_task(prev, rq);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	cpu = smp_processor_id();
 | 
						|
	if (unlikely(!rq->nr_running)) {
 | 
						|
go_idle:
 | 
						|
		idle_balance(cpu, rq);
 | 
						|
		if (!rq->nr_running) {
 | 
						|
			next = rq->idle;
 | 
						|
			rq->expired_timestamp = 0;
 | 
						|
			wake_sleeping_dependent(cpu, rq);
 | 
						|
			/*
 | 
						|
			 * wake_sleeping_dependent() might have released
 | 
						|
			 * the runqueue, so break out if we got new
 | 
						|
			 * tasks meanwhile:
 | 
						|
			 */
 | 
						|
			if (!rq->nr_running)
 | 
						|
				goto switch_tasks;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (dependent_sleeper(cpu, rq)) {
 | 
						|
			next = rq->idle;
 | 
						|
			goto switch_tasks;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * dependent_sleeper() releases and reacquires the runqueue
 | 
						|
		 * lock, hence go into the idle loop if the rq went
 | 
						|
		 * empty meanwhile:
 | 
						|
		 */
 | 
						|
		if (unlikely(!rq->nr_running))
 | 
						|
			goto go_idle;
 | 
						|
	}
 | 
						|
 | 
						|
	array = rq->active;
 | 
						|
	if (unlikely(!array->nr_active)) {
 | 
						|
		/*
 | 
						|
		 * Switch the active and expired arrays.
 | 
						|
		 */
 | 
						|
		schedstat_inc(rq, sched_switch);
 | 
						|
		rq->active = rq->expired;
 | 
						|
		rq->expired = array;
 | 
						|
		array = rq->active;
 | 
						|
		rq->expired_timestamp = 0;
 | 
						|
		rq->best_expired_prio = MAX_PRIO;
 | 
						|
	}
 | 
						|
 | 
						|
	idx = sched_find_first_bit(array->bitmap);
 | 
						|
	queue = array->queue + idx;
 | 
						|
	next = list_entry(queue->next, task_t, run_list);
 | 
						|
 | 
						|
	if (!rt_task(next) && next->activated > 0) {
 | 
						|
		unsigned long long delta = now - next->timestamp;
 | 
						|
		if (unlikely((long long)(now - next->timestamp) < 0))
 | 
						|
			delta = 0;
 | 
						|
 | 
						|
		if (next->activated == 1)
 | 
						|
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
 | 
						|
 | 
						|
		array = next->array;
 | 
						|
		dequeue_task(next, array);
 | 
						|
		recalc_task_prio(next, next->timestamp + delta);
 | 
						|
		enqueue_task(next, array);
 | 
						|
	}
 | 
						|
	next->activated = 0;
 | 
						|
switch_tasks:
 | 
						|
	if (next == rq->idle)
 | 
						|
		schedstat_inc(rq, sched_goidle);
 | 
						|
	prefetch(next);
 | 
						|
	clear_tsk_need_resched(prev);
 | 
						|
	rcu_qsctr_inc(task_cpu(prev));
 | 
						|
 | 
						|
	update_cpu_clock(prev, rq, now);
 | 
						|
 | 
						|
	prev->sleep_avg -= run_time;
 | 
						|
	if ((long)prev->sleep_avg <= 0)
 | 
						|
		prev->sleep_avg = 0;
 | 
						|
	prev->timestamp = prev->last_ran = now;
 | 
						|
 | 
						|
	sched_info_switch(prev, next);
 | 
						|
	if (likely(prev != next)) {
 | 
						|
		next->timestamp = now;
 | 
						|
		rq->nr_switches++;
 | 
						|
		rq->curr = next;
 | 
						|
		++*switch_count;
 | 
						|
 | 
						|
		prepare_arch_switch(rq, next);
 | 
						|
		prev = context_switch(rq, prev, next);
 | 
						|
		barrier();
 | 
						|
 | 
						|
		finish_task_switch(prev);
 | 
						|
	} else
 | 
						|
		spin_unlock_irq(&rq->lock);
 | 
						|
 | 
						|
	prev = current;
 | 
						|
	if (unlikely(reacquire_kernel_lock(prev) < 0))
 | 
						|
		goto need_resched_nonpreemptible;
 | 
						|
	preempt_enable_no_resched();
 | 
						|
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 | 
						|
		goto need_resched;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(schedule);
 | 
						|
 | 
						|
#ifdef CONFIG_PREEMPT
 | 
						|
/*
 | 
						|
 * this is is the entry point to schedule() from in-kernel preemption
 | 
						|
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 | 
						|
 * occur there and call schedule directly.
 | 
						|
 */
 | 
						|
asmlinkage void __sched preempt_schedule(void)
 | 
						|
{
 | 
						|
	struct thread_info *ti = current_thread_info();
 | 
						|
#ifdef CONFIG_PREEMPT_BKL
 | 
						|
	struct task_struct *task = current;
 | 
						|
	int saved_lock_depth;
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * If there is a non-zero preempt_count or interrupts are disabled,
 | 
						|
	 * we do not want to preempt the current task.  Just return..
 | 
						|
	 */
 | 
						|
	if (unlikely(ti->preempt_count || irqs_disabled()))
 | 
						|
		return;
 | 
						|
 | 
						|
need_resched:
 | 
						|
	add_preempt_count(PREEMPT_ACTIVE);
 | 
						|
	/*
 | 
						|
	 * We keep the big kernel semaphore locked, but we
 | 
						|
	 * clear ->lock_depth so that schedule() doesnt
 | 
						|
	 * auto-release the semaphore:
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_PREEMPT_BKL
 | 
						|
	saved_lock_depth = task->lock_depth;
 | 
						|
	task->lock_depth = -1;
 | 
						|
#endif
 | 
						|
	schedule();
 | 
						|
#ifdef CONFIG_PREEMPT_BKL
 | 
						|
	task->lock_depth = saved_lock_depth;
 | 
						|
#endif
 | 
						|
	sub_preempt_count(PREEMPT_ACTIVE);
 | 
						|
 | 
						|
	/* we could miss a preemption opportunity between schedule and now */
 | 
						|
	barrier();
 | 
						|
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 | 
						|
		goto need_resched;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(preempt_schedule);
 | 
						|
 | 
						|
/*
 | 
						|
 * this is is the entry point to schedule() from kernel preemption
 | 
						|
 * off of irq context.
 | 
						|
 * Note, that this is called and return with irqs disabled. This will
 | 
						|
 * protect us against recursive calling from irq.
 | 
						|
 */
 | 
						|
asmlinkage void __sched preempt_schedule_irq(void)
 | 
						|
{
 | 
						|
	struct thread_info *ti = current_thread_info();
 | 
						|
#ifdef CONFIG_PREEMPT_BKL
 | 
						|
	struct task_struct *task = current;
 | 
						|
	int saved_lock_depth;
 | 
						|
#endif
 | 
						|
	/* Catch callers which need to be fixed*/
 | 
						|
	BUG_ON(ti->preempt_count || !irqs_disabled());
 | 
						|
 | 
						|
need_resched:
 | 
						|
	add_preempt_count(PREEMPT_ACTIVE);
 | 
						|
	/*
 | 
						|
	 * We keep the big kernel semaphore locked, but we
 | 
						|
	 * clear ->lock_depth so that schedule() doesnt
 | 
						|
	 * auto-release the semaphore:
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_PREEMPT_BKL
 | 
						|
	saved_lock_depth = task->lock_depth;
 | 
						|
	task->lock_depth = -1;
 | 
						|
#endif
 | 
						|
	local_irq_enable();
 | 
						|
	schedule();
 | 
						|
	local_irq_disable();
 | 
						|
#ifdef CONFIG_PREEMPT_BKL
 | 
						|
	task->lock_depth = saved_lock_depth;
 | 
						|
#endif
 | 
						|
	sub_preempt_count(PREEMPT_ACTIVE);
 | 
						|
 | 
						|
	/* we could miss a preemption opportunity between schedule and now */
 | 
						|
	barrier();
 | 
						|
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 | 
						|
		goto need_resched;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_PREEMPT */
 | 
						|
 | 
						|
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
 | 
						|
{
 | 
						|
	task_t *p = curr->task;
 | 
						|
	return try_to_wake_up(p, mode, sync);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(default_wake_function);
 | 
						|
 | 
						|
/*
 | 
						|
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 | 
						|
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 | 
						|
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 | 
						|
 *
 | 
						|
 * There are circumstances in which we can try to wake a task which has already
 | 
						|
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 | 
						|
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 | 
						|
 */
 | 
						|
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 | 
						|
			     int nr_exclusive, int sync, void *key)
 | 
						|
{
 | 
						|
	struct list_head *tmp, *next;
 | 
						|
 | 
						|
	list_for_each_safe(tmp, next, &q->task_list) {
 | 
						|
		wait_queue_t *curr;
 | 
						|
		unsigned flags;
 | 
						|
		curr = list_entry(tmp, wait_queue_t, task_list);
 | 
						|
		flags = curr->flags;
 | 
						|
		if (curr->func(curr, mode, sync, key) &&
 | 
						|
		    (flags & WQ_FLAG_EXCLUSIVE) &&
 | 
						|
		    !--nr_exclusive)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __wake_up - wake up threads blocked on a waitqueue.
 | 
						|
 * @q: the waitqueue
 | 
						|
 * @mode: which threads
 | 
						|
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | 
						|
 * @key: is directly passed to the wakeup function
 | 
						|
 */
 | 
						|
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
 | 
						|
				int nr_exclusive, void *key)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&q->lock, flags);
 | 
						|
	__wake_up_common(q, mode, nr_exclusive, 0, key);
 | 
						|
	spin_unlock_irqrestore(&q->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(__wake_up);
 | 
						|
 | 
						|
/*
 | 
						|
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 | 
						|
 */
 | 
						|
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 | 
						|
{
 | 
						|
	__wake_up_common(q, mode, 1, 0, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __wake_up_sync - wake up threads blocked on a waitqueue.
 | 
						|
 * @q: the waitqueue
 | 
						|
 * @mode: which threads
 | 
						|
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | 
						|
 *
 | 
						|
 * The sync wakeup differs that the waker knows that it will schedule
 | 
						|
 * away soon, so while the target thread will be woken up, it will not
 | 
						|
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 | 
						|
 * with each other. This can prevent needless bouncing between CPUs.
 | 
						|
 *
 | 
						|
 * On UP it can prevent extra preemption.
