mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	The btree record and key inorder check functions will be used by the btree scrubber code, so make sure they're always built. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
		
			
				
	
	
		
			592 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2014 Red Hat, Inc.
 | 
						|
 * All Rights Reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it would be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write the Free Software Foundation,
 | 
						|
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_shared.h"
 | 
						|
#include "xfs_format.h"
 | 
						|
#include "xfs_log_format.h"
 | 
						|
#include "xfs_trans_resv.h"
 | 
						|
#include "xfs_bit.h"
 | 
						|
#include "xfs_sb.h"
 | 
						|
#include "xfs_mount.h"
 | 
						|
#include "xfs_defer.h"
 | 
						|
#include "xfs_inode.h"
 | 
						|
#include "xfs_trans.h"
 | 
						|
#include "xfs_alloc.h"
 | 
						|
#include "xfs_btree.h"
 | 
						|
#include "xfs_rmap.h"
 | 
						|
#include "xfs_rmap_btree.h"
 | 
						|
#include "xfs_trace.h"
 | 
						|
#include "xfs_cksum.h"
 | 
						|
#include "xfs_error.h"
 | 
						|
#include "xfs_extent_busy.h"
 | 
						|
#include "xfs_ag_resv.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Reverse map btree.
 | 
						|
 *
 | 
						|
 * This is a per-ag tree used to track the owner(s) of a given extent. With
 | 
						|
 * reflink it is possible for there to be multiple owners, which is a departure
 | 
						|
 * from classic XFS. Owner records for data extents are inserted when the
 | 
						|
 * extent is mapped and removed when an extent is unmapped.  Owner records for
 | 
						|
 * all other block types (i.e. metadata) are inserted when an extent is
 | 
						|
 * allocated and removed when an extent is freed. There can only be one owner
 | 
						|
 * of a metadata extent, usually an inode or some other metadata structure like
 | 
						|
 * an AG btree.
 | 
						|
 *
 | 
						|
 * The rmap btree is part of the free space management, so blocks for the tree
 | 
						|
 * are sourced from the agfl. Hence we need transaction reservation support for
 | 
						|
 * this tree so that the freelist is always large enough. This also impacts on
 | 
						|
 * the minimum space we need to leave free in the AG.
 | 
						|
 *
 | 
						|
 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 | 
						|
 * but it is the only way to enforce unique keys when a block can be owned by
 | 
						|
 * multiple files at any offset. There's no need to order/search by extent
 | 
						|
 * size for online updating/management of the tree. It is intended that most
 | 
						|
 * reverse lookups will be to find the owner(s) of a particular block, or to
 | 
						|
 * try to recover tree and file data from corrupt primary metadata.
 | 
						|
 */
 | 
						|
 | 
						|
static struct xfs_btree_cur *
 | 
						|
xfs_rmapbt_dup_cursor(
 | 
						|
	struct xfs_btree_cur	*cur)
 | 
						|
{
 | 
						|
	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 | 
						|
			cur->bc_private.a.agbp, cur->bc_private.a.agno);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_set_root(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_ptr	*ptr,
 | 
						|
	int			inc)
 | 
						|
{
 | 
						|
	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 | 
						|
	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 | 
						|
	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
 | 
						|
	int			btnum = cur->bc_btnum;
 | 
						|
	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
 | 
						|
 | 
						|
	ASSERT(ptr->s != 0);
 | 
						|
 | 
						|
	agf->agf_roots[btnum] = ptr->s;
 | 
						|
	be32_add_cpu(&agf->agf_levels[btnum], inc);
 | 
						|
	pag->pagf_levels[btnum] += inc;
 | 
						|
	xfs_perag_put(pag);
 | 
						|
 | 
						|
	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_alloc_block(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_ptr	*start,
