mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	One-element arrays are deprecated, and we are replacing them with flexible array members instead. So, replace one-element array with flexible-array member in direntry_uarea structure, and refactor the rest of the code, accordingly. Worth mentioning is that before these changes, the original implementation was returning two-too many bytes in function direntry_create_vi(): fs/reiserfs/item_ops.c:464: int size = sizeof(struct direntry_uarea); ... fs/reiserfs/item_ops.c-490- size += (dir_u->entry_count * sizeof(short)); ... fs/reiserfs/item_ops.c-517- return size; Link: https://github.com/KSPP/linux/issues/79 Link: https://github.com/KSPP/linux/issues/290 Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
		
			
				
	
	
		
			2822 lines
		
	
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2822 lines
		
	
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include "reiserfs.h"
 | 
						|
#include <linux/buffer_head.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * To make any changes in the tree we find a node that contains item
 | 
						|
 * to be changed/deleted or position in the node we insert a new item
 | 
						|
 * to. We call this node S. To do balancing we need to decide what we
 | 
						|
 * will shift to left/right neighbor, or to a new node, where new item
 | 
						|
 * will be etc. To make this analysis simpler we build virtual
 | 
						|
 * node. Virtual node is an array of items, that will replace items of
 | 
						|
 * node S. (For instance if we are going to delete an item, virtual
 | 
						|
 * node does not contain it). Virtual node keeps information about
 | 
						|
 * item sizes and types, mergeability of first and last items, sizes
 | 
						|
 * of all entries in directory item. We use this array of items when
 | 
						|
 * calculating what we can shift to neighbors and how many nodes we
 | 
						|
 * have to have if we do not any shiftings, if we shift to left/right
 | 
						|
 * neighbor or to both.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Takes item number in virtual node, returns number of item
 | 
						|
 * that it has in source buffer
 | 
						|
 */
 | 
						|
static inline int old_item_num(int new_num, int affected_item_num, int mode)
 | 
						|
{
 | 
						|
	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
 | 
						|
		return new_num;
 | 
						|
 | 
						|
	if (mode == M_INSERT) {
 | 
						|
 | 
						|
		RFALSE(new_num == 0,
 | 
						|
		       "vs-8005: for INSERT mode and item number of inserted item");
 | 
						|
 | 
						|
		return new_num - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	RFALSE(mode != M_DELETE,
 | 
						|
	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
 | 
						|
	       mode);
 | 
						|
	/* delete mode */
 | 
						|
	return new_num + 1;
 | 
						|
}
 | 
						|
 | 
						|
static void create_virtual_node(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct item_head *ih;
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
	int new_num;
 | 
						|
	struct buffer_head *Sh;	/* this comes from tb->S[h] */
 | 
						|
 | 
						|
	Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | 
						|
 | 
						|
	/* size of changed node */
 | 
						|
	vn->vn_size =
 | 
						|
	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
 | 
						|
 | 
						|
	/* for internal nodes array if virtual items is not created */
 | 
						|
	if (h) {
 | 
						|
		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* number of items in virtual node  */
 | 
						|
	vn->vn_nr_item =
 | 
						|
	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
 | 
						|
	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
 | 
						|
 | 
						|
	/* first virtual item */
 | 
						|
	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
 | 
						|
	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
 | 
						|
	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
 | 
						|
 | 
						|
	/* first item in the node */
 | 
						|
	ih = item_head(Sh, 0);
 | 
						|
 | 
						|
	/* define the mergeability for 0-th item (if it is not being deleted) */
 | 
						|
	if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
 | 
						|
	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
 | 
						|
		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * go through all items that remain in the virtual
 | 
						|
	 * node (except for the new (inserted) one)
 | 
						|
	 */
 | 
						|
	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
 | 
						|
		int j;
 | 
						|
		struct virtual_item *vi = vn->vn_vi + new_num;
 | 
						|
		int is_affected =
 | 
						|
		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
 | 
						|
 | 
						|
		if (is_affected && vn->vn_mode == M_INSERT)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* get item number in source node */
 | 
						|
		j = old_item_num(new_num, vn->vn_affected_item_num,
 | 
						|
				 vn->vn_mode);
 | 
						|
 | 
						|
		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
 | 
						|
		vi->vi_ih = ih + j;
 | 
						|
		vi->vi_item = ih_item_body(Sh, ih + j);
 | 
						|
		vi->vi_uarea = vn->vn_free_ptr;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * FIXME: there is no check that item operation did not
 | 
						|
		 * consume too much memory
 | 
						|
		 */
 | 
						|
		vn->vn_free_ptr +=
 | 
						|
		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
 | 
						|
		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
 | 
						|
			reiserfs_panic(tb->tb_sb, "vs-8030",
 | 
						|
				       "virtual node space consumed");
 | 
						|
 | 
						|
		if (!is_affected)
 | 
						|
			/* this is not being changed */
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
 | 
						|
			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
 | 
						|
			/* pointer to data which is going to be pasted */
 | 
						|
			vi->vi_new_data = vn->vn_data;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* virtual inserted item is not defined yet */
 | 
						|
	if (vn->vn_mode == M_INSERT) {
 | 
						|
		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
 | 
						|
 | 
						|
		RFALSE(vn->vn_ins_ih == NULL,
 | 
						|
		       "vs-8040: item header of inserted item is not specified");
 | 
						|
		vi->vi_item_len = tb->insert_size[0];
 | 
						|
		vi->vi_ih = vn->vn_ins_ih;
 | 
						|
		vi->vi_item = vn->vn_data;
 | 
						|
		vi->vi_uarea = vn->vn_free_ptr;
 | 
						|
 | 
						|
		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
 | 
						|
			     tb->insert_size[0]);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * set right merge flag we take right delimiting key and
 | 
						|
	 * check whether it is a mergeable item
 | 
						|
	 */
 | 
						|
	if (tb->CFR[0]) {
 | 
						|
		struct reiserfs_key *key;
 | 
						|
 | 
						|
		key = internal_key(tb->CFR[0], tb->rkey[0]);
 | 
						|
		if (op_is_left_mergeable(key, Sh->b_size)
 | 
						|
		    && (vn->vn_mode != M_DELETE
 | 
						|
			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
 | 
						|
			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
 | 
						|
			    VI_TYPE_RIGHT_MERGEABLE;
 | 
						|
 | 
						|
#ifdef CONFIG_REISERFS_CHECK
 | 
						|
		if (op_is_left_mergeable(key, Sh->b_size) &&
 | 
						|
		    !(vn->vn_mode != M_DELETE
 | 
						|
		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
 | 
						|
			/*
 | 
						|
			 * we delete last item and it could be merged
 | 
						|
			 * with right neighbor's first item
 | 
						|
			 */
 | 
						|
			if (!
 | 
						|
			    (B_NR_ITEMS(Sh) == 1
 | 
						|
			     && is_direntry_le_ih(item_head(Sh, 0))
 | 
						|
			     && ih_entry_count(item_head(Sh, 0)) == 1)) {
 | 
						|
				/*
 | 
						|
				 * node contains more than 1 item, or item
 | 
						|
				 * is not directory item, or this item
 | 
						|
				 * contains more than 1 entry
 | 
						|
				 */
 | 
						|
				print_block(Sh, 0, -1, -1);
 | 
						|
				reiserfs_panic(tb->tb_sb, "vs-8045",
 | 
						|
					       "rdkey %k, affected item==%d "
 | 
						|
					       "(mode==%c) Must be %c",
 | 
						|
					       key, vn->vn_affected_item_num,
 | 
						|
					       vn->vn_mode, M_DELETE);
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Using virtual node check, how many items can be
 | 
						|
 * shifted to left neighbor
 | 
						|
 */
 | 
						|
static void check_left(struct tree_balance *tb, int h, int cur_free)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
	struct virtual_item *vi;
 | 
						|
	int d_size, ih_size;
 | 
						|
 | 
						|
	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
 | 
						|
 | 
						|
	/* internal level */
 | 
						|
	if (h > 0) {
 | 
						|
		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* leaf level */
 | 
						|
 | 
						|
	if (!cur_free || !vn->vn_nr_item) {
 | 
						|
		/* no free space or nothing to move */
 | 
						|
		tb->lnum[h] = 0;
 | 
						|
		tb->lbytes = -1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
 | 
						|
	       "vs-8055: parent does not exist or invalid");
 | 
						|
 | 
						|
	vi = vn->vn_vi;
 | 
						|
	if ((unsigned int)cur_free >=
 | 
						|
	    (vn->vn_size -
 | 
						|
	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
 | 
						|
		/* all contents of S[0] fits into L[0] */
 | 
						|
 | 
						|
		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
 | 
						|
		       "vs-8055: invalid mode or balance condition failed");
 | 
						|
 | 
						|
		tb->lnum[0] = vn->vn_nr_item;
 | 
						|
		tb->lbytes = -1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	d_size = 0, ih_size = IH_SIZE;
 | 
						|
 | 
						|
	/* first item may be merge with last item in left neighbor */
 | 
						|
	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
 | 
						|
		d_size = -((int)IH_SIZE), ih_size = 0;
 | 
						|
 | 
						|
	tb->lnum[0] = 0;
 | 
						|
	for (i = 0; i < vn->vn_nr_item;
 | 
						|
	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
 | 
						|
		d_size += vi->vi_item_len;
 | 
						|
		if (cur_free >= d_size) {
 | 
						|
			/* the item can be shifted entirely */
 | 
						|
			cur_free -= d_size;
 | 
						|
			tb->lnum[0]++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* the item cannot be shifted entirely, try to split it */
 | 
						|
		/*
 | 
						|
		 * check whether L[0] can hold ih and at least one byte
 | 
						|
		 * of the item body
 | 
						|
		 */
 | 
						|
 | 
						|
		/* cannot shift even a part of the current item */
 | 
						|
		if (cur_free <= ih_size) {
 | 
						|
			tb->lbytes = -1;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		cur_free -= ih_size;
 | 
						|
 | 
						|
		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
 | 
						|
		if (tb->lbytes != -1)
 | 
						|
			/* count partially shifted item */
 | 
						|
			tb->lnum[0]++;
 | 
						|
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Using virtual node check, how many items can be
 | 
						|
 * shifted to right neighbor
 | 
						|
 */
 | 
						|
static void check_right(struct tree_balance *tb, int h, int cur_free)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
	struct virtual_item *vi;
 | 
						|
	int d_size, ih_size;
 | 
						|
 | 
						|
	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
 | 
						|
 | 
						|
	/* internal level */
 | 
						|
	if (h > 0) {
 | 
						|
		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* leaf level */
 | 
						|
 | 
						|
	if (!cur_free || !vn->vn_nr_item) {
 | 
						|
		/* no free space  */
 | 
						|
		tb->rnum[h] = 0;
 | 
						|
		tb->rbytes = -1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
 | 
						|
	       "vs-8075: parent does not exist or invalid");
 | 
						|
 | 
						|
	vi = vn->vn_vi + vn->vn_nr_item - 1;
 | 
						|
	if ((unsigned int)cur_free >=
 | 
						|
	    (vn->vn_size -
 | 
						|
	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
 | 
						|
		/* all contents of S[0] fits into R[0] */
 | 
						|
 | 
						|
		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
 | 
						|
		       "vs-8080: invalid mode or balance condition failed");
 | 
						|
 | 
						|
		tb->rnum[h] = vn->vn_nr_item;
 | 
						|
		tb->rbytes = -1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	d_size = 0, ih_size = IH_SIZE;
 | 
						|
 | 
						|
	/* last item may be merge with first item in right neighbor */
 | 
						|
	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
 | 
						|
		d_size = -(int)IH_SIZE, ih_size = 0;
 | 
						|
 | 
						|
	tb->rnum[0] = 0;
 | 
						|
	for (i = vn->vn_nr_item - 1; i >= 0;
 | 
						|
	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
 | 
						|
		d_size += vi->vi_item_len;
 | 
						|
		if (cur_free >= d_size) {
 | 
						|
			/* the item can be shifted entirely */
 | 
						|
			cur_free -= d_size;
 | 
						|
			tb->rnum[0]++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * check whether R[0] can hold ih and at least one
 | 
						|
		 * byte of the item body
 | 
						|
		 */
 | 
						|
 | 
						|
		/* cannot shift even a part of the current item */
 | 
						|
		if (cur_free <= ih_size) {
 | 
						|
			tb->rbytes = -1;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * R[0] can hold the header of the item and at least
 | 
						|
		 * one byte of its body
 | 
						|
		 */
 | 
						|
		cur_free -= ih_size;	/* cur_free is still > 0 */
 | 
						|
 | 
						|
		tb->rbytes = op_check_right(vi, cur_free);
 | 
						|
		if (tb->rbytes != -1)
 | 
						|
			/* count partially shifted item */
 | 
						|
			tb->rnum[0]++;
 | 
						|
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * from - number of items, which are shifted to left neighbor entirely
 | 
						|
 * to - number of item, which are shifted to right neighbor entirely
 | 
						|
 * from_bytes - number of bytes of boundary item (or directory entries)
 | 
						|
 *              which are shifted to left neighbor
 | 
						|
 * to_bytes - number of bytes of boundary item (or directory entries)
 | 
						|
 *            which are shifted to right neighbor
 | 
						|
 */
 | 
						|
static int get_num_ver(int mode, struct tree_balance *tb, int h,
 | 
						|
		       int from, int from_bytes,
 | 
						|
		       int to, int to_bytes, short *snum012, int flow)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int units;
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
	int total_node_size, max_node_size, current_item_size;
 | 
						|
	int needed_nodes;
 | 
						|
 | 
						|
	/* position of item we start filling node from */
 | 
						|
	int start_item;
 | 
						|
 | 
						|
	/* position of item we finish filling node by */
 | 
						|
	int end_item;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * number of first bytes (entries for directory) of start_item-th item
 | 
						|
	 * we do not include into node that is being filled
 | 
						|
	 */
 | 
						|
	int start_bytes;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * number of last bytes (entries for directory) of end_item-th item
 | 
						|
	 * we do node include into node that is being filled
 | 
						|
	 */
 | 
						|
	int end_bytes;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * these are positions in virtual item of items, that are split
 | 
						|
	 * between S[0] and S1new and S1new and S2new
 | 
						|
	 */
 | 
						|
	int split_item_positions[2];
 | 
						|
 | 
						|
	split_item_positions[0] = -1;
 | 
						|
	split_item_positions[1] = -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only create additional nodes if we are in insert or paste mode
 | 
						|
	 * or we are in replace mode at the internal level. If h is 0 and
 | 
						|
	 * the mode is M_REPLACE then in fix_nodes we change the mode to
 | 
						|
	 * paste or insert before we get here in the code.