 | 
						|
 */
 | 
						|
void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int sync = 1;
 | 
						|
 | 
						|
	if (unlikely(!q))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (unlikely(!nr_exclusive))
 | 
						|
		sync = 0;
 | 
						|
 | 
						|
	spin_lock_irqsave(&q->lock, flags);
 | 
						|
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
 | 
						|
	spin_unlock_irqrestore(&q->lock, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
 | 
						|
 | 
						|
void fastcall complete(struct completion *x)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&x->wait.lock, flags);
 | 
						|
	x->done++;
 | 
						|
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
 | 
						|
			 1, 0, NULL);
 | 
						|
	spin_unlock_irqrestore(&x->wait.lock, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(complete);
 | 
						|
 | 
						|
void fastcall complete_all(struct completion *x)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&x->wait.lock, flags);
 | 
						|
	x->done += UINT_MAX/2;
 | 
						|
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
 | 
						|
			 0, 0, NULL);
 | 
						|
	spin_unlock_irqrestore(&x->wait.lock, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(complete_all);
 | 
						|
 | 
						|
void fastcall __sched wait_for_completion(struct completion *x)
 | 
						|
{
 | 
						|
	might_sleep();
 | 
						|
	spin_lock_irq(&x->wait.lock);
 | 
						|
	if (!x->done) {
 | 
						|
		DECLARE_WAITQUEUE(wait, current);
 | 
						|
 | 
						|
		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | 
						|
		__add_wait_queue_tail(&x->wait, &wait);
 | 
						|
		do {
 | 
						|
			__set_current_state(TASK_UNINTERRUPTIBLE);
 | 
						|
			spin_unlock_irq(&x->wait.lock);
 | 
						|
			schedule();
 | 
						|
			spin_lock_irq(&x->wait.lock);
 | 
						|
		} while (!x->done);
 | 
						|
		__remove_wait_queue(&x->wait, &wait);
 | 
						|
	}
 | 
						|
	x->done--;
 | 
						|
	spin_unlock_irq(&x->wait.lock);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(wait_for_completion);
 | 
						|
 | 
						|
unsigned long fastcall __sched
 | 
						|
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
 | 
						|
{
 | 
						|
	might_sleep();
 | 
						|
 | 
						|
	spin_lock_irq(&x->wait.lock);
 | 
						|
	if (!x->done) {
 | 
						|
		DECLARE_WAITQUEUE(wait, current);
 | 
						|
 | 
						|
		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | 
						|
		__add_wait_queue_tail(&x->wait, &wait);
 | 
						|
		do {
 | 
						|
			__set_current_state(TASK_UNINTERRUPTIBLE);
 | 
						|
			spin_unlock_irq(&x->wait.lock);
 | 
						|
			timeout = schedule_timeout(timeout);
 | 
						|
			spin_lock_irq(&x->wait.lock);
 | 
						|
			if (!timeout) {
 | 
						|
				__remove_wait_queue(&x->wait, &wait);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		} while (!x->done);
 | 
						|
		__remove_wait_queue(&x->wait, &wait);
 | 
						|
	}
 | 
						|
	x->done--;
 | 
						|
out:
 | 
						|
	spin_unlock_irq(&x->wait.lock);
 | 
						|
	return timeout;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(wait_for_completion_timeout);
 | 
						|
 | 
						|
int fastcall __sched wait_for_completion_interruptible(struct completion *x)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	might_sleep();
 | 
						|
 | 
						|
	spin_lock_irq(&x->wait.lock);
 | 
						|
	if (!x->done) {
 | 
						|
		DECLARE_WAITQUEUE(wait, current);
 | 
						|
 | 
						|
		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | 
						|
		__add_wait_queue_tail(&x->wait, &wait);
 | 
						|
		do {
 | 
						|
			if (signal_pending(current)) {
 | 
						|
				ret = -ERESTARTSYS;
 | 
						|
				__remove_wait_queue(&x->wait, &wait);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			__set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
			spin_unlock_irq(&x->wait.lock);
 | 
						|
			schedule();
 | 
						|
			spin_lock_irq(&x->wait.lock);
 | 
						|
		} while (!x->done);
 | 
						|
		__remove_wait_queue(&x->wait, &wait);
 | 
						|
	}
 | 
						|
	x->done--;
 | 
						|
out:
 | 
						|
	spin_unlock_irq(&x->wait.lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(wait_for_completion_interruptible);
 | 
						|
 | 
						|
unsigned long fastcall __sched
 | 
						|
wait_for_completion_interruptible_timeout(struct completion *x,
 | 
						|
					  unsigned long timeout)
 | 
						|
{
 | 
						|
	might_sleep();
 | 
						|
 | 
						|
	spin_lock_irq(&x->wait.lock);
 | 
						|
	if (!x->done) {
 | 
						|
		DECLARE_WAITQUEUE(wait, current);
 | 
						|
 | 
						|
		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | 
						|
		__add_wait_queue_tail(&x->wait, &wait);
 | 
						|
		do {
 | 
						|
			if (signal_pending(current)) {
 | 
						|
				timeout = -ERESTARTSYS;
 | 
						|
				__remove_wait_queue(&x->wait, &wait);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			__set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
			spin_unlock_irq(&x->wait.lock);
 | 
						|
			timeout = schedule_timeout(timeout);
 | 
						|
			spin_lock_irq(&x->wait.lock);
 | 
						|
			if (!timeout) {
 | 
						|
				__remove_wait_queue(&x->wait, &wait);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		} while (!x->done);
 | 
						|
		__remove_wait_queue(&x->wait, &wait);
 | 
						|
	}
 | 
						|
	x->done--;
 | 
						|
out:
 | 
						|
	spin_unlock_irq(&x->wait.lock);
 | 
						|
	return timeout;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
 | 
						|
 | 
						|
 | 
						|
#define	SLEEP_ON_VAR					\
 | 
						|
	unsigned long flags;				\
 | 
						|
	wait_queue_t wait;				\
 | 
						|
	init_waitqueue_entry(&wait, current);
 | 
						|
 | 
						|
#define SLEEP_ON_HEAD					\
 | 
						|
	spin_lock_irqsave(&q->lock,flags);		\
 | 
						|
	__add_wait_queue(q, &wait);			\
 | 
						|
	spin_unlock(&q->lock);
 | 
						|
 | 
						|
#define	SLEEP_ON_TAIL					\
 | 
						|
	spin_lock_irq(&q->lock);			\
 | 
						|
	__remove_wait_queue(q, &wait);			\
 | 
						|
	spin_unlock_irqrestore(&q->lock, flags);
 | 
						|
 | 
						|
void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 | 
						|
{
 | 
						|
	SLEEP_ON_VAR
 | 
						|
 | 
						|
	current->state = TASK_INTERRUPTIBLE;
 | 
						|
 | 
						|
	SLEEP_ON_HEAD
 | 
						|
	schedule();
 | 
						|
	SLEEP_ON_TAIL
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(interruptible_sleep_on);
 | 
						|
 | 
						|
long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 | 
						|
{
 | 
						|
	SLEEP_ON_VAR
 | 
						|
 | 
						|
	current->state = TASK_INTERRUPTIBLE;
 | 
						|
 | 
						|
	SLEEP_ON_HEAD
 | 
						|
	timeout = schedule_timeout(timeout);
 | 
						|
	SLEEP_ON_TAIL
 | 
						|
 | 
						|
	return timeout;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 | 
						|
 | 
						|
void fastcall __sched sleep_on(wait_queue_head_t *q)
 | 
						|
{
 | 
						|
	SLEEP_ON_VAR
 | 
						|
 | 
						|
	current->state = TASK_UNINTERRUPTIBLE;
 | 
						|
 | 
						|
	SLEEP_ON_HEAD
 | 
						|
	schedule();
 | 
						|
	SLEEP_ON_TAIL
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(sleep_on);
 | 
						|
 | 
						|
long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 | 
						|
{
 | 
						|
	SLEEP_ON_VAR
 | 
						|
 | 
						|
	current->state = TASK_UNINTERRUPTIBLE;
 | 
						|
 | 
						|
	SLEEP_ON_HEAD
 | 
						|
	timeout = schedule_timeout(timeout);
 | 
						|
	SLEEP_ON_TAIL
 | 
						|
 | 
						|
	return timeout;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(sleep_on_timeout);
 | 
						|
 | 
						|
void set_user_nice(task_t *p, long nice)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	prio_array_t *array;
 | 
						|
	runqueue_t *rq;
 | 
						|
	int old_prio, new_prio, delta;
 | 
						|
 | 
						|
	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * We have to be careful, if called from sys_setpriority(),
 | 
						|
	 * the task might be in the middle of scheduling on another CPU.
 | 
						|
	 */
 | 
						|
	rq = task_rq_lock(p, &flags);
 | 
						|
	/*
 | 
						|
	 * The RT priorities are set via sched_setscheduler(), but we still
 | 
						|
	 * allow the 'normal' nice value to be set - but as expected
 | 
						|
	 * it wont have any effect on scheduling until the task is
 | 
						|
	 * not SCHED_NORMAL:
 | 
						|
	 */
 | 
						|
	if (rt_task(p)) {
 | 
						|
		p->static_prio = NICE_TO_PRIO(nice);
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
	array = p->array;
 | 
						|
	if (array)
 | 
						|
		dequeue_task(p, array);
 | 
						|
 | 
						|
	old_prio = p->prio;
 | 
						|
	new_prio = NICE_TO_PRIO(nice);
 | 
						|
	delta = new_prio - old_prio;
 | 
						|
	p->static_prio = NICE_TO_PRIO(nice);
 | 
						|
	p->prio += delta;
 | 
						|
 | 
						|
	if (array) {
 | 
						|
		enqueue_task(p, array);
 | 
						|
		/*
 | 
						|
		 * If the task increased its priority or is running and
 | 
						|
		 * lowered its priority, then reschedule its CPU:
 | 
						|
		 */
 | 
						|
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
 | 
						|
			resched_task(rq->curr);
 | 
						|
	}
 | 
						|
out_unlock:
 | 
						|
	task_rq_unlock(rq, &flags);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(set_user_nice);
 | 
						|
 | 
						|
/*
 | 
						|
 * can_nice - check if a task can reduce its nice value
 | 
						|
 * @p: task
 | 
						|
 * @nice: nice value
 | 
						|
 */
 | 
						|
int can_nice(const task_t *p, const int nice)
 | 
						|
{
 | 
						|
	/* convert nice value [19,-20] to rlimit style value [0,39] */
 | 
						|
	int nice_rlim = 19 - nice;
 | 
						|
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
 | 
						|
		capable(CAP_SYS_NICE));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __ARCH_WANT_SYS_NICE
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_nice - change the priority of the current process.