 | 
						|
	union xfs_btree_ptr	*new,
 | 
						|
	int			*stat)
 | 
						|
{
 | 
						|
	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 | 
						|
	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 | 
						|
	int			error;
 | 
						|
	xfs_agblock_t		bno;
 | 
						|
 | 
						|
	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
 | 
						|
 | 
						|
	/* Allocate the new block from the freelist. If we can't, give up.  */
 | 
						|
	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
 | 
						|
				       &bno, 1);
 | 
						|
	if (error) {
 | 
						|
		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
 | 
						|
			bno, 1);
 | 
						|
	if (bno == NULLAGBLOCK) {
 | 
						|
		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
 | 
						|
		*stat = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
 | 
						|
			false);
 | 
						|
 | 
						|
	xfs_trans_agbtree_delta(cur->bc_tp, 1);
 | 
						|
	new->s = cpu_to_be32(bno);
 | 
						|
	be32_add_cpu(&agf->agf_rmap_blocks, 1);
 | 
						|
	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 | 
						|
 | 
						|
	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
 | 
						|
	*stat = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_free_block(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 | 
						|
	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 | 
						|
	xfs_agblock_t		bno;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
 | 
						|
	trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
 | 
						|
			bno, 1);
 | 
						|
	be32_add_cpu(&agf->agf_rmap_blocks, -1);
 | 
						|
	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 | 
						|
	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 | 
						|
			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 | 
						|
	xfs_trans_agbtree_delta(cur->bc_tp, -1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_get_minrecs(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			level)
 | 
						|
{
 | 
						|
	return cur->bc_mp->m_rmap_mnr[level != 0];
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_get_maxrecs(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			level)
 | 
						|
{
 | 
						|
	return cur->bc_mp->m_rmap_mxr[level != 0];
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_key_from_rec(
 | 
						|
	union xfs_btree_key	*key,
 | 
						|
	union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	key->rmap.rm_startblock = rec->rmap.rm_startblock;
 | 
						|
	key->rmap.rm_owner = rec->rmap.rm_owner;
 | 
						|
	key->rmap.rm_offset = rec->rmap.rm_offset;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The high key for a reverse mapping record can be computed by shifting
 | 
						|
 * the startblock and offset to the highest value that would still map
 | 
						|
 * to that record.  In practice this means that we add blockcount-1 to
 | 
						|
 * the startblock for all records, and if the record is for a data/attr
 | 
						|
 * fork mapping, we add blockcount-1 to the offset too.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_high_key_from_rec(
 | 
						|
	union xfs_btree_key	*key,
 | 
						|
	union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	uint64_t		off;
 | 
						|
	int			adj;
 | 
						|
 | 
						|
	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
 | 
						|
 | 
						|
	key->rmap.rm_startblock = rec->rmap.rm_startblock;
 | 
						|
	be32_add_cpu(&key->rmap.rm_startblock, adj);
 | 
						|
	key->rmap.rm_owner = rec->rmap.rm_owner;
 | 
						|
	key->rmap.rm_offset = rec->rmap.rm_offset;
 | 
						|
	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
 | 
						|
	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
 | 
						|
		return;
 | 
						|
	off = be64_to_cpu(key->rmap.rm_offset);
 | 
						|
	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
 | 
						|
