mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	"make help" if sphinx isn't present. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJXo8sIAAoJEI3ONVYwIuV6po0P/0ZZo+YF0GrPvOHr7uuUqAND 0+4WRfSsT74z5Rn/W3apeX6CM7IGBMSR2zM89E2nWmbE2Uo7bIbrwj6C+Y6gMMfd aws0Xi9899Jr6hVkeFVZ9foze+M2yc3tE1vFBby035uW3Zwyz2XHzaU/9vyLOLkJ c7jhqCWebqFEqOSWtw2FZYegt2oHSjUsQgGCh3kk2pCU+DzLHntwbblJLeMuTy+h zPVxTTBcBkUZcIjpkSvhqc/oCLCiWKLElmwxPBwfpNU9UlE0rol2Lx1eLClxadFl QVlb1UAIjPcLnHQoM8dL9NR0tkfGopIDuNCL26GU5ie9N4zurOj5a6hj+G5mZKLB tsMqIw+N7ig5FnaQhaCx3oN/VMZ0djxURu9XvKsHBmOCd2Bp8SDoqpCkTwCqCxcN DVdUjpS1WUT9w2A1jhH32mx+23eRwJa5oaTFpM3Y0z7Bl9N40ScY2WJcgBKWqHgx LRROJAzNOPojbBkwTDNsRValwgtutCcqaRw5mNQTp3YjjmltmqylCvJH3AST+z5r CmMDO96O3rUGsCZYoBhxafC2FUUh5RkUwQq/Cy8nrioMookE3Yd5A9DN6wWQ2pTt tev/z6s3ov8dygeF6u3noOHCa8GPUpSHO62FyHUKYnn6Tl8xh3x7rmUkUqrJZi5a dnXOZzp34eVhev5xDeDN =iD7L -----END PGP SIGNATURE----- Merge tag 'doc-4.8-fixes' of git://git.lwn.net/linux Pull documentation fixes from Jonathan Corbet: "Three fixes for the docs build, including removing an annoying warning on 'make help' if sphinx isn't present" * tag 'doc-4.8-fixes' of git://git.lwn.net/linux: DocBook: use DOCBOOKS="" to ignore DocBooks instead of IGNORE_DOCBOOKS=1 Documenation: update cgroup's document path Documentation/sphinx: do not warn about missing tools in 'make help'
		
			
				
	
	
		
			252 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
Page migration
 | 
						|
--------------
 | 
						|
 | 
						|
Page migration allows the moving of the physical location of pages between
 | 
						|
nodes in a numa system while the process is running. This means that the
 | 
						|
virtual addresses that the process sees do not change. However, the
 | 
						|
system rearranges the physical location of those pages.
 | 
						|
 | 
						|
The main intend of page migration is to reduce the latency of memory access
 | 
						|
by moving pages near to the processor where the process accessing that memory
 | 
						|
is running.
 | 
						|
 | 
						|
Page migration allows a process to manually relocate the node on which its
 | 
						|
pages are located through the MF_MOVE and MF_MOVE_ALL options while setting
 | 
						|
a new memory policy via mbind(). The pages of process can also be relocated
 | 
						|
from another process using the sys_migrate_pages() function call. The
 | 
						|
migrate_pages function call takes two sets of nodes and moves pages of a
 | 
						|
process that are located on the from nodes to the destination nodes.
 | 
						|
Page migration functions are provided by the numactl package by Andi Kleen
 | 
						|
(a version later than 0.9.3 is required. Get it from
 | 
						|
ftp://oss.sgi.com/www/projects/libnuma/download/). numactl provides libnuma
 | 
						|
which provides an interface similar to other numa functionality for page
 | 
						|
migration.  cat /proc/<pid>/numa_maps allows an easy review of where the
 | 
						|
pages of a process are located. See also the numa_maps documentation in the
 | 
						|
proc(5) man page.