 | 
						|
 * @increment: priority increment
 | 
						|
 *
 | 
						|
 * sys_setpriority is a more generic, but much slower function that
 | 
						|
 * does similar things.
 | 
						|
 */
 | 
						|
asmlinkage long sys_nice(int increment)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	long nice;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Setpriority might change our priority at the same moment.
 | 
						|
	 * We don't have to worry. Conceptually one call occurs first
 | 
						|
	 * and we have a single winner.
 | 
						|
	 */
 | 
						|
	if (increment < -40)
 | 
						|
		increment = -40;
 | 
						|
	if (increment > 40)
 | 
						|
		increment = 40;
 | 
						|
 | 
						|
	nice = PRIO_TO_NICE(current->static_prio) + increment;
 | 
						|
	if (nice < -20)
 | 
						|
		nice = -20;
 | 
						|
	if (nice > 19)
 | 
						|
		nice = 19;
 | 
						|
 | 
						|
	if (increment < 0 && !can_nice(current, nice))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	retval = security_task_setnice(current, nice);
 | 
						|
	if (retval)
 | 
						|
		return retval;
 | 
						|
 | 
						|
	set_user_nice(current, nice);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * task_prio - return the priority value of a given task.
 | 
						|
 * @p: the task in question.
 | 
						|
 *
 | 
						|
 * This is the priority value as seen by users in /proc.
 | 
						|
 * RT tasks are offset by -200. Normal tasks are centered
 | 
						|
 * around 0, value goes from -16 to +15.
 | 
						|
 */
 | 
						|
int task_prio(const task_t *p)
 | 
						|
{
 | 
						|
	return p->prio - MAX_RT_PRIO;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * task_nice - return the nice value of a given task.
 | 
						|
 * @p: the task in question.
 | 
						|
 */
 | 
						|
int task_nice(const task_t *p)
 | 
						|
{
 | 
						|
	return TASK_NICE(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The only users of task_nice are binfmt_elf and binfmt_elf32.
 | 
						|
 * binfmt_elf is no longer modular, but binfmt_elf32 still is.
 | 
						|
 * Therefore, task_nice is needed if there is a compat_mode.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
EXPORT_SYMBOL_GPL(task_nice);
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * idle_cpu - is a given cpu idle currently?
 | 
						|
 * @cpu: the processor in question.
 | 
						|
 */
 | 
						|
int idle_cpu(int cpu)
 | 
						|
{
 | 
						|
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(idle_cpu);
 | 
						|
 | 
						|
/**
 | 
						|
 * idle_task - return the idle task for a given cpu.
 | 
						|
 * @cpu: the processor in question.
 | 
						|
 */
 | 
						|
task_t *idle_task(int cpu)
 | 
						|
{
 | 
						|
	return cpu_rq(cpu)->idle;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_process_by_pid - find a process with a matching PID value.
 | 
						|
 * @pid: the pid in question.
 | 
						|
 */
 | 
						|
static inline task_t *find_process_by_pid(pid_t pid)
 | 
						|
{
 | 
						|
	return pid ? find_task_by_pid(pid) : current;
 | 
						|
}
 | 
						|
 | 
						|
/* Actually do priority change: must hold rq lock. */
 | 
						|
static void __setscheduler(struct task_struct *p, int policy, int prio)
 | 
						|
{
 | 
						|
	BUG_ON(p->array);
 | 
						|
	p->policy = policy;
 | 
						|
	p->rt_priority = prio;
 | 
						|
	if (policy != SCHED_NORMAL)
 | 
						|
		p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
 | 
						|
	else
 | 
						|
		p->prio = p->static_prio;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sched_setscheduler - change the scheduling policy and/or RT priority of
 | 
						|
 * a thread.
 | 
						|
 * @p: the task in question.
 | 
						|
 * @policy: new policy.
 | 
						|
 * @param: structure containing the new RT priority.
 | 
						|
 */
 | 
						|
int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	int oldprio, oldpolicy = -1;
 | 
						|
	prio_array_t *array;
 | 
						|
	unsigned long flags;
 | 
						|
	runqueue_t *rq;
 | 
						|
 | 
						|
recheck:
 | 
						|
	/* double check policy once rq lock held */
 | 
						|
	if (policy < 0)
 | 
						|
		policy = oldpolicy = p->policy;
 | 
						|
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
 | 
						|
				policy != SCHED_NORMAL)
 | 
						|
			return -EINVAL;
 | 
						|
	/*
 | 
						|
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 | 
						|
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
 | 
						|
	 */
 | 
						|
	if (param->sched_priority < 0 ||
 | 
						|
	    param->sched_priority > MAX_USER_RT_PRIO-1)
 | 
						|
		return -EINVAL;
 | 
						|
	if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
 | 
						|
	    param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
 | 
						|
	    !capable(CAP_SYS_NICE))
 | 
						|
		return -EPERM;
 | 
						|
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
 | 
						|
	    !capable(CAP_SYS_NICE))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	retval = security_task_setscheduler(p, policy, param);
 | 
						|
	if (retval)
 | 
						|
		return retval;
 | 
						|
	/*
 | 
						|
	 * To be able to change p->policy safely, the apropriate
 | 
						|
	 * runqueue lock must be held.
 | 
						|
	 */
 | 
						|
	rq = task_rq_lock(p, &flags);
 | 
						|
	/* recheck policy now with rq lock held */
 | 
						|
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 | 
						|
		policy = oldpolicy = -1;
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		goto recheck;
 | 
						|
	}
 | 
						|
	array = p->array;
 | 
						|
	if (array)
 | 
						|
		deactivate_task(p, rq);
 | 
						|
	oldprio = p->prio;
 | 
						|
	__setscheduler(p, policy, param->sched_priority);
 | 
						|
	if (array) {
 | 
						|
		__activate_task(p, rq);
 | 
						|
		/*
 | 
						|
		 * Reschedule if we are currently running on this runqueue and
 | 
						|
		 * our priority decreased, or if we are not currently running on
 | 
						|
		 * this runqueue and our priority is higher than the current's
 | 
						|
		 */
 | 
						|
		if (task_running(rq, p)) {
 | 
						|
			if (p->prio > oldprio)
 | 
						|
				resched_task(rq->curr);
 | 
						|
		} else if (TASK_PREEMPTS_CURR(p, rq))
 | 
						|
			resched_task(rq->curr);
 | 
						|
	}
 | 
						|
	task_rq_unlock(rq, &flags);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(sched_setscheduler);
 | 
						|
 | 
						|
static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	struct sched_param lparam;
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	if (!param || pid < 0)
 | 
						|
		return -EINVAL;
 | 
						|
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 | 
						|
		return -EFAULT;
 | 
						|
	read_lock_irq(&tasklist_lock);
 | 
						|
	p = find_process_by_pid(pid);
 | 
						|
	if (!p) {
 | 
						|
		read_unlock_irq(&tasklist_lock);
 | 
						|
		return -ESRCH;
 | 
						|
	}
 | 
						|
	retval = sched_setscheduler(p, policy, &lparam);
 | 
						|
	read_unlock_irq(&tasklist_lock);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 | 
						|
 * @pid: the pid in question.
 | 
						|
 * @policy: new policy.
 | 
						|
 * @param: structure containing the new RT priority.
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
 | 
						|
				       struct sched_param __user *param)
 | 
						|
{
 | 
						|
	return do_sched_setscheduler(pid, policy, param);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_setparam - set/change the RT priority of a thread
 | 
						|
 * @pid: the pid in question.
 | 
						|
 * @param: structure containing the new RT priority.
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
 | 
						|
{
 | 
						|
	return do_sched_setscheduler(pid, -1, param);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 | 
						|
 * @pid: the pid in question.
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_getscheduler(pid_t pid)
 | 
						|
{
 | 
						|
	int retval = -EINVAL;
 | 
						|
	task_t *p;
 | 
						|
 | 
						|
	if (pid < 0)
 | 
						|
		goto out_nounlock;
 | 
						|
 | 
						|
	retval = -ESRCH;
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
	p = find_process_by_pid(pid);
 | 
						|
	if (p) {
 | 
						|
		retval = security_task_getscheduler(p);
 | 
						|
		if (!retval)
 | 
						|
			retval = p->policy;
 | 
						|
	}
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
out_nounlock:
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_getscheduler - get the RT priority of a thread
 | 
						|
 * @pid: the pid in question.
 | 
						|
 * @param: structure containing the RT priority.
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
 | 
						|
{
 | 
						|
	struct sched_param lp;
 | 
						|
	int retval = -EINVAL;
 | 
						|
	task_t *p;
 | 
						|
 | 
						|
	if (!param || pid < 0)
 | 
						|
		goto out_nounlock;
 | 
						|
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
	p = find_process_by_pid(pid);
 | 
						|
	retval = -ESRCH;
 | 
						|
	if (!p)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	retval = security_task_getscheduler(p);
 | 
						|
	if (retval)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	lp.sched_priority = p->rt_priority;
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This one might sleep, we cannot do it with a spinlock held ...
 | 
						|
	 */
 | 
						|
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 | 
						|
 | 
						|
out_nounlock:
 | 
						|
	return retval;
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
long sched_setaffinity(pid_t pid, cpumask_t new_mask)
 | 
						|
{
 | 
						|
	task_t *p;
 | 
						|
	int retval;
 | 
						|
	cpumask_t cpus_allowed;
 | 
						|
 | 
						|
	lock_cpu_hotplug();
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
 | 
						|
	p = find_process_by_pid(pid);
 | 
						|
	if (!p) {
 | 
						|
		read_unlock(&tasklist_lock);
 | 
						|
		unlock_cpu_hotplug();
 | 
						|
		return -ESRCH;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is not safe to call set_cpus_allowed with the
 | 
						|
	 * tasklist_lock held.  We will bump the task_struct's
 | 
						|
	 * usage count and then drop tasklist_lock.