 | 
						|
	 */
 | 
						|
	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
 | 
						|
	       "vs-8100: insert_size < 0 in overflow");
 | 
						|
 | 
						|
	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * snum012 [0-2] - number of items, that lay
 | 
						|
	 * to S[0], first new node and second new node
 | 
						|
	 */
 | 
						|
	snum012[3] = -1;	/* s1bytes */
 | 
						|
	snum012[4] = -1;	/* s2bytes */
 | 
						|
 | 
						|
	/* internal level */
 | 
						|
	if (h > 0) {
 | 
						|
		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
 | 
						|
		if (i == max_node_size)
 | 
						|
			return 1;
 | 
						|
		return (i / max_node_size + 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* leaf level */
 | 
						|
	needed_nodes = 1;
 | 
						|
	total_node_size = 0;
 | 
						|
 | 
						|
	/* start from 'from'-th item */
 | 
						|
	start_item = from;
 | 
						|
	/* skip its first 'start_bytes' units */
 | 
						|
	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
 | 
						|
 | 
						|
	/* last included item is the 'end_item'-th one */
 | 
						|
	end_item = vn->vn_nr_item - to - 1;
 | 
						|
	/* do not count last 'end_bytes' units of 'end_item'-th item */
 | 
						|
	end_bytes = (to_bytes != -1) ? to_bytes : 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * go through all item beginning from the start_item-th item
 | 
						|
	 * and ending by the end_item-th item. Do not count first
 | 
						|
	 * 'start_bytes' units of 'start_item'-th item and last
 | 
						|
	 * 'end_bytes' of 'end_item'-th item
 | 
						|
	 */
 | 
						|
	for (i = start_item; i <= end_item; i++) {
 | 
						|
		struct virtual_item *vi = vn->vn_vi + i;
 | 
						|
		int skip_from_end = ((i == end_item) ? end_bytes : 0);
 | 
						|
 | 
						|
		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
 | 
						|
 | 
						|
		/* get size of current item */
 | 
						|
		current_item_size = vi->vi_item_len;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * do not take in calculation head part (from_bytes)
 | 
						|
		 * of from-th item
 | 
						|
		 */
 | 
						|
		current_item_size -=
 | 
						|
		    op_part_size(vi, 0 /*from start */ , start_bytes);
 | 
						|
 | 
						|
		/* do not take in calculation tail part of last item */
 | 
						|
		current_item_size -=
 | 
						|
		    op_part_size(vi, 1 /*from end */ , skip_from_end);
 | 
						|
 | 
						|
		/* if item fits into current node entierly */
 | 
						|
		if (total_node_size + current_item_size <= max_node_size) {
 | 
						|
			snum012[needed_nodes - 1]++;
 | 
						|
			total_node_size += current_item_size;
 | 
						|
			start_bytes = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * virtual item length is longer, than max size of item in
 | 
						|
		 * a node. It is impossible for direct item
 | 
						|
		 */
 | 
						|
		if (current_item_size > max_node_size) {
 | 
						|
			RFALSE(is_direct_le_ih(vi->vi_ih),
 | 
						|
			       "vs-8110: "
 | 
						|
			       "direct item length is %d. It can not be longer than %d",
 | 
						|
			       current_item_size, max_node_size);
 | 
						|
			/* we will try to split it */
 | 
						|
			flow = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* as we do not split items, take new node and continue */
 | 
						|
		if (!flow) {
 | 
						|
			needed_nodes++;
 | 
						|
			i--;
 | 
						|
			total_node_size = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * calculate number of item units which fit into node being
 | 
						|
		 * filled
 | 
						|
		 */
 | 
						|
		{
 | 
						|
			int free_space;
 | 
						|
 | 
						|
			free_space = max_node_size - total_node_size - IH_SIZE;
 | 
						|
			units =
 | 
						|
			    op_check_left(vi, free_space, start_bytes,
 | 
						|
					  skip_from_end);
 | 
						|
			/*
 | 
						|
			 * nothing fits into current node, take new
 | 
						|
			 * node and continue
 | 
						|
			 */
 | 
						|
			if (units == -1) {
 | 
						|
				needed_nodes++, i--, total_node_size = 0;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* something fits into the current node */
 | 
						|
		start_bytes += units;
 | 
						|
		snum012[needed_nodes - 1 + 3] = units;
 | 
						|
 | 
						|
		if (needed_nodes > 2)
 | 
						|
			reiserfs_warning(tb->tb_sb, "vs-8111",
 | 
						|
					 "split_item_position is out of range");
 | 
						|
		snum012[needed_nodes - 1]++;
 | 
						|
		split_item_positions[needed_nodes - 1] = i;
 | 
						|
		needed_nodes++;
 | 
						|
		/* continue from the same item with start_bytes != -1 */
 | 
						|
		start_item = i;
 | 
						|
		i--;
 | 
						|
		total_node_size = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * sum012[4] (if it is not -1) contains number of units of which
 | 
						|
	 * are to be in S1new, snum012[3] - to be in S0. They are supposed
 | 
						|
	 * to be S1bytes and S2bytes correspondingly, so recalculate
 | 
						|
	 */
 | 
						|
	if (snum012[4] > 0) {
 | 
						|
		int split_item_num;
 | 
						|
		int bytes_to_r, bytes_to_l;
 | 
						|
		int bytes_to_S1new;
 | 
						|
 | 
						|
		split_item_num = split_item_positions[1];
 | 
						|
		bytes_to_l =
 | 
						|
		    ((from == split_item_num
 | 
						|
		      && from_bytes != -1) ? from_bytes : 0);
 | 
						|
		bytes_to_r =
 | 
						|
		    ((end_item == split_item_num
 | 
						|
		      && end_bytes != -1) ? end_bytes : 0);
 | 
						|
		bytes_to_S1new =
 | 
						|
		    ((split_item_positions[0] ==
 | 
						|
		      split_item_positions[1]) ? snum012[3] : 0);
 | 
						|
 | 
						|
		/* s2bytes */
 | 
						|
		snum012[4] =
 | 
						|
		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
 | 
						|
		    bytes_to_r - bytes_to_l - bytes_to_S1new;
 | 
						|
 | 
						|
		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
 | 
						|
		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
 | 
						|
			reiserfs_warning(tb->tb_sb, "vs-8115",
 | 
						|
					 "not directory or indirect item");
 | 
						|
	}
 | 
						|
 | 
						|
	/* now we know S2bytes, calculate S1bytes */
 | 
						|
	if (snum012[3] > 0) {
 | 
						|
		int split_item_num;
 | 
						|
		int bytes_to_r, bytes_to_l;
 | 
						|
		int bytes_to_S2new;
 | 
						|
 | 
						|
		split_item_num = split_item_positions[0];
 | 
						|
		bytes_to_l =
 | 
						|
		    ((from == split_item_num
 | 
						|
		      && from_bytes != -1) ? from_bytes : 0);
 | 
						|
		bytes_to_r =
 | 
						|
		    ((end_item == split_item_num
 | 
						|
		      && end_bytes != -1) ? end_bytes : 0);
 | 
						|
		bytes_to_S2new =
 | 
						|
		    ((split_item_positions[0] == split_item_positions[1]
 | 
						|
		      && snum012[4] != -1) ? snum012[4] : 0);
 | 
						|
 | 
						|
		/* s1bytes */
 | 
						|
		snum012[3] =
 | 
						|
		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
 | 
						|
		    bytes_to_r - bytes_to_l - bytes_to_S2new;
 | 
						|
	}
 | 
						|
 | 
						|
	return needed_nodes;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Set parameters for balancing.
 | 
						|
 * Performs write of results of analysis of balancing into structure tb,
 | 
						|
 * where it will later be used by the functions that actually do the balancing.
 | 
						|
 * Parameters:
 | 
						|
 *	tb	tree_balance structure;
 | 
						|
 *	h	current level of the node;
 | 
						|
 *	lnum	number of items from S[h] that must be shifted to L[h];
 | 
						|
 *	rnum	number of items from S[h] that must be shifted to R[h];
 | 
						|
 *	blk_num	number of blocks that S[h] will be splitted into;
 | 
						|
 *	s012	number of items that fall into splitted nodes.
 | 
						|
 *	lbytes	number of bytes which flow to the left neighbor from the
 | 
						|
 *              item that is not shifted entirely
 | 
						|
 *	rbytes	number of bytes which flow to the right neighbor from the
 | 
						|
 *              item that is not shifted entirely
 | 
						|
 *	s1bytes	number of bytes which flow to the first  new node when
 | 
						|
 *              S[0] splits (this number is contained in s012 array)
 | 
						|
 */
 | 
						|
 | 
						|
static void set_parameters(struct tree_balance *tb, int h, int lnum,
 | 
						|
			   int rnum, int blk_num, short *s012, int lb, int rb)
 | 
						|
{
 | 
						|
 | 
						|
	tb->lnum[h] = lnum;
 | 
						|
	tb->rnum[h] = rnum;
 | 
						|
	tb->blknum[h] = blk_num;
 | 
						|
 | 
						|
	/* only for leaf level */
 | 
						|
	if (h == 0) {
 | 
						|
		if (s012 != NULL) {
 | 
						|
			tb->s0num = *s012++;
 | 
						|
			tb->snum[0] = *s012++;
 | 
						|
			tb->snum[1] = *s012++;
 | 
						|
			tb->sbytes[0] = *s012++;
 | 
						|
			tb->sbytes[1] = *s012;
 | 
						|
		}
 | 
						|
		tb->lbytes = lb;
 | 
						|
		tb->rbytes = rb;
 | 
						|
	}
 | 
						|
	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
 | 
						|
	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
 | 
						|
 | 
						|
	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
 | 
						|
	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * check if node disappears if we shift tb->lnum[0] items to left
 | 
						|
 * neighbor and tb->rnum[0] to the right one.
 | 
						|
 */
 | 
						|
static int is_leaf_removable(struct tree_balance *tb)
 | 
						|
{
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
	int to_left, to_right;
 | 
						|
	int size;
 | 
						|
	int remain_items;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * number of items that will be shifted to left (right) neighbor
 | 
						|
	 * entirely
 | 
						|
	 */
 | 
						|
	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
 | 
						|
	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
 | 
						|
	remain_items = vn->vn_nr_item;
 | 
						|
 | 
						|
	/* how many items remain in S[0] after shiftings to neighbors */
 | 
						|
	remain_items -= (to_left + to_right);
 | 
						|
 | 
						|
	/* all content of node can be shifted to neighbors */
 | 
						|
	if (remain_items < 1) {
 | 
						|
		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
 | 
						|
			       NULL, -1, -1);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* S[0] is not removable */
 | 
						|
	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* check whether we can divide 1 remaining item between neighbors */
 | 
						|
 | 
						|
	/* get size of remaining item (in item units) */
 | 
						|
	size = op_unit_num(&vn->vn_vi[to_left]);
 | 
						|
 | 
						|
	if (tb->lbytes + tb->rbytes >= size) {
 | 
						|
		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
 | 
						|
			       tb->lbytes, -1);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* check whether L, S, R can be joined in one node */
 | 
						|
static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
 | 
						|
{
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
	int ih_size;
 | 
						|
	struct buffer_head *S0;
 | 
						|
 | 
						|
	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
 | 
						|
 | 
						|
	ih_size = 0;
 | 
						|
	if (vn->vn_nr_item) {
 | 
						|
		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
 | 
						|
			ih_size += IH_SIZE;
 | 
						|
 | 
						|
		if (vn->vn_vi[vn->vn_nr_item - 1].