 | 
						|
 | 
						|
Manual migration is useful if for example the scheduler has relocated
 | 
						|
a process to a processor on a distant node. A batch scheduler or an
 | 
						|
administrator may detect the situation and move the pages of the process
 | 
						|
nearer to the new processor. The kernel itself does only provide
 | 
						|
manual page migration support. Automatic page migration may be implemented
 | 
						|
through user space processes that move pages. A special function call
 | 
						|
"move_pages" allows the moving of individual pages within a process.
 | 
						|
A NUMA profiler may f.e. obtain a log showing frequent off node
 | 
						|
accesses and may use the result to move pages to more advantageous
 | 
						|
locations.
 | 
						|
 | 
						|
Larger installations usually partition the system using cpusets into
 | 
						|
sections of nodes. Paul Jackson has equipped cpusets with the ability to
 | 
						|
move pages when a task is moved to another cpuset (See
 | 
						|
Documentation/cgroup-v1/cpusets.txt).
 | 
						|
Cpusets allows the automation of process locality. If a task is moved to
 | 
						|
a new cpuset then also all its pages are moved with it so that the
 | 
						|
performance of the process does not sink dramatically. Also the pages
 | 
						|
of processes in a cpuset are moved if the allowed memory nodes of a
 | 
						|
cpuset are changed.
 | 
						|
 | 
						|
Page migration allows the preservation of the relative location of pages
 | 
						|
within a group of nodes for all migration techniques which will preserve a
 | 
						|
particular memory allocation pattern generated even after migrating a
 | 
						|
process. This is necessary in order to preserve the memory latencies.
 | 
						|
Processes will run with similar performance after migration.
 | 
						|
 | 
						|
Page migration occurs in several steps. First a high level
 | 
						|
description for those trying to use migrate_pages() from the kernel
 | 
						|
(for userspace usage see the Andi Kleen's numactl package mentioned above)
 | 
						|
and then a low level description of how the low level details work.
 | 
						|
 | 
						|
A. In kernel use of migrate_pages()
 | 
						|
-----------------------------------
 | 
						|
 | 
						|
1. Remove pages from the LRU.
 | 
						|
 | 
						|
   Lists of pages to be migrated are generated by scanning over
 | 
						|
   pages and moving them into lists. This is done by
 | 
						|
   calling isolate_lru_page().
 | 
						|
   Calling isolate_lru_page increases the references to the page
 | 
						|
   so that it cannot vanish while the page migration occurs.
 | 
						|
   It also prevents the swapper or other scans to encounter
 | 
						|
   the page.
 | 
						|
 | 
						|
2. We need to have a function of type new_page_t that can be
 | 
						|
   passed to migrate_pages(). This function should figure out
 | 
						|
   how to allocate the correct new page given the old page.
 | 
						|
 | 
						|
3. The migrate_pages() function is called which attempts
 | 
						|
   to do the migration. It will call the function to allocate
 | 
						|
   the new page for each page that is considered for
 | 
						|
   moving.
 | 
						|
 | 
						|
B. How migrate_pages() works
 | 
						|
----------------------------
 | 
						|
 | 
						|
migrate_pages() does several passes over its list of pages. A page is moved
 | 
						|
if all references to a page are removable at the time. The page has
 | 
						|
already been removed from the LRU via isolate_lru_page() and the refcount
 | 
						|
is increased so that the page cannot be freed while page migration occurs.
 | 
						|
 | 
						|
Steps:
 | 
						|
 | 
						|
1. Lock the page to be migrated
 | 
						|
 | 
						|
2. Insure that writeback is complete.
 | 
						|
 | 
						|
3. Lock the new page that we want to move to. It is locked so that accesses to
 | 
						|
   this (not yet uptodate) page immediately lock while the move is in progress.
 | 
						|
 | 
						|
4. All the page table references to the page are converted to migration
 | 
						|
   entries. This decreases the mapcount of a page. If the resulting
 | 
						|
   mapcount is not zero then we do not migrate the page. All user space
 | 
						|
   processes that attempt to access the page will now wait on the page lock.