 | 
						|
	 */
 | 
						|
	get_task_struct(p);
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
 | 
						|
	retval = -EPERM;
 | 
						|
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
 | 
						|
			!capable(CAP_SYS_NICE))
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	cpus_allowed = cpuset_cpus_allowed(p);
 | 
						|
	cpus_and(new_mask, new_mask, cpus_allowed);
 | 
						|
	retval = set_cpus_allowed(p, new_mask);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	put_task_struct(p);
 | 
						|
	unlock_cpu_hotplug();
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 | 
						|
			     cpumask_t *new_mask)
 | 
						|
{
 | 
						|
	if (len < sizeof(cpumask_t)) {
 | 
						|
		memset(new_mask, 0, sizeof(cpumask_t));
 | 
						|
	} else if (len > sizeof(cpumask_t)) {
 | 
						|
		len = sizeof(cpumask_t);
 | 
						|
	}
 | 
						|
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_setaffinity - set the cpu affinity of a process
 | 
						|
 * @pid: pid of the process
 | 
						|
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | 
						|
 * @user_mask_ptr: user-space pointer to the new cpu mask
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
 | 
						|
				      unsigned long __user *user_mask_ptr)
 | 
						|
{
 | 
						|
	cpumask_t new_mask;
 | 
						|
	int retval;
 | 
						|
 | 
						|
	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
 | 
						|
	if (retval)
 | 
						|
		return retval;
 | 
						|
 | 
						|
	return sched_setaffinity(pid, new_mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Represents all cpu's present in the system
 | 
						|
 * In systems capable of hotplug, this map could dynamically grow
 | 
						|
 * as new cpu's are detected in the system via any platform specific
 | 
						|
 * method, such as ACPI for e.g.
 | 
						|
 */
 | 
						|
 | 
						|
cpumask_t cpu_present_map;
 | 
						|
EXPORT_SYMBOL(cpu_present_map);
 | 
						|
 | 
						|
#ifndef CONFIG_SMP
 | 
						|
cpumask_t cpu_online_map = CPU_MASK_ALL;
 | 
						|
cpumask_t cpu_possible_map = CPU_MASK_ALL;
 | 
						|
#endif
 | 
						|
 | 
						|
long sched_getaffinity(pid_t pid, cpumask_t *mask)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	task_t *p;
 | 
						|
 | 
						|
	lock_cpu_hotplug();
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
 | 
						|
	retval = -ESRCH;
 | 
						|
	p = find_process_by_pid(pid);
 | 
						|
	if (!p)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	retval = 0;
 | 
						|
	cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
	unlock_cpu_hotplug();
 | 
						|
	if (retval)
 | 
						|
		return retval;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_getaffinity - get the cpu affinity of a process
 | 
						|
 * @pid: pid of the process
 | 
						|
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | 
						|
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
 | 
						|
				      unsigned long __user *user_mask_ptr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	cpumask_t mask;
 | 
						|
 | 
						|
	if (len < sizeof(cpumask_t))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = sched_getaffinity(pid, &mask);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return sizeof(cpumask_t);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_yield - yield the current processor to other threads.
 | 
						|
 *
 | 
						|
 * this function yields the current CPU by moving the calling thread
 | 
						|
 * to the expired array. If there are no other threads running on this
 | 
						|
 * CPU then this function will return.
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_yield(void)
 | 
						|
{
 | 
						|
	runqueue_t *rq = this_rq_lock();
 | 
						|
	prio_array_t *array = current->array;
 | 
						|
	prio_array_t *target = rq->expired;
 | 
						|
 | 
						|
	schedstat_inc(rq, yld_cnt);
 | 
						|
	/*
 | 
						|
	 * We implement yielding by moving the task into the expired
 | 
						|
	 * queue.
 | 
						|
	 *
 | 
						|
	 * (special rule: RT tasks will just roundrobin in the active
 | 
						|
	 *  array.)
 | 
						|
	 */
 | 
						|
	if (rt_task(current))
 | 
						|
		target = rq->active;
 | 
						|
 | 
						|
	if (current->array->nr_active == 1) {
 | 
						|
		schedstat_inc(rq, yld_act_empty);
 | 
						|
		if (!rq->expired->nr_active)
 | 
						|
			schedstat_inc(rq, yld_both_empty);
 | 
						|
	} else if (!rq->expired->nr_active)
 | 
						|
		schedstat_inc(rq, yld_exp_empty);
 | 
						|
 | 
						|
	if (array != target) {
 | 
						|
		dequeue_task(current, array);
 | 
						|
		enqueue_task(current, target);
 | 
						|
	} else
 | 
						|
		/*
 | 
						|
		 * requeue_task is cheaper so perform that if possible.
 | 
						|
		 */
 | 
						|
		requeue_task(current, array);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we are going to call schedule() anyway, there's
 | 
						|
	 * no need to preempt or enable interrupts:
 | 
						|
	 */
 | 
						|
	__release(rq->lock);
 | 
						|
	_raw_spin_unlock(&rq->lock);
 | 
						|
	preempt_enable_no_resched();
 | 
						|
 | 
						|
	schedule();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __cond_resched(void)
 | 
						|
{
 | 
						|
	do {
 | 
						|
		add_preempt_count(PREEMPT_ACTIVE);
 | 
						|
		schedule();
 | 
						|
		sub_preempt_count(PREEMPT_ACTIVE);
 | 
						|
	} while (need_resched());
 | 
						|
}
 | 
						|
 | 
						|
int __sched cond_resched(void)
 | 
						|
{
 | 
						|
	if (need_resched()) {
 | 
						|
		__cond_resched();
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(cond_resched);
 | 
						|
 | 
						|
/*
 | 
						|
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 | 
						|
 * call schedule, and on return reacquire the lock.
 | 
						|
 *
 | 
						|
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 | 
						|
 * operations here to prevent schedule() from being called twice (once via
 | 
						|
 * spin_unlock(), once by hand).
 | 
						|
 */
 | 
						|
int cond_resched_lock(spinlock_t * lock)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (need_lockbreak(lock)) {
 | 
						|
		spin_unlock(lock);
 | 
						|
		cpu_relax();
 | 
						|
		ret = 1;
 | 
						|
		spin_lock(lock);
 | 
						|
	}
 | 
						|
	if (need_resched()) {
 | 
						|
		_raw_spin_unlock(lock);
 | 
						|
		preempt_enable_no_resched();
 | 
						|
		__cond_resched();
 | 
						|
		ret = 1;
 | 
						|
		spin_lock(lock);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(cond_resched_lock);
 | 
						|
 | 
						|
int __sched cond_resched_softirq(void)
 | 
						|
{
 | 
						|
	BUG_ON(!in_softirq());
 | 
						|
 | 
						|
	if (need_resched()) {
 | 
						|
		__local_bh_enable();
 | 
						|
		__cond_resched();
 | 
						|
		local_bh_disable();
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(cond_resched_softirq);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * yield - yield the current processor to other threads.
 | 
						|
 *
 | 
						|
 * this is a shortcut for kernel-space yielding - it marks the
 | 
						|
 * thread runnable and calls sys_sched_yield().
 | 
						|
 */
 | 
						|
void __sched yield(void)
 | 
						|
{
 | 
						|
	set_current_state(TASK_RUNNING);
 | 
						|
	sys_sched_yield();
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(yield);
 | 
						|
 | 
						|
/*
 | 
						|
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 | 
						|
 * that process accounting knows that this is a task in IO wait state.
 | 
						|
 *
 | 
						|
 * But don't do that if it is a deliberate, throttling IO wait (this task
 | 
						|
 * has set its backing_dev_info: the queue against which it should throttle)
 | 
						|
 */
 | 
						|
void __sched io_schedule(void)
 | 
						|
{
 | 
						|
	struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id());
 | 
						|
 | 
						|
	atomic_inc(&rq->nr_iowait);
 | 
						|
	schedule();
 | 
						|
	atomic_dec(&rq->nr_iowait);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(io_schedule);
 | 
						|
 | 
						|
long __sched io_schedule_timeout(long timeout)
 | 
						|
{
 | 
						|
	struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id());
 | 
						|
	long ret;
 | 
						|
 | 
						|
	atomic_inc(&rq->nr_iowait);
 | 
						|
	ret = schedule_timeout(timeout);
 | 
						|
	atomic_dec(&rq->nr_iowait);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_get_priority_max - return maximum RT priority.
 | 
						|
 * @policy: scheduling class.
 | 
						|
 *
 | 
						|
 * this syscall returns the maximum rt_priority that can be used
 | 
						|
 * by a given scheduling class.
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_get_priority_max(int policy)
 | 
						|
{
 | 
						|
	int ret = -EINVAL;
 | 
						|
 | 
						|
	switch (policy) {
 | 
						|
	case SCHED_FIFO:
 | 
						|
	case SCHED_RR:
 | 
						|
		ret = MAX_USER_RT_PRIO-1;
 | 
						|
		break;
 | 
						|
	case SCHED_NORMAL:
 | 
						|
		ret = 0;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_get_priority_min - return minimum RT priority.
 | 
						|
 * @policy: scheduling class.
 | 
						|
 *
 | 
						|
 * this syscall returns the minimum rt_priority that can be used
 | 
						|
 * by a given scheduling class.
 | 
						|
 */
 | 
						|
asmlinkage long sys_sched_get_priority_min(int policy)
 | 
						|
{
 | 
						|
	int ret = -EINVAL;
 | 
						|
 | 
						|
	switch (policy) {
 | 
						|
	case SCHED_FIFO:
 | 
						|
	case SCHED_RR:
 | 
						|
		ret = 1;
 | 
						|
		break;
 | 
						|
	case SCHED_NORMAL:
 | 
						|
		ret = 0;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 | 
						|
 * @pid: pid of the process.
 | 
						|
 * @interval: userspace pointer to the timeslice value.
 | 
						|
 *
 | 
						|
 * this syscall writes the default timeslice value of a given process
 | 
						|
 * into the user-space timespec buffer. A value of '0' means infinity.
 | 
						|
 */
 | 
						|
asmlinkage
 | 
						|
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
 | 
						|
{
 | 
						|
	int retval = -EINVAL;
 | 
						|
	struct timespec t;
 | 
						|
	task_t *p;
 | 
						|
 | 
						|
	if (pid < 0)
 | 
						|
		goto out_nounlock;
 | 
						|
 | 
						|
	retval = -ESRCH;
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
	p = find_process_by_pid(pid);
 | 
						|
	if (!p)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	retval = security_task_getscheduler(p);
 | 
						|
	if (retval)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	jiffies_to_timespec(p->policy & SCHED_FIFO ?
