mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Otherwise, it wakes up discard thread which will sleep again by busy IOs in a loop. Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
		
			
				
	
	
		
			873 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			873 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * fs/f2fs/segment.h
 | 
						|
 *
 | 
						|
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 | 
						|
 *             http://www.samsung.com/
 | 
						|
 */
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
 | 
						|
/* constant macro */
 | 
						|
#define NULL_SEGNO			((unsigned int)(~0))
 | 
						|
#define NULL_SECNO			((unsigned int)(~0))
 | 
						|
 | 
						|
#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 | 
						|
#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 | 
						|
 | 
						|
#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 | 
						|
 | 
						|
/* L: Logical segment # in volume, R: Relative segment # in main area */
 | 
						|
#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 | 
						|
#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 | 
						|
 | 
						|
#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 | 
						|
#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
 | 
						|
 | 
						|
#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 | 
						|
#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 | 
						|
#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 | 
						|
 | 
						|
#define IS_CURSEG(sbi, seg)						\
 | 
						|
	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 | 
						|
	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 | 
						|
	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 | 
						|
	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 | 
						|
	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 | 
						|
	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 | 
						|
 | 
						|
#define IS_CURSEC(sbi, secno)						\
 | 
						|
	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 | 
						|
	  (sbi)->segs_per_sec) ||	\
 | 
						|
	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 | 
						|
	  (sbi)->segs_per_sec) ||	\
 | 
						|
	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 | 
						|
	  (sbi)->segs_per_sec) ||	\
 | 
						|
	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 | 
						|
	  (sbi)->segs_per_sec) ||	\
 | 
						|
	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 | 
						|
	  (sbi)->segs_per_sec) ||	\
 | 
						|
	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 | 
						|
	  (sbi)->segs_per_sec))	\
 | 
						|
 | 
						|
#define MAIN_BLKADDR(sbi)						\
 | 
						|
	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 | 
						|
		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 | 
						|
#define SEG0_BLKADDR(sbi)						\
 | 
						|
	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 | 
						|
		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 | 
						|
 | 
						|
#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 | 
						|
#define MAIN_SECS(sbi)	((sbi)->total_sections)
 | 
						|
 | 
						|
#define TOTAL_SEGS(sbi)							\
 | 
						|
	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 | 
						|
		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 | 
						|
#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 | 
						|
 | 
						|
#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 | 
						|
#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 | 
						|
					(sbi)->log_blocks_per_seg))
 | 
						|
 | 
						|
#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 | 
						|
	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 | 
						|
 | 
						|
#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 | 
						|
	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 | 
						|
 | 
						|
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 | 
						|
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 | 
						|
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 | 
						|
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 | 
						|
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 | 
						|
 | 
						|
#define GET_SEGNO(sbi, blk_addr)					\
 | 
						|
	((!is_valid_data_blkaddr(sbi, blk_addr)) ?			\
 | 
						|
	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 | 
						|
		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 | 
						|
#define BLKS_PER_SEC(sbi)					\
 | 
						|
	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 | 
						|
#define GET_SEC_FROM_SEG(sbi, segno)				\
 | 
						|
	((segno) / (sbi)->segs_per_sec)
 | 
						|
#define GET_SEG_FROM_SEC(sbi, secno)				\
 | 
						|
	((secno) * (sbi)->segs_per_sec)
 | 
						|
#define GET_ZONE_FROM_SEC(sbi, secno)				\
 | 
						|
	((secno) / (sbi)->secs_per_zone)
 | 
						|
#define GET_ZONE_FROM_SEG(sbi, segno)				\
 | 
						|
	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
 | 
						|
 | 
						|
#define GET_SUM_BLOCK(sbi, segno)				\
 | 
						|
	((sbi)->sm_info->ssa_blkaddr + (segno))
 | 
						|
 | 
						|
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 | 
						|
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
 | 
						|
 | 
						|
#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 | 
						|
	((segno) % (sit_i)->sents_per_block)
 | 
						|
#define SIT_BLOCK_OFFSET(segno)					\
 | 
						|
	((segno) / SIT_ENTRY_PER_BLOCK)
 | 
						|
#define	START_SEGNO(segno)		\
 | 
						|
	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 | 
						|
#define SIT_BLK_CNT(sbi)			\
 | 
						|
	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
 | 
						|
#define f2fs_bitmap_size(nr)			\
 | 
						|
	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 | 
						|
 | 
						|
#define SECTOR_FROM_BLOCK(blk_addr)					\
 | 
						|
	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
 | 
						|
#define SECTOR_TO_BLOCK(sectors)					\
 | 
						|
	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
 | 
						|
 | 
						|
/*
 | 
						|
 * indicate a block allocation direction: RIGHT and LEFT.