	key->rmap.rm_offset = cpu_to_be64(off);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_rec_from_cur(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_rec	*rec)
 | 
						|
{
 | 
						|
	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
 | 
						|
	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
 | 
						|
	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
 | 
						|
	rec->rmap.rm_offset = cpu_to_be64(
 | 
						|
			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_rmapbt_init_ptr_from_cur(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_ptr	*ptr)
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
 | 
						|
 | 
						|
	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
 | 
						|
	ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
 | 
						|
 | 
						|
	ptr->s = agf->agf_roots[cur->bc_btnum];
 | 
						|
}
 | 
						|
 | 
						|
STATIC int64_t
 | 
						|
xfs_rmapbt_key_diff(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_key	*key)
 | 
						|
{
 | 
						|
	struct xfs_rmap_irec	*rec = &cur->bc_rec.r;
 | 
						|
	struct xfs_rmap_key	*kp = &key->rmap;
 | 
						|
	__u64			x, y;
 | 
						|
	int64_t			d;
 | 
						|
 | 
						|
	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
 | 
						|
	if (d)
 | 
						|
		return d;
 | 
						|
 | 
						|
	x = be64_to_cpu(kp->rm_owner);
 | 
						|
	y = rec->rm_owner;
 | 
						|
	if (x > y)
 | 
						|
		return 1;
 | 
						|
	else if (y > x)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
 | 
						|
	y = rec->rm_offset;
 | 
						|
	if (x > y)
 | 
						|
		return 1;
 | 
						|
	else if (y > x)
 | 
						|
		return -1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int64_t
 | 
						|
xfs_rmapbt_diff_two_keys(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_key	*k1,
 | 
						|
	union xfs_btree_key	*k2)
 | 
						|
{
 | 
						|
	struct xfs_rmap_key	*kp1 = &k1->rmap;
 | 
						|
	struct xfs_rmap_key	*kp2 = &k2->rmap;
 | 
						|
	int64_t			d;
 | 
						|
	__u64			x, y;
 | 
						|
 | 
						|
	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
 | 
						|
		       be32_to_cpu(kp2->rm_startblock);
 | 
						|
	if (d)
 | 
						|
		return d;
 | 
						|
 | 
						|
	x = be64_to_cpu(kp1->rm_owner);
 | 
						|
	y = be64_to_cpu(kp2->rm_owner);
 | 
						|
	if (x > y)
 | 
						|
		return 1;
 | 
						|
	else if (y > x)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
 | 
						|
	y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
 | 
						|
	if (x > y)
 | 
						|
		return 1;
 | 
						|
	else if (y > x)
 | 
						|
		return -1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
xfs_rmapbt_verify(
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_target->bt_mount;
 | 
						|
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 | 
						|
	struct xfs_perag	*pag = bp->b_pag;
 | 
						|
	unsigned int		level;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * magic number and level verification
 | 
						|
	 *
 | 
						|
	 * During growfs operations, we can't verify the exact level or owner as
 | 
						|
	 * the perag is not fully initialised and hence not attached to the
 | 
						|
	 * buffer.  In this case, check against the maximum tree depth.
 | 
						|
	 *
 | 
						|
	 * Similarly, during log recovery we will have a perag structure
 | 
						|
	 * attached, but the agf information will not yet have been initialised
 | 
						|
	 * from the on disk AGF. Again, we can only check against maximum limits
 | 
						|
	 * in this case.
 | 
						|
	 */
 | 
						|
	if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 | 
						|
		return false;
 | 
						|
	if (!xfs_btree_sblock_v5hdr_verify(bp))
 | 
						|
		return false;
 | 
						|
 | 
						|
	level = be16_to_cpu(block->bb_level);
 | 
						|
	if (pag && pag->pagf_init) {
 | 
						|
		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
 | 
						|
			return false;
 | 
						|