 | 
						|
				0 : task_timeslice(p), &t);
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
 | 
						|
out_nounlock:
 | 
						|
	return retval;
 | 
						|
out_unlock:
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct task_struct *eldest_child(struct task_struct *p)
 | 
						|
{
 | 
						|
	if (list_empty(&p->children)) return NULL;
 | 
						|
	return list_entry(p->children.next,struct task_struct,sibling);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct task_struct *older_sibling(struct task_struct *p)
 | 
						|
{
 | 
						|
	if (p->sibling.prev==&p->parent->children) return NULL;
 | 
						|
	return list_entry(p->sibling.prev,struct task_struct,sibling);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct task_struct *younger_sibling(struct task_struct *p)
 | 
						|
{
 | 
						|
	if (p->sibling.next==&p->parent->children) return NULL;
 | 
						|
	return list_entry(p->sibling.next,struct task_struct,sibling);
 | 
						|
}
 | 
						|
 | 
						|
static void show_task(task_t * p)
 | 
						|
{
 | 
						|
	task_t *relative;
 | 
						|
	unsigned state;
 | 
						|
	unsigned long free = 0;
 | 
						|
	static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
 | 
						|
 | 
						|
	printk("%-13.13s ", p->comm);
 | 
						|
	state = p->state ? __ffs(p->state) + 1 : 0;
 | 
						|
	if (state < ARRAY_SIZE(stat_nam))
 | 
						|
		printk(stat_nam[state]);
 | 
						|
	else
 | 
						|
		printk("?");
 | 
						|
#if (BITS_PER_LONG == 32)
 | 
						|
	if (state == TASK_RUNNING)
 | 
						|
		printk(" running ");
 | 
						|
	else
 | 
						|
		printk(" %08lX ", thread_saved_pc(p));
 | 
						|
#else
 | 
						|
	if (state == TASK_RUNNING)
 | 
						|
		printk("  running task   ");
 | 
						|
	else
 | 
						|
		printk(" %016lx ", thread_saved_pc(p));
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_DEBUG_STACK_USAGE
 | 
						|
	{
 | 
						|
		unsigned long * n = (unsigned long *) (p->thread_info+1);
 | 
						|
		while (!*n)
 | 
						|
			n++;
 | 
						|
		free = (unsigned long) n - (unsigned long)(p->thread_info+1);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
 | 
						|
	if ((relative = eldest_child(p)))
 | 
						|
		printk("%5d ", relative->pid);
 | 
						|
	else
 | 
						|
		printk("      ");
 | 
						|
	if ((relative = younger_sibling(p)))
 | 
						|
		printk("%7d", relative->pid);
 | 
						|
	else
 | 
						|
		printk("       ");
 | 
						|
	if ((relative = older_sibling(p)))
 | 
						|
		printk(" %5d", relative->pid);
 | 
						|
	else
 | 
						|
		printk("      ");
 | 
						|
	if (!p->mm)
 | 
						|
		printk(" (L-TLB)\n");
 | 
						|
	else
 | 
						|
		printk(" (NOTLB)\n");
 | 
						|
 | 
						|
	if (state != TASK_RUNNING)
 | 
						|
		show_stack(p, NULL);
 | 
						|
}
 | 
						|
 | 
						|
void show_state(void)
 | 
						|
{
 | 
						|
	task_t *g, *p;
 | 
						|
 | 
						|
#if (BITS_PER_LONG == 32)
 | 
						|
	printk("\n"
 | 
						|
	       "                                               sibling\n");
 | 
						|
	printk("  task             PC      pid father child younger older\n");
 | 
						|
#else
 | 
						|
	printk("\n"
 | 
						|
	       "                                                       sibling\n");
 | 
						|
	printk("  task                 PC          pid father child younger older\n");
 | 
						|
#endif
 | 
						|
	read_lock(&tasklist_lock);
 | 
						|
	do_each_thread(g, p) {
 | 
						|
		/*
 | 
						|
		 * reset the NMI-timeout, listing all files on a slow
 | 
						|
		 * console might take alot of time:
 | 
						|
		 */
 | 
						|
		touch_nmi_watchdog();
 | 
						|
		show_task(p);
 | 
						|
	} while_each_thread(g, p);
 | 
						|
 | 
						|
	read_unlock(&tasklist_lock);
 | 
						|
}
 | 
						|
 | 
						|
void __devinit init_idle(task_t *idle, int cpu)
 | 
						|
{
 | 
						|
	runqueue_t *rq = cpu_rq(cpu);
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	idle->sleep_avg = 0;
 | 
						|
	idle->array = NULL;
 | 
						|
	idle->prio = MAX_PRIO;
 | 
						|
	idle->state = TASK_RUNNING;
 | 
						|
	idle->cpus_allowed = cpumask_of_cpu(cpu);
 | 
						|
	set_task_cpu(idle, cpu);
 | 
						|
 | 
						|
	spin_lock_irqsave(&rq->lock, flags);
 | 
						|
	rq->curr = rq->idle = idle;
 | 
						|
	set_tsk_need_resched(idle);
 | 
						|
	spin_unlock_irqrestore(&rq->lock, flags);
 | 
						|
 | 
						|
	/* Set the preempt count _outside_ the spinlocks! */
 | 
						|
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
 | 
						|
	idle->thread_info->preempt_count = (idle->lock_depth >= 0);
 | 
						|
#else
 | 
						|
	idle->thread_info->preempt_count = 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * In a system that switches off the HZ timer nohz_cpu_mask
 | 
						|
 * indicates which cpus entered this state. This is used
 | 
						|
 * in the rcu update to wait only for active cpus. For system
 | 
						|
 * which do not switch off the HZ timer nohz_cpu_mask should
 | 
						|
 * always be CPU_MASK_NONE.
 | 
						|
 */
 | 
						|
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
/*
 | 
						|
 * This is how migration works:
 | 
						|
 *
 | 
						|
 * 1) we queue a migration_req_t structure in the source CPU's
 | 
						|
 *    runqueue and wake up that CPU's migration thread.
 | 
						|
 * 2) we down() the locked semaphore => thread blocks.
 | 
						|
 * 3) migration thread wakes up (implicitly it forces the migrated
 | 
						|
 *    thread off the CPU)
 | 
						|
 * 4) it gets the migration request and checks whether the migrated
 | 
						|
 *    task is still in the wrong runqueue.
 | 
						|
 * 5) if it's in the wrong runqueue then the migration thread removes
 | 
						|
 *    it and puts it into the right queue.
 | 
						|
 * 6) migration thread up()s the semaphore.
 | 
						|
 * 7) we wake up and the migration is done.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Change a given task's CPU affinity. Migrate the thread to a
 | 
						|
 * proper CPU and schedule it away if the CPU it's executing on
 | 
						|
 * is removed from the allowed bitmask.
 | 
						|
 *
 | 
						|
 * NOTE: the caller must have a valid reference to the task, the
 | 
						|
 * task must not exit() & deallocate itself prematurely.  The
 | 
						|
 * call is not atomic; no spinlocks may be held.
 | 
						|
 */
 | 
						|
int set_cpus_allowed(task_t *p, cpumask_t new_mask)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
	migration_req_t req;
 | 
						|
	runqueue_t *rq;
 | 
						|
 | 
						|
	rq = task_rq_lock(p, &flags);
 | 
						|
	if (!cpus_intersects(new_mask, cpu_online_map)) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	p->cpus_allowed = new_mask;
 | 
						|
	/* Can the task run on the task's current CPU? If so, we're done */
 | 
						|
	if (cpu_isset(task_cpu(p), new_mask))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
 | 
						|
		/* Need help from migration thread: drop lock and wait. */
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		wake_up_process(rq->migration_thread);
 | 
						|
		wait_for_completion(&req.done);
 | 
						|
		tlb_migrate_finish(p->mm);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	task_rq_unlock(rq, &flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(set_cpus_allowed);
 | 
						|
 | 
						|
/*
 | 
						|
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 | 
						|
 * this because either it can't run here any more (set_cpus_allowed()
 | 
						|
 * away from this CPU, or CPU going down), or because we're
 | 
						|
 * attempting to rebalance this task on exec (sched_exec).
 | 
						|
 *
 | 
						|
 * So we race with normal scheduler movements, but that's OK, as long
 | 
						|
 * as the task is no longer on this CPU.
 | 
						|
 */
 | 
						|
static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 | 
						|
{
 | 
						|
	runqueue_t *rq_dest, *rq_src;
 | 
						|
 | 
						|
	if (unlikely(cpu_is_offline(dest_cpu)))
 | 
						|
		return;
 | 
						|
 | 
						|
	rq_src = cpu_rq(src_cpu);
 | 
						|
	rq_dest = cpu_rq(dest_cpu);
 | 
						|
 | 
						|
	double_rq_lock(rq_src, rq_dest);
 | 
						|
	/* Already moved. */
 | 
						|
	if (task_cpu(p) != src_cpu)
 | 
						|
		goto out;
 | 
						|
	/* Affinity changed (again). */
 | 
						|
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	set_task_cpu(p, dest_cpu);
 | 
						|
	if (p->array) {
 | 
						|
		/*
 | 
						|
		 * Sync timestamp with rq_dest's before activating.
 | 
						|
		 * The same thing could be achieved by doing this step
 | 
						|
		 * afterwards, and pretending it was a local activate.
 | 
						|
		 * This way is cleaner and logically correct.
 | 
						|
		 */
 | 
						|
		p->timestamp = p->timestamp - rq_src->timestamp_last_tick
 | 
						|
				+ rq_dest->timestamp_last_tick;
 | 
						|
		deactivate_task(p, rq_src);
 | 
						|
		activate_task(p, rq_dest, 0);
 | 
						|
		if (TASK_PREEMPTS_CURR(p, rq_dest))
 | 
						|
			resched_task(rq_dest->curr);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	double_rq_unlock(rq_src, rq_dest);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * migration_thread - this is a highprio system thread that performs
 | 
						|
 * thread migration by bumping thread off CPU then 'pushing' onto
 | 
						|
 * another runqueue.
