mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Since commit95573cac25("kconfig: cache expression values"), xconfig emits a lot of false-positive "unmet direct dependencies" warnings. While conf_read() clears val_is_valid flags, 'make xconfig' calculates symbol values even before the conf_read() call. This is another issue that should be addressed separately, but it has revealed that the val_is_valid field is not initialized. Fixes:95573cac25("kconfig: cache expression values") Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
		
			
				
	
	
		
			1180 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1180 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org>
 | 
						|
 */
 | 
						|
 | 
						|
#include <ctype.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include <hash.h>
 | 
						|
#include <xalloc.h>
 | 
						|
#include "internal.h"
 | 
						|
#include "lkc.h"
 | 
						|
 | 
						|
#define DEBUG_EXPR	0
 | 
						|
 | 
						|
HASHTABLE_DEFINE(expr_hashtable, EXPR_HASHSIZE);
 | 
						|
 | 
						|
static struct expr *expr_eliminate_yn(struct expr *e);
 | 
						|
 | 
						|
/**
 | 
						|
 * expr_lookup - return the expression with the given type and sub-nodes
 | 
						|
 * This looks up an expression with the specified type and sub-nodes. If such
 | 
						|
 * an expression is found in the hash table, it is returned. Otherwise, a new
 | 
						|
 * expression node is allocated and added to the hash table.
 | 
						|
 * @type: expression type
 | 
						|
 * @l: left node
 | 
						|
 * @r: right node
 | 
						|
 * return: expression
 | 
						|
 */
 | 
						|
static struct expr *expr_lookup(enum expr_type type, void *l, void *r)
 | 
						|
{
 | 
						|
	struct expr *e;
 | 
						|
	int hash;
 | 
						|
 | 
						|
	hash = hash_32((unsigned int)type ^ hash_ptr(l) ^ hash_ptr(r));
 | 
						|
 | 
						|
	hash_for_each_possible(expr_hashtable, e, node, hash) {
 | 
						|
		if (e->type == type && e->left._initdata == l &&
 | 
						|
		    e->right._initdata == r)
 | 
						|
			return e;
 | 
						|
	}
 | 
						|
 | 
						|
	e = xmalloc(sizeof(*e));
 | 
						|
	e->type = type;
 | 
						|
	e->left._initdata = l;
 | 
						|
	e->right._initdata = r;
 | 
						|
	e->val_is_valid = false;
 | 
						|
 | 
						|
	hash_add(expr_hashtable, &e->node, hash);
 | 
						|
 | 
						|
	return e;
 | 
						|
}
 | 
						|
 | 
						|
struct expr *expr_alloc_symbol(struct symbol *sym)
 | 
						|
{
 | 
						|
	return expr_lookup(E_SYMBOL, sym, NULL);
 | 
						|
}
 | 
						|
 | 
						|
struct expr *expr_alloc_one(enum expr_type type, struct expr *ce)
 | 
						|
{
 | 
						|
	return expr_lookup(type, ce, NULL);
 | 
						|
}
 | 
						|
 | 
						|
struct expr *expr_alloc_two(enum expr_type type, struct expr *e1, struct expr *e2)
 | 
						|
{
 | 
						|
	return expr_lookup(type, e1, e2);
 | 
						|
}
 | 
						|
 | 
						|
struct expr *expr_alloc_comp(enum expr_type type, struct symbol *s1, struct symbol *s2)
 | 
						|
{
 | 
						|
	return expr_lookup(type, s1, s2);
 | 
						|
}
 | 
						|
 | 
						|
struct expr *expr_alloc_and(struct expr *e1, struct expr *e2)
 | 
						|
{
 | 
						|
	if (!e1)
 | 
						|
		return e2;
 | 
						|
	return e2 ? expr_alloc_two(E_AND, e1, e2) : e1;
 | 
						|
}
 | 
						|
 | 
						|
struct expr *expr_alloc_or(struct expr *e1, struct expr *e2)
 | 
						|
{
 | 
						|
	if (!e1)
 | 
						|
		return e2;
 | 
						|
	return e2 ? expr_alloc_two(E_OR, e1, e2) : e1;
 | 
						|
}
 | 
						|
 | 
						|
static int trans_count;
 | 
						|
 | 
						|
/*
 | 
						|
 * expr_eliminate_eq() helper.
 | 
						|
 *
 | 
						|
 * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does
 | 
						|
 * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared
 | 
						|
 * against all other leaves. Two equal leaves are both replaced with either 'y'
 | 
						|
 * or 'n' as appropriate for 'type', to be eliminated later.
 | 
						|
 */
 | 
						|
static void __expr_eliminate_eq(enum expr_type type, struct expr **ep1, struct expr **ep2)
 | 
						|
{
 | 
						|
	struct expr *l, *r;
 | 
						|
 | 
						|
	/* Recurse down to leaves */
 | 
						|
 | 
						|
	if ((*ep1)->type == type) {
 | 
						|
		l = (*ep1)->left.expr;
 | 
						|
		r = (*ep1)->right.expr;
 | 
						|
		__expr_eliminate_eq(type, &l, ep2);
 | 
						|
		__expr_eliminate_eq(type, &r, ep2);
 | 
						|
		*ep1 = expr_alloc_two(type, l, r);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	if ((*ep2)->type == type) {
 | 
						|
		l = (*ep2)->left.expr;
 | 
						|
		r = (*ep2)->right.expr;
 | 
						|
		__expr_eliminate_eq(type, ep1, &l);
 | 
						|
		__expr_eliminate_eq(type, ep1, &r);
 | 
						|
		*ep2 = expr_alloc_two(type, l, r);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* *ep1 and *ep2 are leaves. Compare them. */
 | 
						|
 | 
						|
	if ((*ep1)->type == E_SYMBOL && (*ep2)->type == E_SYMBOL &&
 | 
						|
	    (*ep1)->left.sym == (*ep2)->left.sym &&
 | 
						|
	    ((*ep1)->left.sym == &symbol_yes || (*ep1)->left.sym == &symbol_no))
 | 
						|
		return;
 | 
						|
	if (!expr_eq(*ep1, *ep2))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* *ep1 and *ep2 are equal leaves. Prepare them for elimination. */
 | 
						|
 | 
						|
	trans_count++;
 | 
						|
	switch (type) {
 | 
						|
	case E_OR:
 | 
						|
		*ep1 = expr_alloc_symbol(&symbol_no);
 | 
						|
		*ep2 = expr_alloc_symbol(&symbol_no);
 | 
						|
		break;
 | 
						|
	case E_AND:
 | 
						|
		*ep1 = expr_alloc_symbol(&symbol_yes);
 | 
						|
		*ep2 = expr_alloc_symbol(&symbol_yes);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Rewrites the expressions 'ep1' and 'ep2' to remove operands common to both.