 | 
						|
		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
 | 
						|
			ih_size += IH_SIZE;
 | 
						|
	} else {
 | 
						|
		/* there was only one item and it will be deleted */
 | 
						|
		struct item_head *ih;
 | 
						|
 | 
						|
		RFALSE(B_NR_ITEMS(S0) != 1,
 | 
						|
		       "vs-8125: item number must be 1: it is %d",
 | 
						|
		       B_NR_ITEMS(S0));
 | 
						|
 | 
						|
		ih = item_head(S0, 0);
 | 
						|
		if (tb->CFR[0]
 | 
						|
		    && !comp_short_le_keys(&ih->ih_key,
 | 
						|
					   internal_key(tb->CFR[0],
 | 
						|
							  tb->rkey[0])))
 | 
						|
			/*
 | 
						|
			 * Directory must be in correct state here: that is
 | 
						|
			 * somewhere at the left side should exist first
 | 
						|
			 * directory item. But the item being deleted can
 | 
						|
			 * not be that first one because its right neighbor
 | 
						|
			 * is item of the same directory. (But first item
 | 
						|
			 * always gets deleted in last turn). So, neighbors
 | 
						|
			 * of deleted item can be merged, so we can save
 | 
						|
			 * ih_size
 | 
						|
			 */
 | 
						|
			if (is_direntry_le_ih(ih)) {
 | 
						|
				ih_size = IH_SIZE;
 | 
						|
 | 
						|
				/*
 | 
						|
				 * we might check that left neighbor exists
 | 
						|
				 * and is of the same directory
 | 
						|
				 */
 | 
						|
				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
 | 
						|
				       "vs-8130: first directory item can not be removed until directory is not empty");
 | 
						|
			}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
 | 
						|
		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
 | 
						|
		PROC_INFO_INC(tb->tb_sb, leaves_removable);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* when we do not split item, lnum and rnum are numbers of entire items */
 | 
						|
#define SET_PAR_SHIFT_LEFT \
 | 
						|
if (h)\
 | 
						|
{\
 | 
						|
   int to_l;\
 | 
						|
   \
 | 
						|
   to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
 | 
						|
	      (MAX_NR_KEY(Sh) + 1 - lpar);\
 | 
						|
	      \
 | 
						|
	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
 | 
						|
}\
 | 
						|
else \
 | 
						|
{\
 | 
						|
   if (lset==LEFT_SHIFT_FLOW)\
 | 
						|
     set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
 | 
						|
		     tb->lbytes, -1);\
 | 
						|
   else\
 | 
						|
     set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
 | 
						|
		     -1, -1);\
 | 
						|
}
 | 
						|
 | 
						|
#define SET_PAR_SHIFT_RIGHT \
 | 
						|
if (h)\
 | 
						|
{\
 | 
						|
   int to_r;\
 | 
						|
   \
 | 
						|
   to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
 | 
						|
   \
 | 
						|
   set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
 | 
						|
}\
 | 
						|
else \
 | 
						|
{\
 | 
						|
   if (rset==RIGHT_SHIFT_FLOW)\
 | 
						|
     set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
 | 
						|
		  -1, tb->rbytes);\
 | 
						|
   else\
 | 
						|
     set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
 | 
						|
		  -1, -1);\
 | 
						|
}
 | 
						|
 | 
						|
static void free_buffers_in_tb(struct tree_balance *tb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	pathrelse(tb->tb_path);
 | 
						|
 | 
						|
	for (i = 0; i < MAX_HEIGHT; i++) {
 | 
						|
		brelse(tb->L[i]);
 | 
						|
		brelse(tb->R[i]);
 | 
						|
		brelse(tb->FL[i]);
 | 
						|
		brelse(tb->FR[i]);
 | 
						|
		brelse(tb->CFL[i]);
 | 
						|
		brelse(tb->CFR[i]);
 | 
						|
 | 
						|
		tb->L[i] = NULL;
 | 
						|
		tb->R[i] = NULL;
 | 
						|
		tb->FL[i] = NULL;
 | 
						|
		tb->FR[i] = NULL;
 | 
						|
		tb->CFL[i] = NULL;
 | 
						|
		tb->CFR[i] = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get new buffers for storing new nodes that are created while balancing.
 | 
						|
 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
 | 
						|
 *	        CARRY_ON - schedule didn't occur while the function worked;
 | 
						|
 *	        NO_DISK_SPACE - no disk space.
 | 
						|
 */
 | 
						|
/* The function is NOT SCHEDULE-SAFE! */
 | 
						|
static int get_empty_nodes(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | 
						|
	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
 | 
						|
	int counter, number_of_freeblk;
 | 
						|
	int  amount_needed;	/* number of needed empty blocks */
 | 
						|
	int  retval = CARRY_ON;
 | 
						|
	struct super_block *sb = tb->tb_sb;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * number_of_freeblk is the number of empty blocks which have been
 | 
						|
	 * acquired for use by the balancing algorithm minus the number of
 | 
						|
	 * empty blocks used in the previous levels of the analysis,
 | 
						|
	 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
 | 
						|
	 * occurs after empty blocks are acquired, and the balancing analysis
 | 
						|
	 * is then restarted, amount_needed is the number needed by this
 | 
						|
	 * level (h) of the balancing analysis.
 | 
						|
	 *
 | 
						|
	 * Note that for systems with many processes writing, it would be
 | 
						|
	 * more layout optimal to calculate the total number needed by all
 | 
						|
	 * levels and then to run reiserfs_new_blocks to get all of them at
 | 
						|
	 * once.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initiate number_of_freeblk to the amount acquired prior to the
 | 
						|
	 * restart of the analysis or 0 if not restarted, then subtract the
 | 
						|
	 * amount needed by all of the levels of the tree below h.
 | 
						|
	 */
 | 
						|
	/* blknum includes S[h], so we subtract 1 in this calculation */
 | 
						|
	for (counter = 0, number_of_freeblk = tb->cur_blknum;
 | 
						|
	     counter < h; counter++)
 | 
						|
		number_of_freeblk -=
 | 
						|
		    (tb->blknum[counter]) ? (tb->blknum[counter] -
 | 
						|
						   1) : 0;
 | 
						|
 | 
						|
	/* Allocate missing empty blocks. */
 | 
						|
	/* if Sh == 0  then we are getting a new root */
 | 
						|
	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
 | 
						|
	/*
 | 
						|
	 * Amount_needed = the amount that we need more than the
 | 
						|
	 * amount that we have.
 | 
						|
	 */
 | 
						|
	if (amount_needed > number_of_freeblk)
 | 
						|
		amount_needed -= number_of_freeblk;
 | 
						|
	else	/* If we have enough already then there is nothing to do. */
 | 
						|
		return CARRY_ON;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No need to check quota - is not allocated for blocks used
 | 
						|
	 * for formatted nodes
 | 
						|
	 */
 | 
						|
	if (reiserfs_new_form_blocknrs(tb, blocknrs,
 | 
						|
				       amount_needed) == NO_DISK_SPACE)
 | 
						|
		return NO_DISK_SPACE;
 | 
						|
 | 
						|
	/* for each blocknumber we just got, get a buffer and stick it on FEB */
 | 
						|
	for (blocknr = blocknrs, counter = 0;
 | 
						|
	     counter < amount_needed; blocknr++, counter++) {
 | 
						|
 | 
						|
		RFALSE(!*blocknr,
 | 
						|
		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
 | 
						|
 | 
						|
		new_bh = sb_getblk(sb, *blocknr);
 | 
						|
		RFALSE(buffer_dirty(new_bh) ||
 | 
						|
		       buffer_journaled(new_bh) ||
 | 
						|
		       buffer_journal_dirty(new_bh),
 | 
						|
		       "PAP-8140: journaled or dirty buffer %b for the new block",
 | 
						|
		       new_bh);
 | 
						|
 | 
						|
		/* Put empty buffers into the array. */
 | 
						|
		RFALSE(tb->FEB[tb->cur_blknum],
 | 
						|
		       "PAP-8141: busy slot for new buffer");
 | 
						|
 | 
						|
		set_buffer_journal_new(new_bh);
 | 
						|
		tb->FEB[tb->cur_blknum++] = new_bh;
 | 
						|
	}
 | 
						|
 | 
						|
	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
 | 
						|
		retval = REPEAT_SEARCH;
 | 
						|
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get free space of the left neighbor, which is stored in the parent
 | 
						|
 * node of the left neighbor.
 | 
						|
 */
 | 
						|
static int get_lfree(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct buffer_head *l, *f;
 | 
						|
	int order;
 | 
						|
 | 
						|
	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
 | 
						|
	    (l = tb->FL[h]) == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (f == l)
 | 
						|
		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
 | 
						|
	else {
 | 
						|
		order = B_NR_ITEMS(l);
 | 
						|
		f = l;
 | 
						|
	}
 | 
						|
 | 
						|
	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get free space of the right neighbor,
 | 
						|
 * which is stored in the parent node of the right neighbor.
 | 
						|
 */
 | 
						|
static int get_rfree(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct buffer_head *r, *f;
 | 
						|
	int order;
 | 
						|
 | 
						|
	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
 | 
						|
	    (r = tb->FR[h]) == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (f == r)
 | 
						|
		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
 | 
						|
	else {
 | 
						|
		order = 0;
 | 
						|
		f = r;
 | 
						|
	}
 | 
						|
 | 
						|
	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Check whether left neighbor is in memory. */
 | 
						|
static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct buffer_head *father, *left;
 | 
						|
	struct super_block *sb = tb->tb_sb;
 | 
						|
	b_blocknr_t left_neighbor_blocknr;
 | 
						|
	int left_neighbor_position;
 | 
						|
 | 
						|
	/* Father of the left neighbor does not exist. */
 | 
						|
	if (!tb->FL[h])
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Calculate father of the node to be balanced. */
 | 
						|
	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
 | 
						|
 | 
						|
	RFALSE(!father ||
 | 
						|
	       !B_IS_IN_TREE(father) ||
 | 
						|
	       !B_IS_IN_TREE(tb->FL[h]) ||
 | 
						|
	       !buffer_uptodate(father) ||
 | 
						|
	       !buffer_uptodate(tb->FL[h]),
 | 
						|
	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
 | 
						|
	       father, tb->FL[h]);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get position of the pointer to the left neighbor
 | 
						|
	 * into the left father.
 | 
						|
	 */
 | 
						|
	left_neighbor_position = (father == tb->FL[h]) ?
 | 
						|
	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
 | 
						|
	/* Get left neighbor block number. */
 | 
						|
	left_neighbor_blocknr =
 | 
						|
	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
 | 
						|
	/* Look for the left neighbor in the cache. */
 | 
						|
	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
 | 
						|
 | 
						|
		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
 | 
						|
		       "vs-8170: left neighbor (%b %z) is not in the tree",
 | 
						|
		       left, left);
 | 
						|
		put_bh(left);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define LEFT_PARENTS  'l'
 | 
						|
#define RIGHT_PARENTS 'r'
 | 
						|
 | 
						|
static void decrement_key(struct cpu_key *key)
 | 
						|
{
 | 
						|
	/* call item specific function for this key */
 | 
						|
	item_ops[cpu_key_k_type(key)]->decrement_key(key);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate far left/right parent of the left/right neighbor of the
 | 
						|
 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
 | 
						|
 * of the parent F[h].
 | 
						|
 * Calculate left/right common parent of the current node and L[h]/R[h].
 | 
						|
 * Calculate left/right delimiting key position.
 | 
						|
 * Returns:	PATH_INCORRECT    - path in the tree is not correct
 | 
						|
 *		SCHEDULE_OCCURRED - schedule occurred while the function worked
 | 
						|
 *	        CARRY_ON          - schedule didn't occur while the function
 | 
						|
 *				    worked
 | 
						|
 */
 | 
						|
static int get_far_parent(struct tree_balance *tb,
 | 
						|
			  int h,
 | 
						|
			  struct buffer_head **pfather,
 | 
						|
			  struct buffer_head **pcom_father, char c_lr_par)
 | 
						|
{
 | 
						|
	struct buffer_head *parent;
 | 
						|
	INITIALIZE_PATH(s_path_to_neighbor_father);
 | 
						|
	struct treepath *path = tb->tb_path;
 | 
						|
	struct cpu_key s_lr_father_key;
 | 
						|
	int counter,
 | 
						|
	    position = INT_MAX,
 | 
						|
	    first_last_position = 0,
 | 
						|
	    path_offset = PATH_H_PATH_OFFSET(path, h);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Starting from F[h] go upwards in the tree, and look for the common
 | 
						|
	 * ancestor of F[h], and its neighbor l/r, that should be obtained.
 | 
						|
	 */
 | 
						|
 | 
						|
	counter = path_offset;
 | 
						|
 | 
						|
	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
 | 
						|
	       "PAP-8180: invalid path length");
 | 
						|
 | 
						|
	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
 | 
						|
		/*
 | 
						|
		 * Check whether parent of the current buffer in the path
 | 
						|
		 * is really parent in the tree.
 | 
						|
		 */
 | 
						|
		if (!B_IS_IN_TREE
 | 
						|
		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
 | 
						|
		/* Check whether position in the parent is correct. */
 | 
						|
		if ((position =
 | 
						|
		     PATH_OFFSET_POSITION(path,
 | 
						|
					  counter - 1)) >
 | 
						|
		    B_NR_ITEMS(parent))
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check whether parent at the path really points
 | 
						|
		 * to the child.
 | 
						|
		 */
 | 
						|
		if (B_N_CHILD_NUM(parent, position) !=
 | 
						|
		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Return delimiting key if position in the parent is not
 | 
						|
		 * equal to first/last one.
 | 
						|
		 */
 | 
						|
		if (c_lr_par == RIGHT_PARENTS)
 | 
						|
			first_last_position = B_NR_ITEMS(parent);
 | 
						|
		if (position != first_last_position) {
 | 
						|
			*pcom_father = parent;
 | 
						|
			get_bh(*pcom_father);
 | 
						|
			/*(*pcom_father = parent)->b_count++; */
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* if we are in the root of the tree, then there is no common father */
 | 
						|
	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
 | 
						|
		/*
 | 
						|
		 * Check whether first buffer in the path is the
 | 
						|
		 * root of the tree.