 | 
						|
 * RIGHT means allocating new sections towards the end of volume.
 | 
						|
 * LEFT means the opposite direction.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	ALLOC_RIGHT = 0,
 | 
						|
	ALLOC_LEFT
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 | 
						|
 * LFS writes data sequentially with cleaning operations.
 | 
						|
 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	LFS = 0,
 | 
						|
	SSR
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 | 
						|
 * GC_CB is based on cost-benefit algorithm.
 | 
						|
 * GC_GREEDY is based on greedy algorithm.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	GC_CB = 0,
 | 
						|
	GC_GREEDY,
 | 
						|
	ALLOC_NEXT,
 | 
						|
	FLUSH_DEVICE,
 | 
						|
	MAX_GC_POLICY,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * BG_GC means the background cleaning job.
 | 
						|
 * FG_GC means the on-demand cleaning job.
 | 
						|
 * FORCE_FG_GC means on-demand cleaning job in background.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
	BG_GC = 0,
 | 
						|
	FG_GC,
 | 
						|
	FORCE_FG_GC,
 | 
						|
};
 | 
						|
 | 
						|
/* for a function parameter to select a victim segment */
 | 
						|
struct victim_sel_policy {
 | 
						|
	int alloc_mode;			/* LFS or SSR */
 | 
						|
	int gc_mode;			/* GC_CB or GC_GREEDY */
 | 
						|
	unsigned long *dirty_segmap;	/* dirty segment bitmap */
 | 
						|
	unsigned int max_search;	/* maximum # of segments to search */
 | 
						|
	unsigned int offset;		/* last scanned bitmap offset */
 | 
						|
	unsigned int ofs_unit;		/* bitmap search unit */
 | 
						|
	unsigned int min_cost;		/* minimum cost */
 | 
						|
	unsigned int min_segno;		/* segment # having min. cost */
 | 
						|
};
 | 
						|
 | 
						|
struct seg_entry {
 | 
						|
	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
 | 
						|
	unsigned int valid_blocks:10;	/* # of valid blocks */
 | 
						|
	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
 | 
						|
	unsigned int padding:6;		/* padding */
 | 
						|
	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
 | 
						|
#ifdef CONFIG_F2FS_CHECK_FS
 | 
						|
	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * # of valid blocks and the validity bitmap stored in the the last
 | 
						|
	 * checkpoint pack. This information is used by the SSR mode.
 | 
						|
	 */
 | 
						|
	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
 | 
						|
	unsigned char *discard_map;
 | 
						|
	unsigned long long mtime;	/* modification time of the segment */
 | 
						|
};
 | 
						|
 | 
						|
struct sec_entry {
 | 
						|
	unsigned int valid_blocks;	/* # of valid blocks in a section */
 | 
						|
};
 | 
						|
 | 
						|
struct segment_allocation {
 | 
						|
	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * this value is set in page as a private data which indicate that
 | 
						|
 * the page is atomically written, and it is in inmem_pages list.