 | 
						|
 * Example reductions:
 | 
						|
 *
 | 
						|
 *	ep1: A && B           ->  ep1: y
 | 
						|
 *	ep2: A && B && C      ->  ep2: C
 | 
						|
 *
 | 
						|
 *	ep1: A || B           ->  ep1: n
 | 
						|
 *	ep2: A || B || C      ->  ep2: C
 | 
						|
 *
 | 
						|
 *	ep1: A && (B && FOO)  ->  ep1: FOO
 | 
						|
 *	ep2: (BAR && B) && A  ->  ep2: BAR
 | 
						|
 *
 | 
						|
 *	ep1: A && (B || C)    ->  ep1: y
 | 
						|
 *	ep2: (C || B) && A    ->  ep2: y
 | 
						|
 *
 | 
						|
 * Comparisons are done between all operands at the same "level" of && or ||.
 | 
						|
 * For example, in the expression 'e1 && (e2 || e3) && (e4 || e5)', the
 | 
						|
 * following operands will be compared:
 | 
						|
 *
 | 
						|
 *	- 'e1', 'e2 || e3', and 'e4 || e5', against each other
 | 
						|
 *	- e2 against e3
 | 
						|
 *	- e4 against e5
 | 
						|
 *
 | 
						|
 * Parentheses are irrelevant within a single level. 'e1 && (e2 && e3)' and
 | 
						|
 * '(e1 && e2) && e3' are both a single level.
 | 
						|
 *
 | 
						|
 * See __expr_eliminate_eq() as well.
 | 
						|
 */
 | 
						|
void expr_eliminate_eq(struct expr **ep1, struct expr **ep2)
 | 
						|
{
 | 
						|
	if (!*ep1 || !*ep2)
 | 
						|
		return;
 | 
						|
	switch ((*ep1)->type) {
 | 
						|
	case E_OR:
 | 
						|
	case E_AND:
 | 
						|
		__expr_eliminate_eq((*ep1)->type, ep1, ep2);
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
	if ((*ep1)->type != (*ep2)->type) switch ((*ep2)->type) {
 | 
						|
	case E_OR:
 | 
						|
	case E_AND:
 | 
						|
		__expr_eliminate_eq((*ep2)->type, ep1, ep2);
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
	*ep1 = expr_eliminate_yn(*ep1);
 | 
						|
	*ep2 = expr_eliminate_yn(*ep2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns true if 'e1' and 'e2' are equal, after minor simplification. Two
 | 
						|
 * &&/|| expressions are considered equal if every operand in one expression
 | 
						|
 * equals some operand in the other (operands do not need to appear in the same
 | 
						|
 * order), recursively.
 | 
						|
 */
 | 
						|
bool expr_eq(struct expr *e1, struct expr *e2)
 | 
						|
{
 | 
						|
	int old_count;
 | 
						|
	bool res;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A NULL expr is taken to be yes, but there's also a different way to
 | 
						|
	 * represent yes. expr_is_yes() checks for either representation.
 | 
						|
	 */
 | 
						|
	if (!e1 || !e2)
 | 
						|
		return expr_is_yes(e1) && expr_is_yes(e2);
 | 
						|
 | 
						|
	if (e1->type != e2->type)
 | 
						|
		return false;
 | 
						|
	switch (e1->type) {
 | 
						|
	case E_EQUAL:
 | 
						|
	case E_GEQ:
 | 
						|
	case E_GTH:
 | 
						|
	case E_LEQ:
 | 
						|
	case E_LTH:
 | 
						|
	case E_UNEQUAL:
 | 
						|
		return e1->left.sym == e2->left.sym && e1->right.sym == e2->right.sym;
 | 
						|
	case E_SYMBOL:
 | 
						|
		return e1->left.sym == e2->left.sym;
 | 
						|
	case E_NOT:
 | 
						|
		return expr_eq(e1->left.expr, e2->left.expr);
 | 
						|
	case E_AND:
 | 
						|
	case E_OR:
 | 
						|
		old_count = trans_count;
 | 
						|
		expr_eliminate_eq(&e1, &e2);
 | 
						|
		res = (e1->type == E_SYMBOL && e2->type == E_SYMBOL &&
 | 
						|
		       e1->left.sym == e2->left.sym);
 | 
						|
		trans_count = old_count;
 | 
						|
		return res;
 | 
						|
	case E_RANGE:
 | 
						|
	case E_NONE:
 | 
						|
		/* panic */;
 | 
						|
	}
 | 
						|
 | 
						|
	if (DEBUG_EXPR) {
 | 
						|
		expr_fprint(e1, stdout);
 | 
						|
		printf(" = ");
 | 
						|
		expr_fprint(e2, stdout);
 | 
						|
		printf(" ?\n");
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Recursively performs the following simplifications (as well as the
 | 
						|
 * corresponding simplifications with swapped operands):
 | 
						|
 *
 | 
						|
 *	expr && n  ->  n
 | 
						|
 *	expr && y  ->  expr
 | 
						|
 *	expr || n  ->  expr
 | 
						|
 *	expr || y  ->  y
 | 
						|
 *
 | 
						|
 * Returns the optimized expression.