 | 
						|
		 */
 | 
						|
		if (PATH_OFFSET_PBUFFER
 | 
						|
		    (tb->tb_path,
 | 
						|
		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
 | 
						|
		    SB_ROOT_BLOCK(tb->tb_sb)) {
 | 
						|
			*pfather = *pcom_father = NULL;
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
	}
 | 
						|
 | 
						|
	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
 | 
						|
	       "PAP-8185: (%b %z) level too small",
 | 
						|
	       *pcom_father, *pcom_father);
 | 
						|
 | 
						|
	/* Check whether the common parent is locked. */
 | 
						|
 | 
						|
	if (buffer_locked(*pcom_father)) {
 | 
						|
 | 
						|
		/* Release the write lock while the buffer is busy */
 | 
						|
		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
 | 
						|
		__wait_on_buffer(*pcom_father);
 | 
						|
		reiserfs_write_lock_nested(tb->tb_sb, depth);
 | 
						|
		if (FILESYSTEM_CHANGED_TB(tb)) {
 | 
						|
			brelse(*pcom_father);
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * So, we got common parent of the current node and its
 | 
						|
	 * left/right neighbor.  Now we are getting the parent of the
 | 
						|
	 * left/right neighbor.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Form key to get parent of the left/right neighbor. */
 | 
						|
	le_key2cpu_key(&s_lr_father_key,
 | 
						|
		       internal_key(*pcom_father,
 | 
						|
				      (c_lr_par ==
 | 
						|
				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
 | 
						|
							position -
 | 
						|
							1) : (tb->rkey[h -
 | 
						|
									   1] =
 | 
						|
							      position)));
 | 
						|
 | 
						|
	if (c_lr_par == LEFT_PARENTS)
 | 
						|
		decrement_key(&s_lr_father_key);
 | 
						|
 | 
						|
	if (search_by_key
 | 
						|
	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
 | 
						|
	     h + 1) == IO_ERROR)
 | 
						|
		/* path is released */
 | 
						|
		return IO_ERROR;
 | 
						|
 | 
						|
	if (FILESYSTEM_CHANGED_TB(tb)) {
 | 
						|
		pathrelse(&s_path_to_neighbor_father);
 | 
						|
		brelse(*pcom_father);
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
	}
 | 
						|
 | 
						|
	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
 | 
						|
 | 
						|
	RFALSE(B_LEVEL(*pfather) != h + 1,
 | 
						|
	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
 | 
						|
	RFALSE(s_path_to_neighbor_father.path_length <
 | 
						|
	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
 | 
						|
 | 
						|
	s_path_to_neighbor_father.path_length--;
 | 
						|
	pathrelse(&s_path_to_neighbor_father);
 | 
						|
	return CARRY_ON;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get parents of neighbors of node in the path(S[path_offset]) and
 | 
						|
 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
 | 
						|
 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
 | 
						|
 * CFR[path_offset].
 | 
						|
 * Calculate numbers of left and right delimiting keys position:
 | 
						|
 * lkey[path_offset], rkey[path_offset].
 | 
						|
 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked
 | 
						|
 *	        CARRY_ON - schedule didn't occur while the function worked
 | 
						|
 */
 | 
						|
static int get_parents(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct treepath *path = tb->tb_path;
 | 
						|
	int position,
 | 
						|
	    ret,
 | 
						|
	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
 | 
						|
	struct buffer_head *curf, *curcf;
 | 
						|
 | 
						|
	/* Current node is the root of the tree or will be root of the tree */
 | 
						|
	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
 | 
						|
		/*
 | 
						|
		 * The root can not have parents.
 | 
						|
		 * Release nodes which previously were obtained as
 | 
						|
		 * parents of the current node neighbors.
 | 
						|
		 */
 | 
						|
		brelse(tb->FL[h]);
 | 
						|
		brelse(tb->CFL[h]);
 | 
						|
		brelse(tb->FR[h]);
 | 
						|
		brelse(tb->CFR[h]);
 | 
						|
		tb->FL[h]  = NULL;
 | 
						|
		tb->CFL[h] = NULL;
 | 
						|
		tb->FR[h]  = NULL;
 | 
						|
		tb->CFR[h] = NULL;
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Get parent FL[path_offset] of L[path_offset]. */
 | 
						|
	position = PATH_OFFSET_POSITION(path, path_offset - 1);
 | 
						|
	if (position) {
 | 
						|
		/* Current node is not the first child of its parent. */
 | 
						|
		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | 
						|
		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | 
						|
		get_bh(curf);
 | 
						|
		get_bh(curf);
 | 
						|
		tb->lkey[h] = position - 1;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Calculate current parent of L[path_offset], which is the
 | 
						|
		 * left neighbor of the current node.  Calculate current
 | 
						|
		 * common parent of L[path_offset] and the current node.
 | 
						|
		 * Note that CFL[path_offset] not equal FL[path_offset] and
 | 
						|
		 * CFL[path_offset] not equal F[path_offset].
 | 
						|
		 * Calculate lkey[path_offset].
 | 
						|
		 */
 | 
						|
		if ((ret = get_far_parent(tb, h + 1, &curf,
 | 
						|
						  &curcf,
 | 
						|
						  LEFT_PARENTS)) != CARRY_ON)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	brelse(tb->FL[h]);
 | 
						|
	tb->FL[h] = curf;	/* New initialization of FL[h]. */
 | 
						|
	brelse(tb->CFL[h]);
 | 
						|
	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
 | 
						|
 | 
						|
	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
 | 
						|
	       (curcf && !B_IS_IN_TREE(curcf)),
 | 
						|
	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
 | 
						|
 | 
						|
	/* Get parent FR[h] of R[h]. */
 | 
						|
 | 
						|
	/* Current node is the last child of F[h]. FR[h] != F[h]. */
 | 
						|
	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
 | 
						|
		/*
 | 
						|
		 * Calculate current parent of R[h], which is the right
 | 
						|
		 * neighbor of F[h].  Calculate current common parent of
 | 
						|
		 * R[h] and current node. Note that CFR[h] not equal
 | 
						|
		 * FR[path_offset] and CFR[h] not equal F[h].
 | 
						|
		 */
 | 
						|
		if ((ret =
 | 
						|
		     get_far_parent(tb, h + 1, &curf, &curcf,
 | 
						|
				    RIGHT_PARENTS)) != CARRY_ON)
 | 
						|
			return ret;
 | 
						|
	} else {
 | 
						|
		/* Current node is not the last child of its parent F[h]. */
 | 
						|
		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | 
						|
		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
 | 
						|
		get_bh(curf);
 | 
						|
		get_bh(curf);
 | 
						|
		tb->rkey[h] = position;
 | 
						|
	}
 | 
						|
 | 
						|
	brelse(tb->FR[h]);
 | 
						|
	/* New initialization of FR[path_offset]. */
 | 
						|
	tb->FR[h] = curf;
 | 
						|
 | 
						|
	brelse(tb->CFR[h]);
 | 
						|
	/* New initialization of CFR[path_offset]. */
 | 
						|
	tb->CFR[h] = curcf;
 | 
						|
 | 
						|
	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
 | 
						|
	       (curcf && !B_IS_IN_TREE(curcf)),
 | 
						|
	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
 | 
						|
 | 
						|
	return CARRY_ON;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * it is possible to remove node as result of shiftings to
 | 
						|
 * neighbors even when we insert or paste item.
 | 
						|
 */
 | 
						|
static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
 | 
						|
				      struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | 
						|
	int levbytes = tb->insert_size[h];
 | 
						|
	struct item_head *ih;
 | 
						|
	struct reiserfs_key *r_key = NULL;
 | 
						|
 | 
						|
	ih = item_head(Sh, 0);
 | 
						|
	if (tb->CFR[h])
 | 
						|
		r_key = internal_key(tb->CFR[h], tb->rkey[h]);
 | 
						|
 | 
						|
	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
 | 
						|
	    /* shifting may merge items which might save space */
 | 
						|
	    -
 | 
						|
	    ((!h
 | 
						|
	      && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
 | 
						|
	    -
 | 
						|
	    ((!h && r_key
 | 
						|
	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
 | 
						|
	    + ((h) ? KEY_SIZE : 0)) {
 | 
						|
		/* node can not be removed */
 | 
						|
		if (sfree >= levbytes) {
 | 
						|
			/* new item fits into node S[h] without any shifting */
 | 
						|
			if (!h)
 | 
						|
				tb->s0num =
 | 
						|
				    B_NR_ITEMS(Sh) +
 | 
						|
				    ((mode == M_INSERT) ? 1 : 0);
 | 
						|
			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | 
						|
			return NO_BALANCING_NEEDED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
 | 
						|
	return !NO_BALANCING_NEEDED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether current node S[h] is balanced when increasing its size by
 | 
						|
 * Inserting or Pasting.
 | 
						|
 * Calculate parameters for balancing for current level h.
 | 
						|
 * Parameters:
 | 
						|
 *	tb	tree_balance structure;
 | 
						|
 *	h	current level of the node;
 | 
						|
 *	inum	item number in S[h];
 | 
						|
 *	mode	i - insert, p - paste;
 | 
						|
 * Returns:	1 - schedule occurred;
 | 
						|
 *	        0 - balancing for higher levels needed;
 | 
						|
 *	       -1 - no balancing for higher levels needed;
 | 
						|
 *	       -2 - no disk space.
 | 
						|
 */
 | 
						|
/* ip means Inserting or Pasting */
 | 
						|
static int ip_check_balance(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
	/*
 | 
						|
	 * Number of bytes that must be inserted into (value is negative
 | 
						|
	 * if bytes are deleted) buffer which contains node being balanced.
 | 
						|
	 * The mnemonic is that the attempted change in node space used
 | 
						|
	 * level is levbytes bytes.
 | 
						|
	 */
 | 
						|
	int levbytes;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	int lfree, sfree, rfree /* free space in L, S and R */ ;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * nver is short for number of vertixes, and lnver is the number if
 | 
						|
	 * we shift to the left, rnver is the number if we shift to the
 | 
						|
	 * right, and lrnver is the number if we shift in both directions.
 | 
						|
	 * The goal is to minimize first the number of vertixes, and second,
 | 
						|
	 * the number of vertixes whose contents are changed by shifting,
 | 
						|
	 * and third the number of uncached vertixes whose contents are
 | 
						|
	 * changed by shifting and must be read from disk.
 | 
						|
	 */
 | 
						|
	int nver, lnver, rnver, lrnver;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * used at leaf level only, S0 = S[0] is the node being balanced,
 | 
						|
	 * sInum [ I = 0,1,2 ] is the number of items that will
 | 
						|
	 * remain in node SI after balancing.  S1 and S2 are new
 | 
						|
	 * nodes that might be created.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we perform 8 calls to get_num_ver().  For each call we
 | 
						|
	 * calculate five parameters.  where 4th parameter is s1bytes
 | 
						|
	 * and 5th - s2bytes
 | 
						|
	 *
 | 
						|
	 * s0num, s1num, s2num for 8 cases
 | 
						|
	 * 0,1 - do not shift and do not shift but bottle
 | 
						|
	 * 2   - shift only whole item to left
 | 
						|
	 * 3   - shift to left and bottle as much as possible
 | 
						|
	 * 4,5 - shift to right (whole items and as much as possible
 | 
						|
	 * 6,7 - shift to both directions (whole items and as much as possible)
 | 
						|
	 */
 | 
						|
	short snum012[40] = { 0, };
 | 
						|
 | 
						|
	/* Sh is the node whose balance is currently being checked */
 | 
						|
	struct buffer_head *Sh;
 | 
						|
 | 
						|
	Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | 
						|
	levbytes = tb->insert_size[h];
 | 
						|
 | 
						|
	/* Calculate balance parameters for creating new root. */
 | 
						|
	if (!Sh) {
 | 
						|
		if (!h)
 | 
						|
			reiserfs_panic(tb->tb_sb, "vs-8210",
 | 
						|
				       "S[0] can not be 0");
 | 
						|
		switch (ret = get_empty_nodes(tb, h)) {
 | 
						|
		/* no balancing for higher levels needed */
 | 
						|
		case CARRY_ON:
 | 
						|
			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | 
						|
			return NO_BALANCING_NEEDED;
 | 
						|
 | 
						|
		case NO_DISK_SPACE:
 | 
						|
		case REPEAT_SEARCH:
 | 
						|
			return ret;
 | 
						|
		default:
 | 
						|
			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
 | 
						|
				       "return value of get_empty_nodes");
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* get parents of S[h] neighbors. */
 | 
						|
	ret = get_parents(tb, h);
 | 
						|
	if (ret != CARRY_ON)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	sfree = B_FREE_SPACE(Sh);
 | 
						|
 | 
						|
	/* get free space of neighbors */
 | 
						|
	rfree = get_rfree(tb, h);
 | 
						|
	lfree = get_lfree(tb, h);
 | 
						|
 | 
						|
	/* and new item fits into node S[h] without any shifting */
 | 
						|
	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
 | 
						|
	    NO_BALANCING_NEEDED)
 | 
						|
		return NO_BALANCING_NEEDED;
 | 
						|
 | 
						|
	create_virtual_node(tb, h);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * determine maximal number of items we can shift to the left
 | 
						|
	 * neighbor (in tb structure) and the maximal number of bytes
 | 
						|
	 * that can flow to the left neighbor from the left most liquid
 | 
						|
	 * item that cannot be shifted from S[0] entirely (returned value)
 | 
						|
	 */
 | 
						|
	check_left(tb, h, lfree);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * determine maximal number of items we can shift to the right
 | 
						|
	 * neighbor (in tb structure) and the maximal number of bytes
 | 
						|
	 * that can flow to the right neighbor from the right most liquid
 | 
						|
	 * item that cannot be shifted from S[0] entirely (returned value)
 | 
						|
	 */
 | 
						|
	check_right(tb, h, rfree);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * all contents of internal node S[h] can be moved into its
 | 
						|
	 * neighbors, S[h] will be removed after balancing
 | 
						|
	 */
 | 
						|
	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
 | 
						|
		int to_r;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Since we are working on internal nodes, and our internal
 | 
						|
		 * nodes have fixed size entries, then we can balance by the
 | 
						|
		 * number of items rather than the space they consume.  In this
 | 
						|
		 * routine we set the left node equal to the right node,
 | 
						|
		 * allowing a difference of less than or equal to 1 child
 | 
						|
		 * pointer.