 | 
						|
 */
 | 
						|
#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
 | 
						|
#define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
 | 
						|
 | 
						|
#define IS_ATOMIC_WRITTEN_PAGE(page)			\
 | 
						|
		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
 | 
						|
#define IS_DUMMY_WRITTEN_PAGE(page)			\
 | 
						|
		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
 | 
						|
 | 
						|
#define MAX_SKIP_GC_COUNT			16
 | 
						|
 | 
						|
struct inmem_pages {
 | 
						|
	struct list_head list;
 | 
						|
	struct page *page;
 | 
						|
	block_t old_addr;		/* for revoking when fail to commit */
 | 
						|
};
 | 
						|
 | 
						|
struct sit_info {
 | 
						|
	const struct segment_allocation *s_ops;
 | 
						|
 | 
						|
	block_t sit_base_addr;		/* start block address of SIT area */
 | 
						|
	block_t sit_blocks;		/* # of blocks used by SIT area */
 | 
						|
	block_t written_valid_blocks;	/* # of valid blocks in main area */
 | 
						|
	char *sit_bitmap;		/* SIT bitmap pointer */
 | 
						|
#ifdef CONFIG_F2FS_CHECK_FS
 | 
						|
	char *sit_bitmap_mir;		/* SIT bitmap mirror */
 | 
						|
#endif
 | 
						|
	unsigned int bitmap_size;	/* SIT bitmap size */
 | 
						|
 | 
						|
	unsigned long *tmp_map;			/* bitmap for temporal use */
 | 
						|
	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
 | 
						|
	unsigned int dirty_sentries;		/* # of dirty sentries */
 | 
						|
	unsigned int sents_per_block;		/* # of SIT entries per block */
 | 
						|
	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
 | 
						|
	struct seg_entry *sentries;		/* SIT segment-level cache */
 | 
						|
	struct sec_entry *sec_entries;		/* SIT section-level cache */
 | 
						|
 | 
						|
	/* for cost-benefit algorithm in cleaning procedure */
 | 
						|
	unsigned long long elapsed_time;	/* elapsed time after mount */
 | 
						|
	unsigned long long mounted_time;	/* mount time */
 | 
						|
	unsigned long long min_mtime;		/* min. modification time */
 | 
						|
	unsigned long long max_mtime;		/* max. modification time */
 | 
						|
 | 
						|
	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
 | 
						|
};
 | 
						|
 | 
						|
struct free_segmap_info {
 | 
						|
	unsigned int start_segno;	/* start segment number logically */
 | 
						|
	unsigned int free_segments;	/* # of free segments */
 | 
						|
	unsigned int free_sections;	/* # of free sections */
 | 
						|
	spinlock_t segmap_lock;		/* free segmap lock */
 | 
						|
	unsigned long *free_segmap;	/* free segment bitmap */
 | 
						|
	unsigned long *free_secmap;	/* free section bitmap */
 | 
						|
};
 | 
						|
 | 
						|
/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
 | 
						|
enum dirty_type {
 | 
						|
	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
 | 
						|
	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
 | 
						|
	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
 | 
						|
	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
 | 
						|
	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
 | 
						|
	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
 | 
						|
	DIRTY,			/* to count # of dirty segments */
 | 
						|
	PRE,			/* to count # of entirely obsolete segments */
 | 
						|
	NR_DIRTY_TYPE
 | 
						|
};
 | 
						|
 | 
						|
struct dirty_seglist_info {
 | 
						|
	const struct victim_selection *v_ops;	/* victim selction operation */
 | 
						|
	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 | 
						|
	struct mutex seglist_lock;		/* lock for segment bitmaps */
 | 
						|
	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
 | 
						|
	unsigned long *victim_secmap;		/* background GC victims */
 | 
						|
};
 | 
						|
 | 
						|
/* victim selection function for cleaning and SSR */
 | 
						|
struct victim_selection {
 | 
						|
	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
 | 
						|
							int, int, char);
 | 
						|
};
 | 
						|
 | 
						|