 | 
						|
 */
 | 
						|
static struct expr *expr_eliminate_yn(struct expr *e)
 | 
						|
{
 | 
						|
	struct expr *l, *r;
 | 
						|
 | 
						|
	if (e) switch (e->type) {
 | 
						|
	case E_AND:
 | 
						|
		l = expr_eliminate_yn(e->left.expr);
 | 
						|
		r = expr_eliminate_yn(e->right.expr);
 | 
						|
		if (l->type == E_SYMBOL) {
 | 
						|
			if (l->left.sym == &symbol_no)
 | 
						|
				return l;
 | 
						|
			else if (l->left.sym == &symbol_yes)
 | 
						|
				return r;
 | 
						|
		}
 | 
						|
		if (r->type == E_SYMBOL) {
 | 
						|
			if (r->left.sym == &symbol_no)
 | 
						|
				return r;
 | 
						|
			else if (r->left.sym == &symbol_yes)
 | 
						|
				return l;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case E_OR:
 | 
						|
		l = expr_eliminate_yn(e->left.expr);
 | 
						|
		r = expr_eliminate_yn(e->right.expr);
 | 
						|
		if (l->type == E_SYMBOL) {
 | 
						|
			if (l->left.sym == &symbol_no)
 | 
						|
				return r;
 | 
						|
			else if (l->left.sym == &symbol_yes)
 | 
						|
				return l;
 | 
						|
		}
 | 
						|
		if (r->type == E_SYMBOL) {
 | 
						|
			if (r->left.sym == &symbol_no)
 | 
						|
				return l;
 | 
						|
			else if (r->left.sym == &symbol_yes)
 | 
						|
				return r;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
	return e;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * e1 || e2 -> ?
 | 
						|
 */
 | 
						|
static struct expr *expr_join_or(struct expr *e1, struct expr *e2)
 | 
						|
{
 | 
						|
	struct expr *tmp;
 | 
						|
	struct symbol *sym1, *sym2;
 | 
						|
 | 
						|
	if (expr_eq(e1, e2))
 | 
						|
		return e1;
 | 
						|
	if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
 | 
						|
		return NULL;
 | 
						|
	if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
 | 
						|
		return NULL;
 | 
						|
	if (e1->type == E_NOT) {
 | 
						|
		tmp = e1->left.expr;
 | 
						|
		if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
 | 
						|
			return NULL;
 | 
						|
		sym1 = tmp->left.sym;
 | 
						|
	} else
 | 
						|
		sym1 = e1->left.sym;
 | 
						|
	if (e2->type == E_NOT) {
 | 
						|
		if (e2->left.expr->type != E_SYMBOL)
 | 
						|
			return NULL;
 | 
						|
		sym2 = e2->left.expr->left.sym;
 | 
						|
	} else
 | 
						|
		sym2 = e2->left.sym;
 | 
						|
	if (sym1 != sym2)
 | 
						|
		return NULL;
 | 
						|
	if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
 | 
						|
		return NULL;
 | 
						|
	if (sym1->type == S_TRISTATE) {
 | 
						|
		if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
 | 
						|
		    ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
 | 
						|
		     (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) {
 | 
						|
			// (a='y') || (a='m') -> (a!='n')
 | 
						|
			return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_no);
 | 
						|
		}
 | 
						|
		if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
 | 
						|
		    ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
 | 
						|
		     (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) {
 | 
						|
			// (a='y') || (a='n') -> (a!='m')
 | 
						|
			return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_mod);
 | 
						|
		}
 | 
						|
		if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
 | 
						|
		    ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
 | 
						|
		     (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) {
 | 
						|
			// (a='m') || (a='n') -> (a!='y')
 | 
						|
			return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_yes);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (sym1->type == S_BOOLEAN) {
 | 
						|
		// a || !a -> y
 | 
						|
		if ((e1->type == E_NOT && e1->left.expr->type == E_SYMBOL && e2->type == E_SYMBOL) ||
 | 
						|
		    (e2->type == E_NOT && e2->left.expr->type == E_SYMBOL && e1->type == E_SYMBOL))
 | 
						|
			return expr_alloc_symbol(&symbol_yes);
 | 
						|
	}
 | 
						|
 | 
						|
	if (DEBUG_EXPR) {
 | 
						|
		printf("optimize (");
 | 
						|
		expr_fprint(e1, stdout);
 | 
						|
		printf(") || (");
 | 
						|
		expr_fprint(e2, stdout);
 | 
						|
		printf(")?\n");
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct expr *expr_join_and(struct expr *e1, struct expr *e2)
 | 
						|
{
 | 
						|
	struct expr *tmp;
 | 
						|
	struct symbol *sym1, *sym2;
 | 
						|
 | 
						|
	if (expr_eq(e1, e2))
 | 
						|
		return e1;
 | 
						|
	if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
 | 
						|
		return NULL;
 | 
						|
	if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
 | 
						|
		return NULL;
 | 
						|
	if (e1->type == E_NOT) {
 | 
						|
		tmp = e1->left.expr;
 | 
						|
		if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
 | 
						|
			return NULL;
 | 
						|
		sym1 = tmp->left.sym;
 | 
						|
	} else
 | 
						|
		sym1 = e1->left.sym;
 | 
						|
	if (e2->type == E_NOT) {
 | 
						|
		if (e2->left.expr->type != E_SYMBOL)
 | 
						|
			return NULL;
 | 
						|
		sym2 = e2->left.expr->left.sym;
 | 
						|
	} else
 | 
						|
		sym2 = e2->left.sym;
 | 
						|
	if (sym1 != sym2)
 | 
						|
		return NULL;
 | 
						|
	if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_yes) ||
 | 
						|
	    (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_yes))
 | 
						|
		// (a) && (a='y') -> (a='y')
 | 
						|
		return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
 | 
						|
 | 
						|
	if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_no) ||
 | 
						|
	    (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_no))
 | 
						|
		// (a) && (a!='n') -> (a)
 | 
						|
		return expr_alloc_symbol(sym1);
 | 
						|
 | 
						|
	if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_mod) ||
 | 
						|
	    (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_mod))
 | 
						|
		// (a) && (a!='m') -> (a='y')
 | 
						|
		return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
 | 
						|
 | 
						|
	if (sym1->type == S_TRISTATE) {
 | 
						|
		if (e1->type == E_EQUAL && e2->type == E_UNEQUAL) {
 | 
						|
			// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
 | 
						|
			sym2 = e1->right.sym;
 | 
						|
			if ((e2->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
 | 
						|
				return sym2 != e2->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
 | 
						|
							     : expr_alloc_symbol(&symbol_no);
 | 
						|
		}
 | 
						|
		if (e1->type == E_UNEQUAL && e2->type == E_EQUAL) {
 | 
						|
			// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
 | 
						|
			sym2 = e2->right.sym;
 | 
						|
			if ((e1->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
 | 
						|
				return sym2 != e1->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
 | 
						|
							     : expr_alloc_symbol(&symbol_no);
 | 
						|
		}
 | 
						|
		if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
 | 
						|
			   ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
 | 
						|
			    (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes)))
 | 
						|
			// (a!='y') && (a!='n') -> (a='m')
 | 
						|
			return expr_alloc_comp(E_EQUAL, sym1, &symbol_mod);
 | 
						|
 | 
						|
		if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
 | 
						|
			   ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
 | 
						|
			    (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes)))
 | 
						|
			// (a!='y') && (a!='m') -> (a='n')
 | 
						|
			return expr_alloc_comp(E_EQUAL, sym1, &symbol_no);
 | 
						|
 | 
						|
		if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
 | 
						|
			   ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
 | 
						|
			    (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod)))
 | 
						|
			// (a!='m') && (a!='n') -> (a='m')
 | 
						|
			return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
 | 
						|
 | 
						|
		if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_mod) ||
 | 
						|
		    (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_mod) ||
 | 
						|
		    (e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_yes) ||
 | 
						|
		    (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_yes))
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (DEBUG_EXPR) {
 | 
						|
		printf("optimize (");
 | 
						|
		expr_fprint(e1, stdout);
 | 
						|
		printf(") && (");
 | 
						|
		expr_fprint(e2, stdout);
 | 
						|
		printf(")?\n");
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * expr_eliminate_dups() helper.