 | 
						|
		 */
 | 
						|
		to_r =
 | 
						|
		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
 | 
						|
		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
 | 
						|
						tb->rnum[h]);
 | 
						|
		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
 | 
						|
			       -1, -1);
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * this checks balance condition, that any two neighboring nodes
 | 
						|
	 * can not fit in one node
 | 
						|
	 */
 | 
						|
	RFALSE(h &&
 | 
						|
	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
 | 
						|
		tb->rnum[h] >= vn->vn_nr_item + 1),
 | 
						|
	       "vs-8220: tree is not balanced on internal level");
 | 
						|
	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
 | 
						|
		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
 | 
						|
	       "vs-8225: tree is not balanced on leaf level");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * all contents of S[0] can be moved into its neighbors
 | 
						|
	 * S[0] will be removed after balancing.
 | 
						|
	 */
 | 
						|
	if (!h && is_leaf_removable(tb))
 | 
						|
		return CARRY_ON;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * why do we perform this check here rather than earlier??
 | 
						|
	 * Answer: we can win 1 node in some cases above. Moreover we
 | 
						|
	 * checked it above, when we checked, that S[0] is not removable
 | 
						|
	 * in principle
 | 
						|
	 */
 | 
						|
 | 
						|
	 /* new item fits into node S[h] without any shifting */
 | 
						|
	if (sfree >= levbytes) {
 | 
						|
		if (!h)
 | 
						|
			tb->s0num = vn->vn_nr_item;
 | 
						|
		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | 
						|
		return NO_BALANCING_NEEDED;
 | 
						|
	}
 | 
						|
 | 
						|
	{
 | 
						|
		int lpar, rpar, nset, lset, rset, lrset;
 | 
						|
		/* regular overflowing of the node */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
 | 
						|
		 * lpar, rpar - number of items we can shift to left/right
 | 
						|
		 *              neighbor (including splitting item)
 | 
						|
		 * nset, lset, rset, lrset - shows, whether flowing items
 | 
						|
		 *                           give better packing
 | 
						|
		 */
 | 
						|
#define FLOW 1
 | 
						|
#define NO_FLOW 0		/* do not any splitting */
 | 
						|
 | 
						|
		/* we choose one of the following */
 | 
						|
#define NOTHING_SHIFT_NO_FLOW	0
 | 
						|
#define NOTHING_SHIFT_FLOW	5
 | 
						|
#define LEFT_SHIFT_NO_FLOW	10
 | 
						|
#define LEFT_SHIFT_FLOW		15
 | 
						|
#define RIGHT_SHIFT_NO_FLOW	20
 | 
						|
#define RIGHT_SHIFT_FLOW	25
 | 
						|
#define LR_SHIFT_NO_FLOW	30
 | 
						|
#define LR_SHIFT_FLOW		35
 | 
						|
 | 
						|
		lpar = tb->lnum[h];
 | 
						|
		rpar = tb->rnum[h];
 | 
						|
 | 
						|
		/*
 | 
						|
		 * calculate number of blocks S[h] must be split into when
 | 
						|
		 * nothing is shifted to the neighbors, as well as number of
 | 
						|
		 * items in each part of the split node (s012 numbers),
 | 
						|
		 * and number of bytes (s1bytes) of the shared drop which
 | 
						|
		 * flow to S1 if any
 | 
						|
		 */
 | 
						|
		nset = NOTHING_SHIFT_NO_FLOW;
 | 
						|
		nver = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
				   0, -1, h ? vn->vn_nr_item : 0, -1,
 | 
						|
				   snum012, NO_FLOW);
 | 
						|
 | 
						|
		if (!h) {
 | 
						|
			int nver1;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * note, that in this case we try to bottle
 | 
						|
			 * between S[0] and S1 (S1 - the first new node)
 | 
						|
			 */
 | 
						|
			nver1 = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
					    0, -1, 0, -1,
 | 
						|
					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
 | 
						|
			if (nver > nver1)
 | 
						|
				nset = NOTHING_SHIFT_FLOW, nver = nver1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * calculate number of blocks S[h] must be split into when
 | 
						|
		 * l_shift_num first items and l_shift_bytes of the right
 | 
						|
		 * most liquid item to be shifted are shifted to the left
 | 
						|
		 * neighbor, as well as number of items in each part of the
 | 
						|
		 * splitted node (s012 numbers), and number of bytes
 | 
						|
		 * (s1bytes) of the shared drop which flow to S1 if any
 | 
						|
		 */
 | 
						|
		lset = LEFT_SHIFT_NO_FLOW;
 | 
						|
		lnver = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
 | 
						|
				    -1, h ? vn->vn_nr_item : 0, -1,
 | 
						|
				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
 | 
						|
		if (!h) {
 | 
						|
			int lnver1;
 | 
						|
 | 
						|
			lnver1 = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
					     lpar -
 | 
						|
					     ((tb->lbytes != -1) ? 1 : 0),
 | 
						|
					     tb->lbytes, 0, -1,
 | 
						|
					     snum012 + LEFT_SHIFT_FLOW, FLOW);
 | 
						|
			if (lnver > lnver1)
 | 
						|
				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * calculate number of blocks S[h] must be split into when
 | 
						|
		 * r_shift_num first items and r_shift_bytes of the left most
 | 
						|
		 * liquid item to be shifted are shifted to the right neighbor,
 | 
						|
		 * as well as number of items in each part of the splitted
 | 
						|
		 * node (s012 numbers), and number of bytes (s1bytes) of the
 | 
						|
		 * shared drop which flow to S1 if any
 | 
						|
		 */
 | 
						|
		rset = RIGHT_SHIFT_NO_FLOW;
 | 
						|
		rnver = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
				    0, -1,
 | 
						|
				    h ? (vn->vn_nr_item - rpar) : (rpar -
 | 
						|
								   ((tb->
 | 
						|
								     rbytes !=
 | 
						|
								     -1) ? 1 :
 | 
						|
								    0)), -1,
 | 
						|
				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
 | 
						|
		if (!h) {
 | 
						|
			int rnver1;
 | 
						|
 | 
						|
			rnver1 = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
					     0, -1,
 | 
						|
					     (rpar -
 | 
						|
					      ((tb->rbytes != -1) ? 1 : 0)),
 | 
						|
					     tb->rbytes,
 | 
						|
					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
 | 
						|
 | 
						|
			if (rnver > rnver1)
 | 
						|
				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * calculate number of blocks S[h] must be split into when
 | 
						|
		 * items are shifted in both directions, as well as number
 | 
						|
		 * of items in each part of the splitted node (s012 numbers),
 | 
						|
		 * and number of bytes (s1bytes) of the shared drop which
 | 
						|
		 * flow to S1 if any
 | 
						|
		 */
 | 
						|
		lrset = LR_SHIFT_NO_FLOW;
 | 
						|
		lrnver = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
 | 
						|
				     -1,
 | 
						|
				     h ? (vn->vn_nr_item - rpar) : (rpar -
 | 
						|
								    ((tb->
 | 
						|
								      rbytes !=
 | 
						|
								      -1) ? 1 :
 | 
						|
								     0)), -1,
 | 
						|
				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
 | 
						|
		if (!h) {
 | 
						|
			int lrnver1;
 | 
						|
 | 
						|
			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
 | 
						|
					      lpar -
 | 
						|
					      ((tb->lbytes != -1) ? 1 : 0),
 | 
						|
					      tb->lbytes,
 | 
						|
					      (rpar -
 | 
						|
					       ((tb->rbytes != -1) ? 1 : 0)),
 | 
						|
					      tb->rbytes,
 | 
						|
					      snum012 + LR_SHIFT_FLOW, FLOW);
 | 
						|
			if (lrnver > lrnver1)
 | 
						|
				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Our general shifting strategy is:
 | 
						|
		 * 1) to minimized number of new nodes;
 | 
						|
		 * 2) to minimized number of neighbors involved in shifting;
 | 
						|
		 * 3) to minimized number of disk reads;
 | 
						|
		 */
 | 
						|
 | 
						|
		/* we can win TWO or ONE nodes by shifting in both directions */
 | 
						|
		if (lrnver < lnver && lrnver < rnver) {
 | 
						|
			RFALSE(h &&
 | 
						|
			       (tb->lnum[h] != 1 ||
 | 
						|
				tb->rnum[h] != 1 ||
 | 
						|
				lrnver != 1 || rnver != 2 || lnver != 2
 | 
						|
				|| h != 1), "vs-8230: bad h");
 | 
						|
			if (lrset == LR_SHIFT_FLOW)
 | 
						|
				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
 | 
						|
					       lrnver, snum012 + lrset,
 | 
						|
					       tb->lbytes, tb->rbytes);
 | 
						|
			else
 | 
						|
				set_parameters(tb, h,
 | 
						|
					       tb->lnum[h] -
 | 
						|
					       ((tb->lbytes == -1) ? 0 : 1),
 | 
						|
					       tb->rnum[h] -
 | 
						|
					       ((tb->rbytes == -1) ? 0 : 1),
 | 
						|
					       lrnver, snum012 + lrset, -1, -1);
 | 
						|
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if shifting doesn't lead to better packing
 | 
						|
		 * then don't shift
 | 
						|
		 */
 | 
						|
		if (nver == lrnver) {
 | 
						|
			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
 | 
						|
				       -1);
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * now we know that for better packing shifting in only one
 | 
						|
		 * direction either to the left or to the right is required
 | 
						|
		 */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if shifting to the left is better than
 | 
						|
		 * shifting to the right
 | 
						|
		 */
 | 
						|
		if (lnver < rnver) {
 | 
						|
			SET_PAR_SHIFT_LEFT;
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if shifting to the right is better than
 | 
						|
		 * shifting to the left
 | 
						|
		 */
 | 
						|
		if (lnver > rnver) {
 | 
						|
			SET_PAR_SHIFT_RIGHT;
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * now shifting in either direction gives the same number
 | 
						|
		 * of nodes and we can make use of the cached neighbors
 | 
						|
		 */
 | 
						|
		if (is_left_neighbor_in_cache(tb, h)) {
 | 
						|
			SET_PAR_SHIFT_LEFT;
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * shift to the right independently on whether the
 | 
						|
		 * right neighbor in cache or not
 | 
						|
		 */
 | 
						|
		SET_PAR_SHIFT_RIGHT;
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether current node S[h] is balanced when Decreasing its size by
 | 
						|
 * Deleting or Cutting for INTERNAL node of S+tree.
 | 
						|
 * Calculate parameters for balancing for current level h.
 | 
						|
 * Parameters:
 | 
						|
 *	tb	tree_balance structure;
 | 
						|
 *	h	current level of the node;
 | 
						|
 *	inum	item number in S[h];
 | 
						|
 *	mode	i - insert, p - paste;
 | 
						|
 * Returns:	1 - schedule occurred;
 | 
						|
 *	        0 - balancing for higher levels needed;
 | 
						|
 *	       -1 - no balancing for higher levels needed;
 | 
						|
 *	       -2 - no disk space.
 | 
						|
 *
 | 
						|
 * Note: Items of internal nodes have fixed size, so the balance condition for
 | 
						|
 * the internal part of S+tree is as for the B-trees.
 | 
						|
 */
 | 
						|
static int dc_check_balance_internal(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sh is the node whose balance is currently being checked,
 | 
						|
	 * and Fh is its father.
 | 
						|
	 */
 | 
						|
	struct buffer_head *Sh, *Fh;
 | 
						|
	int ret;
 | 
						|
	int lfree, rfree /* free space in L and R */ ;
 | 
						|
 | 
						|
	Sh = PATH_H_PBUFFER(tb->tb_path, h);
 | 
						|
	Fh = PATH_H_PPARENT(tb->tb_path, h);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * using tb->insert_size[h], which is negative in this case,
 | 
						|
	 * create_virtual_node calculates:
 | 
						|
	 * new_nr_item = number of items node would have if operation is
 | 
						|
	 * performed without balancing (new_nr_item);
 | 
						|
	 */
 | 
						|
	create_virtual_node(tb, h);
 | 
						|
 | 
						|
	if (!Fh) {		/* S[h] is the root. */
 | 
						|
		/* no balancing for higher levels needed */
 | 
						|
		if (vn->vn_nr_item > 0) {
 | 
						|
			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | 
						|
			return NO_BALANCING_NEEDED;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * new_nr_item == 0.
 | 
						|
		 * Current root will be deleted resulting in
 | 
						|
		 * decrementing the tree height.