/* for active log information */
 | 
						|
struct curseg_info {
 | 
						|
	struct mutex curseg_mutex;		/* lock for consistency */
 | 
						|
	struct f2fs_summary_block *sum_blk;	/* cached summary block */
 | 
						|
	struct rw_semaphore journal_rwsem;	/* protect journal area */
 | 
						|
	struct f2fs_journal *journal;		/* cached journal info */
 | 
						|
	unsigned char alloc_type;		/* current allocation type */
 | 
						|
	unsigned int segno;			/* current segment number */
 | 
						|
	unsigned short next_blkoff;		/* next block offset to write */
 | 
						|
	unsigned int zone;			/* current zone number */
 | 
						|
	unsigned int next_segno;		/* preallocated segment */
 | 
						|
};
 | 
						|
 | 
						|
struct sit_entry_set {
 | 
						|
	struct list_head set_list;	/* link with all sit sets */
 | 
						|
	unsigned int start_segno;	/* start segno of sits in set */
 | 
						|
	unsigned int entry_cnt;		/* the # of sit entries in set */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * inline functions
 | 
						|
 */
 | 
						|
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
 | 
						|
{
 | 
						|
	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
 | 
						|
						unsigned int segno)
 | 
						|
{
 | 
						|
	struct sit_info *sit_i = SIT_I(sbi);
 | 
						|
	return &sit_i->sentries[segno];
 | 
						|
}
 | 
						|
 | 
						|
static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
 | 
						|
						unsigned int segno)
 | 
						|
{
 | 
						|
	struct sit_info *sit_i = SIT_I(sbi);
 | 
						|
	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
 | 
						|
				unsigned int segno, bool use_section)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * In order to get # of valid blocks in a section instantly from many
 | 
						|
	 * segments, f2fs manages two counting structures separately.
 | 
						|
	 */
 | 
						|
	if (use_section && __is_large_section(sbi))
 | 
						|
		return get_sec_entry(sbi, segno)->valid_blocks;
 | 
						|
	else
 | 
						|
		return get_seg_entry(sbi, segno)->valid_blocks;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
 | 
						|
				unsigned int segno)
 | 
						|
{
 | 
						|
	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 | 
						|
}
 | 
						|
 | 
						|
static inline void seg_info_from_raw_sit(struct seg_entry *se,
 | 
						|
					struct f2fs_sit_entry *rs)
 | 
						|
{
 | 
						|
	se->valid_blocks = GET_SIT_VBLOCKS(rs);
 | 
						|
	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
 | 
						|
	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 | 
						|
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 | 
						|
#ifdef CONFIG_F2FS_CHECK_FS
 | 
						|
	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 | 
						|
#endif
 | 
						|
	se->type = GET_SIT_TYPE(rs);
 | 
						|
	se->mtime = le64_to_cpu(rs->mtime);
 | 
						|
}
 | 
						|
 | 
						|
static inline void __seg_info_to_raw_sit(struct seg_entry *se,
 | 
						|
					struct f2fs_sit_entry *rs)
 | 
						|
{
 | 
						|
	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
 | 
						|
					se->valid_blocks;
 | 
						|
	rs->vblocks = cpu_to_le16(raw_vblocks);
 | 
						|
	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 | 
						|
	rs->mtime = cpu_to_le64(se->mtime);
 | 
						|
}
 | 
						|
 | 
						|
static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
 | 
						|
				struct page *page, unsigned int start)
 | 
						|
{
 | 
						|
	struct f2fs_sit_block *raw_sit;
 | 
						|
	struct seg_entry *se;
 | 
						|
	struct f2fs_sit_entry *rs;
 | 
						|
	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
 | 
						|
					(unsigned long)MAIN_SEGS(sbi));
 | 
						|
	int i;
 | 
						|
 | 
						|
	raw_sit = (struct f2fs_sit_block *)page_address(page);
 | 
						|
	memset(raw_sit, 0, PAGE_SIZE);
 | 
						|
	for (i = 0; i < end - start; i++) {
 | 
						|
		rs = &raw_sit->entries[i];
 | 
						|
		se = get_seg_entry(sbi, start + i);
 | 
						|