 | 
						|
 | 
						|
5. The radix tree lock is taken. This will cause all processes trying
 | 
						|
   to access the page via the mapping to block on the radix tree spinlock.
 | 
						|
 | 
						|
6. The refcount of the page is examined and we back out if references remain
 | 
						|
   otherwise we know that we are the only one referencing this page.
 | 
						|
 | 
						|
7. The radix tree is checked and if it does not contain the pointer to this
 | 
						|
   page then we back out because someone else modified the radix tree.
 | 
						|
 | 
						|
8. The new page is prepped with some settings from the old page so that
 | 
						|
   accesses to the new page will discover a page with the correct settings.
 | 
						|
 | 
						|
9. The radix tree is changed to point to the new page.
 | 
						|
 | 
						|
10. The reference count of the old page is dropped because the radix tree
 | 
						|
    reference is gone. A reference to the new page is established because
 | 
						|
    the new page is referenced to by the radix tree.
 | 
						|
 | 
						|
11. The radix tree lock is dropped. With that lookups in the mapping
 | 
						|
    become possible again. Processes will move from spinning on the tree_lock
 | 
						|
    to sleeping on the locked new page.
 | 
						|
 | 
						|
12. The page contents are copied to the new page.
 | 
						|
 | 
						|
13. The remaining page flags are copied to the new page.
 | 
						|
 | 
						|
14. The old page flags are cleared to indicate that the page does
 | 
						|
    not provide any information anymore.
 | 
						|
 | 
						|
15. Queued up writeback on the new page is triggered.
 | 
						|
 | 
						|
16. If migration entries were page then replace them with real ptes. Doing
 | 
						|
    so will enable access for user space processes not already waiting for
 | 
						|
    the page lock.
 | 
						|
 | 
						|
19. The page locks are dropped from the old and new page.
 | 
						|
    Processes waiting on the page lock will redo their page faults
 | 
						|
    and will reach the new page.
 | 
						|
 | 
						|
20. The new page is moved to the LRU and can be scanned by the swapper
 | 
						|
    etc again.
 | 
						|
 | 
						|
C. Non-LRU page migration
 | 
						|
-------------------------
 | 
						|
 | 
						|
Although original migration aimed for reducing the latency of memory access
 | 
						|
for NUMA, compaction who want to create high-order page is also main customer.
 | 
						|
 | 
						|
Current problem of the implementation is that it is designed to migrate only
 | 
						|
*LRU* pages. However, there are potential non-lru pages which can be migrated
 | 
						|
in drivers, for example, zsmalloc, virtio-balloon pages.
 | 
						|
 | 
						|
For virtio-balloon pages, some parts of migration code path have been hooked
 | 
						|
up and added virtio-balloon specific functions to intercept migration logics.
 | 
						|
It's too specific to a driver so other drivers who want to make their pages
 | 
						|
movable would have to add own specific hooks in migration path.
 | 
						|
 | 
						|
To overclome the problem, VM supports non-LRU page migration which provides
 | 
						|
generic functions for non-LRU movable pages without driver specific hooks
 | 
						|
migration path.
 | 
						|
 | 
						|
If a driver want to make own pages movable, it should define three functions
 | 
						|
which are function pointers of struct address_space_operations.
 | 
						|
 | 
						|
1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);
 | 
						|
 | 
						|
What VM expects on isolate_page function of driver is to return *true*
 | 
						|
if driver isolates page successfully. On returing true, VM marks the page
 | 
						|
as PG_isolated so concurrent isolation in several CPUs skip the page
 | 
						|
for isolation. If a driver cannot isolate the page, it should return *false*.
 | 
						|
 | 
						|
Once page is successfully isolated, VM uses page.lru fields so driver
 | 
						|
shouldn't expect to preserve values in that fields.
 | 
						|
 | 
						|
2. int (*migratepage) (struct address_space *mapping,
 | 
						|
		struct page *newpage, struct page *oldpage, enum migrate_mode);
 | 
						|
 | 
						|
After isolation, VM calls migratepage of driver with isolated page.