 | 
						|
 *
 | 
						|
 * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does
 | 
						|
 * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared
 | 
						|
 * against all other leaves to look for simplifications.
 | 
						|
 */
 | 
						|
static void expr_eliminate_dups1(enum expr_type type, struct expr **ep1, struct expr **ep2)
 | 
						|
{
 | 
						|
	struct expr *tmp, *l, *r;
 | 
						|
 | 
						|
	/* Recurse down to leaves */
 | 
						|
 | 
						|
	if ((*ep1)->type == type) {
 | 
						|
		l = (*ep1)->left.expr;
 | 
						|
		r = (*ep1)->right.expr;
 | 
						|
		expr_eliminate_dups1(type, &l, ep2);
 | 
						|
		expr_eliminate_dups1(type, &r, ep2);
 | 
						|
		*ep1 = expr_alloc_two(type, l, r);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	if ((*ep2)->type == type) {
 | 
						|
		l = (*ep2)->left.expr;
 | 
						|
		r = (*ep2)->right.expr;
 | 
						|
		expr_eliminate_dups1(type, ep1, &l);
 | 
						|
		expr_eliminate_dups1(type, ep1, &r);
 | 
						|
		*ep2 = expr_alloc_two(type, l, r);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* *ep1 and *ep2 are leaves. Compare and process them. */
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	case E_OR:
 | 
						|
		tmp = expr_join_or(*ep1, *ep2);
 | 
						|
		if (tmp) {
 | 
						|
			*ep1 = expr_alloc_symbol(&symbol_no);
 | 
						|
			*ep2 = tmp;
 | 
						|
			trans_count++;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case E_AND:
 | 
						|
		tmp = expr_join_and(*ep1, *ep2);
 | 
						|
		if (tmp) {
 | 
						|
			*ep1 = expr_alloc_symbol(&symbol_yes);
 | 
						|
			*ep2 = tmp;
 | 
						|
			trans_count++;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Rewrites 'e' in-place to remove ("join") duplicate and other redundant
 | 
						|
 * operands.
 | 
						|
 *
 | 
						|
 * Example simplifications:
 | 
						|
 *
 | 
						|
 *	A || B || A    ->  A || B
 | 
						|
 *	A && B && A=y  ->  A=y && B
 | 
						|
 *
 | 
						|
 * Returns the deduplicated expression.
 | 
						|
 */
 | 
						|
struct expr *expr_eliminate_dups(struct expr *e)
 | 
						|
{
 | 
						|
	int oldcount;
 | 
						|
	if (!e)
 | 
						|
		return e;
 | 
						|
 | 
						|
	oldcount = trans_count;
 | 
						|
	do {
 | 
						|
		struct expr *l, *r;
 | 
						|
 | 
						|
		trans_count = 0;
 | 
						|
		switch (e->type) {
 | 
						|
		case E_OR: case E_AND:
 | 
						|
			l = expr_eliminate_dups(e->left.expr);
 | 
						|
			r = expr_eliminate_dups(e->right.expr);
 | 
						|
			expr_eliminate_dups1(e->type, &l, &r);
 | 
						|
			e = expr_alloc_two(e->type, l, r);
 | 
						|
		default:
 | 
						|
			;
 | 
						|
		}
 | 
						|
		e = expr_eliminate_yn(e);
 | 
						|
	} while (trans_count); /* repeat until we get no more simplifications */
 | 
						|
	trans_count = oldcount;
 | 
						|
	return e;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Performs various simplifications involving logical operators and
 | 
						|
 * comparisons.
 | 
						|
 *
 | 
						|
 *   For bool type:
 | 
						|
 *     A=n        ->  !A
 | 
						|
 *     A=m        ->  n
 | 
						|
 *     A=y        ->  A
 | 
						|
 *     A!=n       ->  A
 | 
						|
 *     A!=m       ->  y
 | 
						|
 *     A!=y       ->  !A
 | 
						|
 *
 | 
						|
 *   For any type:
 | 
						|
 *     !!A        ->  A
 | 
						|
 *     !(A=B)     ->  A!=B
 | 
						|
 *     !(A!=B)    ->  A=B
 | 
						|
 *     !(A<=B)    ->  A>B
 | 
						|
 *     !(A>=B)    ->  A<B
 | 
						|
 *     !(A<B)     ->  A>=B
 | 
						|
 *     !(A>B)     ->  A<=B
 | 
						|
 *     !(A || B)  ->  !A && !B
 | 
						|
 *     !(A && B)  ->  !A || !B
 | 
						|
 *
 | 
						|
 *   For constant:
 | 
						|
 *     !y         ->  n
 | 
						|
 *     !m         ->  m
 | 
						|
 *     !n         ->  y
 | 
						|
 *
 | 
						|
 * Allocates and returns a new expression.