 | 
						|
		 */
 | 
						|
		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((ret = get_parents(tb, h)) != CARRY_ON)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* get free space of neighbors */
 | 
						|
	rfree = get_rfree(tb, h);
 | 
						|
	lfree = get_lfree(tb, h);
 | 
						|
 | 
						|
	/* determine maximal number of items we can fit into neighbors */
 | 
						|
	check_left(tb, h, lfree);
 | 
						|
	check_right(tb, h, rfree);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Balance condition for the internal node is valid.
 | 
						|
	 * In this case we balance only if it leads to better packing.
 | 
						|
	 */
 | 
						|
	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
 | 
						|
		/*
 | 
						|
		 * Here we join S[h] with one of its neighbors,
 | 
						|
		 * which is impossible with greater values of new_nr_item.
 | 
						|
		 */
 | 
						|
		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
 | 
						|
			/* All contents of S[h] can be moved to L[h]. */
 | 
						|
			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
 | 
						|
				int n;
 | 
						|
				int order_L;
 | 
						|
 | 
						|
				order_L =
 | 
						|
				    ((n =
 | 
						|
				      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | 
						|
							  h)) ==
 | 
						|
				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
 | 
						|
				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
 | 
						|
				    (DC_SIZE + KEY_SIZE);
 | 
						|
				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
 | 
						|
					       -1);
 | 
						|
				return CARRY_ON;
 | 
						|
			}
 | 
						|
 | 
						|
			/* All contents of S[h] can be moved to R[h]. */
 | 
						|
			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
 | 
						|
				int n;
 | 
						|
				int order_R;
 | 
						|
 | 
						|
				order_R =
 | 
						|
				    ((n =
 | 
						|
				      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | 
						|
							  h)) ==
 | 
						|
				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
 | 
						|
				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
 | 
						|
				    (DC_SIZE + KEY_SIZE);
 | 
						|
				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
 | 
						|
					       -1);
 | 
						|
				return CARRY_ON;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * All contents of S[h] can be moved to the neighbors
 | 
						|
		 * (L[h] & R[h]).
 | 
						|
		 */
 | 
						|
		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
 | 
						|
			int to_r;
 | 
						|
 | 
						|
			to_r =
 | 
						|
			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
 | 
						|
			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
 | 
						|
			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
 | 
						|
			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
 | 
						|
				       0, NULL, -1, -1);
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Balancing does not lead to better packing. */
 | 
						|
		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | 
						|
		return NO_BALANCING_NEEDED;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Current node contain insufficient number of items.
 | 
						|
	 * Balancing is required.
 | 
						|
	 */
 | 
						|
	/* Check whether we can merge S[h] with left neighbor. */
 | 
						|
	if (tb->lnum[h] >= vn->vn_nr_item + 1)
 | 
						|
		if (is_left_neighbor_in_cache(tb, h)
 | 
						|
		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
 | 
						|
			int n;
 | 
						|
			int order_L;
 | 
						|
 | 
						|
			order_L =
 | 
						|
			    ((n =
 | 
						|
			      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | 
						|
						  h)) ==
 | 
						|
			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
 | 
						|
			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
 | 
						|
								      KEY_SIZE);
 | 
						|
			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
	/* Check whether we can merge S[h] with right neighbor. */
 | 
						|
	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
 | 
						|
		int n;
 | 
						|
		int order_R;
 | 
						|
 | 
						|
		order_R =
 | 
						|
		    ((n =
 | 
						|
		      PATH_H_B_ITEM_ORDER(tb->tb_path,
 | 
						|
					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
 | 
						|
		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
 | 
						|
							      KEY_SIZE);
 | 
						|
		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
 | 
						|
	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
 | 
						|
	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
 | 
						|
		int to_r;
 | 
						|
 | 
						|
		to_r =
 | 
						|
		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
 | 
						|
		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
 | 
						|
						tb->rnum[h]);
 | 
						|
		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
 | 
						|
			       -1, -1);
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
 | 
						|
	/* For internal nodes try to borrow item from a neighbor */
 | 
						|
	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
 | 
						|
 | 
						|
	/* Borrow one or two items from caching neighbor */
 | 
						|
	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
 | 
						|
		int from_l;
 | 
						|
 | 
						|
		from_l =
 | 
						|
		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
 | 
						|
		     1) / 2 - (vn->vn_nr_item + 1);
 | 
						|
		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
 | 
						|
	set_parameters(tb, h, 0,
 | 
						|
		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
 | 
						|
			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
 | 
						|
	return CARRY_ON;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether current node S[h] is balanced when Decreasing its size by
 | 
						|
 * Deleting or Truncating for LEAF node of S+tree.
 | 
						|
 * Calculate parameters for balancing for current level h.
 | 
						|
 * Parameters:
 | 
						|
 *	tb	tree_balance structure;
 | 
						|
 *	h	current level of the node;
 | 
						|
 *	inum	item number in S[h];
 | 
						|
 *	mode	i - insert, p - paste;
 | 
						|
 * Returns:	1 - schedule occurred;
 | 
						|
 *	        0 - balancing for higher levels needed;
 | 
						|
 *	       -1 - no balancing for higher levels needed;
 | 
						|
 *	       -2 - no disk space.
 | 
						|
 */
 | 
						|
static int dc_check_balance_leaf(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct virtual_node *vn = tb->tb_vn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Number of bytes that must be deleted from
 | 
						|
	 * (value is negative if bytes are deleted) buffer which
 | 
						|
	 * contains node being balanced.  The mnemonic is that the
 | 
						|
	 * attempted change in node space used level is levbytes bytes.
 | 
						|
	 */
 | 
						|
	int levbytes;
 | 
						|
 | 
						|
	/* the maximal item size */
 | 
						|
	int maxsize, ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * S0 is the node whose balance is currently being checked,
 | 
						|
	 * and F0 is its father.
 | 
						|
	 */
 | 
						|
	struct buffer_head *S0, *F0;
 | 
						|
	int lfree, rfree /* free space in L and R */ ;
 | 
						|
 | 
						|
	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
 | 
						|
	F0 = PATH_H_PPARENT(tb->tb_path, 0);
 | 
						|
 | 
						|
	levbytes = tb->insert_size[h];
 | 
						|
 | 
						|
	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
 | 
						|
 | 
						|
	if (!F0) {		/* S[0] is the root now. */
 | 
						|
 | 
						|
		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
 | 
						|
		       "vs-8240: attempt to create empty buffer tree");
 | 
						|
 | 
						|
		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | 
						|
		return NO_BALANCING_NEEDED;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((ret = get_parents(tb, h)) != CARRY_ON)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* get free space of neighbors */
 | 
						|
	rfree = get_rfree(tb, h);
 | 
						|
	lfree = get_lfree(tb, h);
 | 
						|
 | 
						|
	create_virtual_node(tb, h);
 | 
						|
 | 
						|
	/* if 3 leaves can be merge to one, set parameters and return */
 | 
						|
	if (are_leaves_removable(tb, lfree, rfree))
 | 
						|
		return CARRY_ON;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * determine maximal number of items we can shift to the left/right
 | 
						|
	 * neighbor and the maximal number of bytes that can flow to the
 | 
						|
	 * left/right neighbor from the left/right most liquid item that
 | 
						|
	 * cannot be shifted from S[0] entirely
 | 
						|
	 */
 | 
						|
	check_left(tb, h, lfree);
 | 
						|
	check_right(tb, h, rfree);
 | 
						|
 | 
						|
	/* check whether we can merge S with left neighbor. */
 | 
						|
	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
 | 
						|
		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
 | 
						|
		    !tb->FR[h]) {
 | 
						|
 | 
						|
			RFALSE(!tb->FL[h],
 | 
						|
			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
 | 
						|
 | 
						|
			/* set parameter to merge S[0] with its left neighbor */
 | 
						|
			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
 | 
						|
	/* check whether we can merge S[0] with right neighbor. */
 | 
						|
	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
 | 
						|
		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
 | 
						|
		return CARRY_ON;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
 | 
						|
	 * Set parameters and return
 | 
						|
	 */
 | 
						|
	if (is_leaf_removable(tb))
 | 
						|
		return CARRY_ON;
 | 
						|
 | 
						|
	/* Balancing is not required. */
 | 
						|
	tb->s0num = vn->vn_nr_item;
 | 
						|
	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
 | 
						|
	return NO_BALANCING_NEEDED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether current node S[h] is balanced when Decreasing its size by
 | 
						|
 * Deleting or Cutting.
 | 
						|
 * Calculate parameters for balancing for current level h.
 | 
						|
 * Parameters:
 | 
						|
 *	tb	tree_balance structure;
 | 
						|
 *	h	current level of the node;
 | 
						|
 *	inum	item number in S[h];
 | 
						|
 *	mode	d - delete, c - cut.
 | 
						|
 * Returns:	1 - schedule occurred;
 | 
						|
 *	        0 - balancing for higher levels needed;
 | 
						|
 *	       -1 - no balancing for higher levels needed;
 | 
						|
 *	       -2 - no disk space.
 | 
						|
 */
 | 
						|
static int dc_check_balance(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
 | 
						|
	       "vs-8250: S is not initialized");
 | 
						|
 | 
						|
	if (h)
 | 
						|
		return dc_check_balance_internal(tb, h);
 | 
						|
	else
 | 
						|
		return dc_check_balance_leaf(tb, h);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether current node S[h] is balanced.
 | 
						|
 * Calculate parameters for balancing for current level h.
 | 
						|
 * Parameters:
 | 
						|
 *
 | 
						|
 *	tb	tree_balance structure:
 | 
						|
 *
 | 
						|
 *              tb is a large structure that must be read about in the header
 | 
						|
 *		file at the same time as this procedure if the reader is
 | 
						|
 *		to successfully understand this procedure
 | 
						|
 *
 | 
						|
 *	h	current level of the node;
 | 
						|
 *	inum	item number in S[h];
 | 
						|
 *	mode	i - insert, p - paste, d - delete, c - cut.
 | 
						|
 * Returns:	1 - schedule occurred;
 | 
						|
 *	        0 - balancing for higher levels needed;
 | 
						|
 *	       -1 - no balancing for higher levels needed;
 | 
						|
 *	       -2 - no disk space.
 | 
						|
 */
 | 
						|
static int check_balance(int mode,
 | 
						|
			 struct tree_balance *tb,
 | 
						|
			 int h,
 | 
						|
			 int inum,
 | 
						|
			 int pos_in_item,
 | 
						|
			 struct item_head *ins_ih, const void *data)
 | 
						|
{
 | 
						|
	struct virtual_node *vn;
 | 
						|
 | 
						|
	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
 | 
						|
	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
 | 
						|
	vn->vn_mode = mode;
 | 
						|
	vn->vn_affected_item_num = inum;
 | 
						|
	vn->vn_pos_in_item = pos_in_item;
 | 
						|
	vn->vn_ins_ih = ins_ih;
 | 
						|
	vn->vn_data = data;
 | 
						|
 | 
						|
	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
 | 
						|
	       "vs-8255: ins_ih can not be 0 in insert mode");
 | 
						|
 | 
						|
	/* Calculate balance parameters when size of node is increasing. */
 | 
						|
	if (tb->insert_size[h] > 0)
 | 
						|
		return ip_check_balance(tb, h);
 | 
						|
 | 
						|
	/* Calculate balance parameters when  size of node is decreasing. */
 | 
						|
	return dc_check_balance(tb, h);
 | 
						|
}
 | 
						|
 | 
						|
/* Check whether parent at the path is the really parent of the current node.*/
 | 
						|
static int get_direct_parent(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	struct buffer_head *bh;
 | 
						|
	struct treepath *path = tb->tb_path;
 | 
						|
	int position,
 | 
						|
	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
 | 
						|
 | 
						|
	/* We are in the root or in the new root. */
 | 
						|
	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
 | 
						|
 | 
						|
		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
 | 
						|
		       "PAP-8260: invalid offset in the path");
 | 
						|
 | 
						|
		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
 | 
						|
		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
 | 
						|
			/* Root is not changed. */
 | 
						|
			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
 | 
						|
			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
		/* Root is changed and we must recalculate the path. */
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Parent in the path is not in the tree. */
 | 
						|
	if (!B_IS_IN_TREE
 | 
						|
	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
 | 
						|
	if ((position =
 | 
						|
	     PATH_OFFSET_POSITION(path,
 | 
						|
				  path_offset - 1)) > B_NR_ITEMS(bh))
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
 | 
						|
	/* Parent in the path is not parent of the current node in the tree. */
 | 
						|
	if (B_N_CHILD_NUM(bh, position) !=
 | 
						|
	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
 | 
						|
	if (buffer_locked(bh)) {
 | 
						|
		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
 | 
						|
		__wait_on_buffer(bh);
 | 
						|
		reiserfs_write_lock_nested(tb->tb_sb, depth);
 | 
						|
		if (FILESYSTEM_CHANGED_TB(tb))
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Parent in the path is unlocked and really parent
 | 
						|
	 * of the current node.
 | 
						|
	 */
 | 
						|
	return CARRY_ON;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Using lnum[h] and rnum[h] we should determine what neighbors
 | 
						|
 * of S[h] we
 | 
						|
 * need in order to balance S[h], and get them if necessary.