 | 
						|
The function of migratepage is to move content of the old page to new page
 | 
						|
and set up fields of struct page newpage. Keep in mind that you should
 | 
						|
indicate to the VM the oldpage is no longer movable via __ClearPageMovable()
 | 
						|
under page_lock if you migrated the oldpage successfully and returns
 | 
						|
MIGRATEPAGE_SUCCESS. If driver cannot migrate the page at the moment, driver
 | 
						|
can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time
 | 
						|
because VM interprets -EAGAIN as "temporal migration failure". On returning
 | 
						|
any error except -EAGAIN, VM will give up the page migration without retrying
 | 
						|
in this time.
 | 
						|
 | 
						|
Driver shouldn't touch page.lru field VM using in the functions.
 | 
						|
 | 
						|
3. void (*putback_page)(struct page *);
 | 
						|
 | 
						|
If migration fails on isolated page, VM should return the isolated page
 | 
						|
to the driver so VM calls driver's putback_page with migration failed page.
 | 
						|
In this function, driver should put the isolated page back to the own data
 | 
						|
structure.
 | 
						|
 | 
						|
4. non-lru movable page flags
 | 
						|
 | 
						|
There are two page flags for supporting non-lru movable page.
 | 
						|
 | 
						|
* PG_movable
 | 
						|
 | 
						|
Driver should use the below function to make page movable under page_lock.
 | 
						|
 | 
						|
	void __SetPageMovable(struct page *page, struct address_space *mapping)
 | 
						|
 | 
						|
It needs argument of address_space for registering migration family functions
 | 
						|
which will be called by VM. Exactly speaking, PG_movable is not a real flag of
 | 
						|
struct page. Rather than, VM reuses page->mapping's lower bits to represent it.
 | 
						|
 | 
						|
	#define PAGE_MAPPING_MOVABLE 0x2
 | 
						|
	page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;
 | 
						|
 | 
						|
so driver shouldn't access page->mapping directly. Instead, driver should
 | 
						|
use page_mapping which mask off the low two bits of page->mapping under
 | 
						|
page lock so it can get right struct address_space.
 | 
						|
 | 
						|
For testing of non-lru movable page, VM supports __PageMovable function.
 | 
						|
However, it doesn't guarantee to identify non-lru movable page because
 | 
						|
page->mapping field is unified with other variables in struct page.
 | 
						|
As well, if driver releases the page after isolation by VM, page->mapping
 | 
						|
doesn't have stable value although it has PAGE_MAPPING_MOVABLE
 | 
						|
(Look at __ClearPageMovable). But __PageMovable is cheap to catch whether
 | 
						|
page is LRU or non-lru movable once the page has been isolated. Because
 | 
						|
LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also
 | 
						|
good for just peeking to test non-lru movable pages before more expensive
 | 
						|
checking with lock_page in pfn scanning to select victim.
 | 
						|
 | 
						|
For guaranteeing non-lru movable page, VM provides PageMovable function.
 | 
						|
Unlike __PageMovable, PageMovable functions validates page->mapping and
 | 
						|
mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden
 | 
						|
destroying of page->mapping.
 | 
						|
 | 
						|
Driver using __SetPageMovable should clear the flag via __ClearMovablePage
 | 
						|
under page_lock before the releasing the page.
 | 
						|
 | 
						|
* PG_isolated
 | 
						|
 | 
						|
To prevent concurrent isolation among several CPUs, VM marks isolated page
 | 
						|
as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru
 | 
						|
movable page, it can skip it. Driver doesn't need to manipulate the flag
 | 
						|
because VM will set/clear it automatically. Keep in mind that if driver
 | 
						|
sees PG_isolated page, it means the page have been isolated by VM so it
 | 
						|
shouldn't touch page.lru field.
 | 
						|
PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag
 | 
						|
for own purpose.
 | 
						|
 | 
						|
Christoph Lameter, May 8, 2006.
 | 
						|
Minchan Kim, Mar 28, 2016.
 |