	} else if (level >= mp->m_rmap_maxlevels)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rmapbt_read_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	if (!xfs_btree_sblock_verify_crc(bp))
 | 
						|
		xfs_buf_ioerror(bp, -EFSBADCRC);
 | 
						|
	else if (!xfs_rmapbt_verify(bp))
 | 
						|
		xfs_buf_ioerror(bp, -EFSCORRUPTED);
 | 
						|
 | 
						|
	if (bp->b_error) {
 | 
						|
		trace_xfs_btree_corrupt(bp, _RET_IP_);
 | 
						|
		xfs_verifier_error(bp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_rmapbt_write_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	if (!xfs_rmapbt_verify(bp)) {
 | 
						|
		trace_xfs_btree_corrupt(bp, _RET_IP_);
 | 
						|
		xfs_buf_ioerror(bp, -EFSCORRUPTED);
 | 
						|
		xfs_verifier_error(bp);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	xfs_btree_sblock_calc_crc(bp);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
 | 
						|
	.name			= "xfs_rmapbt",
 | 
						|
	.verify_read		= xfs_rmapbt_read_verify,
 | 
						|
	.verify_write		= xfs_rmapbt_write_verify,
 | 
						|
};
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_keys_inorder(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_key	*k1,
 | 
						|
	union xfs_btree_key	*k2)
 | 
						|
{
 | 
						|
	uint32_t		x;
 | 
						|
	uint32_t		y;
 | 
						|
	uint64_t		a;
 | 
						|
	uint64_t		b;
 | 
						|
 | 
						|
	x = be32_to_cpu(k1->rmap.rm_startblock);
 | 
						|
	y = be32_to_cpu(k2->rmap.rm_startblock);
 | 
						|
	if (x < y)
 | 
						|
		return 1;
 | 
						|
	else if (x > y)
 | 
						|
		return 0;
 | 
						|
	a = be64_to_cpu(k1->rmap.rm_owner);
 | 
						|
	b = be64_to_cpu(k2->rmap.rm_owner);
 | 
						|
	if (a < b)
 | 
						|
		return 1;
 | 
						|
	else if (a > b)
 | 
						|
		return 0;
 | 
						|
	a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
 | 
						|
	b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
 | 
						|
	if (a <= b)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_rmapbt_recs_inorder(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	union xfs_btree_rec	*r1,
 | 
						|
	union xfs_btree_rec	*r2)
 | 
						|
{
 | 
						|
	uint32_t		x;
 | 
						|
	uint32_t		y;
 | 
						|
	uint64_t		a;
 | 
						|
	uint64_t		b;
 | 
						|
 | 
						|
	x = be32_to_cpu(r1->rmap.rm_startblock);
 | 
						|
	y = be32_to_cpu(r2->rmap.rm_startblock);
 | 
						|
	if (x < y)
 | 
						|
		return 1;
 | 
						|
	else if (x > y)
 | 
						|
		return 0;
 | 
						|
	a = be64_to_cpu(r1->rmap.rm_owner);
 | 
						|
	b = be64_to_cpu(r2->rmap.rm_owner);
 | 
						|
	if (a < b)
 | 
						|
		return 1;
 | 
						|
	else if (a > b)
 | 
						|
		return 0;
 | 
						|
	a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
 | 
						|
	b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
 | 
						|
	if (a <= b)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct xfs_btree_ops xfs_rmapbt_ops = {
 | 
						|
	.rec_len		= sizeof(struct xfs_rmap_rec),
 | 
						|
	.key_len		= 2 * sizeof(struct xfs_rmap_key),
 | 
						|
 | 
						|
	.dup_cursor		= xfs_rmapbt_dup_cursor,
 | 
						|
	.set_root		= xfs_rmapbt_set_root,
 | 
						|
	.alloc_block		= xfs_rmapbt_alloc_block,
 | 
						|
	.free_block		= xfs_rmapbt_free_block,
 | 
						|
	.get_minrecs		= xfs_rmapbt_get_minrecs,
 | 
						|
	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
 | 
						|
	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
 | 
						|
	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
 | 
						|
	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
 | 
						|
	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
 | 
						|
	.key_diff		= xfs_rmapbt_key_diff,
 | 
						|
	.buf_ops		= &xfs_rmapbt_buf_ops,
 | 
						|
	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
 | 
						|
	.keys_inorder		= xfs_rmapbt_keys_inorder,
 | 
						|
	.recs_inorder		= xfs_rmapbt_recs_inorder,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a new allocation btree cursor.