 | 
						|
 */
 | 
						|
struct expr *expr_transform(struct expr *e)
 | 
						|
{
 | 
						|
	if (!e)
 | 
						|
		return NULL;
 | 
						|
	switch (e->type) {
 | 
						|
	case E_EQUAL:
 | 
						|
	case E_GEQ:
 | 
						|
	case E_GTH:
 | 
						|
	case E_LEQ:
 | 
						|
	case E_LTH:
 | 
						|
	case E_UNEQUAL:
 | 
						|
	case E_SYMBOL:
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		e = expr_alloc_two(e->type,
 | 
						|
				   expr_transform(e->left.expr),
 | 
						|
				   expr_transform(e->right.expr));
 | 
						|
	}
 | 
						|
 | 
						|
	switch (e->type) {
 | 
						|
	case E_EQUAL:
 | 
						|
		if (e->left.sym->type != S_BOOLEAN)
 | 
						|
			break;
 | 
						|
		if (e->right.sym == &symbol_no) {
 | 
						|
			// A=n -> !A
 | 
						|
			e = expr_alloc_one(E_NOT, expr_alloc_symbol(e->left.sym));
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (e->right.sym == &symbol_mod) {
 | 
						|
			// A=m -> n
 | 
						|
			printf("boolean symbol %s tested for 'm'? test forced to 'n'\n", e->left.sym->name);
 | 
						|
			e = expr_alloc_symbol(&symbol_no);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (e->right.sym == &symbol_yes) {
 | 
						|
			// A=y -> A
 | 
						|
			e = expr_alloc_symbol(e->left.sym);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case E_UNEQUAL:
 | 
						|
		if (e->left.sym->type != S_BOOLEAN)
 | 
						|
			break;
 | 
						|
		if (e->right.sym == &symbol_no) {
 | 
						|
			// A!=n -> A
 | 
						|
			e = expr_alloc_symbol(e->left.sym);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (e->right.sym == &symbol_mod) {
 | 
						|
			// A!=m -> y
 | 
						|
			printf("boolean symbol %s tested for 'm'? test forced to 'y'\n", e->left.sym->name);
 | 
						|
			e = expr_alloc_symbol(&symbol_yes);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (e->right.sym == &symbol_yes) {
 | 
						|
			// A!=y -> !A
 | 
						|
			e = expr_alloc_one(E_NOT, e->left.expr);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case E_NOT:
 | 
						|
		switch (e->left.expr->type) {
 | 
						|
		case E_NOT:
 | 
						|
			// !!A -> A
 | 
						|
			e = e->left.expr->left.expr;
 | 
						|
			break;
 | 
						|
		case E_EQUAL:
 | 
						|
		case E_UNEQUAL:
 | 
						|
			// !(A=B) -> A!=B
 | 
						|
			e = expr_alloc_comp(e->left.expr->type == E_EQUAL ? E_UNEQUAL : E_EQUAL,
 | 
						|
					    e->left.expr->left.sym,
 | 
						|
					    e->left.expr->right.sym);
 | 
						|
			break;
 | 
						|
		case E_LEQ:
 | 
						|
		case E_GEQ:
 | 
						|
			// !(A<=B) -> A>B
 | 
						|
			e = expr_alloc_comp(e->left.expr->type == E_LEQ ? E_GTH : E_LTH,
 | 
						|
					    e->left.expr->left.sym,
 | 
						|
					    e->left.expr->right.sym);
 | 
						|
			break;
 | 
						|
		case E_LTH:
 | 
						|
		case E_GTH:
 | 
						|
			// !(A<B) -> A>=B
 | 
						|
			e = expr_alloc_comp(e->left.expr->type == E_LTH ? E_GEQ : E_LEQ,
 | 
						|
					    e->left.expr->left.sym,
 | 
						|
					    e->left.expr->right.sym);
 | 
						|
			break;
 | 
						|
		case E_OR:
 | 
						|
			// !(A || B) -> !A && !B
 | 
						|
			e = expr_alloc_and(expr_alloc_one(E_NOT, e->left.expr->left.expr),
 | 
						|
					   expr_alloc_one(E_NOT, e->left.expr->right.expr));
 | 
						|
			e = expr_transform(e);
 | 
						|
			break;
 | 
						|
		case E_AND:
 | 
						|
			// !(A && B) -> !A || !B
 | 
						|
			e = expr_alloc_or(expr_alloc_one(E_NOT, e->left.expr->left.expr),
 | 
						|
					  expr_alloc_one(E_NOT, e->left.expr->right.expr));
 | 
						|
			e = expr_transform(e);
 | 
						|
			break;
 | 
						|
		case E_SYMBOL:
 | 
						|
			if (e->left.expr->left.sym == &symbol_yes)
 | 
						|
				// !'y' -> 'n'
 | 
						|
				e = expr_alloc_symbol(&symbol_no);
 | 
						|
			else if (e->left.expr->left.sym == &symbol_mod)
 | 
						|
				// !'m' -> 'm'
 | 
						|
				e = expr_alloc_symbol(&symbol_mod);
 | 
						|
			else if (e->left.expr->left.sym == &symbol_no)
 | 
						|
				// !'n' -> 'y'
 | 
						|
				e = expr_alloc_symbol(&symbol_yes);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
	return e;
 | 
						|
}
 | 
						|
 | 
						|
bool expr_contains_symbol(struct expr *dep, struct symbol *sym)
 | 
						|
{
 | 
						|
	if (!dep)
 | 
						|
		return false;
 | 
						|
 | 
						|
	switch (dep->type) {
 | 
						|
	case E_AND:
 | 
						|
	case E_OR:
 | 
						|
		return expr_contains_symbol(dep->left.expr, sym) ||
 | 
						|
		       expr_contains_symbol(dep->right.expr, sym);
 | 
						|
	case E_SYMBOL:
 | 
						|
		return dep->left.sym == sym;
 | 
						|
	case E_EQUAL:
 | 
						|
	case E_GEQ:
 | 
						|
	case E_GTH:
 | 
						|
	case E_LEQ:
 | 
						|
	case E_LTH:
 | 
						|
	case E_UNEQUAL:
 | 
						|
		return dep->left.sym == sym ||
 | 
						|
		       dep->right.sym == sym;
 | 
						|
	case E_NOT:
 | 
						|
		return expr_contains_symbol(dep->left.expr, sym);
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool expr_depends_symbol(struct expr *dep, struct symbol *sym)
 | 
						|
{
 | 
						|
	if (!dep)
 | 
						|
		return false;
 | 
						|
 | 
						|
	switch (dep->type) {
 | 
						|
	case E_AND:
 | 
						|
		return expr_depends_symbol(dep->left.expr, sym) ||
 | 
						|
		       expr_depends_symbol(dep->right.expr, sym);
 | 
						|
	case E_SYMBOL:
 | 
						|
		return dep->left.sym == sym;
 | 
						|
	case E_EQUAL:
 | 
						|
		if (dep->left.sym == sym) {
 | 
						|
			if (dep->right.sym == &symbol_yes || dep->right.sym == &symbol_mod)
 | 
						|
				return true;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case E_UNEQUAL:
 | 
						|
		if (dep->left.sym == sym) {
 | 
						|
			if (dep->right.sym == &symbol_no)
 | 
						|
				return true;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		;
 | 
						|
	}
 | 
						|
 	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Inserts explicit comparisons of type 'type' to symbol 'sym' into the
 | 
						|
 * expression 'e'.