 | 
						|
 */
 | 
						|
static int migration_thread(void * data)
 | 
						|
{
 | 
						|
	runqueue_t *rq;
 | 
						|
	int cpu = (long)data;
 | 
						|
 | 
						|
	rq = cpu_rq(cpu);
 | 
						|
	BUG_ON(rq->migration_thread != current);
 | 
						|
 | 
						|
	set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
	while (!kthread_should_stop()) {
 | 
						|
		struct list_head *head;
 | 
						|
		migration_req_t *req;
 | 
						|
 | 
						|
		if (current->flags & PF_FREEZE)
 | 
						|
			refrigerator(PF_FREEZE);
 | 
						|
 | 
						|
		spin_lock_irq(&rq->lock);
 | 
						|
 | 
						|
		if (cpu_is_offline(cpu)) {
 | 
						|
			spin_unlock_irq(&rq->lock);
 | 
						|
			goto wait_to_die;
 | 
						|
		}
 | 
						|
 | 
						|
		if (rq->active_balance) {
 | 
						|
			active_load_balance(rq, cpu);
 | 
						|
			rq->active_balance = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		head = &rq->migration_queue;
 | 
						|
 | 
						|
		if (list_empty(head)) {
 | 
						|
			spin_unlock_irq(&rq->lock);
 | 
						|
			schedule();
 | 
						|
			set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		req = list_entry(head->next, migration_req_t, list);
 | 
						|
		list_del_init(head->next);
 | 
						|
 | 
						|
		if (req->type == REQ_MOVE_TASK) {
 | 
						|
			spin_unlock(&rq->lock);
 | 
						|
			__migrate_task(req->task, cpu, req->dest_cpu);
 | 
						|
			local_irq_enable();
 | 
						|
		} else if (req->type == REQ_SET_DOMAIN) {
 | 
						|
			rq->sd = req->sd;
 | 
						|
			spin_unlock_irq(&rq->lock);
 | 
						|
		} else {
 | 
						|
			spin_unlock_irq(&rq->lock);
 | 
						|
			WARN_ON(1);
 | 
						|
		}
 | 
						|
 | 
						|
		complete(&req->done);
 | 
						|
	}
 | 
						|
	__set_current_state(TASK_RUNNING);
 | 
						|
	return 0;
 | 
						|
 | 
						|
wait_to_die:
 | 
						|
	/* Wait for kthread_stop */
 | 
						|
	set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
	while (!kthread_should_stop()) {
 | 
						|
		schedule();
 | 
						|
		set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
	}
 | 
						|
	__set_current_state(TASK_RUNNING);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
/* Figure out where task on dead CPU should go, use force if neccessary. */
 | 
						|
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
 | 
						|
{
 | 
						|
	int dest_cpu;
 | 
						|
	cpumask_t mask;
 | 
						|
 | 
						|
	/* On same node? */
 | 
						|
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
 | 
						|
	cpus_and(mask, mask, tsk->cpus_allowed);
 | 
						|
	dest_cpu = any_online_cpu(mask);
 | 
						|
 | 
						|
	/* On any allowed CPU? */
 | 
						|
	if (dest_cpu == NR_CPUS)
 | 
						|
		dest_cpu = any_online_cpu(tsk->cpus_allowed);
 | 
						|
 | 
						|
	/* No more Mr. Nice Guy. */
 | 
						|
	if (dest_cpu == NR_CPUS) {
 | 
						|
		cpus_setall(tsk->cpus_allowed);
 | 
						|
		dest_cpu = any_online_cpu(tsk->cpus_allowed);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't tell them about moving exiting tasks or
 | 
						|
		 * kernel threads (both mm NULL), since they never
 | 
						|
		 * leave kernel.
 | 
						|
		 */
 | 
						|
		if (tsk->mm && printk_ratelimit())
 | 
						|
			printk(KERN_INFO "process %d (%s) no "
 | 
						|
			       "longer affine to cpu%d\n",
 | 
						|
			       tsk->pid, tsk->comm, dead_cpu);
 | 
						|
	}
 | 
						|
	__migrate_task(tsk, dead_cpu, dest_cpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * While a dead CPU has no uninterruptible tasks queued at this point,
 | 
						|
 * it might still have a nonzero ->nr_uninterruptible counter, because
 | 
						|
 * for performance reasons the counter is not stricly tracking tasks to
 | 
						|
 * their home CPUs. So we just add the counter to another CPU's counter,
 | 
						|
 * to keep the global sum constant after CPU-down:
 | 
						|
 */
 | 
						|
static void migrate_nr_uninterruptible(runqueue_t *rq_src)
 | 
						|
{
 | 
						|
	runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	double_rq_lock(rq_src, rq_dest);
 | 
						|
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
 | 
						|
	rq_src->nr_uninterruptible = 0;
 | 
						|
	double_rq_unlock(rq_src, rq_dest);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/* Run through task list and migrate tasks from the dead cpu. */
 | 
						|
static void migrate_live_tasks(int src_cpu)
 | 
						|
{
 | 
						|
	struct task_struct *tsk, *t;
 | 
						|
 | 
						|
	write_lock_irq(&tasklist_lock);
 | 
						|
 | 
						|
	do_each_thread(t, tsk) {
 | 
						|
		if (tsk == current)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (task_cpu(tsk) == src_cpu)
 | 
						|
			move_task_off_dead_cpu(src_cpu, tsk);
 | 
						|
	} while_each_thread(t, tsk);
 | 
						|
 | 
						|
	write_unlock_irq(&tasklist_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Schedules idle task to be the next runnable task on current CPU.
 | 
						|
 * It does so by boosting its priority to highest possible and adding it to
 | 
						|
 * the _front_ of runqueue. Used by CPU offline code.
 | 
						|
 */
 | 
						|
void sched_idle_next(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
	runqueue_t *rq = this_rq();
 | 
						|
	struct task_struct *p = rq->idle;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* cpu has to be offline */
 | 
						|
	BUG_ON(cpu_online(cpu));
 | 
						|
 | 
						|
	/* Strictly not necessary since rest of the CPUs are stopped by now
 | 
						|
	 * and interrupts disabled on current cpu.
 | 
						|
	 */
 | 
						|
	spin_lock_irqsave(&rq->lock, flags);
 | 
						|
 | 
						|
	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
 | 
						|
	/* Add idle task to _front_ of it's priority queue */
 | 
						|
	__activate_idle_task(p, rq);
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&rq->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/* Ensures that the idle task is using init_mm right before its cpu goes
 | 
						|
 * offline.
 | 
						|
 */
 | 
						|
void idle_task_exit(void)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = current->active_mm;
 | 
						|
 | 
						|
	BUG_ON(cpu_online(smp_processor_id()));
 | 
						|
 | 
						|
	if (mm != &init_mm)
 | 
						|
		switch_mm(mm, &init_mm, current);
 | 
						|
	mmdrop(mm);
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
 | 
						|
{
 | 
						|
	struct runqueue *rq = cpu_rq(dead_cpu);
 | 
						|
 | 
						|
	/* Must be exiting, otherwise would be on tasklist. */
 | 
						|
	BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
 | 
						|
 | 
						|
	/* Cannot have done final schedule yet: would have vanished. */
 | 
						|
	BUG_ON(tsk->flags & PF_DEAD);
 | 
						|
 | 
						|
	get_task_struct(tsk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Drop lock around migration; if someone else moves it,
 | 
						|
	 * that's OK.  No task can be added to this CPU, so iteration is
 | 
						|
	 * fine.
 | 
						|
	 */
 | 
						|
	spin_unlock_irq(&rq->lock);
 | 
						|
	move_task_off_dead_cpu(dead_cpu, tsk);
 | 
						|
	spin_lock_irq(&rq->lock);
 | 
						|
 | 
						|
	put_task_struct(tsk);
 | 
						|
}
 | 
						|
 | 
						|
/* release_task() removes task from tasklist, so we won't find dead tasks. */
 | 
						|
static void migrate_dead_tasks(unsigned int dead_cpu)
 | 
						|
{
 | 
						|
	unsigned arr, i;
 | 
						|
	struct runqueue *rq = cpu_rq(dead_cpu);
 | 
						|
 | 
						|
	for (arr = 0; arr < 2; arr++) {
 | 
						|
		for (i = 0; i < MAX_PRIO; i++) {
 | 
						|
			struct list_head *list = &rq->arrays[arr].queue[i];
 | 
						|
			while (!list_empty(list))
 | 
						|
				migrate_dead(dead_cpu,
 | 
						|
					     list_entry(list->next, task_t,
 | 
						|
							run_list));
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* CONFIG_HOTPLUG_CPU */
 | 
						|
 | 
						|
/*
 | 
						|
 * migration_call - callback that gets triggered when a CPU is added.
 | 
						|
 * Here we can start up the necessary migration thread for the new CPU.
 | 
						|
 */
 | 
						|
static int migration_call(struct notifier_block *nfb, unsigned long action,
 | 
						|
			  void *hcpu)
 | 
						|
{
 | 
						|
	int cpu = (long)hcpu;
 | 
						|
	struct task_struct *p;
 | 
						|
	struct runqueue *rq;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
	case CPU_UP_PREPARE:
 | 
						|
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
 | 
						|
		if (IS_ERR(p))
 | 
						|
			return NOTIFY_BAD;
 | 
						|
		p->flags |= PF_NOFREEZE;
 | 
						|
		kthread_bind(p, cpu);
 | 
						|
		/* Must be high prio: stop_machine expects to yield to it. */
 | 
						|
		rq = task_rq_lock(p, &flags);
 | 
						|
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		cpu_rq(cpu)->migration_thread = p;
 | 
						|
		break;
 | 
						|
	case CPU_ONLINE:
 | 
						|
		/* Strictly unneccessary, as first user will wake it. */
 | 
						|
		wake_up_process(cpu_rq(cpu)->migration_thread);
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	case CPU_UP_CANCELED:
 | 
						|
		/* Unbind it from offline cpu so it can run.  Fall thru. */
 | 
						|
		kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
 | 
						|
		kthread_stop(cpu_rq(cpu)->migration_thread);
 | 
						|
		cpu_rq(cpu)->migration_thread = NULL;
 | 
						|
		break;
 | 
						|
	case CPU_DEAD:
 | 
						|
		migrate_live_tasks(cpu);
 | 
						|
		rq = cpu_rq(cpu);
 | 
						|
		kthread_stop(rq->migration_thread);
 | 
						|
		rq->migration_thread = NULL;
 | 
						|
		/* Idle task back to normal (off runqueue, low prio) */
 | 
						|
		rq = task_rq_lock(rq->idle, &flags);
 | 
						|
		deactivate_task(rq->idle, rq);
 | 
						|
		rq->idle->static_prio = MAX_PRIO;
 | 
						|
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
 | 
						|
		migrate_dead_tasks(cpu);
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
		migrate_nr_uninterruptible(rq);
 | 
						|
		BUG_ON(rq->nr_running != 0);
 | 
						|
 | 
						|
		/* No need to migrate the tasks: it was best-effort if
 | 
						|
		 * they didn't do lock_cpu_hotplug().  Just wake up
 | 
						|
		 * the requestors. */
 | 
						|
		spin_lock_irq(&rq->lock);
 | 
						|
		while (!list_empty(&rq->migration_queue)) {
 | 
						|
			migration_req_t *req;
 | 
						|
			req = list_entry(rq->migration_queue.next,
 | 
						|
					 migration_req_t, list);
 | 
						|
			BUG_ON(req->type != REQ_MOVE_TASK);
 | 
						|
			list_del_init(&req->list);
 | 
						|
			complete(&req->done);
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&rq->lock);
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* Register at highest priority so that task migration (migrate_all_tasks)
 | 
						|
 * happens before everything else.