 | 
						|
 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
 | 
						|
 *	        CARRY_ON - schedule didn't occur while the function worked;
 | 
						|
 */
 | 
						|
static int get_neighbors(struct tree_balance *tb, int h)
 | 
						|
{
 | 
						|
	int child_position,
 | 
						|
	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
 | 
						|
	unsigned long son_number;
 | 
						|
	struct super_block *sb = tb->tb_sb;
 | 
						|
	struct buffer_head *bh;
 | 
						|
	int depth;
 | 
						|
 | 
						|
	PROC_INFO_INC(sb, get_neighbors[h]);
 | 
						|
 | 
						|
	if (tb->lnum[h]) {
 | 
						|
		/* We need left neighbor to balance S[h]. */
 | 
						|
		PROC_INFO_INC(sb, need_l_neighbor[h]);
 | 
						|
		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
 | 
						|
 | 
						|
		RFALSE(bh == tb->FL[h] &&
 | 
						|
		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
 | 
						|
		       "PAP-8270: invalid position in the parent");
 | 
						|
 | 
						|
		child_position =
 | 
						|
		    (bh ==
 | 
						|
		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
 | 
						|
								       FL[h]);
 | 
						|
		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
 | 
						|
		depth = reiserfs_write_unlock_nested(tb->tb_sb);
 | 
						|
		bh = sb_bread(sb, son_number);
 | 
						|
		reiserfs_write_lock_nested(tb->tb_sb, depth);
 | 
						|
		if (!bh)
 | 
						|
			return IO_ERROR;
 | 
						|
		if (FILESYSTEM_CHANGED_TB(tb)) {
 | 
						|
			brelse(bh);
 | 
						|
			PROC_INFO_INC(sb, get_neighbors_restart[h]);
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
		}
 | 
						|
 | 
						|
		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
 | 
						|
		       child_position > B_NR_ITEMS(tb->FL[h]) ||
 | 
						|
		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
 | 
						|
		       bh->b_blocknr, "PAP-8275: invalid parent");
 | 
						|
		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
 | 
						|
		RFALSE(!h &&
 | 
						|
		       B_FREE_SPACE(bh) !=
 | 
						|
		       MAX_CHILD_SIZE(bh) -
 | 
						|
		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
 | 
						|
		       "PAP-8290: invalid child size of left neighbor");
 | 
						|
 | 
						|
		brelse(tb->L[h]);
 | 
						|
		tb->L[h] = bh;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We need right neighbor to balance S[path_offset]. */
 | 
						|
	if (tb->rnum[h]) {
 | 
						|
		PROC_INFO_INC(sb, need_r_neighbor[h]);
 | 
						|
		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
 | 
						|
 | 
						|
		RFALSE(bh == tb->FR[h] &&
 | 
						|
		       PATH_OFFSET_POSITION(tb->tb_path,
 | 
						|
					    path_offset) >=
 | 
						|
		       B_NR_ITEMS(bh),
 | 
						|
		       "PAP-8295: invalid position in the parent");
 | 
						|
 | 
						|
		child_position =
 | 
						|
		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
 | 
						|
		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
 | 
						|
		depth = reiserfs_write_unlock_nested(tb->tb_sb);
 | 
						|
		bh = sb_bread(sb, son_number);
 | 
						|
		reiserfs_write_lock_nested(tb->tb_sb, depth);
 | 
						|
		if (!bh)
 | 
						|
			return IO_ERROR;
 | 
						|
		if (FILESYSTEM_CHANGED_TB(tb)) {
 | 
						|
			brelse(bh);
 | 
						|
			PROC_INFO_INC(sb, get_neighbors_restart[h]);
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
		}
 | 
						|
		brelse(tb->R[h]);
 | 
						|
		tb->R[h] = bh;
 | 
						|
 | 
						|
		RFALSE(!h
 | 
						|
		       && B_FREE_SPACE(bh) !=
 | 
						|
		       MAX_CHILD_SIZE(bh) -
 | 
						|
		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
 | 
						|
		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
 | 
						|
		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
 | 
						|
		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
 | 
						|
 | 
						|
	}
 | 
						|
	return CARRY_ON;
 | 
						|
}
 | 
						|
 | 
						|
static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
 | 
						|
{
 | 
						|
	int max_num_of_items;
 | 
						|
	int max_num_of_entries;
 | 
						|
	unsigned long blocksize = sb->s_blocksize;
 | 
						|
 | 
						|
#define MIN_NAME_LEN 1
 | 
						|
 | 
						|
	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
 | 
						|
	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
 | 
						|
	    (DEH_SIZE + MIN_NAME_LEN);
 | 
						|
 | 
						|
	return sizeof(struct virtual_node) +
 | 
						|
	    max(max_num_of_items * sizeof(struct virtual_item),
 | 
						|
		sizeof(struct virtual_item) +
 | 
						|
		struct_size_t(struct direntry_uarea, entry_sizes,
 | 
						|
			      max_num_of_entries));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * maybe we should fail balancing we are going to perform when kmalloc
 | 
						|
 * fails several times. But now it will loop until kmalloc gets
 | 
						|
 * required memory
 | 
						|
 */
 | 
						|
static int get_mem_for_virtual_node(struct tree_balance *tb)
 | 
						|
{
 | 
						|
	int check_fs = 0;
 | 
						|
	int size;
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
 | 
						|
 | 
						|
	/* we have to allocate more memory for virtual node */
 | 
						|
	if (size > tb->vn_buf_size) {
 | 
						|
		if (tb->vn_buf) {
 | 
						|
			/* free memory allocated before */
 | 
						|
			kfree(tb->vn_buf);
 | 
						|
			/* this is not needed if kfree is atomic */
 | 
						|
			check_fs = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* virtual node requires now more memory */
 | 
						|
		tb->vn_buf_size = size;
 | 
						|
 | 
						|
		/* get memory for virtual item */
 | 
						|
		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
 | 
						|
		if (!buf) {
 | 
						|
			/*
 | 
						|
			 * getting memory with GFP_KERNEL priority may involve
 | 
						|
			 * balancing now (due to indirect_to_direct conversion
 | 
						|
			 * on dcache shrinking). So, release path and collected
 | 
						|
			 * resources here
 | 
						|
			 */
 | 
						|
			free_buffers_in_tb(tb);
 | 
						|
			buf = kmalloc(size, GFP_NOFS);
 | 
						|
			if (!buf) {
 | 
						|
				tb->vn_buf_size = 0;
 | 
						|
			}
 | 
						|
			tb->vn_buf = buf;
 | 
						|
			schedule();
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
		}
 | 
						|
 | 
						|
		tb->vn_buf = buf;
 | 
						|
	}
 | 
						|
 | 
						|
	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
 | 
						|
	return CARRY_ON;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_REISERFS_CHECK
 | 
						|
static void tb_buffer_sanity_check(struct super_block *sb,
 | 
						|
				   struct buffer_head *bh,
 | 
						|
				   const char *descr, int level)
 | 
						|
{
 | 
						|
	if (bh) {
 | 
						|
		if (atomic_read(&(bh->b_count)) <= 0)
 | 
						|
 | 
						|
			reiserfs_panic(sb, "jmacd-1", "negative or zero "
 | 
						|
				       "reference counter for buffer %s[%d] "
 | 
						|
				       "(%b)", descr, level, bh);
 | 
						|
 | 
						|
		if (!buffer_uptodate(bh))
 | 
						|
			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
 | 
						|
				       "to date %s[%d] (%b)",
 | 
						|
				       descr, level, bh);
 | 
						|
 | 
						|
		if (!B_IS_IN_TREE(bh))
 | 
						|
			reiserfs_panic(sb, "jmacd-3", "buffer is not "
 | 
						|
				       "in tree %s[%d] (%b)",
 | 
						|
				       descr, level, bh);
 | 
						|
 | 
						|
		if (bh->b_bdev != sb->s_bdev)
 | 
						|
			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
 | 
						|
				       "device %s[%d] (%b)",
 | 
						|
				       descr, level, bh);
 | 
						|
 | 
						|
		if (bh->b_size != sb->s_blocksize)
 | 
						|
			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
 | 
						|
				       "blocksize %s[%d] (%b)",
 | 
						|
				       descr, level, bh);
 | 
						|
 | 
						|
		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
 | 
						|
			reiserfs_panic(sb, "jmacd-6", "buffer block "
 | 
						|
				       "number too high %s[%d] (%b)",
 | 
						|
				       descr, level, bh);
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static void tb_buffer_sanity_check(struct super_block *sb,
 | 
						|
				   struct buffer_head *bh,
 | 
						|
				   const char *descr, int level)
 | 
						|
{;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
 | 
						|
{
 | 
						|
	return reiserfs_prepare_for_journal(s, bh, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
 | 
						|
{
 | 
						|
	struct buffer_head *locked;
 | 
						|
#ifdef CONFIG_REISERFS_CHECK
 | 
						|
	int repeat_counter = 0;
 | 
						|
#endif
 | 
						|
	int i;
 | 
						|
 | 
						|
	do {
 | 
						|
 | 
						|
		locked = NULL;
 | 
						|
 | 
						|
		for (i = tb->tb_path->path_length;
 | 
						|
		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
 | 
						|
			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
 | 
						|
				/*
 | 
						|
				 * if I understand correctly, we can only
 | 
						|
				 * be sure the last buffer in the path is
 | 
						|
				 * in the tree --clm
 | 
						|
				 */
 | 
						|
#ifdef CONFIG_REISERFS_CHECK
 | 
						|
				if (PATH_PLAST_BUFFER(tb->tb_path) ==
 | 
						|
				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
 | 
						|
					tb_buffer_sanity_check(tb->tb_sb,
 | 
						|
							       PATH_OFFSET_PBUFFER
 | 
						|
							       (tb->tb_path,
 | 
						|
								i), "S",
 | 
						|
							       tb->tb_path->
 | 
						|
							       path_length - i);
 | 
						|
#endif
 | 
						|
				if (!clear_all_dirty_bits(tb->tb_sb,
 | 
						|
							  PATH_OFFSET_PBUFFER
 | 
						|
							  (tb->tb_path,
 | 
						|
							   i))) {
 | 
						|
					locked =
 | 
						|
					    PATH_OFFSET_PBUFFER(tb->tb_path,
 | 
						|
								i);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
 | 
						|
		     i++) {
 | 
						|
 | 
						|
			if (tb->lnum[i]) {
 | 
						|
 | 
						|
				if (tb->L[i]) {
 | 
						|
					tb_buffer_sanity_check(tb->tb_sb,
 | 
						|
							       tb->L[i],
 | 
						|
							       "L", i);
 | 
						|
					if (!clear_all_dirty_bits
 | 
						|
					    (tb->tb_sb, tb->L[i]))
 | 
						|
						locked = tb->L[i];
 | 
						|
				}
 | 
						|
 | 
						|
				if (!locked && tb->FL[i]) {
 | 
						|
					tb_buffer_sanity_check(tb->tb_sb,
 | 
						|
							       tb->FL[i],
 | 
						|
							       "FL", i);
 | 
						|
					if (!clear_all_dirty_bits
 | 
						|
					    (tb->tb_sb, tb->FL[i]))
 | 
						|
						locked = tb->FL[i];
 | 
						|
				}
 | 
						|
 | 
						|
				if (!locked && tb->CFL[i]) {
 | 
						|
					tb_buffer_sanity_check(tb->tb_sb,
 | 
						|
							       tb->CFL[i],
 | 
						|
							       "CFL", i);
 | 
						|
					if (!clear_all_dirty_bits
 | 
						|
					    (tb->tb_sb, tb->CFL[i]))
 | 
						|
						locked = tb->CFL[i];
 | 
						|
				}
 | 
						|
 | 
						|
			}
 | 
						|
 | 
						|
			if (!locked && (tb->rnum[i])) {
 | 
						|
 | 
						|
				if (tb->R[i]) {
 | 
						|
					tb_buffer_sanity_check(tb->tb_sb,
 | 
						|
							       tb->R[i],
 | 
						|
							       "R", i);
 | 
						|
					if (!clear_all_dirty_bits
 | 
						|
					    (tb->tb_sb, tb->R[i]))
 | 
						|
						locked = tb->R[i];
 | 
						|
				}
 | 
						|
 | 
						|
				if (!locked && tb->FR[i]) {
 | 
						|
					tb_buffer_sanity_check(tb->tb_sb,
 | 
						|
							       tb->FR[i],
 | 
						|
							       "FR", i);
 | 
						|
					if (!clear_all_dirty_bits
 | 
						|
					    (tb->tb_sb, tb->FR[i]))
 | 
						|
						locked = tb->FR[i];
 | 
						|
				}
 | 
						|
 | 
						|
				if (!locked && tb->CFR[i]) {
 | 
						|
					tb_buffer_sanity_check(tb->tb_sb,
 | 
						|
							       tb->CFR[i],
 | 
						|
							       "CFR", i);
 | 
						|
					if (!clear_all_dirty_bits
 | 
						|
					    (tb->tb_sb, tb->CFR[i]))
 | 
						|
						locked = tb->CFR[i];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * as far as I can tell, this is not required.  The FEB list
 | 
						|
		 * seems to be full of newly allocated nodes, which will
 | 
						|
		 * never be locked, dirty, or anything else.
 | 
						|
		 * To be safe, I'm putting in the checks and waits in.
 | 
						|
		 * For the moment, they are needed to keep the code in
 | 
						|
		 * journal.c from complaining about the buffer.