 | 
						|
 *
 | 
						|
 * Examples transformations for type == E_UNEQUAL, sym == &symbol_no:
 | 
						|
 *
 | 
						|
 *	A              ->  A!=n
 | 
						|
 *	!A             ->  A=n
 | 
						|
 *	A && B         ->  !(A=n || B=n)
 | 
						|
 *	A || B         ->  !(A=n && B=n)
 | 
						|
 *	A && (B || C)  ->  !(A=n || (B=n && C=n))
 | 
						|
 *
 | 
						|
 * Allocates and returns a new expression.
 | 
						|
 */
 | 
						|
struct expr *expr_trans_compare(struct expr *e, enum expr_type type, struct symbol *sym)
 | 
						|
{
 | 
						|
	struct expr *e1, *e2;
 | 
						|
 | 
						|
	if (!e) {
 | 
						|
		e = expr_alloc_symbol(sym);
 | 
						|
		if (type == E_UNEQUAL)
 | 
						|
			e = expr_alloc_one(E_NOT, e);
 | 
						|
		return e;
 | 
						|
	}
 | 
						|
	switch (e->type) {
 | 
						|
	case E_AND:
 | 
						|
		e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
 | 
						|
		e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
 | 
						|
		if (sym == &symbol_yes)
 | 
						|
			e = expr_alloc_two(E_AND, e1, e2);
 | 
						|
		if (sym == &symbol_no)
 | 
						|
			e = expr_alloc_two(E_OR, e1, e2);
 | 
						|
		if (type == E_UNEQUAL)
 | 
						|
			e = expr_alloc_one(E_NOT, e);
 | 
						|
		return e;
 | 
						|
	case E_OR:
 | 
						|
		e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
 | 
						|
		e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
 | 
						|
		if (sym == &symbol_yes)
 | 
						|
			e = expr_alloc_two(E_OR, e1, e2);
 | 
						|
		if (sym == &symbol_no)
 | 
						|
			e = expr_alloc_two(E_AND, e1, e2);
 | 
						|
		if (type == E_UNEQUAL)
 | 
						|
			e = expr_alloc_one(E_NOT, e);
 | 
						|
		return e;
 | 
						|
	case E_NOT:
 | 
						|
		return expr_trans_compare(e->left.expr, type == E_EQUAL ? E_UNEQUAL : E_EQUAL, sym);
 | 
						|
	case E_UNEQUAL:
 | 
						|
	case E_LTH:
 | 
						|
	case E_LEQ:
 | 
						|
	case E_GTH:
 | 
						|
	case E_GEQ:
 | 
						|
	case E_EQUAL:
 | 
						|
		if (type == E_EQUAL) {
 | 
						|
			if (sym == &symbol_yes)
 | 
						|
				return e;
 | 
						|
			if (sym == &symbol_mod)
 | 
						|
				return expr_alloc_symbol(&symbol_no);
 | 
						|
			if (sym == &symbol_no)
 | 
						|
				return expr_alloc_one(E_NOT, e);
 | 
						|
		} else {
 | 
						|
			if (sym == &symbol_yes)
 | 
						|
				return expr_alloc_one(E_NOT, e);
 | 
						|
			if (sym == &symbol_mod)
 | 
						|
				return expr_alloc_symbol(&symbol_yes);
 | 
						|
			if (sym == &symbol_no)
 | 
						|
				return e;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case E_SYMBOL:
 | 
						|
		return expr_alloc_comp(type, e->left.sym, sym);
 | 
						|
	case E_RANGE:
 | 
						|
	case E_NONE:
 | 
						|
		/* panic */;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
enum string_value_kind {
 | 
						|
	k_string,
 | 
						|
	k_signed,
 | 
						|
	k_unsigned,
 | 
						|
};
 | 
						|
 | 
						|
union string_value {
 | 
						|
	unsigned long long u;
 | 
						|
	signed long long s;
 | 
						|
};
 | 
						|
 | 
						|
static enum string_value_kind expr_parse_string(const char *str,
 | 
						|
						enum symbol_type type,
 | 
						|
						union string_value *val)
 | 
						|
{
 | 
						|
	char *tail;
 | 
						|
	enum string_value_kind kind;
 | 
						|
 | 
						|
	errno = 0;
 | 
						|
	switch (type) {
 | 
						|
	case S_BOOLEAN:
 | 
						|
	case S_TRISTATE:
 | 
						|
		val->s = !strcmp(str, "n") ? 0 :
 | 
						|
			 !strcmp(str, "m") ? 1 :
 | 
						|
			 !strcmp(str, "y") ? 2 : -1;
 | 
						|
		return k_signed;
 | 
						|
	case S_INT:
 | 
						|
		val->s = strtoll(str, &tail, 10);
 | 
						|
		kind = k_signed;
 | 
						|
		break;
 | 
						|
	case S_HEX:
 | 
						|
		val->u = strtoull(str, &tail, 16);
 | 
						|
		kind = k_unsigned;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		val->s = strtoll(str, &tail, 0);
 | 
						|
		kind = k_signed;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return !errno && !*tail && tail > str && isxdigit(tail[-1])
 | 
						|
	       ? kind : k_string;
 | 
						|
}
 | 
						|
 | 
						|
static tristate __expr_calc_value(struct expr *e)
 | 
						|
{
 | 
						|
	tristate val1, val2;
 | 
						|
	const char *str1, *str2;
 | 
						|
	enum string_value_kind k1 = k_string, k2 = k_string;
 | 
						|
	union string_value lval = {}, rval = {};
 | 
						|
	int res;
 | 
						|
 | 
						|
	switch (e->type) {
 | 
						|
	case E_SYMBOL:
 | 
						|
		sym_calc_value(e->left.sym);
 | 
						|
		return e->left.sym->curr.tri;
 | 
						|
	case E_AND:
 | 
						|
		val1 = expr_calc_value(e->left.expr);
 | 
						|
		val2 = expr_calc_value(e->right.expr);
 | 
						|
		return EXPR_AND(val1, val2);