		__seg_info_to_raw_sit(se, rs);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void seg_info_to_raw_sit(struct seg_entry *se,
 | 
						|
					struct f2fs_sit_entry *rs)
 | 
						|
{
 | 
						|
	__seg_info_to_raw_sit(se, rs);
 | 
						|
 | 
						|
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 | 
						|
	se->ckpt_valid_blocks = se->valid_blocks;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
 | 
						|
		unsigned int max, unsigned int segno)
 | 
						|
{
 | 
						|
	unsigned int ret;
 | 
						|
	spin_lock(&free_i->segmap_lock);
 | 
						|
	ret = find_next_bit(free_i->free_segmap, max, segno);
 | 
						|
	spin_unlock(&free_i->segmap_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
 | 
						|
{
 | 
						|
	struct free_segmap_info *free_i = FREE_I(sbi);
 | 
						|
	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 | 
						|
	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
 | 
						|
	unsigned int next;
 | 
						|
 | 
						|
	spin_lock(&free_i->segmap_lock);
 | 
						|
	clear_bit(segno, free_i->free_segmap);
 | 
						|
	free_i->free_segments++;
 | 
						|
 | 
						|
	next = find_next_bit(free_i->free_segmap,
 | 
						|
			start_segno + sbi->segs_per_sec, start_segno);
 | 
						|
	if (next >= start_segno + sbi->segs_per_sec) {
 | 
						|
		clear_bit(secno, free_i->free_secmap);
 | 
						|
		free_i->free_sections++;
 | 
						|
	}
 | 
						|
	spin_unlock(&free_i->segmap_lock);
 | 
						|
}
 | 
						|
 | 
						|
static inline void __set_inuse(struct f2fs_sb_info *sbi,
 | 
						|
		unsigned int segno)
 | 
						|
{
 | 
						|
	struct free_segmap_info *free_i = FREE_I(sbi);
 | 
						|
	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 | 
						|
 | 
						|
	set_bit(segno, free_i->free_segmap);
 | 
						|
	free_i->free_segments--;
 | 
						|
	if (!test_and_set_bit(secno, free_i->free_secmap))
 | 
						|
		free_i->free_sections--;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
 | 
						|
		unsigned int segno)
 | 
						|
{
 | 
						|
	struct free_segmap_info *free_i = FREE_I(sbi);
 | 
						|
	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 | 
						|
	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
 | 
						|
	unsigned int next;
 | 
						|
 | 
						|
	spin_lock(&free_i->segmap_lock);
 | 
						|
	if (test_and_clear_bit(segno, free_i->free_segmap)) {
 | 
						|
		free_i->free_segments++;
 | 
						|
 | 
						|
		if (IS_CURSEC(sbi, secno))
 | 
						|
			goto skip_free;
 | 
						|
		next = find_next_bit(free_i->free_segmap,
 | 
						|
				start_segno + sbi->segs_per_sec, start_segno);
 | 
						|
		if (next >= start_segno + sbi->segs_per_sec) {
 | 
						|
			if (test_and_clear_bit(secno, free_i->free_secmap))
 | 
						|
				free_i->free_sections++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
skip_free:
 | 
						|
	spin_unlock(&free_i->segmap_lock);
 | 
						|
}
 | 
						|
 | 
						|
static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
 | 
						|
		unsigned int segno)
 | 
						|
{
 | 
						|
	struct free_segmap_info *free_i = FREE_I(sbi);
 | 
						|
	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 | 
						|
 | 
						|
	spin_lock(&free_i->segmap_lock);
 | 
						|
	if (!test_and_set_bit(segno, free_i->free_segmap)) {
 | 
						|
		free_i->free_segments--;
 | 
						|
		if (!test_and_set_bit(secno, free_i->free_secmap))
 | 
						|
			free_i->free_sections--;
 | 
						|
	}
 | 
						|
	spin_unlock(&free_i->segmap_lock);
 | 
						|
}
 | 
						|
 | 
						|
static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
 | 
						|
		void *dst_addr)
 | 
						|
{
 | 
						|
	struct sit_info *sit_i = SIT_I(sbi);
 | 
						|
 | 
						|
#ifdef CONFIG_F2FS_CHECK_FS
 | 
						|
	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
 | 
						|
						sit_i->bitmap_size))
 | 
						|
		f2fs_bug_on(sbi, 1);
 | 
						|
#endif
 | 
						|
	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
 | 
						|
}
 | 
						|
 | 
						|