 | 
						|
 */
 | 
						|
static struct notifier_block __devinitdata migration_notifier = {
 | 
						|
	.notifier_call = migration_call,
 | 
						|
	.priority = 10
 | 
						|
};
 | 
						|
 | 
						|
int __init migration_init(void)
 | 
						|
{
 | 
						|
	void *cpu = (void *)(long)smp_processor_id();
 | 
						|
	/* Start one for boot CPU. */
 | 
						|
	migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
 | 
						|
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
 | 
						|
	register_cpu_notifier(&migration_notifier);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
#define SCHED_DOMAIN_DEBUG
 | 
						|
#ifdef SCHED_DOMAIN_DEBUG
 | 
						|
static void sched_domain_debug(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	int level = 0;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
 | 
						|
 | 
						|
	do {
 | 
						|
		int i;
 | 
						|
		char str[NR_CPUS];
 | 
						|
		struct sched_group *group = sd->groups;
 | 
						|
		cpumask_t groupmask;
 | 
						|
 | 
						|
		cpumask_scnprintf(str, NR_CPUS, sd->span);
 | 
						|
		cpus_clear(groupmask);
 | 
						|
 | 
						|
		printk(KERN_DEBUG);
 | 
						|
		for (i = 0; i < level + 1; i++)
 | 
						|
			printk(" ");
 | 
						|
		printk("domain %d: ", level);
 | 
						|
 | 
						|
		if (!(sd->flags & SD_LOAD_BALANCE)) {
 | 
						|
			printk("does not load-balance\n");
 | 
						|
			if (sd->parent)
 | 
						|
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		printk("span %s\n", str);
 | 
						|
 | 
						|
		if (!cpu_isset(cpu, sd->span))
 | 
						|
			printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
 | 
						|
		if (!cpu_isset(cpu, group->cpumask))
 | 
						|
			printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
 | 
						|
 | 
						|
		printk(KERN_DEBUG);
 | 
						|
		for (i = 0; i < level + 2; i++)
 | 
						|
			printk(" ");
 | 
						|
		printk("groups:");
 | 
						|
		do {
 | 
						|
			if (!group) {
 | 
						|
				printk("\n");
 | 
						|
				printk(KERN_ERR "ERROR: group is NULL\n");
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!group->cpu_power) {
 | 
						|
				printk("\n");
 | 
						|
				printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
 | 
						|
			}
 | 
						|
 | 
						|
			if (!cpus_weight(group->cpumask)) {
 | 
						|
				printk("\n");
 | 
						|
				printk(KERN_ERR "ERROR: empty group\n");
 | 
						|
			}
 | 
						|
 | 
						|
			if (cpus_intersects(groupmask, group->cpumask)) {
 | 
						|
				printk("\n");
 | 
						|
				printk(KERN_ERR "ERROR: repeated CPUs\n");
 | 
						|
			}
 | 
						|
 | 
						|
			cpus_or(groupmask, groupmask, group->cpumask);
 | 
						|
 | 
						|
			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
 | 
						|
			printk(" %s", str);
 | 
						|
 | 
						|
			group = group->next;
 | 
						|
		} while (group != sd->groups);
 | 
						|
		printk("\n");
 | 
						|
 | 
						|
		if (!cpus_equal(sd->span, groupmask))
 | 
						|
			printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 | 
						|
 | 
						|
		level++;
 | 
						|
		sd = sd->parent;
 | 
						|
 | 
						|
		if (sd) {
 | 
						|
			if (!cpus_subset(groupmask, sd->span))
 | 
						|
				printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 | 
						|
		}
 | 
						|
 | 
						|
	} while (sd);
 | 
						|
}
 | 
						|
#else
 | 
						|
#define sched_domain_debug(sd, cpu) {}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 | 
						|
 * hold the hotplug lock.
 | 
						|
 */
 | 
						|
void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	migration_req_t req;
 | 
						|
	unsigned long flags;
 | 
						|
	runqueue_t *rq = cpu_rq(cpu);
 | 
						|
	int local = 1;
 | 
						|
 | 
						|
	sched_domain_debug(sd, cpu);
 | 
						|
 | 
						|
	spin_lock_irqsave(&rq->lock, flags);
 | 
						|
 | 
						|
	if (cpu == smp_processor_id() || !cpu_online(cpu)) {
 | 
						|
		rq->sd = sd;
 | 
						|
	} else {
 | 
						|
		init_completion(&req.done);
 | 
						|
		req.type = REQ_SET_DOMAIN;
 | 
						|
		req.sd = sd;
 | 
						|
		list_add(&req.list, &rq->migration_queue);
 | 
						|
		local = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&rq->lock, flags);
 | 
						|
 | 
						|
	if (!local) {
 | 
						|
		wake_up_process(rq->migration_thread);
 | 
						|
		wait_for_completion(&req.done);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* cpus with isolated domains */
 | 
						|
cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
 | 
						|
 | 
						|
/* Setup the mask of cpus configured for isolated domains */
 | 
						|
static int __init isolated_cpu_setup(char *str)
 | 
						|
{
 | 
						|
	int ints[NR_CPUS], i;
 | 
						|
 | 
						|
	str = get_options(str, ARRAY_SIZE(ints), ints);
 | 
						|
	cpus_clear(cpu_isolated_map);
 | 
						|
	for (i = 1; i <= ints[0]; i++)
 | 
						|
		if (ints[i] < NR_CPUS)
 | 
						|
			cpu_set(ints[i], cpu_isolated_map);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
__setup ("isolcpus=", isolated_cpu_setup);
 | 
						|
 | 
						|
/*
 | 
						|
 * init_sched_build_groups takes an array of groups, the cpumask we wish
 | 
						|
 * to span, and a pointer to a function which identifies what group a CPU
 | 
						|
 * belongs to. The return value of group_fn must be a valid index into the
 | 
						|
 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
 | 
						|
 * keep track of groups covered with a cpumask_t).
 | 
						|
 *
 | 
						|
 * init_sched_build_groups will build a circular linked list of the groups
 | 
						|
 * covered by the given span, and will set each group's ->cpumask correctly,
 | 
						|
 * and ->cpu_power to 0.
 | 
						|
 */
 | 
						|
void __devinit init_sched_build_groups(struct sched_group groups[],
 | 
						|
			cpumask_t span, int (*group_fn)(int cpu))
 | 
						|
{
 | 
						|
	struct sched_group *first = NULL, *last = NULL;
 | 
						|
	cpumask_t covered = CPU_MASK_NONE;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_cpu_mask(i, span) {
 | 
						|
		int group = group_fn(i);
 | 
						|
		struct sched_group *sg = &groups[group];
 | 
						|
		int j;
 | 
						|
 | 
						|
		if (cpu_isset(i, covered))
 | 
						|
			continue;
 | 
						|
 | 
						|
		sg->cpumask = CPU_MASK_NONE;
 | 
						|
		sg->cpu_power = 0;
 | 
						|
 | 
						|
		for_each_cpu_mask(j, span) {
 | 
						|
			if (group_fn(j) != group)
 | 
						|
				continue;
 | 
						|
 | 
						|
			cpu_set(j, covered);
 | 
						|
			cpu_set(j, sg->cpumask);
 | 
						|
		}
 | 
						|
		if (!first)
 | 
						|
			first = sg;
 | 
						|
		if (last)
 | 
						|
			last->next = sg;
 | 
						|
		last = sg;
 | 
						|
	}
 | 
						|
	last->next = first;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef ARCH_HAS_SCHED_DOMAIN
 | 
						|
extern void __devinit arch_init_sched_domains(void);
 | 
						|
extern void __devinit arch_destroy_sched_domains(void);
 | 
						|
#else
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
 | 
						|
static struct sched_group sched_group_cpus[NR_CPUS];
 | 
						|
static int __devinit cpu_to_cpu_group(int cpu)
 | 
						|
{
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
 | 
						|
static struct sched_group sched_group_phys[NR_CPUS];
 | 
						|
static int __devinit cpu_to_phys_group(int cpu)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
	return first_cpu(cpu_sibling_map[cpu]);
 | 
						|
#else
 | 
						|
	return cpu;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct sched_domain, node_domains);
 | 
						|
static struct sched_group sched_group_nodes[MAX_NUMNODES];
 | 
						|
static int __devinit cpu_to_node_group(int cpu)
 | 
						|
{
 | 
						|
	return cpu_to_node(cpu);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
 | 
						|
/*
 | 
						|
 * The domains setup code relies on siblings not spanning
 | 
						|
 * multiple nodes. Make sure the architecture has a proper
 | 
						|
 * siblings map:
 | 
						|
 */
 | 
						|
static void check_sibling_maps(void)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for_each_online_cpu(i) {
 | 
						|
		for_each_cpu_mask(j, cpu_sibling_map[i]) {
 | 
						|
			if (cpu_to_node(i) != cpu_to_node(j)) {
 | 
						|
				printk(KERN_INFO "warning: CPU %d siblings map "
 | 
						|
					"to different node - isolating "
 | 
						|
					"them.\n", i);
 | 
						|
				cpu_sibling_map[i] = cpumask_of_cpu(i);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 | 
						|
 */
 | 
						|
static void __devinit arch_init_sched_domains(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	cpumask_t cpu_default_map;
 | 
						|
 | 
						|
#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
 | 
						|
	check_sibling_maps();
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * Setup mask for cpus without special case scheduling requirements.
 | 
						|
	 * For now this just excludes isolated cpus, but could be used to
 | 
						|
	 * exclude other special cases in the future.
 | 
						|
	 */
 | 
						|
	cpus_complement(cpu_default_map, cpu_isolated_map);
 | 
						|
	cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set up domains. Isolated domains just stay on the dummy domain.