 | 
						|
	case E_OR:
 | 
						|
		val1 = expr_calc_value(e->left.expr);
 | 
						|
		val2 = expr_calc_value(e->right.expr);
 | 
						|
		return EXPR_OR(val1, val2);
 | 
						|
	case E_NOT:
 | 
						|
		val1 = expr_calc_value(e->left.expr);
 | 
						|
		return EXPR_NOT(val1);
 | 
						|
	case E_EQUAL:
 | 
						|
	case E_GEQ:
 | 
						|
	case E_GTH:
 | 
						|
	case E_LEQ:
 | 
						|
	case E_LTH:
 | 
						|
	case E_UNEQUAL:
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		printf("expr_calc_value: %d?\n", e->type);
 | 
						|
		return no;
 | 
						|
	}
 | 
						|
 | 
						|
	sym_calc_value(e->left.sym);
 | 
						|
	sym_calc_value(e->right.sym);
 | 
						|
	str1 = sym_get_string_value(e->left.sym);
 | 
						|
	str2 = sym_get_string_value(e->right.sym);
 | 
						|
 | 
						|
	if (e->left.sym->type != S_STRING || e->right.sym->type != S_STRING) {
 | 
						|
		k1 = expr_parse_string(str1, e->left.sym->type, &lval);
 | 
						|
		k2 = expr_parse_string(str2, e->right.sym->type, &rval);
 | 
						|
	}
 | 
						|
 | 
						|
	if (k1 == k_string || k2 == k_string)
 | 
						|
		res = strcmp(str1, str2);
 | 
						|
	else if (k1 == k_unsigned || k2 == k_unsigned)
 | 
						|
		res = (lval.u > rval.u) - (lval.u < rval.u);
 | 
						|
	else /* if (k1 == k_signed && k2 == k_signed) */
 | 
						|
		res = (lval.s > rval.s) - (lval.s < rval.s);
 | 
						|
 | 
						|
	switch(e->type) {
 | 
						|
	case E_EQUAL:
 | 
						|
		return res ? no : yes;
 | 
						|
	case E_GEQ:
 | 
						|
		return res >= 0 ? yes : no;
 | 
						|
	case E_GTH:
 | 
						|
		return res > 0 ? yes : no;
 | 
						|
	case E_LEQ:
 | 
						|
		return res <= 0 ? yes : no;
 | 
						|
	case E_LTH:
 | 
						|
		return res < 0 ? yes : no;
 | 
						|
	case E_UNEQUAL:
 | 
						|
		return res ? yes : no;
 | 
						|
	default:
 | 
						|
		printf("expr_calc_value: relation %d?\n", e->type);
 | 
						|
		return no;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * expr_calc_value - return the tristate value of the given expression
 | 
						|
 * @e: expression
 | 
						|
 * return: tristate value of the expression
 | 
						|
 */
 | 
						|
tristate expr_calc_value(struct expr *e)
 | 
						|
{
 | 
						|
	if (!e)
 | 
						|
		return yes;
 | 
						|
 | 
						|
	if (!e->val_is_valid) {
 | 
						|
		e->val = __expr_calc_value(e);
 | 
						|
		e->val_is_valid = true;
 | 
						|
	}
 | 
						|
 | 
						|
	return e->val;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * expr_invalidate_all - invalidate all cached expression values
 | 
						|
 */
 | 
						|
void expr_invalidate_all(void)
 | 
						|
{
 | 
						|
	struct expr *e;
 | 
						|
 | 
						|
	hash_for_each(expr_hashtable, e, node)
 | 
						|
		e->val_is_valid = false;
 | 
						|
}
 | 
						|
 | 
						|
static int expr_compare_type(enum expr_type t1, enum expr_type t2)
 | 
						|
{
 | 
						|
	if (t1 == t2)
 | 
						|
		return 0;
 | 
						|
	switch (t1) {
 | 
						|
	case E_LEQ:
 | 
						|
	case E_LTH:
 | 
						|
	case E_GEQ:
 | 
						|
	case E_GTH:
 | 
						|
		if (t2 == E_EQUAL || t2 == E_UNEQUAL)
 | 
						|
			return 1;
 | 
						|
		/* fallthrough */
 | 
						|
	case E_EQUAL:
 | 
						|
	case E_UNEQUAL:
 | 
						|
		if (t2 == E_NOT)
 | 
						|
			return 1;
 | 
						|
		/* fallthrough */
 | 
						|
	case E_NOT:
 | 
						|
		if (t2 == E_AND)
 | 
						|
			return 1;
 | 
						|
		/* fallthrough */
 | 
						|
	case E_AND:
 | 
						|
		if (t2 == E_OR)
 | 
						|
			return 1;
 | 
						|
		/* fallthrough */
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void expr_print(const struct expr *e,
 | 
						|
		void (*fn)(void *, struct symbol *, const char *),
 | 
						|
		void *data, int prevtoken)
 | 
						|
{
 | 
						|
	if (!e) {
 | 
						|
		fn(data, NULL, "y");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (expr_compare_type(prevtoken, e->type) > 0)
 | 
						|
		fn(data, NULL, "(");
 | 
						|
	switch (e->type) {
 | 
						|
	case E_SYMBOL:
 | 
						|
		if (e->left.sym->name)
 | 
						|
			fn(data, e->left.sym, e->left.sym->name);
 | 
						|
		else
 | 
						|
			fn(data, NULL, "<choice>");
 | 
						|
		break;
 | 
						|
	case E_NOT:
 | 
						|
		fn(data, NULL, "!");
 | 
						|
		expr_print(e->left.expr, fn, data, E_NOT);
 | 
						|
		break;
 | 
						|
	case E_EQUAL:
 | 
						|
		if (e->left.sym->name)
 | 
						|
			fn(data, e->left.sym, e->left.sym->name);
 | 
						|
		else
 | 
						|
			fn(data, NULL, "<choice>");
 | 
						|
		fn(data, NULL, "=");
 | 
						|
		fn(data, e->right.sym, e->right.sym->name);
 | 
						|
		break;
 | 
						|
	case E_LEQ:
 | 
						|
	case E_LTH:
 | 
						|