static inline block_t written_block_count(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return SIT_I(sbi)->written_valid_blocks;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return FREE_I(sbi)->free_segments;
 | 
						|
}
 | 
						|
 | 
						|
static inline int reserved_segments(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return SM_I(sbi)->reserved_segments;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return FREE_I(sbi)->free_sections;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return DIRTY_I(sbi)->nr_dirty[PRE];
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
 | 
						|
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
 | 
						|
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
 | 
						|
		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
 | 
						|
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
 | 
						|
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
 | 
						|
}
 | 
						|
 | 
						|
static inline int overprovision_segments(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return SM_I(sbi)->ovp_segments;
 | 
						|
}
 | 
						|
 | 
						|
static inline int reserved_sections(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
 | 
						|
}
 | 
						|
 | 
						|
static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
 | 
						|
					get_pages(sbi, F2FS_DIRTY_DENTS);
 | 
						|
	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
 | 
						|
	unsigned int segno, left_blocks;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* check current node segment */
 | 
						|
	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
 | 
						|
		segno = CURSEG_I(sbi, i)->segno;
 | 
						|
		left_blocks = sbi->blocks_per_seg -
 | 
						|
			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 | 
						|
 | 
						|
		if (node_blocks > left_blocks)
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* check current data segment */
 | 
						|
	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
 | 
						|
	left_blocks = sbi->blocks_per_seg -
 | 
						|
			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
 | 
						|
	if (dent_blocks > left_blocks)
 | 
						|
		return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
 | 
						|
					int freed, int needed)
 | 
						|
{
 | 
						|
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 | 
						|
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 | 
						|
	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 | 
						|
 | 
						|
	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
 | 
						|
			has_curseg_enough_space(sbi))
 | 
						|
		return false;
 | 
						|
	return (free_sections(sbi) + freed) <=
 | 
						|
		(node_secs + 2 * dent_secs + imeta_secs +
 | 
						|
		reserved_sections(sbi) + needed);
 | 
						|
}
 | 
						|
 | 
						|
static inline int f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 | 
						|
		return 0;
 | 
						|
	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
 | 
						|
		return 0;
 | 
						|
	return -ENOSPC;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
 | 
						|
}
 | 
						|
 | 
						|
static inline int utilization(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return div_u64((u64)valid_user_blocks(sbi) * 100,
 | 
						|
					sbi->user_block_count);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sometimes f2fs may be better to drop out-of-place update policy.
 | 
						|
 * And, users can control the policy through sysfs entries.
 | 
						|
 * There are five policies with triggering conditions as follows.
 | 
						|
 * F2FS_IPU_FORCE - all the time,
 | 
						|
 * F2FS_IPU_SSR - if SSR mode is activated,
 | 
						|
 * F2FS_IPU_UTIL - if FS utilization is over threashold,
 | 
						|
 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 | 
						|
 *                     threashold,
 | 
						|
 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 | 
						|
 *                     storages. IPU will be triggered only if the # of dirty
 | 
						|
 *                     pages over min_fsync_blocks.