 | 
						|
 */
 | 
						|
struct xfs_btree_cur *
 | 
						|
xfs_rmapbt_init_cursor(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*agbp,
 | 
						|
	xfs_agnumber_t		agno)
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
 | 
						|
	struct xfs_btree_cur	*cur;
 | 
						|
 | 
						|
	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
 | 
						|
	cur->bc_tp = tp;
 | 
						|
	cur->bc_mp = mp;
 | 
						|
	/* Overlapping btree; 2 keys per pointer. */
 | 
						|
	cur->bc_btnum = XFS_BTNUM_RMAP;
 | 
						|
	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
 | 
						|
	cur->bc_blocklog = mp->m_sb.sb_blocklog;
 | 
						|
	cur->bc_ops = &xfs_rmapbt_ops;
 | 
						|
	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
 | 
						|
	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
 | 
						|
 | 
						|
	cur->bc_private.a.agbp = agbp;
 | 
						|
	cur->bc_private.a.agno = agno;
 | 
						|
 | 
						|
	return cur;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate number of records in an rmap btree block.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_rmapbt_maxrecs(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	int			blocklen,
 | 
						|
	int			leaf)
 | 
						|
{
 | 
						|
	blocklen -= XFS_RMAP_BLOCK_LEN;
 | 
						|
 | 
						|
	if (leaf)
 | 
						|
		return blocklen / sizeof(struct xfs_rmap_rec);
 | 
						|
	return blocklen /
 | 
						|
		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the maximum height of an rmap btree. */
 | 
						|
void
 | 
						|
xfs_rmapbt_compute_maxlevels(
 | 
						|
	struct xfs_mount		*mp)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * On a non-reflink filesystem, the maximum number of rmap
 | 
						|
	 * records is the number of blocks in the AG, hence the max
 | 
						|
	 * rmapbt height is log_$maxrecs($agblocks).  However, with
 | 
						|
	 * reflink each AG block can have up to 2^32 (per the refcount
 | 
						|
	 * record format) owners, which means that theoretically we
 | 
						|
	 * could face up to 2^64 rmap records.
 | 
						|
	 *
 | 
						|
	 * That effectively means that the max rmapbt height must be
 | 
						|
	 * XFS_BTREE_MAXLEVELS.  "Fortunately" we'll run out of AG
 | 
						|
	 * blocks to feed the rmapbt long before the rmapbt reaches
 | 
						|
	 * maximum height.  The reflink code uses ag_resv_critical to
 | 
						|
	 * disallow reflinking when less than 10% of the per-AG metadata
 | 
						|
	 * block reservation since the fallback is a regular file copy.
 | 
						|
	 */
 | 
						|
	if (xfs_sb_version_hasreflink(&mp->m_sb))
 | 
						|
		mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
 | 
						|
	else
 | 
						|
		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
 | 
						|
				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate the refcount btree size for some records. */
 | 
						|
xfs_extlen_t
 | 
						|
xfs_rmapbt_calc_size(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	unsigned long long	len)
 | 
						|
{
 | 
						|
	return xfs_btree_calc_size(mp, mp->m_rmap_mnr, len);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the maximum refcount btree size.
 | 
						|
 */
 | 
						|
xfs_extlen_t
 | 
						|
xfs_rmapbt_max_size(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	xfs_agblock_t		agblocks)
 | 
						|
{
 | 
						|
	/* Bail out if we're uninitialized, which can happen in mkfs. */
 | 
						|
	if (mp->m_rmap_mxr[0] == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return xfs_rmapbt_calc_size(mp, agblocks);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Figure out how many blocks to reserve and how many are used by this btree.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_rmapbt_calc_reserves(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	xfs_agnumber_t		agno,
 | 
						|
	xfs_extlen_t		*ask,
 | 
						|
	xfs_extlen_t		*used)
 | 
						|
{
 | 
						|
	struct xfs_buf		*agbp;
 | 
						|
	struct xfs_agf		*agf;
 | 
						|
	xfs_agblock_t		agblocks;
 | 
						|
	xfs_extlen_t		tree_len;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	agf = XFS_BUF_TO_AGF(agbp);
 | 
						|
	agblocks = be32_to_cpu(agf->agf_length);
 | 
						|
	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
 | 
						|
	xfs_buf_relse(agbp);
 | 
						|
 | 
						|
	/* Reserve 1% of the AG or enough for 1 block per record. */
 | 
						|
	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
 | 
						|
	*used += tree_len;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 |