		if (e->left.sym->name)
 | 
						|
			fn(data, e->left.sym, e->left.sym->name);
 | 
						|
		else
 | 
						|
			fn(data, NULL, "<choice>");
 | 
						|
		fn(data, NULL, e->type == E_LEQ ? "<=" : "<");
 | 
						|
		fn(data, e->right.sym, e->right.sym->name);
 | 
						|
		break;
 | 
						|
	case E_GEQ:
 | 
						|
	case E_GTH:
 | 
						|
		if (e->left.sym->name)
 | 
						|
			fn(data, e->left.sym, e->left.sym->name);
 | 
						|
		else
 | 
						|
			fn(data, NULL, "<choice>");
 | 
						|
		fn(data, NULL, e->type == E_GEQ ? ">=" : ">");
 | 
						|
		fn(data, e->right.sym, e->right.sym->name);
 | 
						|
		break;
 | 
						|
	case E_UNEQUAL:
 | 
						|
		if (e->left.sym->name)
 | 
						|
			fn(data, e->left.sym, e->left.sym->name);
 | 
						|
		else
 | 
						|
			fn(data, NULL, "<choice>");
 | 
						|
		fn(data, NULL, "!=");
 | 
						|
		fn(data, e->right.sym, e->right.sym->name);
 | 
						|
		break;
 | 
						|
	case E_OR:
 | 
						|
		expr_print(e->left.expr, fn, data, E_OR);
 | 
						|
		fn(data, NULL, " || ");
 | 
						|
		expr_print(e->right.expr, fn, data, E_OR);
 | 
						|
		break;
 | 
						|
	case E_AND:
 | 
						|
		expr_print(e->left.expr, fn, data, E_AND);
 | 
						|
		fn(data, NULL, " && ");
 | 
						|
		expr_print(e->right.expr, fn, data, E_AND);
 | 
						|
		break;
 | 
						|
	case E_RANGE:
 | 
						|
		fn(data, NULL, "[");
 | 
						|
		fn(data, e->left.sym, e->left.sym->name);
 | 
						|
		fn(data, NULL, " ");
 | 
						|
		fn(data, e->right.sym, e->right.sym->name);
 | 
						|
		fn(data, NULL, "]");
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
	  {
 | 
						|
		char buf[32];
 | 
						|
		sprintf(buf, "<unknown type %d>", e->type);
 | 
						|
		fn(data, NULL, buf);
 | 
						|
		break;
 | 
						|
	  }
 | 
						|
	}
 | 
						|
	if (expr_compare_type(prevtoken, e->type) > 0)
 | 
						|
		fn(data, NULL, ")");
 | 
						|
}
 | 
						|
 | 
						|
static void expr_print_file_helper(void *data, struct symbol *sym, const char *str)
 | 
						|
{
 | 
						|
	xfwrite(str, strlen(str), 1, data);
 | 
						|
}
 | 
						|
 | 
						|
void expr_fprint(struct expr *e, FILE *out)
 | 
						|
{
 | 
						|
	expr_print(e, expr_print_file_helper, out, E_NONE);
 | 
						|
}
 | 
						|
 | 
						|
static void expr_print_gstr_helper(void *data, struct symbol *sym, const char *str)
 | 
						|
{
 | 
						|
	struct gstr *gs = (struct gstr*)data;
 | 
						|
	const char *sym_str = NULL;
 | 
						|
 | 
						|
	if (sym)
 | 
						|
		sym_str = sym_get_string_value(sym);
 | 
						|
 | 
						|
	if (gs->max_width) {
 | 
						|
		unsigned extra_length = strlen(str);
 | 
						|
		const char *last_cr = strrchr(gs->s, '\n');
 | 
						|
		unsigned last_line_length;
 | 
						|
 | 
						|
		if (sym_str)
 | 
						|
			extra_length += 4 + strlen(sym_str);
 | 
						|
 | 
						|
		if (!last_cr)
 | 
						|
			last_cr = gs->s;
 | 
						|
 | 
						|
		last_line_length = strlen(gs->s) - (last_cr - gs->s);
 | 
						|
 | 
						|
		if ((last_line_length + extra_length) > gs->max_width)
 | 
						|
			str_append(gs, "\\\n");
 | 
						|
	}
 | 
						|
 | 
						|
	str_append(gs, str);
 | 
						|
	if (sym && sym->type != S_UNKNOWN)
 | 
						|
		str_printf(gs, " [=%s]", sym_str);
 | 
						|
}
 | 
						|
 | 
						|
void expr_gstr_print(const struct expr *e, struct gstr *gs)
 | 
						|
{
 | 
						|
	expr_print(e, expr_print_gstr_helper, gs, E_NONE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Transform the top level "||" tokens into newlines and prepend each
 | 
						|
 * line with a minus. This makes expressions much easier to read.
 | 
						|
 * Suitable for reverse dependency expressions.
 | 
						|
 */
 | 
						|
static void expr_print_revdep(struct expr *e,
 | 
						|
			      void (*fn)(void *, struct symbol *, const char *),
 | 
						|
			      void *data, tristate pr_type, const char **title)
 | 
						|
{
 | 
						|
	if (e->type == E_OR) {
 | 
						|
		expr_print_revdep(e->left.expr, fn, data, pr_type, title);
 | 
						|
		expr_print_revdep(e->right.expr, fn, data, pr_type, title);
 | 
						|
	} else if (expr_calc_value(e) == pr_type) {
 | 
						|
		if (*title) {
 | 
						|
			fn(data, NULL, *title);
 | 
						|
			*title = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		fn(data, NULL, "  - ");
 | 
						|
		expr_print(e, fn, data, E_NONE);
 | 
						|
		fn(data, NULL, "\n");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void expr_gstr_print_revdep(struct expr *e, struct gstr *gs,
 | 
						|
			    tristate pr_type, const char *title)
 | 
						|
{
 | 
						|
	expr_print_revdep(e, expr_print_gstr_helper, gs, pr_type, &title);
 | 
						|
}
 |