 | 
						|
 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 | 
						|
 */
 | 
						|
#define DEF_MIN_IPU_UTIL	70
 | 
						|
#define DEF_MIN_FSYNC_BLOCKS	8
 | 
						|
#define DEF_MIN_HOT_BLOCKS	16
 | 
						|
 | 
						|
#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
 | 
						|
 | 
						|
enum {
 | 
						|
	F2FS_IPU_FORCE,
 | 
						|
	F2FS_IPU_SSR,
 | 
						|
	F2FS_IPU_UTIL,
 | 
						|
	F2FS_IPU_SSR_UTIL,
 | 
						|
	F2FS_IPU_FSYNC,
 | 
						|
	F2FS_IPU_ASYNC,
 | 
						|
};
 | 
						|
 | 
						|
static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
 | 
						|
		int type)
 | 
						|
{
 | 
						|
	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | 
						|
	return curseg->segno;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
 | 
						|
		int type)
 | 
						|
{
 | 
						|
	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | 
						|
	return curseg->alloc_type;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 | 
						|
{
 | 
						|
	struct curseg_info *curseg = CURSEG_I(sbi, type);
 | 
						|
	return curseg->next_blkoff;
 | 
						|
}
 | 
						|
 | 
						|
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 | 
						|
{
 | 
						|
	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 | 
						|
}
 | 
						|
 | 
						|
static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
 | 
						|
{
 | 
						|
	struct f2fs_sb_info *sbi = fio->sbi;
 | 
						|
 | 
						|
	if (__is_meta_io(fio))
 | 
						|
		verify_blkaddr(sbi, blk_addr, META_GENERIC);
 | 
						|
	else
 | 
						|
		verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Summary block is always treated as an invalid block
 | 
						|
 */
 | 
						|
static inline int check_block_count(struct f2fs_sb_info *sbi,
 | 
						|
		int segno, struct f2fs_sit_entry *raw_sit)
 | 
						|
{
 | 
						|
#ifdef CONFIG_F2FS_CHECK_FS
 | 
						|
	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
 | 
						|
	int valid_blocks = 0;
 | 
						|
	int cur_pos = 0, next_pos;
 | 
						|
 | 
						|
	/* check bitmap with valid block count */
 | 
						|
	do {
 | 
						|
		if (is_valid) {
 | 
						|
			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
 | 
						|
					sbi->blocks_per_seg,
 | 
						|
					cur_pos);
 | 
						|
			valid_blocks += next_pos - cur_pos;
 | 
						|
		} else
 | 
						|
			next_pos = find_next_bit_le(&raw_sit->valid_map,
 | 
						|
					sbi->blocks_per_seg,
 | 
						|
					cur_pos);
 | 
						|
		cur_pos = next_pos;
 | 
						|
		is_valid = !is_valid;
 | 
						|
	} while (cur_pos < sbi->blocks_per_seg);
 | 
						|
 | 
						|
	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
 | 
						|
		f2fs_msg(sbi->sb, KERN_ERR,
 | 
						|
				"Mismatch valid blocks %d vs. %d",
 | 
						|
					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
 | 
						|
		set_sbi_flag(sbi, SBI_NEED_FSCK);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	/* check segment usage, and check boundary of a given segment number */
 | 
						|
	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
 | 
						|
					|| segno > TOTAL_SEGS(sbi) - 1)) {
 | 
						|
		f2fs_msg(sbi->sb, KERN_ERR,
 | 
						|
				"Wrong valid blocks %d or segno %u",
 | 
						|
					GET_SIT_VBLOCKS(raw_sit), segno);
 | 
						|
		set_sbi_flag(sbi, SBI_NEED_FSCK);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
 | 
						|
						unsigned int start)
 | 
						|
{
 | 
						|
	struct sit_info *sit_i = SIT_I(sbi);
 | 
						|
	unsigned int offset = SIT_BLOCK_OFFSET(start);
 | 
						|
	block_t blk_addr = sit_i->sit_base_addr + offset;
 | 
						|
 | 
						|
	check_seg_range(sbi, start);
 | 
						|
 | 
						|
#ifdef CONFIG_F2FS_CHECK_FS
 | 
						|
	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
 | 
						|
			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
 | 
						|
		f2fs_bug_on(sbi, 1);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* calculate sit block address */
 | 
						|
	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 | 
						|
		blk_addr += sit_i->sit_blocks;
 | 
						|
 | 
						|
	return blk_addr;
 | 
						|
}
 | 
						|
 | 
						|
static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
 | 
						|
						pgoff_t block_addr)
 | 
						|
{
 | 
						|
	struct sit_info *sit_i = SIT_I(sbi);
 | 