 | 
						|
		 * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
 | 
						|
		 */
 | 
						|
		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
 | 
						|
			if (tb->FEB[i]) {
 | 
						|
				if (!clear_all_dirty_bits
 | 
						|
				    (tb->tb_sb, tb->FEB[i]))
 | 
						|
					locked = tb->FEB[i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (locked) {
 | 
						|
			int depth;
 | 
						|
#ifdef CONFIG_REISERFS_CHECK
 | 
						|
			repeat_counter++;
 | 
						|
			if ((repeat_counter % 10000) == 0) {
 | 
						|
				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
 | 
						|
						 "too many iterations waiting "
 | 
						|
						 "for buffer to unlock "
 | 
						|
						 "(%b)", locked);
 | 
						|
 | 
						|
				/* Don't loop forever.  Try to recover from possible error. */
 | 
						|
 | 
						|
				return (FILESYSTEM_CHANGED_TB(tb)) ?
 | 
						|
				    REPEAT_SEARCH : CARRY_ON;
 | 
						|
			}
 | 
						|
#endif
 | 
						|
			depth = reiserfs_write_unlock_nested(tb->tb_sb);
 | 
						|
			__wait_on_buffer(locked);
 | 
						|
			reiserfs_write_lock_nested(tb->tb_sb, depth);
 | 
						|
			if (FILESYSTEM_CHANGED_TB(tb))
 | 
						|
				return REPEAT_SEARCH;
 | 
						|
		}
 | 
						|
 | 
						|
	} while (locked);
 | 
						|
 | 
						|
	return CARRY_ON;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Prepare for balancing, that is
 | 
						|
 *	get all necessary parents, and neighbors;
 | 
						|
 *	analyze what and where should be moved;
 | 
						|
 *	get sufficient number of new nodes;
 | 
						|
 * Balancing will start only after all resources will be collected at a time.
 | 
						|
 *
 | 
						|
 * When ported to SMP kernels, only at the last moment after all needed nodes
 | 
						|
 * are collected in cache, will the resources be locked using the usual
 | 
						|
 * textbook ordered lock acquisition algorithms.  Note that ensuring that
 | 
						|
 * this code neither write locks what it does not need to write lock nor locks
 | 
						|
 * out of order will be a pain in the butt that could have been avoided.
 | 
						|
 * Grumble grumble. -Hans
 | 
						|
 *
 | 
						|
 * fix is meant in the sense of render unchanging
 | 
						|
 *
 | 
						|
 * Latency might be improved by first gathering a list of what buffers
 | 
						|
 * are needed and then getting as many of them in parallel as possible? -Hans
 | 
						|
 *
 | 
						|
 * Parameters:
 | 
						|
 *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
 | 
						|
 *	tb	tree_balance structure;
 | 
						|
 *	inum	item number in S[h];
 | 
						|
 *      pos_in_item - comment this if you can
 | 
						|
 *      ins_ih	item head of item being inserted
 | 
						|
 *	data	inserted item or data to be pasted
 | 
						|
 * Returns:	1 - schedule occurred while the function worked;
 | 
						|
 *	        0 - schedule didn't occur while the function worked;
 | 
						|
 *             -1 - if no_disk_space
 | 
						|
 */
 | 
						|
 | 
						|
int fix_nodes(int op_mode, struct tree_balance *tb,
 | 
						|
	      struct item_head *ins_ih, const void *data)
 | 
						|
{
 | 
						|
	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
 | 
						|
	int pos_in_item;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we set wait_tb_buffers_run when we have to restore any dirty
 | 
						|
	 * bits cleared during wait_tb_buffers_run
 | 
						|
	 */
 | 
						|
	int wait_tb_buffers_run = 0;
 | 
						|
	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
 | 
						|
 | 
						|
	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
 | 
						|
 | 
						|
	pos_in_item = tb->tb_path->pos_in_item;
 | 
						|
 | 
						|
	tb->fs_gen = get_generation(tb->tb_sb);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we prepare and log the super here so it will already be in the
 | 
						|
	 * transaction when do_balance needs to change it.
 | 
						|
	 * This way do_balance won't have to schedule when trying to prepare
 | 
						|
	 * the super for logging
 | 
						|
	 */
 | 
						|
	reiserfs_prepare_for_journal(tb->tb_sb,
 | 
						|
				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
 | 
						|
	journal_mark_dirty(tb->transaction_handle,
 | 
						|
			   SB_BUFFER_WITH_SB(tb->tb_sb));
 | 
						|
	if (FILESYSTEM_CHANGED_TB(tb))
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
 | 
						|
	/* if it possible in indirect_to_direct conversion */
 | 
						|
	if (buffer_locked(tbS0)) {
 | 
						|
		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
 | 
						|
		__wait_on_buffer(tbS0);
 | 
						|
		reiserfs_write_lock_nested(tb->tb_sb, depth);
 | 
						|
		if (FILESYSTEM_CHANGED_TB(tb))
 | 
						|
			return REPEAT_SEARCH;
 | 
						|
	}
 | 
						|
#ifdef CONFIG_REISERFS_CHECK
 | 
						|
	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
 | 
						|
		print_cur_tb("fix_nodes");
 | 
						|
		reiserfs_panic(tb->tb_sb, "PAP-8305",
 | 
						|
			       "there is pending do_balance");
 | 
						|
	}
 | 
						|
 | 
						|
	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
 | 
						|
		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
 | 
						|
			       "not uptodate at the beginning of fix_nodes "
 | 
						|
			       "or not in tree (mode %c)",
 | 
						|
			       tbS0, tbS0, op_mode);
 | 
						|
 | 
						|
	/* Check parameters. */
 | 
						|
	switch (op_mode) {
 | 
						|
	case M_INSERT:
 | 
						|
		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
 | 
						|
			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
 | 
						|
				       "item number %d (in S0 - %d) in case "
 | 
						|
				       "of insert", item_num,
 | 
						|
				       B_NR_ITEMS(tbS0));
 | 
						|
		break;
 | 
						|
	case M_PASTE:
 | 
						|
	case M_DELETE:
 | 
						|
	case M_CUT:
 | 
						|
		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
 | 
						|
			print_block(tbS0, 0, -1, -1);
 | 
						|
			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
 | 
						|
				       "item number(%d); mode = %c "
 | 
						|
				       "insert_size = %d",
 | 
						|
				       item_num, op_mode,
 | 
						|
				       tb->insert_size[0]);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
 | 
						|
			       "of operation");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
 | 
						|
		/* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
 | 
						|
		return REPEAT_SEARCH;
 | 
						|
 | 
						|
	/* Starting from the leaf level; for all levels h of the tree. */
 | 
						|
	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
 | 
						|
		ret = get_direct_parent(tb, h);
 | 
						|
		if (ret != CARRY_ON)
 | 
						|
			goto repeat;
 | 
						|
 | 
						|
		ret = check_balance(op_mode, tb, h, item_num,
 | 
						|
				    pos_in_item, ins_ih, data);
 | 
						|
		if (ret != CARRY_ON) {
 | 
						|
			if (ret == NO_BALANCING_NEEDED) {
 | 
						|
				/* No balancing for higher levels needed. */
 | 
						|
				ret = get_neighbors(tb, h);
 | 
						|
				if (ret != CARRY_ON)
 | 
						|
					goto repeat;
 | 
						|
				if (h != MAX_HEIGHT - 1)
 | 
						|
					tb->insert_size[h + 1] = 0;
 | 
						|
				/*
 | 
						|
				 * ok, analysis and resource gathering
 | 
						|
				 * are complete
 | 
						|
				 */
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			goto repeat;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = get_neighbors(tb, h);
 | 
						|
		if (ret != CARRY_ON)
 | 
						|
			goto repeat;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * No disk space, or schedule occurred and analysis may be
 | 
						|
		 * invalid and needs to be redone.
 | 
						|
		 */
 | 
						|
		ret = get_empty_nodes(tb, h);
 | 
						|
		if (ret != CARRY_ON)
 | 
						|
			goto repeat;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We have a positive insert size but no nodes exist on this
 | 
						|
		 * level, this means that we are creating a new root.
 | 
						|
		 */
 | 
						|
		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
 | 
						|
 | 
						|
			RFALSE(tb->blknum[h] != 1,
 | 
						|
			       "PAP-8350: creating new empty root");
 | 
						|
 | 
						|
			if (h < MAX_HEIGHT - 1)
 | 
						|
				tb->insert_size[h + 1] = 0;
 | 
						|
		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
 | 
						|
			/*
 | 
						|
			 * The tree needs to be grown, so this node S[h]
 | 
						|
			 * which is the root node is split into two nodes,
 | 
						|
			 * and a new node (S[h+1]) will be created to
 | 
						|
			 * become the root node.
 | 
						|
			 */
 | 
						|
			if (tb->blknum[h] > 1) {
 | 
						|
 | 
						|
				RFALSE(h == MAX_HEIGHT - 1,
 | 
						|
				       "PAP-8355: attempt to create too high of a tree");
 | 
						|
 | 
						|
				tb->insert_size[h + 1] =
 | 
						|
				    (DC_SIZE +
 | 
						|
				     KEY_SIZE) * (tb->blknum[h] - 1) +
 | 
						|
				    DC_SIZE;
 | 
						|
			} else if (h < MAX_HEIGHT - 1)
 | 
						|
				tb->insert_size[h + 1] = 0;
 | 
						|
		} else
 | 
						|
			tb->insert_size[h + 1] =
 | 
						|
			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = wait_tb_buffers_until_unlocked(tb);
 | 
						|
	if (ret == CARRY_ON) {
 | 
						|
		if (FILESYSTEM_CHANGED_TB(tb)) {
 | 
						|
			wait_tb_buffers_run = 1;
 | 
						|
			ret = REPEAT_SEARCH;
 | 
						|
			goto repeat;
 | 
						|
		} else {
 | 
						|
			return CARRY_ON;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		wait_tb_buffers_run = 1;
 | 
						|
		goto repeat;
 | 
						|
	}
 | 
						|
 | 
						|
repeat:
 | 
						|
	/*
 | 
						|
	 * fix_nodes was unable to perform its calculation due to
 | 
						|
	 * filesystem got changed under us, lack of free disk space or i/o
 | 
						|
	 * failure. If the first is the case - the search will be
 | 
						|
	 * repeated. For now - free all resources acquired so far except
 | 
						|
	 * for the new allocated nodes
 | 
						|
	 */
 | 
						|
	{
 | 
						|
		int i;
 | 
						|
 | 
						|
		/* Release path buffers. */
 | 
						|
		if (wait_tb_buffers_run) {
 | 
						|
			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
 | 
						|
		} else {
 | 
						|
			pathrelse(tb->tb_path);
 | 
						|
		}
 | 
						|
		/* brelse all resources collected for balancing */
 | 
						|
		for (i = 0; i < MAX_HEIGHT; i++) {
 | 
						|
			if (wait_tb_buffers_run) {
 | 
						|
				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | 
						|
								 tb->L[i]);
 | 
						|
				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | 
						|
								 tb->R[i]);
 | 
						|
				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | 
						|
								 tb->FL[i]);
 | 
						|
				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | 
						|
								 tb->FR[i]);
 | 
						|
				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | 
						|
								 tb->
 | 
						|
								 CFL[i]);
 | 
						|
				reiserfs_restore_prepared_buffer(tb->tb_sb,
 | 
						|
								 tb->
 | 
						|
								 CFR[i]);
 | 
						|
			}
 | 
						|
 | 
						|
			brelse(tb->L[i]);
 | 
						|
			brelse(tb->R[i]);
 | 
						|
			brelse(tb->FL[i]);
 | 
						|
			brelse(tb->FR[i]);
 | 
						|
			brelse(tb->CFL[i]);
 | 
						|
			brelse(tb->CFR[i]);
 | 
						|
 | 
						|
			tb->L[i] = NULL;
 | 
						|
			tb->R[i] = NULL;
 | 
						|
			tb->FL[i] = NULL;
 | 
						|
			tb->FR[i] = NULL;
 | 
						|
			tb->CFL[i] = NULL;
 | 
						|
			tb->CFR[i] = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (wait_tb_buffers_run) {
 | 
						|
			for (i = 0; i < MAX_FEB_SIZE; i++) {
 | 
						|
				if (tb->FEB[i])
 | 
						|
					reiserfs_restore_prepared_buffer
 | 
						|
					    (tb->tb_sb, tb->FEB[i]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void unfix_nodes(struct tree_balance *tb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Release path buffers. */
 | 
						|
	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
 | 
						|
 | 
						|
	/* brelse all resources collected for balancing */
 | 
						|
	for (i = 0; i < MAX_HEIGHT; i++) {
 | 
						|
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
 | 
						|
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
 | 
						|
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
 | 
						|
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
 | 
						|
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
 | 
						|
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
 | 
						|
 | 
						|
		brelse(tb->L[i]);
 | 
						|
		brelse(tb->R[i]);
 | 
						|
		brelse(tb->FL[i]);
 | 
						|
		brelse(tb->FR[i]);
 | 
						|
		brelse(tb->CFL[i]);
 | 
						|
		brelse(tb->CFR[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* deal with list of allocated (used and unused) nodes */
 | 
						|
	for (i = 0; i < MAX_FEB_SIZE; i++) {
 | 
						|
		if (tb->FEB[i]) {
 | 
						|
			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
 | 
						|
			/*
 | 
						|
			 * de-allocated block which was not used by
 | 
						|
			 * balancing and bforget about buffer for it
 | 
						|
			 */
 | 
						|
			brelse(tb->FEB[i]);
 | 
						|
			reiserfs_free_block(tb->transaction_handle, NULL,
 | 
						|
					    blocknr, 0);
 | 
						|
		}
 | 
						|
		if (tb->used[i]) {
 | 
						|
			/* release used as new nodes including a new root */
 | 
						|
			brelse(tb->used[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(tb->vn_buf);
 | 
						|
 | 
						|
}
 |