 | 
						|
	 */
 | 
						|
	for_each_cpu_mask(i, cpu_default_map) {
 | 
						|
		int group;
 | 
						|
		struct sched_domain *sd = NULL, *p;
 | 
						|
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
 | 
						|
 | 
						|
		cpus_and(nodemask, nodemask, cpu_default_map);
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
		sd = &per_cpu(node_domains, i);
 | 
						|
		group = cpu_to_node_group(i);
 | 
						|
		*sd = SD_NODE_INIT;
 | 
						|
		sd->span = cpu_default_map;
 | 
						|
		sd->groups = &sched_group_nodes[group];
 | 
						|
#endif
 | 
						|
 | 
						|
		p = sd;
 | 
						|
		sd = &per_cpu(phys_domains, i);
 | 
						|
		group = cpu_to_phys_group(i);
 | 
						|
		*sd = SD_CPU_INIT;
 | 
						|
		sd->span = nodemask;
 | 
						|
		sd->parent = p;
 | 
						|
		sd->groups = &sched_group_phys[group];
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
		p = sd;
 | 
						|
		sd = &per_cpu(cpu_domains, i);
 | 
						|
		group = cpu_to_cpu_group(i);
 | 
						|
		*sd = SD_SIBLING_INIT;
 | 
						|
		sd->span = cpu_sibling_map[i];
 | 
						|
		cpus_and(sd->span, sd->span, cpu_default_map);
 | 
						|
		sd->parent = p;
 | 
						|
		sd->groups = &sched_group_cpus[group];
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
	/* Set up CPU (sibling) groups */
 | 
						|
	for_each_online_cpu(i) {
 | 
						|
		cpumask_t this_sibling_map = cpu_sibling_map[i];
 | 
						|
		cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
 | 
						|
		if (i != first_cpu(this_sibling_map))
 | 
						|
			continue;
 | 
						|
 | 
						|
		init_sched_build_groups(sched_group_cpus, this_sibling_map,
 | 
						|
						&cpu_to_cpu_group);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Set up physical groups */
 | 
						|
	for (i = 0; i < MAX_NUMNODES; i++) {
 | 
						|
		cpumask_t nodemask = node_to_cpumask(i);
 | 
						|
 | 
						|
		cpus_and(nodemask, nodemask, cpu_default_map);
 | 
						|
		if (cpus_empty(nodemask))
 | 
						|
			continue;
 | 
						|
 | 
						|
		init_sched_build_groups(sched_group_phys, nodemask,
 | 
						|
						&cpu_to_phys_group);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	/* Set up node groups */
 | 
						|
	init_sched_build_groups(sched_group_nodes, cpu_default_map,
 | 
						|
					&cpu_to_node_group);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Calculate CPU power for physical packages and nodes */
 | 
						|
	for_each_cpu_mask(i, cpu_default_map) {
 | 
						|
		int power;
 | 
						|
		struct sched_domain *sd;
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
		sd = &per_cpu(cpu_domains, i);
 | 
						|
		power = SCHED_LOAD_SCALE;
 | 
						|
		sd->groups->cpu_power = power;
 | 
						|
#endif
 | 
						|
 | 
						|
		sd = &per_cpu(phys_domains, i);
 | 
						|
		power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
 | 
						|
				(cpus_weight(sd->groups->cpumask)-1) / 10;
 | 
						|
		sd->groups->cpu_power = power;
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
		if (i == first_cpu(sd->groups->cpumask)) {
 | 
						|
			/* Only add "power" once for each physical package. */
 | 
						|
			sd = &per_cpu(node_domains, i);
 | 
						|
			sd->groups->cpu_power += power;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/* Attach the domains */
 | 
						|
	for_each_online_cpu(i) {
 | 
						|
		struct sched_domain *sd;
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
		sd = &per_cpu(cpu_domains, i);
 | 
						|
#else
 | 
						|
		sd = &per_cpu(phys_domains, i);
 | 
						|
#endif
 | 
						|
		cpu_attach_domain(sd, i);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
static void __devinit arch_destroy_sched_domains(void)
 | 
						|
{
 | 
						|
	/* Do nothing: everything is statically allocated. */
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* ARCH_HAS_SCHED_DOMAIN */
 | 
						|
 | 
						|
/*
 | 
						|
 * Initial dummy domain for early boot and for hotplug cpu. Being static,
 | 
						|
 * it is initialized to zero, so all balancing flags are cleared which is
 | 
						|
 * what we want.
 | 
						|
 */
 | 
						|
static struct sched_domain sched_domain_dummy;
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
/*
 | 
						|
 * Force a reinitialization of the sched domains hierarchy.  The domains
 | 
						|
 * and groups cannot be updated in place without racing with the balancing
 | 
						|
 * code, so we temporarily attach all running cpus to a "dummy" domain
 | 
						|
 * which will prevent rebalancing while the sched domains are recalculated.
 | 
						|
 */
 | 
						|
static int update_sched_domains(struct notifier_block *nfb,
 | 
						|
				unsigned long action, void *hcpu)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
	case CPU_UP_PREPARE:
 | 
						|
	case CPU_DOWN_PREPARE:
 | 
						|
		for_each_online_cpu(i)
 | 
						|
			cpu_attach_domain(&sched_domain_dummy, i);
 | 
						|
		arch_destroy_sched_domains();
 | 
						|
		return NOTIFY_OK;
 | 
						|
 | 
						|
	case CPU_UP_CANCELED:
 | 
						|
	case CPU_DOWN_FAILED:
 | 
						|
	case CPU_ONLINE:
 | 
						|
	case CPU_DEAD:
 | 
						|
		/*
 | 
						|
		 * Fall through and re-initialise the domains.
 | 
						|
		 */
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return NOTIFY_DONE;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The hotplug lock is already held by cpu_up/cpu_down */
 | 
						|
	arch_init_sched_domains();
 | 
						|
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void __init sched_init_smp(void)
 | 
						|
{
 | 
						|
	lock_cpu_hotplug();
 | 
						|
	arch_init_sched_domains();
 | 
						|
	unlock_cpu_hotplug();
 | 
						|
	/* XXX: Theoretical race here - CPU may be hotplugged now */
 | 
						|
	hotcpu_notifier(update_sched_domains, 0);
 | 
						|
}
 | 
						|
#else
 | 
						|
void __init sched_init_smp(void)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
int in_sched_functions(unsigned long addr)
 | 
						|
{
 | 
						|
	/* Linker adds these: start and end of __sched functions */
 | 
						|
	extern char __sched_text_start[], __sched_text_end[];
 | 
						|
	return in_lock_functions(addr) ||
 | 
						|
		(addr >= (unsigned long)__sched_text_start
 | 
						|
		&& addr < (unsigned long)__sched_text_end);
 | 
						|
}
 | 
						|
 | 
						|
void __init sched_init(void)
 | 
						|
{
 | 
						|
	runqueue_t *rq;
 | 
						|
	int i, j, k;
 | 
						|
 | 
						|
	for (i = 0; i < NR_CPUS; i++) {
 | 
						|
		prio_array_t *array;
 | 
						|
 | 
						|
		rq = cpu_rq(i);
 | 
						|
		spin_lock_init(&rq->lock);
 | 
						|
		rq->active = rq->arrays;
 | 
						|
		rq->expired = rq->arrays + 1;
 | 
						|
		rq->best_expired_prio = MAX_PRIO;
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		rq->sd = &sched_domain_dummy;
 | 
						|
		rq->cpu_load = 0;
 | 
						|
		rq->active_balance = 0;
 | 
						|
		rq->push_cpu = 0;
 | 
						|
		rq->migration_thread = NULL;
 | 
						|
		INIT_LIST_HEAD(&rq->migration_queue);
 | 
						|
#endif
 | 
						|
		atomic_set(&rq->nr_iowait, 0);
 | 
						|
 | 
						|
		for (j = 0; j < 2; j++) {
 | 
						|
			array = rq->arrays + j;
 | 
						|
			for (k = 0; k < MAX_PRIO; k++) {
 | 
						|
				INIT_LIST_HEAD(array->queue + k);
 | 
						|
				__clear_bit(k, array->bitmap);
 | 
						|
			}
 | 
						|
			// delimiter for bitsearch
 | 
						|
			__set_bit(MAX_PRIO, array->bitmap);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The boot idle thread does lazy MMU switching as well:
 | 
						|
	 */
 | 
						|
	atomic_inc(&init_mm.mm_count);
 | 
						|
	enter_lazy_tlb(&init_mm, current);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make us the idle thread. Technically, schedule() should not be
 | 
						|
	 * called from this thread, however somewhere below it might be,
 | 
						|
	 * but because we are the idle thread, we just pick up running again
 | 
						|
	 * when this runqueue becomes "idle".
 | 
						|
	 */
 | 
						|
	init_idle(current, smp_processor_id());
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
 | 
						|
void __might_sleep(char *file, int line)
 | 
						|
{
 | 
						|
#if defined(in_atomic)
 | 
						|
	static unsigned long prev_jiffy;	/* ratelimiting */
 | 
						|
 | 
						|
	if ((in_atomic() || irqs_disabled()) &&
 | 
						|
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
 | 
						|
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 | 
						|
			return;
 | 
						|
		prev_jiffy = jiffies;
 | 
						|
		printk(KERN_ERR "Debug: sleeping function called from invalid"
 | 
						|
				" context at %s:%d\n", file, line);
 | 
						|
		printk("in_atomic():%d, irqs_disabled():%d\n",
 | 
						|
			in_atomic(), irqs_disabled());
 | 
						|
		dump_stack();
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__might_sleep);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MAGIC_SYSRQ
 | 
						|
void normalize_rt_tasks(void)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
	prio_array_t *array;
 | 
						|
	unsigned long flags;
 | 
						|
	runqueue_t *rq;
 | 
						|
 | 
						|
	read_lock_irq(&tasklist_lock);
 | 
						|
	for_each_process (p) {
 | 
						|
		if (!rt_task(p))
 | 
						|
			continue;
 | 
						|
 | 
						|
		rq = task_rq_lock(p, &flags);
 | 
						|
 | 
						|
		array = p->array;
 | 
						|
		if (array)
 | 
						|
			deactivate_task(p, task_rq(p));
 | 
						|
		__setscheduler(p, SCHED_NORMAL, 0);
 | 
						|
		if (array) {
 | 
						|
			__activate_task(p, task_rq(p));
 | 
						|
			resched_task(rq->curr);
 | 
						|
		}
 | 
						|
 | 
						|
		task_rq_unlock(rq, &flags);
 | 
						|
	}
 | 
						|
	read_unlock_irq(&tasklist_lock);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_MAGIC_SYSRQ */
 |