						|
	block_addr -= sit_i->sit_base_addr;
 | 
						|
	if (block_addr < sit_i->sit_blocks)
 | 
						|
		block_addr += sit_i->sit_blocks;
 | 
						|
	else
 | 
						|
		block_addr -= sit_i->sit_blocks;
 | 
						|
 | 
						|
	return block_addr + sit_i->sit_base_addr;
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
 | 
						|
{
 | 
						|
	unsigned int block_off = SIT_BLOCK_OFFSET(start);
 | 
						|
 | 
						|
	f2fs_change_bit(block_off, sit_i->sit_bitmap);
 | 
						|
#ifdef CONFIG_F2FS_CHECK_FS
 | 
						|
	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
 | 
						|
						bool base_time)
 | 
						|
{
 | 
						|
	struct sit_info *sit_i = SIT_I(sbi);
 | 
						|
	time64_t diff, now = ktime_get_real_seconds();
 | 
						|
 | 
						|
	if (now >= sit_i->mounted_time)
 | 
						|
		return sit_i->elapsed_time + now - sit_i->mounted_time;
 | 
						|
 | 
						|
	/* system time is set to the past */
 | 
						|
	if (!base_time) {
 | 
						|
		diff = sit_i->mounted_time - now;
 | 
						|
		if (sit_i->elapsed_time >= diff)
 | 
						|
			return sit_i->elapsed_time - diff;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return sit_i->elapsed_time;
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
 | 
						|
			unsigned int ofs_in_node, unsigned char version)
 | 
						|
{
 | 
						|
	sum->nid = cpu_to_le32(nid);
 | 
						|
	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
 | 
						|
	sum->version = version;
 | 
						|
}
 | 
						|
 | 
						|
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
 | 
						|
{
 | 
						|
	return __start_cp_addr(sbi) +
 | 
						|
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
 | 
						|
}
 | 
						|
 | 
						|
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
 | 
						|
{
 | 
						|
	return __start_cp_addr(sbi) +
 | 
						|
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
 | 
						|
				- (base + 1) + type;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 | 
						|
{
 | 
						|
	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * It is very important to gather dirty pages and write at once, so that we can
 | 
						|
 * submit a big bio without interfering other data writes.
 | 
						|
 * By default, 512 pages for directory data,
 | 
						|
 * 512 pages (2MB) * 8 for nodes, and
 | 
						|
 * 256 pages * 8 for meta are set.
 | 
						|
 */
 | 
						|
static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
 | 
						|
{
 | 
						|
	if (sbi->sb->s_bdi->wb.dirty_exceeded)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (type == DATA)
 | 
						|
		return sbi->blocks_per_seg;
 | 
						|
	else if (type == NODE)
 | 
						|
		return 8 * sbi->blocks_per_seg;
 | 
						|
	else if (type == META)
 | 
						|
		return 8 * BIO_MAX_PAGES;
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When writing pages, it'd better align nr_to_write for segment size.
 | 
						|
 */
 | 
						|
static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
 | 
						|
					struct writeback_control *wbc)
 | 
						|
{
 | 
						|
	long nr_to_write, desired;
 | 
						|
 | 
						|
	if (wbc->sync_mode != WB_SYNC_NONE)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	nr_to_write = wbc->nr_to_write;
 | 
						|
	desired = BIO_MAX_PAGES;
 | 
						|
	if (type == NODE)
 | 
						|
		desired <<= 1;
 | 
						|
 | 
						|
	wbc->nr_to_write = desired;
 | 
						|
	return desired - nr_to_write;
 | 
						|
}
 | 
						|
 | 
						|
static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
 | 
						|
{
 | 
						|
	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 | 
						|
	bool wakeup = false;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (force)
 | 
						|
		goto wake_up;
 | 
						|
 | 
						|
	mutex_lock(&dcc->cmd_lock);
 | 
						|
	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
 | 
						|
		if (i + 1 < dcc->discard_granularity)
 | 
						|
			break;
 | 
						|
		if (!list_empty(&dcc->pend_list[i])) {
 | 
						|
			wakeup = true;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(&dcc->cmd_lock);
 | 
						|
	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
 | 
						|
		return;
 | 
						|
wake_up:
 | 
						|
	dcc->discard_wake = 1;
 | 
						|
	wake_up_interruptible_all(&dcc->discard_wait_queue);
 | 
						|
}
 |